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FOREWORD 

The lectures on which these notes are based were intended to 
serve as an elementary introduction to quantum optics. They were 

for th.at reason, with discussions of classical experiments, and 
the introduchon of quantum mechanical ideas was carried out fairly 
gradually. The most advanced knowledge of quantum electrodynamics 
"".'hich they require at any point is some acquaintance with the connec-
ho? b.etween t?e quantization of harmonic oscillators and that of fields. 
This is material which is covered in the first two of Professor Kroll's 

or in the initial chapters of a number of elementary texts on 
field theory. 

These notes are derived from a set Which was prepared from tape 
and edited by R. Prates!, L. Narducci, D. Forster, u. 

T1tulaer, and P. Kelley. The author is mostgratefulfortheirgenerous 
help. 

Lecture I. 

R. J. Glauber 
Harvard University 

INTRODUCTION 

The field of optics, after seeming to have reached a sort of maturity, is begin-
ning to undergo some rapid and revolutionary changes. These changes are connect-
ed with things which we have, as a matter of principle, known about for many years, 
but the extent to which we could put our knowledge into practice has, until just a 
few years ago, been extremely limited. Thus the electromagnetic character of 
light waves has been familiar knowledge since the last century. A vast body of 
theory and te,,hnique concerning the generation of electromagnetic waves has been 
built up during these years, but virtually all of it has dealt with radio frequency 
fields. Light waves of course, are of the same electromagnetic character as radio 
waves. But because the only ways we had of generating them in the past were ex-
tremely clumsy (in a sense we shall presently discuss at some length) there haP 
been very little occasion witil recently to apply the insights of radio-frequency 
theory in optics. A simple physical reason, as we shall see, lies at the bottom of 
this: all of the traditional types of optical sources possess a certain chaotic quality 
in common. They are what a radio engineer would refer to as noise generators, 
and all of the delicate and ingenious techniques of optics are exercises in the con-
structive use of noise. The invention of the optical maser has removed this barrier 
with almost a single stroke. It allows us to presume that we will some day be able 
to control fields oscillating at optical or higher frequencies with the same sort of 
precision and versatility that have become familiar in radio frequency technology. 

Another recent change is the developn1ent of detectors which respond strongly 
to individual quanta of light. These have permitted us to explore the corpuscular 
character of optical fields. All of the traditional optical experiments have not only 
dealt with extremely cru<le sources, but have paid very little attention to the detec-
tion of individual light quanta. The detectors used were typically sensitive only to 
substantial numbers of photons and were quite slow in action so that we meas\il-ed 
only intensities which had been averaged over relatively long periods of time. The 
new light detectors enable us to ask more subtle questions than just ones about 
average intensities; we can, for example, ask questions about the counting of pairs 
of quanta, and can make measurements of the probability that the quanta are pres-
ent at an arbitrary pair of space pvints, at an arbitrary pair of times. 

If the instrumentation in optics has made long strides in the direction of deal .. 
lng with photons, it is worth mentioning that the instrumentation in the radio fre-
quency field is leading in that direction as well. The energies of radio frequency 
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photons are extremely small, much smaller than the thermal fluctuation energy KT 
( T = noise temperature - room temperature for most amplifiers). There has 
consequently not been much need in radio frequency teclmology to date to pay atten-
tion to the corpuscular structure of the field, The recent invention, however, of 
low noise amplifiers, such as the microwave maser, has lowered the noise temper-
ature of the detecting device to such a degree that with further progress it seems 
not impossible that individual photons may be detected. So, even in the microwave 
region, there is now a certain amount of attention being paid to the corpuscular 
structure of light. 

It is interesting, in any case, to investigate the corpuscular nature of electro-
magnetic fields, because it will set the ultimate limitation to the possibility of trans-
mitting information by means of fields. We will not discui:;s inforlllation theory in 
these lectures, but we will have some things to say which are related to noise 
theory. Noise theory is the classical form of the theory of fluctuations of the elec-
tromagnetic field and is quite naturally related to the theory of quantum fluctuations 
of the field. All of these subjects fall under a general heading which we might call 
photon statistics, Coherence theory too, is properly speaking, a rather small area 
of the same general subject. Its purpose is simply to formulate some useful ways 
of classifying the statistical behaviour of fields. 

The problem to which we shall address ourselves in these lectures is the con-
struction of a fairly rigorous and general treatment of the problems of photon sta-
tistics. There is no need, in doing it, to make any material distinction between 
radio frequency and optical fields (or between these and X-ray fields for that mat-
ter}. A part of the formalism, that which has to do with the definition of coherence, 
is suggested in fact as a way of unifying the rather different concepts of coherence, 
which have characterized these areas in the past. 

we have already remarked that optical experiments have only rarely dealt with 
individual photons. Much the.same observation can be made for optical theory as 
well. If the photon has to such a remarkable degree remained a stranger to optical 
theory some justification for that fact surely lies in the great success of the simple 
wave models in the analysis of optical experiments. Such models are usually spoken 
of as being classical in character since they proceed typically from some kind of 
analogy to classical electromagnetic theory and pay as little attCntion to the corpus-
cular character of the radiation as the experimental arrangement will permit. 

In these approaches one talks typically about some kind of "optical disturbance 
function" which is assumed to obey the wave equation and perhaps certain boundary 
conditions as well. The function may represent tbe components of the electric vec-
tor or possibly other field quantities such as the vector potential, or the magnetic 
field. In many applications in fact one does not need to be very specific about what 
it really does or does not represent. 
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Let us consider the Young interferometer (Fig. 1) in order to illustrate the-
elementary approaches we are discussing. A plane, quasi-monochromatic wave" li' 
coming from a point source a impinges on the screen :I; with two parallel slits at 
the positions Pi and Pa. ·,., 

The two waves emerging from the slits give rise to an interference pattern on 
the screen I;', which we can often see with the unaided eye. The simplest way 
predicting the form of the interference pattern is to ignore the vector character 
the electromagnetic field and introduce a scalar field <P which is presumed to 
cribe the "optical disturbance." We then try to find a function rp which satisfies : 
the wave equation together with a set of boundary conditions which we take to re-
present the effect of the screen 'E. That problem, as you remember, is in general 
a good deal too difficult to be solved exactly, and it is customary to make a number 
of simplifying approximations such as dealing very crudely with t_he boundary 
tions, and making use of the Huyghens principle. By these familiar methods we 
reach a simple evaluation of the field distribution cp on the screen E' • · 

Of course, if we are to predict the form of the interference pattern, we must 
at some stage face the question of attaching a physical interpretation to the field«P. 
The most familiar approach is to regard cp( r, t) as a real field and to identify it, 
perhaps, with one of the components of the electric field vector. The 
fringe pattern is then predicted quite accurately, as we all kn_ow, i.f the light inten-
sity on the screen is identified with cp2

, the square of our optical field. The ident-
ification possesses the justification, from the stardpoint of classical the_ory, that 
the Poynting vector, which tells us the energy flux, is indeed quadratic m the field 
strength. In spite of this evident support the identification is not a unique one, 
however; it pays too little attention to the way in which the is detected. 

Let us suppose that the light intensity is measured by usmg a photon counter at 
the position of the screen. We then ask how we may predict the response of the 
counter as it is used to probe the pattern. Although the use of the wave equation to 
find the field amplitude cp did not introduce any distinctions between the classical and 
the quantum theoretical approaches to the diffraction problem, the use of a photon 
counter as a detector does introduce a distinction. The photon counter is an intrin-
sically quantum mechanical instrument. Its output is only predictable in terms of 
statistical averages even when the state of the field is specified precisely. If we 
are to predict this average response we must be rather more specific than we have 
thus far been about the field wl)ich the counter sees and we must treat the detectioa 
mechanism in a fully quantum mechanical way. What we find when we do these 
things is that the counter may be more accurately thought of as responding to a 
complex field cp -1- rather than the real field cp, and as having an output 
not to cp 2 but to /<P -1- 12 , (The distinction is not a trivial one physically, s1ncelna 

field cp2 oscillates rapidly in magnitude while I 'I' + f 2 remains 
constant.) Once this answer ls known it can be used as a crude rule for bypassing 
the explicit discussion of the detection mechanism in applications to other detecUon 
problems. 

The use of such rules as a means of avoiding the explicit use of quantum mech-
anics has several times been called the "semi-classical approach". While approa-
ches of this type clearly need a rule of some sort to bridge the gap between their 
descriptions of the wave and particle behaviors of photons they may remain perfect-
ly correct approaches in a quantum mechanical sense as long as the rule has 
chosen correctly. The fact that a mistaken form of this rule has been used repeat .. 
edly in" semi-classical" discussions is a good indication that the fully quantum . 
mechanical discussion is not entirely beside the point. 

one of the properties of the "semi-classical" approaches that makes them 
elementary is that they deal with ordinary numbers and functions. They make no 
use of the apparatus of non-commuting operators which, it may appear, ought to 
be part of any formal quantum mechanical description of the field. Later in ·these 



68 H.J. GLAUBER 

lectur_es.we shall that for a certain class of fields there need be no error in 
a of the field which is based upon such ordinary functions as 
we find by solvmg the wave equation. It is possible to describe these fields fully 
by means which are rather similar to those used in the classical theory of noise 
Where such a description is available it means that there need be nothing 
about the s?-called "classical" or" semi-classical" approaches except their 
names, which then become totally misleading. It has recently been claimed that 
the class of states of the field for which the simple statistical description we have 
mentioned is available includes all states of the field, and that consequently the 
quantum theory and the" classical" theory will always yield equivalent results. we 
shal_l have to return to this point later in the lectures when we are better equipped 
to dlScuss it,. but for the present we may remark that this claim seems to be based 
more upon wishful thinking than upon accurate mathematics. The quantum theory 
still offers the only complete and logically consistent basis for discussing field 
phenomena. 
. The general subject we shall be discussing, to give it its most imposing name 

quantum electrodynamics. It is an extremely well developed subject. Although. 
it has been clear that classical electrodynamics is the limit of quantum electro-

for h- O, there have never been any very powerful methods available for 
discussmg electrodynamical problems near the classical limit. 

All of quantum electrodynamics has historically been developed in terms of 
the stationary states I n > of the field hamiltonian gt. These correspond to the 
presence of an integer number n of quanta, t. e. they obey the equation 

fl/ In>= (nd) fiw /n>. (1.1) 

Jhe states form a complete set which has usually been regarded as the 
. natural basis for the development of all states of the field. To the extent that 

all electrodynamical calculations have been done by means of expansions 
1°: powers of the field strengths, the numbers of photons which have been dealt 
with in the calculations have usually been very '?mall integers, The classical limit 
of quantum electrodynamics, on the other hand, is one in which the quantum num-
bers are typically quite large. Not only are they large but they are typically quite 
uncertain, If, for example, a harmonic oscillator ls vibrating in a state with a 
relatively well defined phase, it is necessary that it not only be in a state with a 
large quantum number, but that the quantum numberoftbestatealsobequiteuncertain 

When we must deal with quantum states of the electrom3.gnetic field for ' 
which the p?ase of the fie.Id is well defined, they can likewise only be states in which 

occupation number n 1s intrinsically· rather indefinite. In such cases the descrip-
tion of expectation values in terms of the n- quantum states becomes rather awkward 
and untransparenl 

One of the mathematical tools we shall use in these lectures is a set of quantum 
states rather better suited to the description of amplitude and phase variables than 

n-quantum states. The use of these states makes the relationship of the class-
ical and quantum mechanical forms of electrodynamics considerably clearer than it 
has been before. 

CLASSICAL THEORY 
It may help to underscore the close connection between the quantum theory we 

shall develop the classical theory U we begin by discussing the classical theory 
3:1one for a while. We shall describe the classical field in terms of the familiar 
field vectors, the electric field E( r, t) and the magnetic field B( r, t) • we will take 
these to obey the source-free Maxwell equations 

V ·E=O, V XE=-_! BB 
c at 

V • B=O, (1. 2) 

' 
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by assuming that wba\ever source bas radiated the fields bas cease<I to radlate ·:,; 
further. 

Sjnce our detectors are usually sensitive to electric rather than magnetic 
fields, shall confine Qurselves to a discussion of the field E(r, t). One of ttie 
first things which is done in many classipal calculations is to use a Fourier serlel 
or integral to expand the time dependence of the field and in µiat way to 
the field into two terms: .'Jtpi... 

E (r, t) = EM (r, t) + E!-l (r, t) (l,J) 

The first of these terms, which we shall call the positive frequency pa.rt. E l+l, 
contains all the amplitu4es which vary as e-u.it for w > 0. The other, tile 
frequency part, contains all amplitudes which vary as e u.it. ;we 
plex conjugates of one another : 

and contain 13quivalent physical information. Either one or the other is frequenUy 
used in clasSical calculatiqns and called either the complex field strength or th' ·. 
complex signal. The use of these complex fields in classical contexts is usually 
regarded as a mathematical convenience rather than a physical necessity since 
classical measuring devices tend to respond only to the real field, E = 2 Re Ef!l. 

Quantum mechanical detectors, as we have noted, behave rather differently 
from classical ones, and for the discussion of these the separation of the field into its 
positive and negative frequency parts takes on a much deeper significance than it 
does for classical detectors. As we shall later see, an ideal photon counter (one 
which has zero size and is equally sensitive to all frequencies) measures the proc1 ... 
uct E(-l (r, t) El'l (r, t) = / E (•l ( r, t) I'. That, at least, is what the detector 
would measure if we were capable of preparing fields with precisely fixed field 
strengths. Btit of course we are never capable of controlling the motions of the 
charges in our sources with very great precision. In practice. all fields are radi ... 
ated by sources whose behavior is subject to considerable statlStical uncertainty. 
The fields are then correspondingly uncertain and what we require is a way of 
scribing this uncertainty in mathematical terms. 

It is more convenient, in describing the randomness of the fields, deal 
discrete set of variables than to deal with the whole continuum at once. We shall 
therefore only atteinpt to describe the field lying inside a certain volume of spacfa 
within which we can expand it in terms of a discrete set Qf orthogonal mode func ... 
tiorls. We shall take the set of vector mode functions { u 11: ( r) } to obey 
equations 

= 0 ' (v' + we':) u. (r) 

which define a set of frequencies {w11:l when they are satisfied together wlf.h 
constraint 

v · u • (r) 0 ( 1.6) 

and a suitable set of boundary conditions. These functions may be to form 
an orthonormal set 

Ju*. (r) · u"(r) dr = Okk' (1.7) 

which is complete within the volume beillg studied. They may then be used to ex ... 
press the electric field vector in the form 
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( 1.8) 

The two sums on the right are then evidently Ef+) and E(·), respectively. 
When the expansion in orthogonal modes is used the field is evidently specified 

completely by the set of Complex Fourier amplitudes { C.t}. To describe random 
fields we must regard these numbers as random variables in general. Usually the 
most we can state about these coefficients can be expressed through a probability 
distribution p( {Ck}) = p( C1, C2, C3 , • • • ) • Then, if we measure some function 
of E or of E(# , the most we can hope to predict is its mean value, i. e., if we 
measure F(E<+J) we can only hope to find the average 

( 1.9) 

where the differential element of area is given by d 2 C.t = ·d(ReC.t) d (ImC.t). 
It is important to remember that this average is an ensemble average. To 

measure it we must in principle repeat the experiment many times by using the 
procedure for preparing the field over and over again. That may not be a 

very convenient procedure to carry out experimentally but it is the only one which 
represents the precise meaning of our calculation. The fields we are discussing 
:nay vary with time in arbitrary ways. As an example we might take the field gen-

by a radio transmitter sending some arbitrarily chosen message. There is there-
:ore no possibility in general of replacing the ensemble averages by time averages. 
rhe theory of non-stationary statistical phenomena can only be developed in terms 
Jf ensemble averages, 

The solution of problems in statistical thermodynamics has accustomed us to 
hinking of statistical fluctuations about the ensemble average as being very small. 
"'le are thus usually willing to forget about the need in principle to make an ensem-
ile of thermodynamic measurements and are content to compare just a single 
neasurement with the predicted ensemble average. While the justification of such 
1hortcuts may be excellent in thermodynamic contexts, it is not always so good in 
:tatistical optics. Thus when we speak later of the interference patterns produced 
1y superposing light from independent sources we shall find that individual meas-
1rements yield results wholly unlike their ensemble averages. The distinction be-
ween particular measurements and their averages may thus be quite essential. 

,ecture D. INTERFERENCE EXPERIMENTS 

One of the classic experiments which exhibits the coherence properties of light 
; the Young experiment (Fig. 2). 

Figure 2 
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The field present at Pat time t may be approximated by a certain linear aupcrposl .. 
tion of the fields present at the two pinholes at earlier times: 

Et+l(r,t) =A1 E(+l(r1,t1) +A2 E(tl(r2, t2) 

·;.. 

where the times are given by t 1,2 = t - 81,2/c. The coefficients A1, .\a depend on 
the geometry of the arrangement, but are taken to be independent of thr. properties -::il: 
of the field. 

We shall assume, to begin the discussion, that a photoctctector placod at P 
measures the squared absolute value of some con1ponent of the complex field 
strength. (At a later point we shall discuss the validity of the assumption in some . 
detail.) U we write the measured field component as E(+l( r 1 t), we then have 

IE(•)( r, t) I'= E(-)( r, t) E(>)(l', t) = E(-)( r,,ti) E (•le r.,ti) 

+ Ef-l(r,, !,) Ef"(r,, t,) ( 2. 2) 
+2 A, E(-)(r,, tJ E("(r,, t,)). 

Now since our preparation of the source rarely fixes the Fourier coeHictents Cii 
very precisely we must in principle perform the experin1ent repeatedly and then 
average in order to find a non-random result. The only thing we can really pre .. 
diet is the ensemble average of JE(+l(r, t)l 2 taken over the set of random coeffi· 
cients { c,}, 
< IE(+)(r, t)f 2> = 1Ail 2 < ti)! 2>+IA2l 2 < IEf"l(r:i, ta) 12 > 

+ 2Re Ai* Aa < E(-l(r1, t1) E('1(r2, ta) >. 
If we introduce the first order correlation function 

Gf 1\rt, r't') = < E!-l(rt) E(•l(r'r)>, 

we can rewrite Eq. ( 2. 3) in the following way 

< IE(+l(r, t) 12> = IA11 2 G111 (r1t1 1 rit1) + !Aa 12 a<ll(r2t2, rata) 

+ 2Re{A1* Aa G11l(r1t1, r2t2)}. 

(a. aJ 

(a. •l 

(2. 5) 

We have omitted consideration of vector ru1d tensor indices of the fields and cor-
relation functions, respectively, since the vector properties of the field are not 
too important in this experiment. We would have to take careful account of them 
if somehow a rotation of the plane ·of polarisation were induced behind one pin-
hole, or if the polarisation were in any way made to play a more active role. 

A particular case which occurs almost universally 1n classic optics is that in 
which the incident field is stationary. The term "stationary" does not mean that 
nothing is happening. On the contrary, the field is ordinarily oscillating quite 
rapidly. It means that our knowledge about the field does not change with time. 
More formally, we associate stationarity with rnvariance of the statistical de-
scription of the beam under displacements of the time variable. The correlation 
function G ( ll for such fields can therefore only depend on the difference t - t' 

G( 11(t, t') = G(l1(t -t') (stationary field). (2.6) 

(Note that by discussing only a single type of correlation function We are stating 
a necessary condition for stationarity, but not a sufficient one. All average 
properties of a stationary field must be unchanged by time displacements. ) When 
random classical fields are represented by means of stationary stochastic pro-
cesses the models used usually have the ergodic property. That property means 
that the function aOl(t - t') which is defined as an ensemble average, has the 
same value as the time averaged correlation function r<ll(t - t'), 
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(I) 1 J.T (-) (>) G(ll(r1, r2, T) = r (r11 ra, T) = lim T 0 E (r1, ti +T) E (r2, ti)dt1. 
(2.7) 

The properties of the time-averaged correlation functions r ( 11 for classical fields 
have been discussed in detail in Chapter X of the text of Born and Wolf. 

It may be of some help in the lectures that follow to have some more concrete 
applications of interference experiments in mind, Let us take a brief look at one 
of the fundamental techniques of interferometry by considering a case in which the 
field incident upon a detector ls a superposition of two plane waves. We assume 
that the propagation vectors of the two plane waves are only very slightly different. 
This might be the case for example for monochromatically filtered light from the 
two members of a double star. If we assume the frequencies of both 
are equal we may write 

E(+l(l", t) =A el(S:r-wt) + B eUk'·r-wtl. (2. 8) 

The question we now ask is: what kind of measurement can be P!i'lrformed tp deter-
mine that we are receiving radiation from two sources and not just one? 

