Course Syllabus
UNM Physics 330
Spring 2007

Instructor: Dr. Keith Lidke
Room 1164, Physics and Astronomy
e-mail: klidke@unm.edu
phone: (505)277-0302


Course Contents:

Quantum Particles and Quantum Mechanics (Chapters 5,7)

Atomic Physics (Chapters 8,9,10)
Quantization of angular momentum, energy eigenstates, spin, fine structure of Hydrogen atomic transitions, Zeeman effect, Lamb shift, Pauli exclusion principle, multielectron atoms and the periodic table, the hydrogen molecule.

Classical and Quantum Statistics (Chapter 2,3,12)
Ideal gas law, Maxwell-Boltzmann distribution, density of states, Fermi-Dirac distribution, Bose-Einstein distribution, black body radiation, radiation pressure, Bose-Einstein condensation.

Conductors, Insulators, Semi-conductors (Chapter 14)
Electronic energy bands, Fermi energy, heat capacity, Ohm's law, semiconductors, diode junction.

Lasers (Chapter 13)
Photon-Atom interactions, stimulated emission, Amplification of radiation, examples of modern Lasers

Nuclear Physics (Chapters 6,11)
Scattering and the cross section, the nuclear force: range, charge-independence, spin-dependence (the deutron), nuclear structure, radioactive decays and nuclear interactions, Mossbauer effect, interaction of radiation and bulk matter.

Elementary Particles (Chapters 16,17.18)
Particle accelerators, particle detectors, particles and antiparticles, quarks, QCD, weak interactions, Standard Model of Particle Physics, current topics in high energy physics.

Astroparticle Physics and Cosmology (Chapter 19)
What is General Relativity?, the Big Bang, particle physics and the early universe, dark matter, dark energy

Grading: Best 2 out of 3 midterm exams: 50%. Homework: 25%, Final Exam: 25%
Homework will be assigned on Wednesdays and be due the following Wednesday, no late homework accepted.