Before answering question let us specify the statistical character of the 
coefficients A and B. They are, of course, pa,rticular examples of the coefficients 
C.1r; previously introduced. We will asstll'Jle A and B to be distributed independently 
of one another. This means tp.at the probability function p( A, B) factorizes, 

p(A, B) = P1 (A) p, (B), (a. 9) 

We will assume further more as properties of the distributions Pi and P2, that the 
phases of the complex amplitudes A and Bare individually random. We then have 
<A> = <B:> = 0, More generally the mean values of various powers of the aµipli-
tudes and their complex conjugates such as <AB*>, <IA/ 2 A* B>, etc. will 
vanish. Averages in which the amplitudes are paired with their complex conjugates 
however, take on positive values, 

<JAJ"'>,. O, <IBJ'">"' 0, n = 1, 2 ... (2.10) 

A famous device invented to answer the question we have asked is the Michelson 
stellar Interferometer ( Fig. 3) . 
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Figure 3 
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The field at the point P and time t Is, In effect, the sum of the two fields 
on the mirrors Mi, M 2 at the same instant t' (if the optical paths M 1 P and M 2P 
are equal). Each of these two fields is of the form ( 2. B) evaluated at the points r 1 
and r 2 respectively. The average intensity at P will therefore be 

<El'l(r,t)E 1»(r,t) >= 2Re{<IAl'+JBJ'> 
+ <IAl2>e-Dr(r1 -r1 ) 

( 2.11) 

where we have used <AB* > = <A > < B* > = 0 in reaching this expression. 
U we introduce the correlation function (2. 4) , 

d'l(r,r,r,t') = 

then intensity may be written as 

<Ei-l(r, t)El•l(r, t)> 2Re{< JA/ 2 + /BJ'> 

+ o' 0(r1t', rat')} 
(2.13) 

The correlation function which describes the interference effect is time independent, 
because of the stationary character of the field we are treating. 

We see from Eq. (2. 12) that the correlation function contains two spatially 
Qscillating terms. The way in which these terms reinforce or cancel one another 
will depend on the displacement r 1 - r,. If < / AJ' > = < J B J' >, Eq. ( 2. 11 ) yields 

<El-l(r, t) El•l(r, t) > = 4 < JA 1' > { 1 + cos [ ! (k + k') · (r, - r,)] x 

cos [ ! (k -k') • (r, - r,) ] I 
(2.H) 

The interference intensitywhichwe see at the point rwill be part of a pattern of paral-
lel fringes which we see at the focus of the telescope. Although we have not at· 
tempted to describe thefrlngepattern In detail, the expression (2. 14) for the Intensity 
does indicate one of the characteristic properties of the pattern, that it will vanish al-
together when the displacement r 1 - r 2 is adjusted so that 

cos[! (k-k') • (r, -r,)] 

passes through the value zero. By observing the fringes we knOw that we are deal .. 
ing with two sources rather than one, and by finding the values of ri • ra at which 
the fringes disappear we determine their angular separation. The Michelson inter· 
ferometer has indeed been used to measure the angular separations of double stars, 
and for measuring angular diameters of stars as well. Only a few stellar diameters 
have been measUred in this way, however, because of the tlifficultles inherent in 
working with a large interferometer. An unusually great meChaniCal stability is 
clearly required of the apparatus. Furthermore random variations of the index of 
refraction along the optical path can wash out the pattern. 

Instruments quite similar to the Michelson stellar interferometer have been 
used in radio-astronomy to determine the angular size of celestial radio sources. 
They consist of two separated antennas supplying signals to a common detector 
system. In the case of these instruments, as well, it is technically difficult to in-
crease the separation of the antennas without introducing random phase differeqces 
in the path between the antenrias and the detector. To overcome this difficulty Han-
bury Brown and Twiss have devised another form of radio Interferometer ( Flg.4). 
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The signals at the antennas are detected individually and then the detector outputs, 
which are of much lower frequency, are transmitted to a central correlating device 
\vhere they are multiplied together and the product is averaged. The angular size 
of the source is obtained from measure1nents of the way in which the correlation of 
the intensity fluctuations of the signals varies with the separation of the antennas. 
An equivalent arrangement may be used with visible light. 

/k ' /"k 

f,, P1 P2 P1,2 photo tubes 

T delay-tine 

c multiplier 

----EJ-- M integrator 

Fibrure 4 

The essence of the trick used by Hanbury Drown. and Twiss was to detect the 
signals first and.by taking away the high frequency con1ponents of the incon1ing ra-
diation, to transn1it to the central observation point a measure of the fluctua-
tions of the intensities arriving at the receivers. Si.nee the detector signals are of 
relatively low frequency they are easy to transmit faithfully over distances large 
compared to the limiting dimensions of Michelson interferometers. This experi-
ment is quite different in nature from the interferometer experin1ent we described 
earlier because it deals with the average of the prod'..i.Ct of two random intensities 
rather than with a single intensity. 

It is easy to see that in the average of the product of the two signals there is an 
interference tcr1n, which permits us to resolve the two incoming waves. First we 
note that a square-law detector placed at P 1 gives a response proportional to 

+ + AB*e l(Jr.·k'l·r, 

+ A*B e ·l{k·Jr.<)·r1 ( 2,16) 

This output nu longer contains the rapid oscillations of the incomin(!; wave. An aver-
age of this detected signal, however, would have no interference terrn (since 
< AD* > = 0). What Hanbury Brown, and Twiss did is multiply together the two 
detected signals and then, and only then, to measure the statistical average. The 
average of the product of two intensities of the form of Eq. (2. 16) is 

<(IAI' + IBI')' > (2.17) 

+ 2<1Ai'IBI'> cos [(k-k') • (r1 - r2)), 

where we have used the fact that< I Al 2 A*B > = O, etc. The cosine term clearly 
represents an interference effect. We can use it to resolve the two sources by ob-
serving its behavior as r1 - r 2 is varied. It is important to note that the interfer-
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ence effect has been found by considering the average of a quantity quartic ln the i·. 
field amplitudes. In the case of Michelson' s interferometer we deal only with 
expressions quadratic in the field amplitudes. -.ft 

Although we have discussed the interferometer experiments in terms of en .. 
semble averages, it is clear that they are not ordinarily performed ln this way, 
but rather as time averages. The calculation of time averages, however, ts typ .. · ... f., 
ically at least a little more difficult than the calculation of ensemble averages 
often it is incomparably more difficult) • To consider the interferometer measure·-v 
ments as time averages we should have to note that the two plane waves are not, la 
general, perfectly monochromatic. It follows then that the coefficients A and B, 
which we were content earlier to evaluate only at a particular instant of time, '' 
actually vary with time. To proceed further we should have to adopt models to 
represent A( t) and B( t) as stochastic functions of time. As we shall see presently; 
there are extremely persuasive reasons, when we are dealing with natural light ' 
sources, to take these models to be Gaussian stochastic processes. Then, since 
such processes have the ergodic property, we are justified in identilying time 
averages with ensemble averages. :.1-

. / 
REFERENCE ·-· 

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., London, 1959), 
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Lecture m INTRODUCTION OF QUANTUM THEORY 

When we describe the electromagnetic field in quantum mechanical terms we 
must think of the field vectors E and B as operators which satisfy the Maxwell 
equations. The states, I>, on which these operators act and their adjoints, < f, con-
tain the information which specifies the field. When measurements are made of the 
physical quantity which correspond to an operator O, we can not expect in general to 
find the same results repeatedly. What we find instead is that the measured values 
fluctuate about the average value given by the product < I() I >. The fluctuation ia 
only absent if the state, I>, happens to be an eigenstate of O, I.. e., if we have 

Bl> = B'I >, (3.1) 

where 0' is an ordinary number rather than an operator. In that case it is conven-
ient to use Dirac's convention and let the eigenvalue O' be a label for the state by 
writing the latter as I ()' >. · 

As in classical electromagnetic theory, it is convenient to separate the field 
operator, E( r, t) , which is naturally Hermitian, into the sum of its positive frequen-
cy and negative frequency parts: 

E( r, t) Ef<l(r,t) + El-l(r,t) ( 3.2) 

These parts, as we have already noted classically, represent complex rather than 
real fields. The operators E<tl are therefore not Hermitian, but they are Hermit .. 
ian adjoints of one another 

( 3,3) 

While the fields E f +) and E (-l play essentially indistinguishable roles in classi-
cal theory, they tend to play quite dissimilar roles in the quantun1 theory. The 
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' operator E (+)describes the annihilation of a photon while E (- J describes the crea-
tion of one. This identification of the Operators is virtually the only fact we shall 
have to borrow from more formal developements of quantum field theory. 

We must think fundamentally of all electric field measurements as being made 
on the Hermitian operator E(r, t) given by Eq. (3.2). In the classical limit it is 
usually true that the complex fields E(+) and E 1-) make contributions of equal mag-
nitude to our measurements. From a quantum mechanical standpoint that is be-
cause quantum energies are so small in the classical limit (hw --1 0) , that test 
charges emit quanta as readily as they absorb them. In the quantum domain, on 
the other hand, we must expect that the fields Ef +l and E (-J will make contributions 
of altogether different magnitudes to the quantities we measure, such as transition 
amplitudes. 

If we are using atomic systems in their ground states as probes of the electric 
field for example, then the atoms have no energy to emit photons and can only ab-
sorb them. In this case, which corresponds in principle to that of a typical photo-
detector, only the annihilation operator E f +) figures significantly in determining the 
transition amplitudes. More exactly, if we do a calculation of the transition ampli-
tude using first order perturbation theory, we easily find that the creation operator 
E ( -J contributes only an extremely small amplitude which varies so rapidly with 
time that it leads to no observable effect at all •. The creation operator can only 
contribute materially if the detector contains excited atoms. (Thermal energies are a 
great deal too small to furnish atoms excited to optical energies, but at microwave fre-
quencies it may be necessary to take thermally excited atoms into account.) 

In the third and higher orders of perturbation theory, the creation operator can 
indeed play a tiny role in an absorption experiment. The effect in question is a 
radiative correction to the first order absorption probability which all estimates 
indicate will be quite small. We see, therefore, that it is fairly accurate to say 
that a typical photodetector detects the field E ( +) rather than th-cl field E. Although 
this statement is clearly an approximate one rather than a rigorous one it is none 
the less important since it furnishes us a reason for formulating the theory in 
terms of a set of non-Hermitian operators. The formulation, as we shall see, 
allows in turn a great deal of insight into the way the theory passes to the classical 
limit. 

To gain some further insights into the kinds of quantities measured in photon 
counting experiments, let us examine the role played by the field operator in the 
calculation of the appropriate transition probabilities. In the next lecture we shall 
indicate how these transition probabilities are calculated in some detail by taking 
due account of the atomic nature of the detector. Let us for the moment, however, 
ignore the detailed dynamics of the detector and assume simply that it ts an ideally 
selective device, one which is sensitive to the field E ( +) (rt) at a single point of 
space r at each instant of time t. We may take the transition probability of the 
detector for absorbing a photon from the field at position r and time t to be pro-
portional to · 

w1 _ 1 = 1<11 E{•l(rt) 11>1', (3.4) 

where Ii> is the initial state of d before the detection process, and If> is a 
final state in which the field could b und after the process. In fact we never 
measure the final state of the field. he only thing we do measure is the total 
counting rate. To calculate the total rate we have to sum Eq. ( 3. 4) over all the 
final states of the field that can be reached from Ii >by an absorption process. 
We can, however, extend the sum over a complete set of final states since the 
the states which cannot be reached (e.g. , states If> which differ from Ii> by two 
or mpre photons) simply will not contribute to the result since they are orthogonal 
to the state E{•l (rt) II>. 

When the final state summation is carried out the counting rate becomes, in 
effect, 
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w = -i; !<fl E{•l(r,t) It> I'= <ilE{-l(r,t)E{'l(r,t) Ii> (1.5) 
I 

where the completeness relation J f> <C: = 1 has been used. The counting rate w 
is proportional to the probability per unit time that an ideal photocounter, placed 
at r, absorbs a photon from the field at time t. It is, according to Eq. (3.5),gtven 
by the expectation the positive definite Hermitian operator E (- l( r,t) E <•l ( r, t), 
taken in the state Ii> which the field was in prior to the measurement. Eq. ( 3. S) 
shows explicitly that the photocounter is not sensitive to the square of the real field 
(as has been assumed in many "semi-classical" calculations), but rather to an 
operator which corresponds to the squared absolute magnitude the complex field-· 
strength. 

We have thus far supposed that we know the state Ii> of the field. That doe1 
not mean, of course, that we can predict the result of a single measurement made 
with our counter. If we repeat the measuren1ent another result will quite Ukelyturn 
out, and Eq. ( 3. 5) gives us only the mean value of many repeated measurementa. 
So quantum mechanics forces us to talk about ensemble averages even 1f we know 
the state of the field precisely. 

In p!'actice, of course, we almost never know the state I 1> very precisely. 
Radiation sources are usually complicated systems with many degrees of freedom, 
so the states [ i > depend, as a rule, on many uncontrollable parameters. Since 
we have no possibility of knowing the exact state of a field, we must resort to a 
statistical description. This description summarizes our knowledge of the field, 
bY averaging over the unknown paran1eters. The predictions that we make by using 
this description must therefore, inprinciple,be compared experimentally with en-
semble averages. With this understanding we may write the counting rate as an 
ensemble average of Eq. (3. 5) over all random variables involved in the statell>, 

w = {<llE{·l(r,t)E{•l (3. 8) 

If we introduce the density operator P = {Ii > < il }av. over 1 , we may write this av-
erage as 

w = Tr {PE {-l(r, t) E{•l(r, t)} , ( 3,7) 

where Tr stands for the trace of the operator which follows. The density operator 
is the average of the rators on the initial field states. It is obviously 
Hermitian, pt= p. Furtherm-0re, it also has the property of positive definiteness, 
<j IP I j > 2: O for any state I j >. t is worth emphasizing that a two-fold averaging 
process is implied by Eq. ( 3. 7). That we must average the measurements made 
upon a pure state is an intrinsic requirement of quantum mechanics which has no 
classical analogue. The ensemble average over initial states,on the other hand,18 
analogous to the averaging over the set of random coefficients { which we du·_ 
cribed in the classical theory. 

Equation ( 3. 7) gives the counting rate of a single ideal photodetector in term.1 
of the quantum mechanical correlation function 

x•.{r,\}, ( 3.8) 

which is analogous to the correlation function introduced to describe classical in-
terference experiments. To describe more sophisticated experiments, e, g. , the 
coincidence experiment of Hanbury Brown and Twiss, it is useful to define a more 
general set of correlation functions 

G(n)(X1 ••• Xn,Xa+I""" x 2n) = Tr{pE(·){x1) ••• Ef-)(xn)E(+l(xn+1) 

••• E{<l(x,,,)}. (3.8) 
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The function G(n; will be referred to as then-th order correlation function. The 
analytical properties of this set .of furictions and their relation to experimental 
measurements will be discussed later. 

"'le could_, of course, hav
1
e chosen to define a somewhat larger class of cor-

relation functions than the G( 11 by dealing with averages such as Tr{pE(-)E(+)E (+) 

which contain unequal numbers of creation and annihilation operators. If we 
have chosen not to set down any special notation for such averages it is because 
they are not of the types which are measured in typical photon counting experiments. 

be measured in other kinds of experiments but they 
will always vanish in stationary states of the field and, much more generally,when-
ever the absolute phases of the fields are random. Random absolute phases are, 
o_f course, rather characteristic of optical and other extremely high frequency 
fields. 

Lecture IV THE ONE-ATOM PHOTON DETECTOR 

Let us now consider the photodetection process in somewhat more detail. we 
shall imagine, for the present, that our photon counter is a rather idealized type 
of device whi.ch has sensitive element a single atom which is free to undergo 
photoabsorphon transitions such as the photoelectric effect. We assume that the 
atom is shielded from the radiation field we are investigating by a shutter of some 
sort which opens at time t 0 and closes again at time t. Our problem will be to cal-
culate the pr9bability that a photoabsorption process takes place during this inter-
val and that it is recorded by our apparatus. 

The detector will be assumed to be far enough from the radiation source so 
that the field behaves as a free field. The hamiltonian of the system (field+ detec-
tor) can then be written as 

rlfo = fRo at + 'Jfo F 
' ' ' 

where Jfo is the sum of Hamiltonians of the free field and the atom. The interaction 
term 'Jli is time independent in the SchrHdinger picture. In the Interaction rep-
resentation, however, it becomes time dependent. If we make use of the electric 
dipol.e approximation, which is quite accurate at optical frequencies; we can write 
the hme dependent interaction Hamiltonian as 

.!Jf t - !.7;0t 
g(r=eno gf1en ( 4, 1) 

this expression r represents the position of the atomic nucleus and qY the posi-
tion operator of the 'Y -th electron relative to the nucleus. The time dependence of 
the field E( r, t) which occurs in Eq. ( 4. 1) is that of the free field uninfluenced by 
the presence of the atom. 

The SchrBdinger equation of the combined system of field and atom in the inter-
action representation is 

ill It> = gi1(t) It> 

Its solution can be written in the general form 

It>= U(t,t,)lt,> 

( 4.2) 

where t?). is the unitary time development operator which describes the way in 
which the initial state changes under the influence of the perturbation. In the first 
order of perturbation theory the solution has the well-known form 
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It>= {1 + .f, gi1(t')dt'} It.>. 

Let us that the system Is Initially In the state I gl > = I g >11 >,where 
Ii> is some known state of the field, and I g > is the ground state of the atom. 
We ask now for the probability that the system at time t Is In a specWed state 
I af > = I a > If>, where I a> Is an excited state of the atom and If> Is the flDal 
state of the field, This probability Is given by the squared absolute value of the 
matrix element 

<aflU(t,t,)lgi> = <aflgt1(t')lgl>dt'. (4.4) 

(The zeroth order term In U (t, t,,) of Eq. ( 4. 3) does not contribute because of the 
orthogonality of the electron states I a > and I g >. ) By substituting the Interaction 
operator from Eq. ( 4. 1) we can separate the matrix element into two parta, a 
matrix element for the atom and one for the field: 

' 

. t 
<aflU(t,t,) lg!>.= •lie i; J <alq (t') lg>• <flE(r,t•) ll>dt'. (4.S) ,. to "I' 

To evaluate the atomic matrix element we recall that 
i i i l :It t' 

qv(t') = ei:Rot' q,.(o) e-fi1fot' = e n:lr'o,att' q,.(o) e -ii o,at 

The latter relation holds because the field hamiltonian g,0 F commutes with the 
atomic Hamiltonian 3Co, at and with the electron coordinate q.,.(o) as well. We m11 
write the matrix element as 

with 
M,1 = <all:yq,(o)lg> and Ii wag= E, - E1 , 

The matrix element Mag occurs simply as a time independent coefficient ln the trua-
ltlon amplitude 

<aflU(t,t,) lgl> = f e••agt' M,. • <f!E(r,t') It> dt' . (4.8) 
0 

We can now replace E(r, t') in this expression by the sum of the two operators 
E « J( r, t) and Er :ic r, t). The emission operator Er ·Jc r, t) contains only negative 
frequencies,i. e., exponential time dependences of the form e iwt for w >O. The 
time integrals of these terms clearly oscillate rapidly with increasing t. They are 
furthermore quite small in amplitude compared with the terms contributed by Ute 
annihilation operator E(+l(r, t). What we are describing, in fact, is the way in which 
the transitions are restricted by the conservation of energy. In order to find that 
the atomic transitions conserve the energy of the field quanta with an accuracy 
.6.E = ti .6.w, we must leave our shutter open for a length of time t- t 0 >>l/4.w. 
In practice we always have .O.w << wa 11 , i.e., the shutter is open for a great many 
periods of oscillation and then the contribution of the emfssiorr term EC·>(r, t) la 
entirely negligible. (We are assuming that the detector Is at a relatively low tem-
perature, as we have remarked in the preceding lecture.) · 

We must next sum the squared modulus of the amplitude ( 4. 6) over all final 
states If> of the field, since no observations are ordinarily made of those statee. 
One of the virtues of working with the expression ( 4. 6) for the amplitude ts that in 
the final state summation we can swn over all the states of a complete set; those 
final states which cannot be reached by the field for physical reasons are P.resent 
in the sum but contribute· nothing, either because the matrix elements leading to 
them vanish identically, or because the time integrals of the matrix elements vanJah. 
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Thus the constraint represented by the conservation of energy, for example, is 
actually implicit in the structure of the time integrals in the sum of the squared 
a1nplitudes, 

:!:/ <afJU(t,t,) /gi>I' 
I 

(4.7) 

(j1} 2 f f dt' dt" e '""•('' ·•) 
to t 0 

M <IJE(·)(rt')x 
µ,11 ag,µ ag,I' µ ' 

which has been derived by using the relation 

<fJEf•lli>* = <iJEf·lJf> 

E<•l(r,t") Ii>, • 

and the completeness relation E1 If> < f I = 1. 
We have already discussed the need to average such expression as Eq. ( 4. 7) 

over an ensemble of initial states Ii> since the initial state is rarely known accur-
ately in practice. We then find for the transition probability the expression 

P,-. (t) = to) Jg!> I'}., 0,,., 1 

( )

2 t I 
= L; J J dt' dt• e "" .. fro.ri M!'.,. M.,,, 

µ," to to 
Tr {pE. 1-l( r, !') E ,f •l r, t•)} (4.8) 

= 
2 L / J' dt' cit" e ••,,fr'-t'J M * M G ( '1 (rt• rt") 

li µ.,v t 0 to .. ,µ *''" µv ' • 

fhe definitions of the density operator p of the field and of the first order correla-
.ion function G < l_l have been given in the preceding lecture. 

The foregoing discussion has assumed that the atom makes a transition to a 
:ipecified final state I a> • Counters employing discrete final states have received 
l certain amount of discussion recently. Bloembergen and Weber, for instance, 
ia ve proposed using a scheme lllustrated by Fig. 5. 

Wp f b 

0 

w w, 

g 

Figure 5 

the atom is excited to the state a by an incident field of frequency w it is then 
to a higher level b by a pumping field at frequency Wp. The emission of a photon 

11th the sum frequency w1 = w + Wp indicates the absorption of a photon from the 
ncident field. 

In the detectors used to date, however, the final states I a > of the atoms form 
n extremely dense set, or a continuum; the atoms are simply ionized, for instance. 
ince a counter of photoelectrons has only a limited ability to select among final 
tomic states (e.g. , the counting of photoelectrons places only weak restrictions on 
h.eir momenta), we have to sum the probability given by Eq. ( 4. a) over at least part 
f the continuum of final states I a > • But not all ejected electrons can really be 
ounted. Often they are ejected in directions for which the counter is insensitive 
r they are stopped by matter. The device might furthermore be built so as to lntro-
uce some explicit selection according to energies before detecting photoelectrons. 
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We shall not discuss the actual means used for detecting the photoelectrons. 
any detail here. Instead we shall assume simply that the probability that an elec-
tron ejected by photoabsorption is really registered is given by some function R(a) • 
The way in which this function varies with the final state I a> of the electron-ion 
system willdepend,lngeneral, on the geometrical and physical properties of the 
actual counting device. If we now sum the probabilities given by Eq. ( 4. 8) over 
the final states I a >using the probability R( a) as a weight, we find for the prob- ·-*-· 
ability of detecting a photon absorption in our one-atom detector 

pfll(t) = L; R(a) P,_ (t) 
• • • = (eM' L J J dt' cit" L; R(a) 

µ, 11 to lo a 
(4.9) . 

xe 1""ag(t"-t'l G{l)µ
11 

(rt', rt"). 

We now separate the sum over the final states into two parts, a sum over the 
final electron energies and one over all other variables such as momentum direc-
tions, spin, etc. We do this by introducing the sensitivity function, 

(4. 10) 

which contains contributions only from transitions with a fixed energy transfer, !iw. 
(Note that although it is written as a sum of delta functions, isactuallya 
well-behavedfuncttonfor the case we are considering since the sum over states I a> 
ls really an·tntegrationoverstateswttha continuum of energies.) 

By making use of the sensitivity function and of the properties of the delta-
function it contains we may write the counting probability in Eg. ( 4. 9) in the form · 

{tdt' {tdt" [ dw E s (w)etw(t"·t'l G (tl(rt' rt'') (411) "to "to µ, v vµ IL" ' • • 

Since s"µ(w) = 0 for w< 0 we extended the integral over the variable w from 
to+ oo. If we define the Fourier transform of the sensitivity function by 

( 4.12) 

we finally obtain 
t t 

pfl}(t) = fdtf dt" s, .. (t" - t') af'l (rt' rt") (4.13) to to 11µ ,. µv ' • 

Eq. ( 4. 13) represents the total transition probability when our shutter is open 
from time t., to t. To obtain the rate at which transitions occur we must dlfferen-
tiate with respect to t. 

In general there is nothing very localizable in time about the absorption process. 
It is not possible to say that the photon has been absorbed in a particular interval 
of time small compared to the total period during which the shutter has been open. 
This becomes quite clear if we assume that the sensitivity s 11µ(t..')is sharply peaked 
with a small width Aw. Then - t') takes on nonvanishlng values for It" -t'I 
::::: 1/Aw, whichmaybe an arbitrarily long interval of time for small Aw. The 
degree of non-locality In time which enters the Integral In Eq. ( 4'. 13) is, roughly 
speaking, ;tust the reciprocal 1/ Aw of the bandwidth of our device. If the bandwidth. 
is narrow the counter measures an average of values of Gell (rt', rt") with t' quite 
different from t''. In optical experiments a narrow band sensitivity is usually 
reached by putting narrow band light filters in front of broad band counters, l. e., 
by "filtering" the correlation function G C tl rather than by discriminating between 
photoelectrons. Broad band counters are therefore, in this sense, somewhat more 
basic than narrow band ones. 

In the limiting case of extremely broadband detection the detection process 
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becomes approximately local in time. We have already made some mention in the 
preceding lecture of an ideal photodetecfor. Such a detector we shall assume has 

function svµ( w) which is constant for all To gain a 
mto the meaning of this assumption we note that when the sensitivity function 

is a constant,s11JJ 1 independent of frequency, Eq. ( 4.12) reduces to 

s,,, (t) = s '" 6{t). (4.14) 

The photon absorption process then becomes, in effect, localized in time, and the 
transition probability given by Eq. ( 4. 13) reduces to 

(4.15) 

Now the assumption that sl',...( w) is independent of frequency would be quite a 
difficult one to meet in practice for w / 0. When we take negative values of w into 
account it becomes, strictly speaking, an impossible condition to meet since 
s 11µ( w) = O for w < 0. But in fact neither of these troubles stands in the way of 
our constructing actual devices which approximate the behavior of ideal detectors 
arbitrarily well, as long as we agree to use them on radiation fields of restricted 
frequency bandwidth. Once we assume that the field excitations have finite band-
width all we really require of our detector is that its sensitivity be constant over 
the excited frequency band. The detector then functions in an ideal way no matter 
how much the sensitivity varies outside the excited band. 

To show that we need only be concerned to have the sensitivity remain constant 
the is excited, we shall examine Eq. ( 4.11) for the trans-
probab1ht_y m a little more detail. Let us begin by imagining that the time 

interval t - t 0 is exceedingly great, e.g., we let t _. oo and t 0 - -oo. Then if we 
let KµJ w) be the Fourier integral 

K,i 11(w) = fdt' f00 

dt'' etw(t"-t') G !l)(rt',rt'') 
-«J -oo "" ' (4.16) 

it is c_lear that Kµ,, vanishes for frequencies w lying outside the excited band. (e.g., 
The diagonal elements Ku.µ(w) are simply proportional to the power spectra of the 
three field components.) We may then make use of Kµ

11
( w) to rewrite Eq. ( 4. 11) as 

pOl(t) =(l/2rr) J 2;s,µ(w)K,,(w) dw 
-oo µ11 (4.17) 

Now as long as s.,µ(w) takes on the constant value s.,/l over the excited band 
(and no matter how it behaves elsewhere) we may write Eq. ( 4. 17) as 

= t .. s 11µ(1/217) £
00 

Kµ 11{w) dw 

= E S11µ f 00 

G ( 11
( rt' rt') dt' 

µ11 -oo µ11 ' , 

(4.18) 

and the latter of these expressions again shows the locality in time of-the photon 
absorption process which we noted earlier in Eq. ( 4. 15), i.e., the two arguments 
of the correlation function in the integrand are the same. 

In order to derive the foregoing result we imagined that the time interval t -t 
was allowed to become infinite. To see the influence of the fact that the time 0 

interval has a finite length, let us define a time-dependent step function 

= 
\ Ofort1 <t 0 

j 1 fort 0 <t1 <t 

{ Ofort'>t 
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Then the limits of the time integrations in Eq. ( 4. 11),. for example, may be 
extended from -«> to oo if we first multiply the correlation function in the integrand 
by 71(t"). This extension of the limits of the time integrations means that 
we may use once more an argument of the type which led to Eq. ( 4. 18) . But the 
difference is that the function K ( w) must now be regarded as the Fourier trans- -.J 

"' form ., 
" 

K (w) = {dt' J.00
dt" 71(t') Gµ1

11°(rt1 ,rt") 1J (t''), (4.19) 
µ11 -00 00 

The bandwidth of this function will in general be different from that of the radiation 
present but the difference will only be significant if the period during which the 
shutter is open is extremely brief. 

Let us suppose the bandwidth of the radiation present, i.e., of the functio!1 
Gfll, is 6w. The bandwidth associated with the functions 1J is of order (t - to) 1

• 

The frequency width characteristic of K ( w) is presumably of the magnitude of 
the larger of these two widths. Then ifµ,;e assume that the sensitivity function of 
our detector only varies appreciably over an interval Aw, we shall secure an ex-
pression for the transition probability which reduces to the form of Eq. ( 4.15} as 
long as Aw satisfies the two conditions 

AW >>Ow and 

The second of these conditions sets a lower bound 1/Aw to the length of time our 
shutter can be open if we want the behavior of our counter to remain ideal. 

If we differentiate Eq. ( 4. 15) with respect to time we find that the rate of in-
crease of the transition probability, i.e. , the counting rate, is 

w'"(t) = = ti, (rt, rt) . (4.20) 

Having carried the tensor indices of the sensitivity and correlation functions 
far enough to illustrate their role in determining the transition pr.o?abilities we 
shall now eliminate them by imagining the field to possess a specified polarization e . This can be accomplished in practice, of course, by putting a polarization 
filter in front of the counter. With the notation 

E{+l(r, t) e*. E(+l(r, t) 

a<."(rt,r't') = Tr{p Et-l(r,t) E"'(r',t')} 

Equation { 4. 20) may be rewritten as 

w'"(t) = s a 1"(rt,rt). 

(4.21) 

(4.22) 

we have thus justified the assun1ption, made in the course of the simplified dis-
cussions given earlier, that an ideal photon counter can to 
in effect, to the field at a given instant of time. Its counting rate lS pr<?port1onal 
to the first order correlation function evaluated at a single point and a single UmeT 

In deriving the foregoing results we have employed the electric dipole approx-
imation. The use of that approximation has }?een much more a matter of conven-
ience than one of necessity. We could as have retained the general coupling 
between the momentum of the atomic electrons and the vector potential. We would 
then have made use of correlation functions for the vector potential rather than for 
the electric field. The only difference in the calculations would then be a matter of 
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taking account of the finite size of the atom. Instead of having atomic matrix ele-
ments simply occurring as constant factors in the transition probabilities we would 
ha vu to integrate products of the aton1ic wave functions and the correlation functions. 
The transition probabilities, in other words, would be integrals which involve the 
correlation fw1ctions for finite spatial a.s well as temporal intervals. Fortunately 
these unilluminating: coinplications are not too necessary quantitatively at optical 
and lower frequencies. 

Lecture V THE n-ATOM PHOTON DETECTOR 

The photon counter we have thus far discussed has as its sensitive element 
only a single atom. Since that is hardly a very realistic picture of an actual de-
tector, we must generalize our arguments to deal with detectors containing arbi-
trarily many atoms which may undergo photoabsorption processes. We shall carry 
out this generalization in two stages. In the present lecture we consider detectors 
which consist of a relatively modest number of atoms and show how these can be used to 
investigate the higher order correlation properties of the fields, We shall postpone un-
til the last lecture a full discussion of the statistical properties of actual photon counting 
experiments, since it will be useful to discuss the coherence properties of fields first. 

The one-atom detector, as we have seen, furnishes us with measurements of 
the first-order correlation function of the field, a 0 l. There exist, however, more 
general correlation properties of fields; some of these are related, for example, 
to experiments in which we measure coincidences of photon absorption processes 
taking place at different points in space and time. Such au experiment has been 
performed for example by Hanbury Brown and Twiss , and we shall discuss it in 
some detail in the later lectures. 

Let us suppose that n similar atoms are placed at different positions ri,r2 ••• 

r n in the field. These atoms, we asswne, form the sensitive element of a species 
of compound detector. A shutter in front of all of the atoms will be opened during 
the time interval from t 0 tot. We ask for the probability that each of the aton1s 
has absorbed a photon from the field during that time interval. Though this prob-
lem is still rather artificial in nature, its solution will be an essential part of the 
general discussion of photon counting we shall µndertake later. 

The process in question involves the absorption of n photons, and therefore, 
to calculate its probability, we must, strictly speaking, apply n-th order pertur-
bation theory. Needless to say, a number of simplifications are available to us in 
doing this, 

In order to solve the SchrOdinger equation in the interaction representation 

(5,1) 

we have already introduced the unitary time development operator U(t, t
0

) which 
transforms the states according to the scheme 

It> = U(t, t,) It,>. 

A formal solution for U{t, t 0 ) may be written in the form 
l 

U(t t) = {e f Nil<')dl' } , o t 0 ... (5.2a) 

• I 

OPTICAL COHERENCE AND PHOTON 85 
ool ·n t t tt 

= L: -, <ii) ... {171,(t,) ... 171,(t,)}, l\ dt, ' 
n=O n o o p= 

(5.2b) 

vihere the bracket symbol { } + stands for a time ordering operation to be carried 
out on all the operators inside the bracket. It requires that the products of oper-
ators be rearranged so that their time arguments increase fron1 right to left. The 
representations ( 5. 2a and b} for the solution are perhaps most easily derived by 
writing the Schr6dinger equation ( 5. 1) as an integral equation and solving the in-
tegral equation by means of a power series. 

The interaction Hamiltonian gf1(t) for then atoms interacting with the field ia 
given by 

(5.3) 

wheregf 1,,(t) represents the coupling of the j-th atom to the field. The individual 
coupling terms take the form 

>71 1, 1(t) = q,,(t) · E(r,t), (5.4) 

which we have already discussed. We shall assume, for simplicity, that the atoms 
are dynamically independent of one another, i.e. , that their zeroth order Hamil-
tonians are separable and commute. 

Then-fold absorption process is described, to lowest order, bythen-thorder 
ler n1 O (n)( t t ) of U( t t ) 1. e. the n-th order term of the series in Eq. ( 5. 2b) • 

10. IOI' (2) bt'f By inserting the Hamiltonian given by Eq. ( 5. 3) Eq. 5. b , we o ain or 
uln) (t, t 0 ) an expression containing nn terms, which represent all of the ways 1n 
which n atoms can participate in an n-th order process. Many of these terms, 
however, have nothing to do with the process we are considering, since we re-
quire each aton1 to participate by absorbing a photon once and ?nly once. Terms 
involving repetitions of the Hamiltonian for a given atom describe processes other 
than those we are interested in. The only terms which do contribute are those in 
which each of the ;Jt1,1 appears only once. There are n! such. terms,. and all of . 
them contribute equally since the bracket { } • is a symmetric function of the op-
erators it contains. Therefore, the part of U111l ( t, t 0 ) we must consider reduces to 

t t ' 
(..:!.)' f ... f {171 (t,)171 (t,J ... (t,)} nctt, • (5.5) Ii '1: 0 t 0 l, 1 I, 2 n + P"I 

Since none of the n atoms can emit a photon (each of them is in the ground 
state initia!ly), only the positive frequency part of the electric field in 
each qf will c.:>ntribute to the transition amplitude. When the electric held op-
erator ti Eq. ( 5. 4) is reolaced by E( •l ( r 1, t) wp+lshall write the resulting inter-
action Hamiltonian as gf (+! The operators 'Jt1 J commute with each other since 
the atoms are independent and the fields E 1+1(rJ, t) commute. We can 
therefore drop the ordering bracket { } + in the expression ( 5. 5), and write the 
desired part of u<nl(t, t 0 ) as an n-fold product of single integrals 

(.:!)' ii J' 171l•I (t') d!' . (5.6) fi J=I I, J 

The result is a simple one. The operator which induces the transitions which . 
interest us is simply a product of the operators which induce the individual ab-
sorption processes. This does not mean, however, that the matrix of the trans-
ition operator factorizes. 

In evaluating the matrix element of the operator ( 5. 6) between two states of 
the entire system we must note that the individual atoms which all in 
ground state initially may make transitions to final states a1 which are different 
for different atoms. If we indicate these initial and final states for the atoms with 
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1.1 g} >and I (•ii >, and use the symbols Ii { } ' { 
final states of the entire sysleni the tl ' g. "' and If, al} > for the initial and 
takes the forn1 , n 1e n1atr1x clentent of ( 5. 6) or of u<nl(t, to) 

<f,(a1}1u'"1(t,t,)li,{g) > = 

(le)"t JI Ii 1··· ·t e"'i"•;gt; <flE"'(r,t,) ... Et•l(rt)li>ITM fldt (5.7) 
D 0 l ! J=i ajg p:l p t 

where we have introduced notation for the ato . . 
analogous to that of the precedin lectur m1c _eleinents and frequel!cies 
assuming the field to have 1 g 1 e.' have ehmu1ated tensor indices by 

W a un que po arizat1on as in Eq ( 4 21) 
e must next carry out upon the amplitude ( 5 7) th. . ... 

of squaring, summing over final states of th r ld. d e now. fan:nhar procedures 
of the field, The expression we deri . e Ie . averaging over initial states 
each of the atoms to reach a Is a probability for 
states is in general part of a contil Ina 5 a e fa1 >. S1nce each of these final 
rived over all the relevant final at iuu.m wte must sum the probability we have de-

onuc sates. We shall a a· cow1ting tlevice does not record all f th r g in assun1e that our 
is characterized by a certain proba;l .t inal states with equal likelihood, but 
process is recorded, For that particular photoabsorption 
the sa1ue function for each of the n aton1s of th take this recordil1g probability to be 
the final state sumn1at1ons for the at . e We n1ay then carry out 

we discussed in Eqs. ( 4.10) the_san1e sensitivity func-
s1n1ple sums and averages are all ca . d t preceding lecture. When these 
bility rrie ou we find for the n-fold counting proba-

p'"' ( t) 
" n ctt' ctt'' 1"1 J J • (5.8) 

In this express ion G < n) · ti th 
is te n- order correlation function for the field defined by 

For broad band detectors eq, ( 5, 8) reduces to the sin1pler form 
( ) :l..t t 

p n (t) - s" (nJ ' n 
- t;·· {o G (r1t1 ... ... r1t'1) (5.9) 

An ideal n-atom counter thus measures t· . 
tion function. a ime mtegral of the n-th order correla-

We have thus far considered the n t hi 
part of a single detector But a d t ta oms ,w ch undergo photoahsorption to be 
ferent, really, from a of n in this is no.t very dif-
the last lecture, If we regard the n atoms the one variety we discussed in 
n independent detectors, then the n-fold has the elements of a set of 
cussing furnishes the basis of a pri u· P process we have been dis-
of photons. m ive ec ique for n-fold coincidence counting 

The technique may be ref" d 1.ttl . 
shutter in front of each If we in1agine that there is a separate 
tcrs open at the same time t b t that th .i Then we may assu1ne that all the shut-

arbitrarily. Let us that 7.e at each them is closed may be 
is ti. Then the j-th atom only sees the :me a .which the J-th shutter is closed 
closing the shutter may be simulated by r?m hme to to t,. The effect of 

assuming that the atom is decoupled from 

I . ' 
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the field at time ti· For this purpose we may introduce the step function 

0 ( t) \Ofort<O 

/ 11ort>O 

87 

(5.10) 

and write an effective interaction Hamiltonian (i.e., one which takes account of 
the closing of all the shutters) as 

(5.11) 

The calculation of the probability that a photoabsorption takes place ln each 
detector is essentially the same with the effective Hamiltonian ( 5. 11) as the cal-
culation we. have described earlier. The only real difference,besides the one of 
interpretation, is that the answer for the total detection probability is now an n-fold 
time integral in which the upper limits of integration are the times t 1• For the 
broad band case the answer is, for example 

'"' rtl rtn (n) p (t1•··tJ =Sn ·t dt'1 ••• 1: dt'n G 
' ' 

(5.I2) 

• The times t1 ... t n may be varied independently. An n-fold delayed coincidence 
rate, i.e., a counting rate per (unit time)", may therefore be defined as 

(5.I3) 

This result verifies the statement we made earlier that coincidence experiments 
performed with ideal detectors furnish measurements of the higher order correl-
ation functions. 

It may be worth emphasizing that the kinds of measurement processes we have 
been describing differ both in method and in spirit from those that are customarily 
discussed in the formal quantum mechanical theory of measurement. The formal 
theory of measurement has been useful in establishing the physical interpretation 
of quantum mechanical expressions. But because there are few areas in which 
exact statements meeting the required assumptions of the theory can be made, the 
applications of the formal theory have been quite restricted to date. 

The kinds of field measurements we have discussed are, by contrast, explic-
itly approximate in character. We have only calculated the transition probabilities 
to the lowest order in which the transitions occur. While this approximation would 
not bo too difficult to remedy for lndi vidual atomic transitions, the higher order 
effects in multi-atom detectors would be found to· have quite a complicated mathe-
matical structure. It is implicit in the approximation we have used that the elec-
tromagnetic influences (as well as other influences) of one atom on another are 
ignored. That can be seen, for example, from the fact that the E (+)operators which 
occur in the correlation function o<nl all com1nute. The transition rate ( 5. 13), for 
example, does not depend on the ordering of the times t 1 • • • t 8 even though the polnts 
rit 1 may have time-like relationships to one another and electromagnetic disturb-
ances can indeed pass from one point to another. 

While the aton1s may influence one another electron1agnetically in ways not 
described by our lowest-order results, those influences are typically extremely 
small and are sometimes of a kind that can be eliminated experimentally. To take 
a specific example, let us suppose, that instead of a simple photoabeorptlon process 
in atom 1, we have a type of Raman effect which produces another photon as well 
as a photoelectron ( Fig. 6). The emmited photon may then be absorbed by atom 
2, producing a second photoelectron, Not only does this type of process have an 
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2 

Figure 6 

extremely small 'cross section, but it may be eliminated entirely by choosing detec-
tor atoms with ionization potentials greater than ( 1/2) ll.w, · 

We have mentioned the electro1nagnetic influences of the atoms upon one another 
just to underscore the fact that we have not been describing an exact theory of meas-
urement. It may none the less be an extremely useful and accurate theory. 

Lecture VI PROPERTIES OF THE CORRELATION FUNCTIONS 

The n-th order correlation function was defined as the expectation value 

G'"1(x1 ··· x,,) = Tr{pE'-1(x,)··· E<-l(xJE'"(x,.1)-·· E'"(x,
0
)} (6.1) 

The averaging process we carry out to evaluate this expression is the quantum 
mechanical analogue of the classical procedure introduced in the first lecture. 
There we spoke of averages over a set of random Fourier coefficients. The re-
semblance between the two approaches is not yet a very persuasive one but it will 
become more so as we prciceed. ' 

As a first property of the correlation functions we note that when we have an 
upper bound on the number of photons present in the field then the functions a<nl 
vanish identically for all orders higher than a fixed order M. To state the prop-
erty more explicitly, if In> is an a-quantum state and the density operator is 
written in the form 

m,o (6.2) 

then if we have 'C nm= 0 whenever n > M or m > M, it follows from the nature of 
the annihilation operators E(+l , that 

for p > M 

Furthermore, the conjugate relation 

pE'-'(x,)··· E'-1(x,) = O 

also holds for p > M. Thus it follows that 

G(p) ii 0 

for p > M. 

(6.3) 

(6.4) 

(6.5) 

I 
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This property of the correlation functions must be regarded as a rather strange 
one when viewed from the standpoint of classical theory. There the correlation 
functions are essentially sums of moments of the probability distribution for the 
Fourier coefficients, and it would be quite difficult to imagine a case for which the 
moments higher than a certain order vanish identically. We have, in fact, construc-
ted states which have no classical analogue by imposing an upper bound on the num-
ber of photons present. However, that should not be surprising since in the limit 
n- O these are states whose total energy goes to zero. 

A further property of the correlation functions can be derived from the general 
statement 

Tr(A t) (Tr A)* (6.6) 

which holds for all linear operators A. Applying this identity to the correlation 
fw1ction ( 6. 1), we find 

[G'")(x 1 ··· x,,)] * = Tr{E'-'(x,,) ··· E'-'(x,.,) E")(x.)···E'"(x,)pt} 
(6.7) 

=Tr {pE(-)(Xzn) ··• E(-)(Xn+t) E(+)(Xn) ··• E(+)(X1)} = G(n)(X2n ••• X1). 

Here we have made use of the Hermitian character ofp and of the invariance of the 
trace of a product of operators under a cyclic pern1utation. 

As a consequence of the commutation properties of the E(+l and E 1-1we can 
ly pertnute the arguments ( X1 • • • Xn) and ( x n+ 1• • • Xan) without altering the value 
of a<nl(x 1 ••• Xn, x n+i • •• X2n). We cannot, however, interchange any of the first 
n arguments with any of the remaining n, unless suitable terms are added, sincethe 
corresponding operators do not commute. 

A number of interesting inequalities can be derived from the general statement 

(6.8) 

This relation, which follows from the positive definite character of the operator in 
the brackets, holds for any linear operator A To prove the inequality we note 
that p is Hermitian and therefore can be diagonalized. Thus, in some representa-
tion it has the form 

(6.9) 

It follows in1mediately Crom the definition of the density operator that 

P, = < klP lk > = {<kl i> <ilk> } "· = {I <ilk> I'}"· " 0. (6.10) 

(Furthermore, since Tr p = r pk= 1, not all the pk vanish.) Now a simple appli-
cation of the completeness relation gives 

(6.11) 

Of course this value for the trace is independent of the particular representation 
used. Hence the proof of the inequality ( 6. 8) is completed. 

A number of results n1ay be derived fron1 the general inequality ( 6. 8) by meaas 
of various substitutions. For example the choice A = EI+)( x) gives at once 

QOl(x,x) 0, (6.12) 
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Similarly the substitution A= E<•l (xi) • • · E1•1(x,) give us 

(6.13) 

These two relations are also evident from the physical meaning of the "diagonal" 
forms of the G<Al. The forms are interpretable as photon intensities and coinci-
dence rates respectively, and are thus intrinsically positive. 

These results and all of our later ones can be generalized immediately to deal 
with vector fields E (+) (x) rather than the scalar field Ef-+l(x). We need only as-
sociate a vector lnd;x µ1 with each coordinate xJ. We can thus consider x l as a 
shorthand for the set of variables {r1, t 1, µ1} Instead of simply {r,, t 1}. 

Another possible choice for the operator A is 

(6.14) 

where the Ai are a set of arbitrary complex numbers. For this case (6. 8) gives 
us 

(6.15) 

Thus the set of correlation functions G111 (x 1, xi) forms a matrix of coefficients for 
a Positive definite quadratic form. Such a matrix has, of course, a positive de-
terminant, 

(I} 
det [G (x,.x1)] " o. 

For n = 1 this is simply the relati:>n (6. 2). For n = 2 we find 

G(l1(x1,X1) o< 0 cxa,X2) G(l)(x1Xa)J 2, 

which is a simple generalization of the Schwarz inequality. 

(6.16) 

(6. 17) 

By proceeding along the same line we can derive an infinite sequence of in-
equalities. We shall confine ourselves however, to mentioning the quadratic ones 
for the higher order correlation functions. If we write 

A=A 1 E(+l(x1 ) ••• E(-+) (x
0

) (6.18) 

then the positive-definiteness of the related quadratic form requires that we have 

G101 (x1 ••• XIU Xn·•· K1) a< 11\xn+1··· X2n,X2n ••• xn-+I) 
(6.19) 

SPACE AND TIME DEPENDENCE OF THE CORRELATION FUNCTIONS 

We note tllat the operators Ef±l ( r 1 t) occurring in the correlation functions, 
obey the Maxwell equations and furthermore satisfy whatever boundary conditions 
we ordinarily require of the electric field vector (e.g., periodic boundary condi-
tions or the conditions for conducting walls). As a result the functions 0 1nl(x1 · · · 
x2 n) obey 2n wave equations and 2n sets of boundary conditions, one for each of the 
space-time variables. 

Let us now consider the structure of the functions Gfnl in stationary fields. The 
best way to define stationarity in quantum mechanics is to require that the density 
operator commute with the Hamiltonian. This criterion is equivalent to the state-
1nent that p is independent of time in the Schrodinger picture. (In the Heisenberg 
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picture, however, the density operator for isolated systems is always time-inde-
pendent.) If we use this definition and the familiar interpretation of the Hamilton-
ian as an infinitesimal time-displacement operator we may write 

( ) () i.10J (-) ( ) l·lCT 
Tr{pE - (x,)··· E • (x,.,)) =Tr {e1'pE (x,) ··· E • (x,,)e"l\} 

i·ICT _i:ICT I.JCT _L'ICT i:ICT (+) l:ll'r 
= Tr{e 11 pe Te >E!·J(x,) e " · ·· e > E (x,.) eT } 

= Tr{pE(-l(r1,t1, + T) •·· Ef+\r2n,t2n + T)}, 

where Tis an arbitrary time parameter. We have thus shown that for stationary 
fields the correlation functions obey the identity 

(6.20) 

i.e. they are not changed by a common ti.11e displacement of all the argun1ents. As 
a result, the ofnl may be thought of as depending only on ( 2n-l) time differences. 
The same sort of argument can also be constructed for dealing with spatial dis-
placements. When the density operator commutes with the components of the mo-
n1entu111 of the field, the correlation functions are invariant under displacement of 
the spatial coordinates in the corresponding directions. 

One further mathematical property of the correlation functions is a consequence 
of the way in which the functions are constructed from the positive and negative 
frequency parts of the fields. The function 0Cnl(t1 • • · tn, t 0 .. 1 • • • t2n) has a time 
dependence which, according to our convention, contains only positive frequencies 
for the variables t 0 .. 1 • • • t 2 n and only negative frequencies for ti · · · tn. Thus, for 
example, if we ignore the spatial dependences we may write 

iw I -\wt' L e k' e k 
kk' Ckk, (6.21) 

with u.•k and wk' > 0. 

Now if we consirier GI ll ( t, t') as a function of two complex time variables, t and 
t 1 , it is clearly an analytic function of t' in the half plane Im t' :-.s 0, and an analytic 
function oft in the half-plane Im t 0. 

We can therefore use the Cauchy theorem of con1plex function theory to con-
struct identities such as 

G 111 (t t1) = - 1-, 21Ti I c 
c"' (t t") 

t" - (. 

lm1" 

Figure 7. 

dt" (6.22) 

' 

Ret" 
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where C is the contour in the con1plex t" -plane which is shown in 7. 
Now Irom the boundedness of the coefficients c kit' in Eq. { 6, 21) we may sec 

that the semi-circular part of the contour in the lower half plane gives no contri-
bution in the limit as the radius R goes to infinity. Furthermore we note that the 
contribution of the infinitesimal semi-circular contour in the upper half-plane is 
just -7Ti tin1es the residue at the pole. In this way we find 

G/ll(t t') = .!_ P J00 

' 11 - 00 

G! 11 (t t") 
t" - t' dt'' (6.23) 

where the integration is performed along the real axis and the symbol P denotes the 
Cauchy principal value. When we take the real and imaginary parts of Eq. ( 6. 23) , 
we obtain the pair of relations 

I d"(t t') = .! P J00

Red''(t t") dt" (6.24) 
m ' 1T -oo t11 - t' 

ReG! 1l(t,t') = • 
00 1 G 11'(t !") _!... P J. m ' dt'' 

1T t11 - t1 
-oo 

(6.25) 

These relations enable us in principle to calculate the imaginary part of the cor-
relation functions once we know the real part and vice versa. 

Hilbert transform relationships of this type have received a considerable 
amount of attention in physics and electrical engineering in connection with the 
requirement that linearly responding systems behave causally. The relations such 
as (6.24) and (6.25) which are obeyed by the correlation functions, however, have 
nothing to do with causality. They are simply consequences of the way in which the 
functions have been defined. 

Lecture VD DIFFRACTION AND INTERFERENCE 

From a mathen1atical standpoint, the quantum mechanical treatment of dif-
fraction problems need not differ too greatly from the classical treatment. The 
field operators are required in general to obey the same linear differential equa-
tions and boundary conditions as the classical fields. The problem of constructing 
such operators nlay be reduced to the problem of finding a suitable set of mode 
functions in which to expand them (i.e., a set of mode functions which satisfies 
the wave equation together with suitable boundary conditions on any surfaces pre-
sent). To find these modes we naturally resort to the familiar methods of the 
classical theory of boundary value probleins. The solution for the mode functions 
is not a quantum dynainical problem at all. On the other hand, the fact that it is a 
well-explored "classical" problem does not mean, as we all know, that it is nec-
essarily a simple one. 

Let us return, for exa1nple, to the discussion of Young's experiment, illustra-
ted in Fig. 2. When we said that the field at points on the screen E 2 is simply a 
linear combination of the fields at the two pinholes P 1 and P 2 , evaluated at appro-
priate times, we were not solving the diffraction problem exa'.ctly, but making a 
number of physical approxin1ations. One approxin1ation, for example, was an im-
plicit neglect of the fact that transmission of light through the pinholes has a slight-
ly dispersive character. (This effect can be quite small if the bandwidth of the in-
cident radiation is not too broad.) Approximations such as these are essentially 
classical in character. They are present simply because we have not taken the 
trouble to solve the classical diffraction problem more precisely, 
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With this understanding we can now discuss Young's experiment in fully quantum 
mechanical terms. The positive frequency part of the field E(+)(r, t) when evaluated 
on the screen will be given, just as in the classical theory, by a linear combin-
ation of the fields E(+) evaluated a_t the pinholes and having the form of Eq. (2.1), 
The only difference is that the fields E(+) are now operators. If we assume that the 
two pinholes are not only quite tirty compared with their separation but equal in size 
then we shall have Ai = A2 in Eq. ( 2. 1) and we may let the constant ). stand for 
both Now if our observations of the interference pattern on the screen 
E 2 are made with an ideal photon detector, the cowiting rate of the detector will be 
proportional to G { 1l{ r t, r t) . In other words, the intensity observed will be pro-
portional to 

I= Tr{pE!-l(rt} E 1'1(rt)} = 

Tr{pl>.l'[E!-l(x,) + E!-l(x2)] (EM(x,) + E1"(x2 )]} , ('7.1) 

where have again let xJ stand for the point (r1, t 1). This intensity may be ex-
pressed m terms of first order correlation functions by expanding the product ih 
Eq. ( 7. 1) , We then find 

I::::: IA] 2 {G(ll(X1, Xi)+ G( l)(x 2_, x2)+ 2 Re G( ll(x1, X2)} (7.2) 

The first two terms on the right side of this equation are the intenatttes which 
would be contributed by either pinhole in the absence of the other. These are, ac-
cording to the assumptions we have made, rather slowly varying functions of x1 
and x2. The third term on the right side of Eq. (7. 2) is the interference term, as 
we ha\re already noted in the classical discussion. The Correlation function for :1& 1 
?! X2 in general takes on complex values. If we write it as 

G01 (x1x2) = 1on>(x1x2) le 1<P(J1:1·"z) 

then the intensity becomes 

I= +G1ll(x,x,) + 21G"'(x,x2) I cos <p(x,x,)} , (7.3) 

and we see in the oscillation of the cosine term the origin of the familiar interfer .. 
ence fringes. 

SOME GENERAL REMARKS ON INTERFERENCE 

The discussion we have given of Young's experiment is so closely related to 
the usual classical analysis that it may not be too clear in what way the interfer-
ence phenomenon is a quantum mechanical one. A few general remarks about the 
quantum mechanical interpretation of interferences may therefore be in order. In-
terference phenomena characteristically occur in quantum mechanics whenever the 
probability amplitude for reaching a given final state from a given initial one is the 
sum of two or more partial amplitudes which have well defined phase relations. 
The individual partial amplitudes are usually contributed by alternative ways in 
which the system can evolve from its initial state to the final one. · 

The Yowig experiment furnishes a simple illustration of these generalities. 
We may consider as the initial state of the system one in which a wave packet re-
presenting a single incident photon lies to the left of the first screen a (Fig. 2.) 
which has the single pinhole. We assume that initially all atoms of our photodetec-
tor are in the growid state. The final state of the system will be taken to be one in 
whJch the photon has been absorbed and one of the atoms of the counter has been 
correspondingly excited. The amplitude for reaching this final state is the suin af 
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two amplitudes, each associated with th,e passage of the photon through one of the 
two pinholes in the screen E 1 , 

, It is interesting to note that the existence of the interference effect is linked 
quite essentially with our inability to tell which of the possible paths the photon 
actually takes. Neils Bohr nas shown, in a famous argu1nent, that any attempt to 
detern1ine which of the two paths the photon has followed will wipe out the inter-
ference fringes. One way of making such an attempt, for example, is by trying to 
n1easure the recoil of the screen 1 when it deflects the photon. The photon may 
transfer either of two different recoil momenta to the screen (if it excites the 
counter). However, if we are to make sufficiently accurate measurements of the 
momentum of the screen we must be prepared to accept an uncertainty in its posi-
tion which will mean that no fringes appear when the experiment is performed re-
peatedly. 

This lesson is one which can be generalized to apply to all of the quantum 
mechanical situations we have described earlier. The different paths by which a 
system may evolve will contribute amplitudes with well-defined phase relations only 
as long as we have no way of telling which path the system takes. When we make 
observations to determine the path we charactei'istically alter the system by making 
the phases of the partial amplitudes random relative to one another, i.e., we wipe 
out any interference of the amplitudes on the average. 

The alternative paths we have been speaking of are evolutionary paths or his-
tories. For single particle systems such histories may often be identified with 
spatial trajectories, but for systems with many particles or variable numbers of 
particles the concept is a much more general one. It is important to emphasize 
that the quantities which interfere in quantum mechanics are amplitudes associated 
with particular histories, since the terminology which has been used has often in-
vited confusion on this score. 

An example of a statement which is often quoted and easily nlisinterpreted is 
made by Dirac in the first chapter of his classic text, The Principles of Quantum 
Mechanics (Oxford, Clarendon Press, 3rd edition, 1947, p. 9.) There Dirac 
points out that the interference of the two component beams of the Michelson Inter-
ferometer cannot be interpreted as taking place because the photons of one beam 
sometin1es annihilate photons from the other and sometimes combine to produce 
four photons. "This would contradict the conservation of energy. The new theory, 
which connects the wave functions with probabilities for one photon, gets over the 
difficulty by making each photon go partly into each of the two components. Each 
photon then interferes only with itself. Interference between two different photons 
never occurs." These ren1arks were only intended to refer to an experimental 
situation generically similar to that of Young's experiment, one in which the interfer-
ence pattern is revealed by detecting single photons. To attempt to apply Dirac's 
remarks as a general doctrine for dealing with other types of interference experi-
ments may lead to contradictions, as we shall presently see. 

FIRST-ORDER COHERENCE 

The word "coherence'' is used not only in optics, but in a variety of quantum 
mechanical and communication theoretical contexts as well. We shall not attempt 
to construct an encyclopedia of these usages here. We shall try instead to give 
the term a precise 1neaning when applied to electromagnetic fields. The meaning 
we shall adopt is in fact one which links several of these conventional usages to-
gether. 

The familiar concept of optical coherence is associated with the possibility of 
producing interference fringes when two fields are superposed. Let us return to 
the expression (7. 3) for the intensity observed in Young's experiment. It is clear 
that no fringes will be observed if the correlation function G 1 ll( x1 , x2 ) vanishes, 
and we may describe that condition by saying that the fields at x1 and x2 are 
incoherent. 
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It is only natural, on the other hand, to ·associate the highest degree o! coher-
ence with a field which exhibits the strongest possible interference fringes. Now, 
in the last lecture, we have derived a general inequality, (Eq. 6. 17), which states 

IG(l)(X1X2) j ::::": {G11)(X1X1) G(l)(X2X2)}t 

When we keep the intensities Gl 
11

( x1 x1 ) and G' I\ (x2 x2 ) fixed, the strongest con-
trast of the fringe intensities which is possible corresponds to using the equality 
sign in this relation. Thus we have established the necessary condition for coher-
ence 

(7. 4) 

If we introduce the norn1alized correlation function 
Qlll(X1, X2) 

(7. 5) 

the condition ( 7. 4) becomes 

( 7.6) 

or, in other words, 
(I)( ) i<;>(Xt 1"2) g X1 1 X 2 =e 

Substitution in ( 7 .3) now gives for the intensity in Young's experiment 

' l.:\.l- 2 I= G!1 1(x1, X1) + G11l(x2, x2) +2{G 111 (x1, x1) Glll(Xz, Xz)} 2 cosr,o(x,, Xz) 

' = l{a(l)(x1, X1)}:! elvfx1,x2l+ {G1u(x2, l ' x,)} 'I . 
This intensity varies between the lin1its 

Imln = ({G(ll(x1 , X1) - {G(l)(X2 1 X2)P") 2 

and 

The paramete'r which is usually called the visibility of the fringes is given by 

I max - I min 
v = 

I max +I min 

. ' 
2{G(t)(x1, x1) ac 0(x2, ·x2)}Z 

- Gill (x1 , xi)+ GOl(x2, x2) 

(7. 7) 

( 7, 8) 

(7. 9) 

( 7.10) 

If the fields incident on the two pinholes have equal intensity, i.e., if G111(x1, x,) 
= Gill(x2 , x2 ), then the intensity varies between zero and 4G(ll(x1, X1) and the 
visibility is v = 1. 

The condition ( 7. 4) is only a condition on the fields at two space·time points 
x1 and x2 • When it is satisfied we might speak of the fields at two points as 
being coherent with one another. That would correspond to the usage adopted by 
Born and Wolf in their discussion of classical fields on the basis of time-averaged 
correlation functions. 

In quantum mechanics one characteristically thinks of the entire field as a 
dynamical system It will be rather more convenient, therefore, for many analyt-
ical and statistical purposes to think of coherence as an idealized property of 
whole fields. That property can be described in terms of the condition {7. 4}, but 
an equivalent and mathematically more useful description can be given in terms 
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of the requirement that the first order correlation function factorize. Let us sup-
pose that the correlation function Gf 11 ( x1, x2) separates into a product of two 
functions A(x1 ) and B(x2 ). Then from 

(7. 11) 

we conclude via the symmetry relation, Eq. ( 6. 7), that the functions f\ and B obey 
the identity 

A(x,) B(x,) = A*(x,) B*(x,) 

or 
( 7.12) 

Since in the latter relation a function of x1 is equated to one of x2 both functions 
inust be constant. Furthermore the constant, let us call it µ, must be real as we 
can see by equating X1 and x2. We thus have 

A(x) = µ B*(x), ( 7. 13) 

and from the fact that G(l)(x, x) is positive it becomes evident thatµ is positive. 
Hence, if we define the function 

& (x) = .fJi B(x), ( 7. 14) 

we see that the first order correlation function falls into the form 

( 7. 15) 

This explicit construction of the factorized form of the correlation function shows 
that, when factorization does take place, the function &(x) is almost uniquely deter-
mined. The only ambiguity which remains is that of a constant multiplicative 
phase factor. 

We shall find it most convenient to use the factorization property ( 7.15) as 
our definition of optical coherence or first-order coherence of the field. It is 
immediately evident that this condition implies the conditions ( 7. 4) and ( 7. 6) on 
the absolute values of the correlation functions. In fact, it is also true that the 
latter conditions, if they hold at all points in .the field, imply in turn the factoriza-
tion condition (7.15). We shall demonstrate that shortly and thereby show that the 
two ways of discussing coherence are equivalent. But first let us discuss some 
examples of coherent fields. 

The most elementary example of a field for which G ( ll factorizes is any clas-
sical field for which the Fourier coefficients Ck are precisely determined, i. e. , 
any field for which the probability distribution P({Ck}) reduces to a product of 
delta-functions. In that case the function & (x) is simply the classical field Ef•l(x) 
itself. We perceive here a first hint of the close association which exists between 
coherence and noiselessness, an association which we shall presently explore 
further. The absence of randomness or noise in the specification of the Fourier 
coefficients of a field has long been the criterion used by communication engineers 
for speaking of a "coherent'' signal. 

To see another illustration of coherence let us note that one of the possible 
ways of performing Young's experiment, though perhaps not the most practical one, 
is to begin with a single photon wave packet incident upon the first pinhole. Then 
if we repeat the experiment many times, duplicating the wave packet precisely in 
each repetition, we should expect to see the familar interference fringes in the 
statistical distribution of photons received on the final screen. That pure states 
for single photons are always capable of giving rise to fringes, in this statistical 
sense, may be seen by examining the first-order correlation function. Let us 
suppose that the field is in some pure single-photon state which we denote by 
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11 phot. >. Then the density operator for the field is 

P = llphot.>< lphot.I 
and the first order correlation function reduces to 
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( 7.16) 

( 7.17) 

Now since E(+) is a photon annihilation operator, the state E1 .. 1( x2 ) 11 phot. >can 
only be a multiple of the vacuum state which we denote as IO>. It is therefore 
possible to insert the projection operator upon the vacuwn state, I 0 > < 0 I, between 
the and E(+) operators in Eq. (7.17) without altering the value of the correla-
tion function. When we do that we find 

(7.18) 

which is exactly the factorized form required by Eq. (7.15). Hence any pure state 
in which the field is occupied by a single photon possesses first order coherence. 
(In this way the optical definition of coherence makes contact with some of the ways 
in which the term is used quantum mechanically in connection with pure states.) 

We have, of course, only proved that a pure one photon state is coherent. ll, 
for example, we repeat our hypothetical one-photon interference experiment with-
out duplicating the same wave packet each time, i.e., if we consider a mixture of 
pure states, then we can not expect in general to observe intensity fringes of maxi-
mum contrast. Certain particular mixtures of one photon states may, however, 
preserve the factorization property (7.15) of the correlation function and thereby 
preserve the coherence property. Hence we must not think of pure states as the 
only ones which bring about coherence. 

To give an example, let us suppose that only one n1ode of the field is excited, 
say the k - th. Then, since the other modes all remain in their ground states, it 
is easily seen that we may ignore them altogether in calculating the correlation 
function. Now if the density operator for the k - th mode assumes the general form 

P = l, Cn,m !n><. nij, (7,19) 

where In > is the n-th quantum state for the mode, we may write the 
correlation function as 

(l' . 1 , 
G (r1t1, r2t2) = 2 t'iwk [. cnm < mlakt akin> u !Cr1)uk(r2)e ko\;(ti-tz 

•,m 

- C' * ( ) IWktl ( ) -i1o.•kt2 - u k r 1 e uk r 2 e 
( 7. 20) 

where in the iirst of these expressions we have anticipated some of the notation of 
Eq. (8. 21) and in the second we have used the definition 

' 1 " C = 2 tiwk n Cnn (7.21) 

It is clear from the possibility of writing 

& (r, t) = C uk(r)e·-twkt (7.22) 

that the correlation function ( 7. 20) falls into the factorized from ( 7. 15). Hence 
the excitation of a single mode, whether it is in a pure state or an arbitrary mixture, 
leads to fields with first-order coherence. 

Although we have been able to give some simple examples of fields which 
possess first order coherence, it is worth pointing out that the factorization condi-
tion ( 7. 15) is quite a restrictive one. It is, for example, not satisfied by pure 
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states of the field in general as one may easily verify by calculating the correlation 
flmction for a state in which two or mofe photons are present and occupy different 
n1odes. Initial states such as these may lead to fringes in Young's experin1ent but 
the fringes will not, as a rule, satisfy the condition of maxim11m contrast. While 
the coherence condition is a restrictive one, we shall show presently that there 
exists a much broader class of states which satisfy it than those we have considered 
thus far. 

Let us note particularly that no statement has been n1ade requiring that coher-
ent fields be rnonochromatic. The fields which satisfy the factorization condition 
( 7. 15), or for which interference fringes of maximum (instantaneous) contrast 
occur, can have arbitrary time dependences. The functions & (r, t) which deter-
mine the correlation functions of these fields may consequently have arbitrary 
Fourier spectra. What seems perhaps curious about these statements is that the 
experimental effort to produce nearly coherent beams of light has chiefly been a 
struggle to produce highly monochromatic ones. The reason for this connection 
has been that all of the effort has involved the use of stationary light sources. 
Such sources lead to fields for which the first order correlation function depends 
only on the difference of two tbnes, 

( 7. 23) 

If such fields are to be coherent the correlation function must factorize to the form 

( 7. 24) 

but this is a functional equation which has only exponential solutions. Since the 
dependence of a< 0 on the variable t 2 , can only contain positive frequencies wt? 
must have & (t)- e -iwt for some w > O. In other words, a coherent field which is 
stationary can only be monochromatic. 

After giving so precise a definition to first order coherence we must add that 
it is a rather idealized condition, as is nearly any condition one places upon quan-
tu1n nlechanical states. We must not expect correlation functions for actual fields 
to obey the factorization condition ( 7. 15) over unlimited ranges of the variables 
x1 and x2. In practice we define coherence lengths and times to describe the ranges 
of the spatial and temporal variables over which the factorization holds to a good 
approximation. 

FRINGE CONTRAST AND FACTORIZATION 

In the foregoing section we have defined coherence, mainly for reasons of 
1nathematical convenience, in terms of a factorization property of the correlation 
function. That factorization property, we then showed, implies the condition ( 7, 4). 
on the absolute value of the correlation function, i.e., the condition that the fringes 
show maximum contrast. Now it is possible lo show that the latter condition, pro-
vided it holds for all space-time points, also implies the factorization property. The 
proof we present is taken from a forthcoming paper by U. Titulaer and the author. 

When the relation 

( 7. 25) 

holds it places severe constraints upon the density operator for the field. These 
constraints may be found by first noting that Eq. (7. 25) implies the existence of 
operators A such that 

Tr(pArA)=O (7.26) 

To eX:hibit such operators A we choose an arbitrary space-time point x 0 at which 
the intensity of the field is non-vanishing, ac 11-( Xo, Xo) f O, and write 
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G lll(xo, ) A= EM(x) - · x EM(xo) 
G!ll(Xo, x.o) 

( 7. 27) 

It then follows that 
Ill ( ) ' t (!\ IG XoX[ 0 

Tr(p A A) = G (x Xo) - Gl'l(Xo Xo) = (7.28) 

all points x. Now the density operator p can be written as an average o( prod-
ucts of the state vectors of the system having the form 

p= L: p 1i><11 (1.29) 
I I 

where the probabilities p 1 are all positive. The vanishing of the trace given by 
Eq. ( 7, 26) means that 

l p
1
<ilAtAli>=O (7.30) 

I 

all the terms entering the sum are intrinsically positive, we may conclude 
that 

( 7. 31) 

for all states Ii> !or which p 1 O. But this relation implies in turn that these 
states Ii > are eigenstates of A with eigenvalue zero 

Ali>= 0 ( 7. 32) 

What we have shown is that the vanishing of the trace ( 7. 26) implies the pair 
of operator relations 

( 7.33) 

Slnce these relations hold when the operator A takes on the value given by Eq. 
(7. 27), the density operator must obey the pair of identities 

II)( ) l E('1(x) p = G x,, x E'' (xo) P 
Gl1l(x.,, x,) 

(-) ) p E (x = d''(x, Xo) p E(-)(xo) 
G11l(x,,x,) 

(7. 34) 

(7.35) 

These identities may now be used to shift the arguments of correlation functions 
to a common reference point Xo. If we let x = x2 in the first of these identities and 
x = x 1 in the second of them we may then use them to the relation 

G'"( ) l J M }Gl11(x.,x,) 
Trfp El-l(x,) El•l(x,)} = 111 x., Xo) Tr{p E- (Xo) E (Xo) Glll(Xo ) ' 

G (xo, Xo ,Xo 

which can also be written as the functional identity 
"'( ) GI"(. ) 

G(I)( ) _ G Xt, Xo Xo, X2 
X1 1 X2 (I) 

G (x.,, x 0 ) 

Now we have only to define the function 6. ( x) as 

G11i, ) 
&(x)= \Xo 1 X, 

Ill }-{G {x 0 , Xo) 2 
( 7. 36) 

in order to see that the first order correlation function takes on the faetorlzed Corm 
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( 7. 37) 

There is no need to repeat this demonstration in order to deal with the tensor 
structure of the correlation functions for fields which are not fully polarized. All 
we need to do is to consider each coordinate x as spec a tensor index as well 
as a position and time. 

Lecture Vm INTERPRETATION OF INTENSITY 
INTERFEROMETER EXPERIMENTS 

In the preceding lecture we have discussed Young's experiment at some length 
as an example typical of the interference experiments which are based upon the 
measurement of a first order correlation function. While all of the older interfer-
ence experin1ents share this character, we have discussed in the second lecture 
some more recent experiments which are of a fundamentally different type. These 
are the intensity interferometry experiments of Hanbury Brown, and Twiss which 
measure, in effect, the second order correlation function of the incident field. 

We have given a simple classical discussion of the way in which the correlation 
fringes appear in the intensity interferometer when the field is produced by a pair 
of sources with small angular separation. It is interesting, therefore, to investi-
gate the quantum mechanical origin of these same fringes. If we remember that 
the intensity interferometer functions by first detecting the incident fields in each 
of two we see imn1ediately that pairs of photons must be involved in the 
interference effect, i.e., nothing is recorded at all unless different photons are 
incident on each of the two detectors at more or less the same time. It is at pre-
cisely this point that one is confronted by a serious dilemma if he attaches too 
great a generality to Dirac's statement that'' interference between two different 
photons never occurs.•· 

The general discussion of interference which we gave in the last lecture should 
n1ake it clear that no such dilcnnna need exist. The things which should be re-
gardPd as interfering are not, strictly speaking, the photons, but alternative 
"histories" of the systen1 as a.whole. Let us imagine that the initial state of the 
systen1 is one in which two (generally overlapping) single-photon wave packets 
are present in thl' lit"ld and the aton1s of the two detectors (represented by photon 
counters) are in the state. We may take the final state of the system to be 
one in which both photons ha,·e been absorbed and one atom in each of the counters 
is correspondingly excit(•cl. H we label the photons 1 and 2, and the two counters 
a and b, we see that there are two alternative ways in which the final state may be 
reached. Either photon 1 is alJsorbed by counter a and 2 by b, or 1 is absorbed by 
band2bya. 

2 ________.,..___ • b 

Figure 8 

If the packets had altogether different average propagation vectors these al-
ternative histories would be distinguishable by means of careful measurements 

OPTICAL COHERENCE AND PHOTON STATIS1 101 

made in the counters. But the circumstances in which the fringes are observable 
are precisely those in which the packets have nearly the same average propagation 
vectors (e.g., packets with the same frequencies, small angular separation of the 
sources). In other words the fringes appear once again just when the alternative 
histories of the system become indistinguishable. Since the amplitudes for the two 
histories interfere, it becomes meaningless to ask which counter absorbed which 
photon. 

HIGHER ORDER COHERENCE AND PHOTON COINCIDENCES 

we recall from our classical discussions of the second lecture that the inten-
sity interferometer measures the second order correlation function of the incident 
field. Radiation fields generated by natural sources tend to have a chaotic. quality 
which allows us to construct these correlation functions from a knowledge of the 
first order functions. However, no such constructions are available in general 
for dealing with radiation from man-made sources such as the laser or radio trans-
mitters. The fields, generated by these sources can have much higher regularity 
than is ever possible for natural sources. It will be useful, therefore, to sharpen 
the concept of coherence by defining higher order analogues of optical coherence. 

we begin once more by stating conditions on the absolute values of the corre-
lation functions. For full coherence we shall require that the normalized form 
of the n-th order correlation function, 

(o) ) G (x1 • '• X2n 
g(•l(x • • • x ) = --1 2n 2n ( t), }! rr{G \XJ> x1) ' 

i"l 

(8.1) 

have modulus unity for all n and all combinations of arguments x. If the functions 
have unit modulus only for n s M we shall speak of M-th order coherence. 

The concept of M-th urder coherence has a simple interpretation in terms of 
n-fold (delayed) coincidence experiments. We know that Gfnl(x1 · · · Xn, Xn· • •X1) 
is an average coincidence rate for n ideal photo-detectors registering at the points 
x

1 
••• xn. Since this value of the function is real and positive the condition that 

gfn) have unit modulus for n s M implies that 

g(n)(x1 · • • Xn, Xn •' · X1) = 1 

for n s M. Hence for fields with M -th order coherence, 
nition of gin) we have 

( -' n I I\ ) G ""(x .. • x x · • • xd = lI G (x 1 x1 1 n1 n 

it is clear from the defi-

(8. 2) 

forn==" M. 
Expressed in experimental terms, this means that the n-fold coincidence rate ls 

just the product of the counting rates which would be measured by each counter 
individually in the absence of the others. Thus there is no tendency toward statis-
tical correlation of the photon counts. In a field with coherence of order M n the 
n photon counters register in a statistically independent way. 

Several investigations of light bean1s using coincidence counting of photons or 
equivalent experimental procedures have in fact been carried out dl,lring the last 
few years. The first of these to detect a tendency toward statistical correlation of 
the arrival times of photons was performed (in addition to the other experiments 
we have mentioned) by Hanbury Brown, and Twiss. 1 In the experiment light 
from a source S (Fig, 9) passes through a pinhole P and then reaches a half-silver-
ed mirror m, which splits it into two beams. Detectors D1 and D2 are 
symmetrically with respect to the mirror. Their photocurrents a=e multiplied to-
gether by the correlat6r C whose average output is the quantity measured. We may 
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consider the half-silvered mirror m as .a device, which permits us, in effect, to 
place two different photodetectors ·a:t essentially the same position in the beam. 

s 

Figure 9 

m 

" " 

Shortly after the original experiment had been performed another version of 
it with a slightly more direct interpretation was performed by Rebka and Pound. 2 

In the latter experiment D 1 and 0 2 are counters of individual photons, and C is a 
device tor registering delayed coincidences. The experiment measures the average 
coincidence rate as a function of delay time while the counters reinain fixed in 
their symmetrical positions relative to the mirror. Now, even if the photon beams 
incident on the two counters were statistically independent of one another, there 
would be a certain background counting rate of accidental coincidences. This rate 
would, however, be independent of any time delay. Thus any observed dependence 
of the coincidence rate on the time delay indicates a lack of statistical independence. 

The result of the experiments is indicated in Fig. 10. If the responses of the 
counters were statistically independent the coincidence rate would be independent 
of time delay. The observation of a small "bump" ln the experimental curve 

0 

Coincidence rate or 
average photocurrent 
correlation 

Time delay 

Figure 10 

indicates that the photons have a distinct tendency to arrive in pairs. Although the 
effect was at first difficult to observe it is, as we shall show, not necessarily a 
small one at all. The small magnitude of the observed "bump" and its particular 
shape in these experiments were determined almost entirely by the relatively slow 
response times of the coWlters. 

Let us note that, if the counters are placed symmetrically with respect to the 
mirror, the fields which are incident upon them are essentially identical, apart 
from a constant multiplicative factor. It follows then that if r 1 and r 2 are mirror-
image points in the two detectors we have 
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·. Jg111(r1t, r,t) I= 1 ( 8. 3) 

i.e., the fields which fall on the two detectors have essentially perfect first order 
coherence. The observation of a positive correlation in the coincidence rate 
demonstrates, on the other hand, that the fields are not coherent in the second 
order sense. We shall show presently that this result is a characteristic one for 
all experiments performed with natural light sources. These have a random char .. 
acter which.destroys second order coherence. 

FURTHER DISCUSSION OF HIGHER ORDER COHERENCE 

Let us return now to the definition of higher order coherence. We have, by 
analogy with first order coherence, defined M-th order coherence in of the 
succession of conditions 

'" IG(n)(X1 ••· x 2n) i 2 =.fl G( 11 (x,, Xi) 
1=1 

( 8. 4) 

on the absolute values of the correlation functions for n =:::: M. Just as in the first 
order case we found it convenient to express the coherence condition in an alterna· 
tive way, as a factorization property of the correlation function, we shall find lt 
even more convenient here to do much the same thing. We shall therefore state 
as an alternative definition the requirement that there exist a single complex 
function & ( x) such that 

(I) n * 2n G (x, ... x,) =II Ii (x,) II &(x,) 
n J=l j:n+I 

( 8. 5) 

for all n :=::o M. If this factorization holds for all n we shall speak of full coherence. 
U we note that the definition ( 8. 5) contains the statement 

( 8. 8) 

then we see h11n1ediately that it requires that the correlation functions obey the 
absolute value conditions ( 8. 4). 

It is possible, on the other hand, to sho\V that the absolute value conditions 
also imply the factorization properties. To do that we note that M-th order coher-
ence always requires first order coherence. We may therefore make use of the 
identities which were shown in the last lecture to be consequences of fir.St order 
coherence. In particular, since the operators E(-l(xi) for j = 1, · · • n all commute 
with one another, as do the operators Ef+l(xJ) for j = n + 1, ··· 2n, we can use 
each of the two identities ( 7. 34) and ( 7. 35) n tin1es in order to shift all of the 
argu1nents of the n-th order correlation fWlction to a particular reference point Xo. 
More specifically, we write 

which is the identity 
() G(n)(Xo'''Xo) 

G n (xi ···x2n )-= {Glll(xo, Xo) }n 

'" II 
j:n+l 

,fi. G111 (x,, Xol,J!, G111
(x,, x,) 

{d 0 (x,, x,) }" 
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U we introduce the function & (x) which Is defined by Eq. (7. 37), and make use of 
the normalized form of the correlation function, we may write the latter identity 
in the form 

(8. 7) 

Now as we have shown earlier, the functions (x) can only depend on the 
chotce of the arbitrary reference point Xo through a constant phase factor. Since 
that phase factor cancels out of the product which occurs in Eq. (8. 7), it follows 
that for fields with first order coherence the functions glnl (xo • · • xo) are inde-
pendent of Xo. In other words, the condition of first order coherence alone 
ts sufficient to bring all of the higher order correlation functions into a factor-
ized form, although not exactly the form, in general, which ·is required 
for higher order coherence. The difference is that Eq. ( 8. 7) contains the 
constant factors g f 11) ( x 0 ••• Xo) which should be unity if higher order 
coherence ls to hold. Now the higher order coherence conditions (8. 4) do require 
these coefficients to have unit absolute value for n ::s: M. Then, since the 
g<n) (x 0 ••• x 0 ) must be real and positive, they must be equal to one. 

Hence the conditions ( 8. 4) do indeed Imply the factorization condition ( 8. 5) . 

TREATMENT OF ARBITRARY POLARIZATIONS 

From a mathematical standpoint, very little need be added to our earlier dis-
cussions in order to treat fields with arbitrary polarization properties rather than 
the fully polarized fields we have been discussing. All we need do, as we have 
already noted, in order to deal with the general tensor character of the correlation 
functions, is to think of every coordinate in the formulae we have derived as 
specifying a tensor index as well as a position and time. 

Thus the relations ( 6. 7) for n = 1 and ( 6. 17), for example, may be general-
ized to read 

( X)} *=G(ll X1, 2 11µ (x,, x,) ( 8. 8) 

and 

(xi, X2) 12 ::S: (x1, X1) (x2, X2) , (8. 9} 

It may be worth noting that all information .about the state of polarization of the 
field is contained in the correlation tensor oCO (x, x). Let us denote this tensor 

"' by (} µ. v· We see immediately that r; µ v is a Hermitian matrix, (} µ. v * = (] vµ. If 
we substitute A= t Av (x) in the general inequality Tr{p At A} "'0 we find 

• L: (8.10) 
µ,V=l 

Thus (j is also positive definite. Because of its Hermitian character r;: can µv µv 
be diagonalized, that ls to say there exist three real and positive eigenvalues Xp and 
three (generally complex) eigenvectors @CP>, such that 

(l • = Ap * @(p) • IJ = Ap@ (p) ( 8. 11) 

Note that both the A, and the A (p) depend in general on the space-time point x, that 
occurs in the definition of (]. 

The @(P) are either found to be mutually orthogonal if the A's have no degeneracy, 
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or they can be chosen orthogonal if the ::\' s are degenerate. Hence we may assume 

et•> o,. (8.12) 

Since the tensor product 

(8.13) 

expresses the correlation of the field con1ponents in the directions of @<P) and A'q) 
there are three "directions" (i.e., complex directions) in which the field compo-
nents are mutually uncorrelated. Any field may thus be regarded as a superposi-
tion of three orthogonally polarized fields whose amplitudes are (instantaneously) 
uncorrelated. · 

The eigenvalues ;x<Plare the intensities corresponding to the three polarizations. 
The total intensity is given by 

Tr IJ = f Ap ( 8.14) 

A set of normalized intensities can be defined as 
Ap 

ly= t;1., (p=l,2,3) 
J=l 

These numbers can be interpreted as specifying the degree of polarization of the 
field. In an isotropic radiatlon field we must have IP= 1/3, ( p = 1, 2, 3). H the 
field is stationary 1. e., [ p, H] = 0 then r; is time independent and the A, and I, and 
@<Pl become fixed at any spatial position r. 

If we are considering a beam with a single direction of propagation k then 
clearly K. r; = r; · k = O (since light is a transverse wave). Hence k is a:i eigen-
vector of (,J corresponding to the eigenvalue ;\ = O. Then there are two remaining 
eigenvalues :\p, p =. 1, 2, The net polarization of the beam is usually defined as 
I I, - Ld = I A1 - A' 1/(;>.1 + A,). The two polarizations @t Pl for p = 1, 2 clearly lie in 
the plane perpendicular to k. 

The higher order correlation tensors are defined by 

... µ 211 (x1•••X2n) = (xn)E 1/Z1 (xrH-1)••• 

(x,,,)}.(8.15) 

'" The coherence condition, Eq. ( B. 5), may evidently be restated for fields of arbf .. 
trary polarization by· requiring that there exist a vector function G µ. (x} such that 

"' o*µ (x,) Il oµJ (x,) 
j J=n+l 

(8.16) G (X1•••X211) =ii 
P.1···P.211 j=l 

forn M. 
As a last remark on polarizations we note that first order coherence implies 

full polarization of the field, i.e., U we have 

G (I) (xx) 
µv 1J µv = & µ *(x) •v(x) (8.17) 

then clearly the vector 6: (x) itself is an eigenvector. The corresponding intens-
' ' µ. lty Is I & ( x) I , which Is the full intensity of the field present. µ = l µ. 
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COHERENT STATES OF THE FIELD - INTRODUCTION 

Let us try to construct states in which the fields have full coherence, that is 
to say, states in which all the correlation functions atnl factorize according to 
E qs. ( 8. 5) or ( 8. 16) . If there existed simultaneous eigenstates of the operators 
E (+) and E (-), such eigenstates would clearly bring about the desired factor.izat.ion. 
However since EC+) and EC-l do not commute (and have a comn1utator which is a 
c- nun1b;r) it is clear that no such eigenstates exist. We may reduce our de1nand 
to a more plausible level by noting that in the correlation functions the field opera-
tors always occur in normal order. Therefore, it is sufficient to coherence 
if the state of the field is simply an eigenstate of Et+ I in the restricted sense 

( 8. 18) 

This is true because the adjoint relation is 

< IE (-l ( x) = 0 * ( x) < I µ µ 
( 8. 19) 

and together the two relations lead to the desired factorization of the correlation 
functions. · 

Since the operator E(+) is neither Hermitian nor normal (i. e,, it does not 
commute with its Hermitian adjoint), there is no a priori reason why eigenstates 
of this form should exist. Indeed it is easily shown that the similar relation 

(•) <IE (x) = o (x) < I ( 8. 20) 

can have no nor1nalizable solution at all. The simplest way to show that Eq. ( 8. 18) 
has solutions is to construct them. 

If any solution of Eq. ( 8. 18) is to exist then it is that the function & µ(x) 
must satisfy the same wave equation and bow1dary cond1t1ons as the operator 
E(+J (x). The latter has the Fourier expansion 

µ 
Et"(r t) o-l iJ_L 

' c Dt 

= i L: 1riw,_1 
k ) 2 j 

( 8. 21) 

Here the thne independent operators ak are described completely by n1eans of 
their commutation relations 

[a.,••· I 
[••.••·'I 

For f, ( r, t) we must have a corresponding expansion ,;, 
. ';'lliw, \ ( ) - tw t & (r, t) = akuk r e k 

k 

0 
( 8. 22) 

(8. 23) 

where the coefficients ak are a set of numbers which can take on arbitrary con1-
plex values. . . 

Now if we substitute the expansions ( 8.21) and (a. 23) in the equation which 
determines the eigenstates, we see that the coefficients of each mode 
must separately be equal. Hence the eigenstate must satisfy the cond1t1ons 

a,1 >=a, I> (8.24) 
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for all modes k. 
The coefficients ak correspond in a simple way to the classical Fourier coef-

ficients C k which we introduced in the first lecture. More specifically if we com-
pare Equations ( 1. 8) and ( 8. 23) we see that the correspondence is 

C,=I 2 \ a, ( 8. 25) 

This relation shows that to describe classical fields we shall have to deal with par-
ameters ak of large modulus, i.e., if we let l'i - 0 then ai.; increases as l'i -112. 

To construct the desired eigenstate we can begin with the construction of a 
state I ak> k for the single mode k, such that 

(8. 26) 

The state for the entire system is then given by the direct product 

( 8. 27) 

We shall call these states the coherent states. From the fact that they remaln the 
same, up to a numerical factor, when we apply an annihilation operator air., it fol-
lows immediately that they cannot be eigenstates of the photon number operator. 

The sense in which states of the type (8. 27) are coherent includes, of course, 
optical coherence (they secure factorization of the first ordercoherence function). 
But it also includes a sense used in communication theory which we have mentioned 
earlier. There a coherent signal is a pure signal, one that has no noise. A class· 
ical signal of this type is ideally one with a precisely defined set of Fourier coef-
ficients Ck . But this is exactly the kind of field we are talking about in the more 
general quantum mechanical context. Our precise specification of the Fourier co-
efficients a k means, as we shall see, that we are as close as possible to having 
no noise in the signal. It can not mean, however, that there is no noise at all. 
Unpredictably fluctuating fields are present even in the vacuum. Our detectors 
detect individual photons, and photons tend to arrive randomly. Even when we 
specify the field as accurately as we can, we can only make predictions about the 
response of our counter in statistical terms; there will be some inevitable noise, 
and the coherent states of the field only tend to reduce that noise to a minimum. 
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NOTE ON LECTURES IX - XI 

Following the introduction of the coherent states, Lectures IX through XI 
presented the techniques for using them as a basis for the expansion of arbitrary 
states and operators, and for the representation of density operators in particular. 
Since the subject n1atter of these three lectures overlapped rnaterially, if not pre-
cisely, the content of a recent paper by the lecturer, we are including a reprint of 
the paper itself at this point. rather than a repetition of its contents. The 
reader who has followed the lectures this far should have no difficulty in beginning 
the paper at Section m (Coherent States of a Single Mode), and following its pre-
sentation through Section IX (Density Operators for the Field). Following the re-
print, the notes begin again with those of Lecture Xll. That lecture resumes the 
story near the end of Section IX of the paper, which it is intended to amplify. 

P. 2770 Eq. ( 3. 23) 

P. 2783 Eq. (9. 19) 

Reprint Errata 

first line 

second line 

Instead of 0 read 0 > 
Instead of e aat read e 0 at 

Replace and ak by and a k 

Rrprinted from Tiu: PttYSlf'AL Rr.v1r.w, Vol. 131, No. 6, 2766--271111, U S!'plnnht!r 196.1 
Prlaled ;,. U. $ . .\, 

Coherent and Incoherent of the Radiation Field• 
Rov J. GLAtreEa 

Lyman LlllwraJory t>f Pltysi&s, HQn/al'tl C11mbridK•, 
(Received 29 April 1963) 

are developed for discussing ihe photon statistia of arbitrary radiation fieldt IJI f11lly q11a11turq, 
mec?amcal terms. In order to keep the classical limit of quantum elecfrodynamiC$ plainly in view, eitemilvt1 
use ts .made of the coherent st11tes Qf the field. These states, which reduce the field correlation function! 
factonud forms, ate shown to offer a conycnient basis for the dt'SCTiption of fields of al\ types. AJtluiligb 
they are not orthogonal to one another, the coherent slates form a complete set. lt is ahown that any quan, 
tum state of the field may be eifl&nded Jn term.& of them in a uniq11e way. Expansionij are also developed 
for arbitrary operaton in terms of products of fhe coherent state These exparuiions are diacw.sed u 1 
general melhod of representins the qperntm: for the fieJ4. A particular form is exhibited for thll 
density which it to carry out many quantum-mechanical calculations by methods 
resembling those of class1ca[ theory. This representatioo permits clear insishts into the essential dla1inctioQ 
between the and classical ol field. It leads, in addition, to a simple formula.tion 
of a superpos1tmn law for photon fields. Detailed dt!ICllSBions are given of the incoherent fields which are 
g-enerated by superposing the outputs of many stationary sources. These fields are all shown to have inti-
mately properties, some of which have been known for the particular case of b!sckbody radiation. 

I. INTRODUCTION 

FEW problems of physics have receh·ed more atten-
tion in the past than those posed by the dual wave-

partide properties of light. The story of the solution of 
these problems is a familiar one. It has culminated in 
the development of a remarkably versatile quantum 
theory of the electromagnetic field. Yet, for reasons 
which are partly mathematical and partly, perhaps, the 
accident of history, very little of the insight of quantum 
elcctrodyi1amics has been bro1.1ght to bear on the 
problems of optics. The statistical properties of photon 
beams, for example, have been discussed to date almost 
exclusively in classical or semiclassical terms. Such 

may indeed be informative, but they in-
evitably leave open sc.rious questions of self-consistency, 
and risk overlooking quantum phenomena which have 
no classical analogs. The wave-particle duaHtr, which 
should be central to any correct treatment of photon 
statistics, does not survive the transition to the classical 
limit. The need for a more consistent theorr has led us 

•Supported in part by the U. S. Air Foret OffiC1! of 5cientilii; 
under COnlract No. AF 49(638)-589. 

to begin the development of a fully qu1mtum-mechpica) 
approach to the problems of photon statistics, We 
quoted several of the results of this work in a re;cent 
note,1 and shall devote much of the present paper to 
explaining the background of the materi41 rt'pOrtOtt 
there. 

1.tost of the mathemalical development of quantwn 
electrodynamics to date has been carried out throufh 
the use of a particular set of quantuin statea for tbt 
field. Thl!Re are the stationary states of the non-
interacting field, which corresponds to the prC1Cnce of 
a precisely defined number of photons. The need to use 
these states has seemed almost a:dornatic ina.amwch &I 
nearly all quantum electrodynamical calculation• have 
beep "trried out by means of perturbation theory. lt ii 
characteristic of electrodynamical perturbation theory 
that In each successive order of approximation It 
describes proce_o;ses which either increase er decreuo 
the number of photons present by one, Calculation• 
performed by such methods have only rarely been able 
to deal with more than a few photons at a time. The 

'R. J. Glauber, Phys. Rev. JO, 84 (1963), 
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description 1•f tl1e light b<'ams \\·hid1 occur in ics, on 
the other hand, may require that we deal with states in 
which the number of phot,-,ns present is large and in-
trinsically unct'rtain. It has limg-been clear that the use 
of the usual set of photon stales as a basis offers a! best 
only an awkward way of approaching such problems. 

\\'c ha\'e found Lhal 1hc nsc of a rather ditlercnl sci 
of states, one which arises in a natural wav in the 
rliscussion of correlation anrl pror;crtics of 
fields, offers much more penetrating insights inlo the 
role playccl photons in the description of light beams. 
Tl1ese st;1tes, which we have ralll'<l coherent ones, arc 
of a l}'(lC that has been used Lo illustrate lhc Lime-
d('pcndcnt behavior of harmonic oscillators. Since they 
lack the convenient property of forming an ort\1ogonal 

very little at t enlio11 has been paid t lwm a set of 
l1;tsis slates for the of fwld!'<. \i-'e shall show 
that !hcseslatcs, though nOt orthogonal, do form a com-
plete set and thatanystatcof the field may hereprcscnted 
sirnpl.v and iiniquely irt terms nf tht'm. Ry suitably 
extcrnling t.hc methorls user\ to express arbitrary stales 
i111crmsoi t11ecnherent slates, we may express arbitrary 
operators in terms of products of the corrcspnnding-
slatc vectors. Jt is particularly cmwenicnl to express 

operator f,,r the field in an expansio1L of this 
1 Sm h expansions have the that whenever 
the field possesses a classical limit, they renr:lcr that 
limit evident while at the same time preserving an 
intrinsicallr quantum-medianical description of the 
field. 

The earlier sections of the paper are devoted to a 
detailed introduction of the coherent states and a surYe,· 
oi some of their properties. \Ve then ullderlake inSec;. 
n· and\' the expansi11n of arbitrary states and operators 
in lermsof the cnhen·nt states. Ser!ion VI is devoted to 
a discussion of the particular properties of density 
operators and the way these properties are rcprcscntcti 
in the new scheme. The application of thC formalism to 
physicnl problems is hcg1.1n in Sec. \'Il, where we intro-
duce a particular form for the operator which 
seems especially suited to the trcatme11t of radial ion 
macrosc•1pic sources. This form for the clensity operator 
lrar\s to a particularly simple way of describing tbe 
superposition of radiation A form of the 
operattJr whlrh corresponds 111 a ver1' n>mrnrmh 
occurring form of incoherence is thl·n. i;1 
Sec. VIII anrl shown to be closely relater! to the ,. 
operator for blackbody In Sec. IX the result.s 
established earlier for !he treatment of single modes of 
the radhtion Helt! arc generalizc,d to treat the entire 
fielrl. The photon fields genera!ed by arbitrary distribu-
tions of classical currents are shown to have an especi-
ally simple description in terms of coherent states. 
Finally, in Sec. X the mcthClrls nf tl1e preceding sections 

arc illustrated in u discussion of <:erlaiu forms of 
coherent and incoherent fields and of t11eir spectra and 
forrela!ion funclions. 

U. FIELD-THEORETICAL BACKGROUND 

\Ve liavc, in an ear1icrpaper,1 discui;sed thcscparalion 
of the electric field operator E(rt) into its 
frcqut:nrr part E(+l (rl) and its lll'gative-frequency part 
E(-l(rl). These individual fielr!s were then used to define 
a succession of correlation functions the simplest 
of which takes the form 

G0 ,(l)(rt,r'1')= tr{pE,.(-1 (rl)E,i+l(r't')J , (2.1) 

where pis the density operator which describes the fidd 
a1J(l the symbol tr stands for the trace. \Ve noted, in 
cliscussing these functions, that tl1rre exist f)Uantum-
mcchanical states which are eigenstates of the positive-
and negative-frequency parts of the Jidds in the senses 
in<licated by the relations 

R/+'(rt)I )=8,.(rt)j ), 

<I E,.l-l(rl)= s,.·(rl)( 1. 
(2.2) 

(2.J) 

in whkh tl1c function 8,.(rl) the rule of a11 cigetl· 
value. It is possible, as we s!inll note, to tind eir;cHsla\t's 
I ) whkh correspond Lo arbitrary rhokes of the eigen-
value function provi<le<l they ohcy the l\foxwcll 
equations satisfied by the field operator EP(rt) and 
contain only positive frequency 1crms in their Fourier 
resolutions. 

The importance of the eigenstates defined by Eqs. 
(2.2) am.l (2.J) is indicated by the fact tliat they 
the correla!inn functions to factorize. If the field is in 
an {'igcnstate of this type we have p= I)( I, and the 
firs\·nrder correlation function 1hrrdore reduces to 

G.,m (rf,r'I')= 8,."(rtl8,(111'). (2.4) 

.\n analogous separation int11 a product of 2n factors 
takes place in the nth- order CDrtdation function. The 
exis1cncc of such factorized forms for the rorrela1ion 
fund ions is !he condition we have used to dcfme fullv 
coherent fidds. The 'eigenstalt..S I ), which we 
thcrdorc rallc<l the coherent sfales, have many prop-
erl il's which it will he interesting to study in detail. l'or 
1lds purp11s1·, it will 1)(' useful tn introduce 5nmc of the 
more direl"!ly relal(·d elemrnls ,,f q11;111tum 
dvna.mics. 

. The electric and magnetic field operators E(rl) and 
B(rl) mny he derived from the Clperalor A(rl), which 
represents the vector potential, via the relations 

1 aA 
(2.5) 

' "' 
. 'R. J. Glauber, in Proccedin11;s of Third lriternntional \Ve shall find i! co11venicnl, in <liscussing the quantum 

C.imf_ercncc on Electronics, Paris, France, 196.l (ton.,, slates of the field to describe the field Lv means of a 
puhhshcd). ' · -

1 R. J. Glauber, Phy1. Rev. 130, 2529 (1963). discrete succession of dynamkal variables rather than 
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a continuum of them. For this reason we assume that 
the field we arc discussin.g is confined within a spatial 
volume of finile size, and expand the veclor potential 
within that volume in an appropriate set of vector mode 
functions. The amplitudes associated with Lhcse 
oscillation modes then form a discrete set of Variables 
whose dynamical behavior is easily discussed. 

The most convenient choice of a set of mode func-
liolls, uk(r), is usually determined byphyskal considera-
tions which have little direct bearing Oll our present 
work. In particular, we need not specify the nature of 
the boundary conditions for the volume under s!udy; 
lhey may be either the periodic boundary conditions 
which lead to traveling wave modes, or the conditions 
appropriate to reflecting surfaces which lead to standing 
waves. If the volume contains no refracting materials, 
the mode fum.:tion uk(r), which n1rrcsponds to fre· 
quency Wk, mav Ue taken to salisfy the wave equation 

(2.6) 

al interior points. htore generally, whatever the form 
of the wave equation or the boundary condi1ions may 
be, we shall 11..Ssume that the motle functions form a 
complete set w!1ich satisfies the orthonormality cnndi· 
tion f u:(r)·u1(r)Jr=&u, (2.7) 

and the transven;ality condition 

(2.8) 

The plane-wave mode functions appropriate lo a 
cubical volume of side L may be wrillcn as 

u,(r) = L-11ie1Ai exp(ik· r), (2.9) 

where t'J(A) is a unit polarization vcclor. This e.o:.ample 
illlll!trates the wav io which the mode inc\(!X k may 
represent an for several discrete variables, 
i.e., in this case the polariza!ion index (A= 1,2) and t11e 
three Cartesian components of the propagation vector 
k. The polarization vector i(AJ is required to be perpen· 
dicular to k by the condition (2.8), and the permis.cr.ible 
values of k are dctcm'lined in a familiar way by means 
o{ periodic boundary conditions. 

The expansion we shall use for the vector potential 
takes the form 

( A )'" A(rl)=c:E -
• 2wk 

in whirh the normalization factors have been chosen to 
render dimensionless lhe pair of complcx-conjuga1c 
amplitudes at and akt· In the c\a.."Gical form o{ elcrtro-

magnetir theory these Fouri& amplitudes are complex 
numbers which may be chosen arbitrarily but remain 
constant in lime when no charges or current. uc 
present. In quantum electrodynamict, on the other 
hand, these amplitudes must be regarded as muuWly 
adjoint operators. The amplitude operators, u we have 
defined them, will likewise remain constant when no 
field sources are active in the !}'1item atudied. 

The dynamical behavior of the £cld amplitudes is 
governed by the electromagnetic Hamiltonian which, 
in rationalized units, takes the fonn 

(2.11) 

\\"ith the use of Eqs. (2.7,8) and or a suitable aet of 
boundary conditions on the mode functionA, the 
Hamiltonian may be reduced to the form 

(2.12) 

This cxprcs..<iion is the source of a well"known llJld 
extremely fruitful analogy between the mode ampli· 
I udes of the field and the coordinates of an asAembly of 
one·dimcnsinnal harmonic oscillators. The quantum 
mechanical properties of the amplitude operaton llt 
and at' may he described completely by adopting for 
them the commutation telationa familiar from the 
e:tample of independent harmonic osci\laton: 

[a1,at•]=[a,t,a•·t]=O, (:Z.1Ja) 
(2.lJb) 

Having thus separated the dynamical variables of the 
different modes, we arc now free lo discuss the quantum 
states of the modes independently of one another. Our 
knowledge of the state of each mode may be deACribed 
by a state vecLor I ). in a Hilbert space appropriate to 
that mode. The states of the entire field arc then defined 
in the produr! spare of the Hilbert spaces for all of the 
modes. . 

To discuss the quantum states of the individua.I 
modes we need oniv he familiar with the most elemen-
tary asperts of the treatment of a single harmonic 
osdllatClr. The Harniltonian }hi..ik(a1tal+at011) hat 
eigenvalues where n1 is an integer 
(nt=0,1,2 ···).The state vector fot the ground stale 
of the oscillator will be written as f ).. It i! defined by 
the condition ' 

(2.14) 

The stale vectors for the excited states of the oscillator 
may Le obtainccl by applying integral powen of the 
operator 011 to ] O)t. These states are written in normal-
i7.ed form as 
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The way In whkh ll1c operators <h a111l t11-1 a•·l llJ!oll 
lhc!IC slates is indicated Uy the 

a_..1 I n.1J= (n .. + 1)111 1 nk+ t)k, (2.17) 

akta_..)n_..)=n .. ln.t). {2.18) 

\Vi th these pre!iminaties completed we are now tcarly 
to discuss the cohen:nl states of the field tn greater 
detail. 'rhe expansion (2.10) for the vector potential 
exhibits its posilive frequency part as the sum contain-
ing the photon annihilation operators a• and ha negative 
frequency part a! that involving the crcathm operators, 
11_..t, The positive frequency patt of the electric field 
operator is thus given, according tb (2.10), hy 

Ec+l(rl)=iE (lliwt)111atUk(r)C-;"'u, (2.19) • 
The eigenvalue functlona t(tt) defined by Eq. (2.2) 
must clearly &atisfy the equations, jUst as the 
operator E<+i(rl) does. They therefore possess an 
expansion in normal modes similar to Eq. (2.19), In 
other words we may introduce a set of c-nUniher Fourier 
coefficients ak which permit us to write the eigenvalue 
function as 

t(rl)=iE (2.20) • 
Since the mode functions uk(r) form an orthogonal set, 
it then follows that the eigenstate I ) for the field 
the infinite succession of relations 

(2.21) 

for all modes k. To find the states which 11atisfv these 
relations we seek stales, lak)L, of the individual modes 
which individually obey the relalions 

(2.22) 

The coherent states I ) of the field, considered as a 
whole, are then seen to he direct products of the 
individual states lak), 

(2.23) 

Ill. COHERENT STATES OF A SINGLE MODE 

The next few sections will be devoted to discussing 
the description of a single mode osdllalor. We may 
therefore simplify the notation a bit by dropping the 
morle index k as a subscript to the stale vector anct lo 
lhe amplitude parameters and operators. To find the 
oscillator slate ]a) which 

(.l.1) 

we begin by taking the scalar product nf both sides of 
the equation with the nth excited state, (n). By using 
1he Hermitian adjoint form of the relation (2.17), we 

!ind lhr tcu1t!!io11 rt"lalim1 

(n+ 1 )! 11(11+ l la)-a(nla) (.l.2) 

for the scalar l:Jroducts (nla). We immediate!)· find from 
the recursion telalion that 

a" 

(n!)l12 
(J.J) 

These scalar products ate the expansion coefficients of 
the state la) ln terms of the complete orthonormal set 
In} (n=0, 11 ···). \\'e thus have 

l•)(•la) .. 
(.l.4l 

,. (n !)111 

The squared length of the vector la.) is thus 

l(OlaJl'I:-
• .1 

= l(Oia))'el"li. (3.S) 

If the stale fa) is normalized so that (afa)= 1 we may 
evidently define its phase by choosing 

(3.6) 

The coherent slates of the oscillator therefore take the 
forms 

a• 
(3.7) 

" (n!)1/r 
and 

(a')• 
(a! =cllal'I: (3.8) 

.. (111)111 

These. forms show that the average oc\Upalion number 
of the nth state is given hy a Poisson distribution with 
mean value lal1, 

lal2'> I (3.9) 

"' 
They also show that the coherent state la} correspond-
ing Lo cr.=0 is the unique ground of the oscillator, 
i.e., the slate 111) for n=O. 

An alternative approach .to the cohl·rcnt states will 
also prove quite useful in lhe work to follow. For this 
purpose we a.'!sume that there exists a unitary operator 
D which acts as a displacement operator upon the 
amplitudes at and a.' We let Dbe a function of a complex 
parameter {:J, and require that it displace the amplilurle 
operators according to the scheme 

(J.10) 

(3.11) 
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Then if la) obeys Eq. (3.1), it follows that [)-•(fl) ja) is 
an eigenstate of a corresponding to the eigenvaluca-/J, 

(J.12) 

lo particular, if we choose /J=a, we find 

a[}-l(a)la)=O. 

Since the ground state of the oscillator is uniquely 
defined by the relation (2.14), it follows that 0---l(a) la) 
is just the ground state, jO). The coherent states, in 
other words, are just displaced forms of the ground 
state of the oscillator, 

(.l.IJ) 
To find an explicit form for the displacement operator 

D(a), we begin by considering infinitesimal displnce-
men1s in the neighborhood of D(O)"" 1. For arbitrary 
displacements da, we see easily from the commutation 
rules (2.13) that D(rfa) may be chosen to have the form 

l+o'da-oda', (J.14) 

which holds to first order in da. To formulate a simple 
differenlial equation obeyed by the unknown operator 
we consider increments of a of the form fkr.=cr.d>. where 
>.is a real parameter. Then if we assume the operators D 
to possess the group multiplication property 

(3.15) 
we find the differer.tial equation 

whose solution, evaluated for >.= 1, is the unitary 
opera Lor 

(3.17) 
The coherent states la) may therefore be written in the 
fonn 

(J.18) 
which is correctly normalized since D(a) is unitary. 

It is interesting to discuss the relationship between 
the two forms we have derived for the coherent stales. 
For this purpose we invoke a simple theorem on the 
multiplication of exponential functions of Operators. 
If a and CB are any two operator.;, whose commutator 
[<l,CB] commutes with each of them, 

(3.19) 

it may be shown4 that 

oxp(a) oxp(<B) a+m+i[a,m]}. (.l.20) 

If we write ct= at and CB=a, this lheorem permits us 
to resolve the exponential D(a) given by Eq. (].17) into 

1 A. MeWa.h, Qmi.11/1<111 Muha>1ir.s (North-Hnllaud Puhlishing 
Company, Amsterdam, 1961), Vol. I, Jl· 442. 

the product 
(3.21) 

Products of 1his type, which have been ordered so that 
the annihilntinn operators all stand to the right of the 
creation operators, will be said to he in normal form. 
Their convenience is indicated by the fact that the 
exponential exp[-a"a], when applied to the ground 
slate IO), reduct.-s in effect to unity, i.e., we have 

(3.22) 
since the exponential may be expanded in series and 
the definition (2.14) of the ground state applied. It 
follows then that the coherent states may be written u 

=e-llal'e-•tlO) (3.2.1) 

(a.at)" 
=e-llal1 !:--IO). (J.24) 

• •I 

Since the excited states of the oscillator are given by 
fn)=(nJ)-111(at)"IO), we have once again derived the 
expression 

a• 
la)=e-llal'I:-ln). .. , 

It may help in visualizing the coherent states if we 
discuss the form they take in coordinate space and in 
momentum space. We therefore introduce a pair of 
Hermitian operators q and p to represent, respectively, 
the coordinate of the mode oscillator and its momentum. 
These operators, which must satisfy the canonical 
commutation relation, [q,p]=ill, may be defined for 
our purposes by the familiar expressions 

q= (fl/2w)ll2(a'+a)' (3.2Sa) 

(3.2Sb) 

To find the expectation value of q and pin the coherent 
stales we need only use Eq. (3.1), which defines these 
states, and its corresponding Hermitian adjoint form. 
We have then 

(alqlcr}= (2fl/w)11! Recr, 

{al Pia)= (21i.w)11! Imcr, 

(3.26a) 
(3.2611) 

where Rea and Ima stand for the real and imaginary 
parts of a. 

To find the wave functions for the coherent atat,.. 
we write the defining equation (3.1) in the form 

(2Aw)-li1(wq+ip)]cr.}=a!o}, (J.27'1 

and take the scalar product of both members with th .. 
conjugate state {q'], which corresponds to the eigCP· 
value q1 for q. Since the momentum may be represented 
by a derivative opeiator, i.e., {q'l/J= -ill(d/dq')(r/f, we 
find that the coordinate space wave function, {q'la), 
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obeys the differential equation 

The equation may be integrated immediately to yield 
a solution for the wave function which, in normalized 
form, is 

(q' la)= exp(-[(w/2h)11'lq'-a]'). (.l29) 

An analogous argument furnishes the momentum space 
wave function. If we take the scalar product of Eq. 
(3.27) with a momentum rigcnstate (P'I, and use the 
relation (P'lq=ilt(a/ap')(p'I, we reach a differential 
equation whose normalized solution is 

(p'la)= (rli.w)-114 exp( I. (3.30) 

Both of these wave functions are simply <lisplaced 
[orms of the ground-state wave function of theosci!lator. 
The parameters f;}l/w)11! and (liw) 11! correspond to the 
amplitudes of the zero-point fluctuations of the coordi-
nate and momentum, respectively, for an oscillator of 
unit mass. The fact that the wave funftions for the 
coherent states have Lhis elementary structure should 
be no surprise in view of the way they are g"eneratcd in 
Eq. (3.13), by means of displacements in the complex 
Q plane. 

The time-independent states IQ) which we have been 
describing are those characteristic of the Heisenberg 
picture of quantum mechanics. The Schri:idinger 
picture, alternatively, would make use of the time-
dependent states exp(-iHt/h) la). If we omit the zera-
point energy !hw from the oscillator Hamiltonian and 
write H =fiwata, it is then clear from the expansion (3.7) 
for lo:) that the corresponding Schri:idinger state takes 
che same form with a replated by ar1" 1• \Ve may thus 
write the Schri:idinger state as I ae-1•'). \Vith the substi-
tution of aci•• for a in Eqs. (3.26a) and (3.26b), we :ree 
1hat the expectation values of the coordinate and 
momentum carry out a simple harmonic motion with 
l'.oordinate amplitude The same suh-
:;;titucions in the wave functions (3.29) and (3.30) show 
!hat the Gaussian probability densities characteristic of 
the ground state of t)leoscillator are simply carried back 
and forth in the same motion as the expectation values. 
Such wave packets are, of course, quite familiar; they 
were introduced to quantum mechanics at a very earl)' 
stage by SchrBdinger/ and have often been used to 
illustrate the way in which the behavior of the oscillator 
approaches the classical limit. 

Another connection in which the wave packets 0.29) 
and (3.30) have been discussed in the pa!'.t has to do 
with the particular way in which they localize the 
coordinate q1 and the momentum p'. Wave packets can, 

1 E. SchrlXl.ini;:er, 14, 664 (1926). I'or a 
more recent treatment see L. I. Schill', QMa11/tnls Muha11k1 
(McGraw-Hill Book Company, Inc., Yark, 1955), 2nd ed., 
p. 67. 

of course, be found which localize either variable more 
sharply, but only at the expense of the localization of 
the other. There is a sense in which the wave packets 
(3.29) and (3.30) furnish a m1ique compromise; they 
minimize the product of the uncertainties of the 
variables q' and p'. If we represent expectation values 
by means of the angular brackets ( ) and define the 
variances 

(q')-(q)'. 
(p')-(p)', 

(3.Jla) 

(.1..llb) 

we find, for the wave functions (3.29) and (3.30), that 
the product of the variances is 

According to tl1e uncertainty principle, this is the 
minimum value such a product can have.ft There thus 
exists a particular sense in which the description of an 
oscillator by means of the wave functions (3.29) and 
(3.30) represents as dose an approach to classical 
localization as i'> possible. 

The uses we shall make of the coherent states in 
quanlum electrodynamics will not, in fact, require the 
explicit introduction of coordinate or momentum 
variables. We have reviewed the familiar representa-
tions of the coherent states in tenns of these variables 
in the hope that they may be of some help in under-
standing the various applicalions of the states which 
we shall shortly undertake. 

One property of the states [a) which is made clear by 
the wave-function representations is that two such 
states are not, in general, orthog'onal lo one another. If 
we consider, for example, the wave functions (q'la) and 
(q'la') for values of r/ dose to a, it is evident that the 
functions are similar in form and overlap one another 
appreciably. For values of a 1 quite different from a, 
however, the overlap is at most quite small. We may 
therefore expect that the scalar product (alt:r'), which 
is unity for a' =a, will tend to decrease in absolute 
magnitude as a' and a recede from one another in the 
complex plane. The scalar product may, in fact, be 
calculated more simply than by using wave functions if 
we employ the repr<'senlations and {3.R). '\Ve lht•n 
find 

(a/f3)=e--11trJ'--!l.ll1 1 I: ---(n]m), 
"·., (n!m!)l/2 

which, in view of the orthonormality of the I") states, 
reduces to 

(J.32) 

The absolute magnitude of the scalar product is given 
by 

I (J.33) 
1 W. Heisenberg, The Pllyskol Pritlripks of the Qua,.lum Tlwlry 

(University oF Chier.go Pttss, Chicago, 1930, reprinted by Dover 
Publicationt, Inc., York, 19JO), pp. 16-19. 

' d 

' I 
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which shows that the coherent states tend to become 
approximately orthogonal for values of a and fJ which 
are suffidenlly different. The fact that these states are 
not even approximately orthogonal for /a-f31 of order 
unity may be regarded as an expression of the overlap 
caused by the presence of the displaced zero-point 
fluctuations. 

Since the coherent states do not form an orthogonal 
set, they appear to have received little attention as a 
possible system of basis vectors for the expansion of 
arbitrary states.7 We shall show in the following section 
that such expansions can be carried out convenient!\· 
and uniquely and that they possess exceedingly 
properties. In later sections we shall, by generalizing 
the procedure to deal with bilinear combinations of 
states /a) and (t1/, develop analogous expansions for 
operators1 as well. 

IV. EXPANSION OF ARBITRARY STATES IN 
TERMS OF COHERENT STATES 

While orthogonality is a convenient property for a 
set of basis states it is not a necessary one. The essential 
property of such a set is that it be complete. The set of 
coherent states la) for a mode oscillator can be sho"'ll 
without difficulty to fonn a complete set. To give a 
proof we need only demonstrate that the unit operator 
may be expressed as a suitable sum or an integral, over 
the complex a plane, of projection operators of the 
form la)(al. In order to describe such integrals we 
introduce the differential element of area in the a plane 

tfu=d(Rea)d(Im a) (4.1) 

(i.e., t!'-a is real), If we write a= )ale'", we may easily 
prove the integral identity 

=mt&,,,.., (4.2) 

in whicli the integration is carried out, as indicated, 
over the entire area of the complex plane. With the aid 
of this identity and the' expansions (3.7,8) for the 
coherent states, we may immediately shot.· 

Since then-quantum states are known to form a com-

' Uses of these states ll!I generating functions(or the 11-quanturn 
however, been made by J- &hwingrT, Phys. Rev. 91, 

plcte orthonormal .et, the indicated sum over • ii 
simply the unit operator. We have thus ahownl 

{U) 

which is a completeness relation for the coherent lt&tel 
of precisely the type desired. 

An arbitrary slate of an oscillator mmt pOSlelll an 
expansion in terms of the n-quantum states of the form 

(U) 

where I: I l. The series which occurs in Eq. (4.•) 
may be used to define a function f of a complei: vari-
able z, 

It is clear from the normalization condition on the"• 
that this series converges for all finite z1 and thus 
represents a function which is analytic throughout the 
finite complex plane. \Ve shall speak of the functions 
/(z) for which I: le,.)'= 1 as the set of normalized entire 
functions. There is evidently a one-to-one correspond-
ence which exists between such entire functions and 
the states of the oscillator. One way of approaching the 
description of the oscillator is to regard the functions 
/(z) themselves as the elements of a Hilbert space. The 
properties of this space and of expansions ca.rried out 
in it have been studied in some detail by Sega11 and 
Bargmann.9 The method we shall use for expanding 
arbitrary states in terms of the coherent states has been 
developed as a simple generalization of the usual method 
for carrying out changes of basis states in quantum 

It is evidently equivalent, however, to one 
of the expansions stated by Bargmann. 

If we designate the arbitrary state which corresponds 
to the function j(z) by If), then we may rewrite 
Eq. (4.4)., 

(4.6) 

To secure the expansion of If) in tenns of the states 
IQ), we mulliply If) by the representation (•.3) of the 
unit operator. \\l'e then find 

I I. E. Dlinois J. Ma.th. 6, 520 (1962). 
1 V. Bargmann, Commun. Putc and Appl. Math. 14, 187 (1961); 

PToc. Natl. Acad. Sci. U.S. 48, 199 (1962). 
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which reduces, since (alf(af)=(odf(a"), to 

I l·>1c•>·-"·1·,,,.. (4.7) 

which is an expansion of the desired type. 
It is worth noting that the e.xpii.nsion (4.7) can easily 

be inverted to furnish an explicit form for the function 
j(a") which corresponds to any vector ( j). For this 
purpose we take the scalar product of both sides of 
Eq. (4.7) with the coherent state <ftl, and then, using 
Eq. (3.32), evaluate the scalar product (.8\a) lo find 

,r-1•1'/(•'),P.. (U) 

Since f(a•) may be expanded in a convergent power 
series we note the relation 

J er...-1 .. 11(a0)•d'a= (.B*)", (4.9) 

from which we may derive the more general idenlity 

On substituting the latter identity in Eq. (4.8) we find 

(4.11) 

There is thus a unique correspondence bet ween 
tions f(r:l) which play the role of expansion amplitudes 
in Eq. (4.7) and the ve<:tors I/) which describe the 
slate of the oscillalor. 

An expansion analogous to Eq. (4.7) also exists for 
the adjoint state veclors. 1f we let g(a") be an entire 
function of a" we may construct for the slate {gl lhe 
expansion 

(4.12) 

The scalar product of the two states {gland If) may 
then be expressed as 

The identity (4.10} permits us to carry out the integra-
tion over the variable a to find 

This expression for the scalar product of two vectors is, 
in essence, the starting point used by Bargmann in his 
discussion10 of the Hilbert space of functions f(t}. 

10 Some of Bargmann'& argument. are IJUJtlmariled by S. 
Schweber, J. Math. Phys. 3, 831 (1962), who bu ul!td them in 

It may be worth noting, for its mathematical interest, 
that the coherent states la) are not linearly independent 
of one another, as the members of a complete orthogonal 
set would be. Thus, for example, the expansion (4.7) 
may be used to express any given coherent state 
linearly in lerms of all of the others, i.e., in view of 
Eqs. (4.11) and (3.32) we may write 

I lii)e"--•1 .. (4.14) 

There exist many other types of linear dependence 
among the states fa), We may, for example, note the 
identity 

(4.15) 

which holds for all integral n>O. It is clear from the 
latter result that if we admitted as expansion coefficients 
in Eq. (4,7) more general functions than f(rl°). say 
functions F(a,p.0

), there would be many additional 
ways of expanding any state in terms of coherent states. 
The constraint implicit in Eq. (4.7), that the expansion 
function must depend analytiral\y upon the variable a" 
is what renders the expansion unique. The virtue of an 
expansion scheme in which the coefficients are uniquely 
determined is evident. It becomes possible, by inverting 
the expansion as in Eq. (4.11), to construct an explicit 
solution for the expansion coefficient of any state, no 
matter what representation it was exprc!!Sed in initially. 

V. BXPANSION OF OPERATORS IN TERMS OF 
COHERENT STATE VECTORS 

Our knowledge of the condition of an oscillator mode 
is rarely explicit enough in practice to permit the 
specification of its quantum state. Instead, we must 
describe it in terms of a mixture of slates which is 
expressed by means of a density operator. The same 
reasons that lead us to express arbitrary states in terms 
of the coherent states, therefore, suggest that we develop 
an expansion for the density operator in terms of these 
states as well. We shall begin by considering in the 
present section a rather more general class of operators 
and then specialize to the case of the density operator 
in the section which follows. 

A general quantum mechanical operator T may be 
expressed in terms of its matrix elements connecting 
states with fixed numben; of quanta as 

E I n)T •• (ml , (5.1) ..• 
T •• (nlmI)-"'(a')•IO)(Ola•. (S.2) 

connection with the formulation of qUJLntum mechanic1 io termt1 
of amplitudes. We are indebtetl to Dr. S. Bergmann for 
callinf lhiB reference to our attention. 

I 

' 

., 

,I 

I 

II 
If 
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If we use this expression for T to calculate the matrix 
element which conne<:ts the two coherent states (al and 

we find 

(•I E T,.(n (5.3) ..• 
It is evidently convenient to define a function <J'(a• Ji) as 

The operators which occur in quantum mechanics are 
often unbounded ones such as those of Eqs. (2.16)-
(2.18). Those operators and the others we are apt to 
encounter have the property that the magnitudes of the 
matrix: elements T .... are dominated by an expression 
of the form for some fixed positive values of M, 
j, and k. It then follows that the double series (5.4) 
converges throughout the finite a" and p planes and 
represents an entire function of both variables. 

To secure the expansion of the operator Tin terms of 
the coherent states, we may use the representation (4.3) 
of the unit operator to "'1'ite 

I l•><•I (5.5) 

f la),,.(•' ,P)(fll 

J l·>,,.<•P>lfll <XJ>{-! 
(5.6) 

The inversion of this expansion, or the solution for 
'l'(a",(3), is accomplished by the same method we used 
to invert Eq. (4.7) and secure the amplitude function 
(4.11). The result of the inversion is 

"Plll•l'+Wl'l· (5.7) 
We see, thus, thal the expansion of operators, as well as 
of arbitrary quantum states, in terms of the coherent 
states is a unique one. 

The law of operator multiplication is easily expressed 
in terms of the functi011s '1'. If T= T1T2 and '1'1 and 'l't 
are the functions appropriate to the latter two operators, 
we note that 

<•I (•I 

(•ITd>)(>IT,IP)d'-i. (5.8) 

The function '1' whkh represents the produrl is there-
fore given hy 

<f(a" J '1'1 (a" ,'Y) '1'1(-y• ,P)rl1l1d2-y. (5.9) 

The expansion function for the operator ft, the 
Hermitian adjoint of T, is obtained by aubltituting 
T .; fo< T •• ;n Eq. (5.4). !Ha giV<n by [.-(fl" ,a)]'. U 
the operator Tis Hermitian the function f'mUlt satisfy 
the identity 

r(o',P)-[,,.(fl",a)]', (5.10) 
since the expansions of T and T' a.rt: unique. 

The functions ,.(a•,p) which represent nonnal 
products of the operators at and a such u (at)• 11• are 
immediately seen from Eqs. (5.7) and (3.32) ta be 

{5.11) 
In particular, the unit operator corresponds to•-••O. 

It may be worth noting at this point that many of 
the foregoing formulas can be abbreviated IOID.twhat 
by adopting a normalization different from the COD.• 
ventional one for the coherent state&. If we introduce 
the symbol Ila) for the states normalized in the new ny 
and define these as 

(5.12) 

then we may write the 1ealar product of two such 
states as (atlP). We see from Eq. (3.32) that this ICalar 
product is 

(5.13) 

\Ve may next, following Bargmann,• introduce an 
element of measure dµ(a) which is defined as 

I 
dµ.(a)--cl"1 1d'a. 

• 
(5.14) 

With these alterations, all of the Gaussian functiona, 
and factors of .,.., in the preceding formulas become 
absorbed, as it were, ilito the notation. The Eqs. (S.6) 
and (5.7), for example, reduce to the briefer fomu 

T- f lla)'f(o',P)(flllJ,.(a)J,(fl) (5.15) 
•nd 

(5.16) 
A more significant properly of the states ]Ja) ii that 
they are given by the expansion 

•• 
ll•>-E-1•> 

• (n!)ll• 
(5.17) 

and thus obey the relation 

(5.18) 

While the properties of the ahernatively normalized 
states Jla) are worth bearing in mind, we have choten 
not to adopt this normalization in the present paper in 
order to retain the more conventional interpretation of 
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scalar products as probability amp!iturles. The advan-
tage afforded Ly the relation (5.1B) is not a great one 
since all of the operators we shall have to <lcal with are 
either already in normally ordered form, or easily so 
ordered. 

VI. GENERAL PROPB.RTIES OF THE 
DENSITY OPERATOR 

The formalism we have developed in the two preced-
ing sections has been intended to provide a background 
for the expression of tlm density opera1or of a mode in 
terms of the vectors that represent coherent states. 
Viewed in mathematical terms, the use of the coherent 
state vectors in this way leads to considerable simplifica-
tion in the calculation of statistical averages. The fact 
that these states arc eigenstates of the field operators 
£(±.)(rl) means that normally ordered products of the 
field operators, when they are to be averaged, may be 
replaced by the products of their eigenvalues, Le., 
treated not as operators, but as numbers. The field 
correlation functions such as G(ll given by Eq. (2.1) are 
averages of just such operator products. Their evalua-. 
tion may be carried out quite conveniently through use 
of the representations we shall discuss. 

Any densit v operator p may, according: to the methods 
of the preceding section, be represented in a unique 
way by means of a function of two complex variables, 
R(a•,fj), which is analytic throughout the fo1itea• and 
f1 planes. The function R is given explicitly, by means 
of Eq. (5.7),-as 

R(•' (•IPIM "P[l l•I'+! IPl'J. (6.1) 
If we happen to know the matrix representation of pin 
the basis formed by then-quantum states, the function 
R is evidently given by 

(6.2) ..• 
li we do not know the matrix elements (nlplm) they 
may be found quite simply from a knowledge of 
R(a",(3). One method for finding them is to consider 
R{a",{3) as a generating function and identify its Taylor 
series with the series (6.2). A second method is to note 
that if we multiply Eq. (6.2) by ai(.8")1 exp[ -(lal 2 

+ I (31 2) J and integrate over the a and fJ planes, then all 
terms save that for n=i and m= j vanish in the sum on 
the right and we have 

(ii Pl J R{a" ,p)(i lj 1)-112al(.B")irllal41tll1ld2ad'lf3, 

(6.3) 

Given the knowledge of R(a",(:J), we may write the 
density operator as 

The statistical average of an operator Tis J!;iven by t.he 
trace of the product pT. lf we calculate this average by 
using the representation (6.4) for p we must note that 
the trace of the expression laJ{fJI T, regarded as an 
operator, is the matrix element (fJI T](.I:). Then, if we 
express the matrix element in tenns of the function 
'T(a" ,fJ) defined by Eq. (5.7) we find 

tr {pT) f R(a",(3) 'T(/3" ,o)e-1<>1'-ltll1J!atf!{j. (6.5) 

If Tis any operator uf the form (a')"a"', its representa-
tion 'T({3",a) is given by.Eq. (5.11). In particular for 
n=m=O, we have the unit operator T=I which is 
represented by <J'(.B",a)=eip[..a"a]. Hence, the trace of 
p itself, which must be normalized to unity, is 

trp=l 

JR(a',#) exp[.B'a- la 1'-,.. . 
Since R(a",{1) is an entire function of a", we may use 
Eq. (4.10) to carry out the integration over the a plane. 
In this way we see that the normalization condition 
on R is 

(6.6) 

The density operator is Hermitian and hence has real 
eigenvalues, These eigenvalues may be interpreted as 
probabilities and so must be positive numbers. Since p 
is thus a positive definite operator, its expectation value 
in arty state, e.g., the state If) defined by Eq. (4.6), 
must be non-negative, 

(6.7) 

If, for example, we choose the state If) to be a coherent 
state [a) we find that the function R, which is given by 
Eq. (6.1), satisfies the inequality 

(6.8) 

If we let the state If) be spedfied as in Eq. (4.7) by an 
entire function f(a"), then we find from the inequality 
(6.7) the more general condition for posi1ive defmitcness 

f (6.9) 

whicl1 must hold for all entire functions f. 
In many types of physical cxperimenls, particularly 

those dealing with fields which oscillate al extremely 
high frequencies, we cannot be said tn have any a priori 
knowledge of 1he time-dependent parameters. The 
predictions we make in such$ circumstances are un-
changed by displacements in time. They may be derived 
from a d!!nsity operator which is stationary, that is, one 
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which commutes with the Hamiltonian operator or, 
more simply, wilh a'a. The necessary and sufficient 
condition that a function R(a" .ft) correspond to a 
stationary density operator is that it depend only on 
the product of its two variables, a•fJ. There must, in 
other words, exist an analytic function .S such that 

(6.10) 

That this condition is a sufficient one is clear from the 
invariance of R under the multiplication of both a and 
i9by a phase factor, ei". The condition mav be derived as 
a necessary one directly from the of the 
commutator of p with ata. An alternative and perhaps 
simpler way of seeing the- result depends on noting that 
a stationary p can only be a function of the Hamiltonian 
for the mode, or of ata, ll is therefore diagonal in the 
basis formed by the 11-quantum states, i.e., (n-lplm} 
= &R.,{n/ p I fl). Examination of the series expansion (6.2) 
for R then shows that it then takes the form of Eq. 
(6.10). 

VD. THE P REPRESENTATION OF THE 
DENSI'f! OPERATOR 

In the preceding sections we have demonstrated the 
generality of the use of the coherent slates as a basis. 
Not all fields require for their description densit\' 
operators of quile so general a form. Indeed for a broad 
class of radiation fields which includes, as we shall see, 
virtually all of those studied in optics, it becomes 
po!!Sible to re<luce the density operator to a considerablv 
simpler form. This form is one which brings to ligh-t 
many simitaritics l>etween quat1tum electrodynamical 
calculations and the corresponding classical ones. Its 
use offers deep insights into the reasons why some of lhe 
fundamental laws of optics, such as those for super-
position of fields and calculation of the resulting 
intensities, are the same as in classical theory, even 
when very few quanla arc involved, \Ve shall continue, 
for the present, to limit considera1ion to a single mode 
of lhe field. 

One type of osdllator stale which interests us 
particularly is, of course, a coherent slate. The density 
operator for a pure stare !a) is just the projection 
operatnr 

(al. (7.1) 

The unique representation of this operatOT as a function 
R(ft","f) is easily shown, from Eq. (6.1), 10 he 

(7.2) 

Other functions R<ft4;r), which sa!isfy the analyticity 
requirements necessary· for the representations of 
density operators, may be constructed by forming linear 
combinations of exponentials such as (7.2) for various 
values of the complex parameter a. The functions R, 
which we form in this way, represent statistical mix. 
tures of the coherent states. The most 1:encral such 

function R may be' written as 

f P(a) oxp[.B'a+.,.'-/•l'Jd'a, (7.J) 

where P(a} is a weight function defined at all points of 
the complex a plane, Since R(ff,y) must satisfy the 
Hermiticity condition, Eq. (5.10), we require that the 
weight function be real-valued, i.e., [P(a))"•P(a). The 
function P(a) need nol be subject to any regularity 
conditions, but its singularities must be integrable 
ones. 11 It is convenient to allow P{a) to have delt&-
function singularities so that we may think of a pure 
coherenl state as represented by a special case of 
Eq. (7.3), A real-valued two-dimensional delta functioll 
which is suited to this purpose mar be defined u 

!J(ll {a)= &(Re a)&(Im a). (7.4) 

The pure coherent slate lfJ) is then evidently described 
by 

P(a)=ft:J(a-fJ), (7.5) 
and the ground state of the oscillator b specified by 
setting {1=0. 

Thi; density operator p which corresponds to Eq. (7.3) 
is just a superposition of the projection opera.ton (7.1). 

f P(a)la)(•I""'· (7.6) 

1t is the kind of Qperator we might naturally be led to 
if we were given knowledge that the oscillator is in a 
coherent state, bu1 ·one which corresponds to an un· 
known eigenvalue a. Th1: function P(a) might then be 
thought of as playing a role analogous to a probability 
density for the distribution of values of a over the 
complex plane.12 Such an interprelation may, as wa 
shall see, be justified at times. In general, howevtr, it it 
not pos.o;iblc to interpret the function P(a) as a prob&· 
bility distribution in any precise way since the projec-
tion operators [a)(al with which it is associated are not 
orlhoi;:onal to one another for different value!! of a. 
There is an approximate sense, as we have noted in 
conneclion with E:q. (3 .. in which two states lcr) 
and la') may be said to become orthogonal to one 
another for la-a'l>>l, i.e., when their wave packets 
{3.29) and those of the form (J.30) do not appreciably 
overlap. When the function P(a.) tends to vary little 
over such large ranges. -of the parameter a, the non-
orthogonality of the coherent states will make little 
difference, and P(a) will then be interpretable approD-
mately as a probability density. The functions P(cr) 

11 If the singularities of P(o) are of type, stronger than thme ol 
delta functions, 1qi:., derivatives of delta (uDCtlOM, tht field 
ttprtM:ntcd will have no tlM!!ica.I. analog. 

11 The existence of this·form for the dcnlity operator bu allo 
been ohserved by E. C. G. Sudarshan, Phyg, Rrv. Letters Jt. 217 
(1963). His note it discuued brirfly at the end of Sec. X. 
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which vary this slowly will, in genera.I, associated 
with strong fields, ones which may be described approxi-
mately in classical terms. 

We shall call the expression (7.6) for the density 
operator the P representation in order 10 distinguish it 
from the more general form based on the functions R 
discussed earlier. The normalization property of the 
density operator requires that P{C%) nbey the normaliza-
tion condition 

trp= f P(a)d"a= 1. (7.7) 

It is interesting to examine the conditions that the 
positive definiteness of p places upon P(a), If we apply 
the condition (6.9) to the function R(/3","t) given by 
EC]. (7.J) we ftnd 

f U<P')]'J(,')P(u) 

Xd'ad'{ld'-y?_O. (7.8) 

The 'Y integration may be carried out via Eq. (4.10) and 
the {j integration by means of ils complex conjugate. 
We then have the condition that 

f I /(a') l'P(a)rl•l'd'a?_O (7.9) 

must hold for all entire functions f(a.0
), In particular, 

the choice leads to the simple 
condition 

(7.10) 

which must hold for all complex values of ,B. It corre-
sponds to the requirement (.J31Pl.B);;::o. These conditions 
are immediately satisfied if P(a.) is positive valued as it 
would be, were it a probability density, They are not 
strong enough, however, to exclude the possibility that 
P(a.) takes on negative values over some suitably 
restricted regions of the plane.13 This result serves to 
underscore the fact that the weight fullction P(a.) can-
not, in general, be interpreted as a probability density, 14 

If a density operator is specified by means of the P 
representation, its matrix elements connecting the n-, 

11 All example of a weight function P(a) which takes on negative 
values but leads to 11. density operator is given by 
the form 

for fJ>0 and O<A<ll'-1. The matril\' representati<Jn of the co1n-
sponding density operator, which is given by Eq. (7.12), is !IC!'n 
to lie diagonal and to have only positive 

"A familiar example of a function whkh plays a role analogous 
to that of 11. probability density, but may take on negative values 
in qua.nlum-mechanka.I contexts is the Wigner distribution 
function, E. P. Wigner, Phys. Rev. 40, 749 (1932). 

quantum slates are given by 

f P(a)(•la)(alm)d'a. (7.11) 

When Eqs. (3 .. l) and (3.6) are used lo evaluate the 
scalar products in the integrand we find 

This fonn for the densitv matrix indicates a 
mental property of the fiei<;ls which are most naturally 
described by means of the P representation. Jf P(a) is 
a weight function with singUlarities no stronger than 
those of delta fum:Hon type, it will, in general, possess 
nonvanishing complex moments of arbitrarily high 
order, (The unique exception is the choice P(a)"" Q<U(D:) 
which corresponds to the ground state of the mode.] It 
follows then that the diagonal malrix clements (nlp[n), 
which represent the probabilities for the pnsence of n 
photons in the mode, take on nonvanishing values for 
arbitrarily large n. There is thus no upper bound to the 
number of photons present when the function Pis well 
behaved in the sense we have noted.n 

Stationary density operators correspond in the P 
representation to funclions P(a) which depend only 
on laf. This correspondence is made clear by Eq. (7.2) 
which shows that such P(a) lead to functions R(fl',"'f) 
which are unaltered by a common phru;e change of fJ 
and"")'. It is seen equally well through Eq. (7.12) which 
shows that (nlplm} reduces to diagonal form when the 
weight function P(a) is circularly symmetric. 

Some indication of the importance, in practical 
terms, of the P representation for the density operator 
can be found by considering the way in which photon 
fields produced by different sources become superposed. 
Since we are only discussing the behavior of one mode 
of the field for the present, we are only dt>aling with a 
fragment of lhe full problem, hut all the modes may 
eventually be treated similarly. We shall illustrate the 
superposition Jaw by assuming Lhere_are lwo different 
transient radiation sources coupled to the field mode 
and that they may he switched on and off separately. 
The first source v.;11 be assumed, when it is turned on 
alone at time tit to excite the mode from its ground 
state IO} to the coherent state la1). If we assume that 

-the source has ceased radiating by a time t2, the state of 
the field remains la1) for all later times. We may 
alternatively consider the case in which the first source 
remains inaclive and the second one is switched on at 

11 Density operato.._ for fields In which the numlx-r of photons 
preaent poS81'$CS an upper bound N are represented by funclions 
RC,S•,y) which are polynomials of Nlh rle!!Tee in fJ• and in "I'· It is 
evident from the behavior of such polynomials for large lfJ! and 
[-YI that a.ny weight function P(a) which corresponds to R(p*,"t) 
throudl Eq. (7.2) would have to have singularities much stronger 
tha.n those of a delta function. Such fields are probably represented 
more convenienUy by mana of the R function. 

J 
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I 
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time tt. The second source will then be assumed to 
bring the mode from its ground state to the coherent 
state la.2}. We now ask what state the mode will be 
brought to if the two sources are allowed to act in 
succession, the first at t1 and the second at It. 

The answer for this simple case may be seen without 
performing any detailed calculations by making use of 
the unitary displacement operators described in Sec. 
III. The action of the first source is represented by the 
unitary operator D(a. 1) which displaces the oscillator 
state from the ground state to the coherent state 
la1)=D(a1)IO}. The action of the second source is 
evidently represented by the displacement operator 
D(aa), so that when it is turned on after the first source, 
it brings the oscillator to the superposed state 

I (7.13) 

Since the displacement operalors are of the exponen-
tial form (3.17), their multiplication law is given by 
Eq. (3.20). We thus find 

D(a.1)D(a1)=D(a1+a1) exp[l(a.ia1"-a1•a.,)]. (7.14) 

The exponenti&l which has been separated from the D 
operators in this relation has a purely imaginary 
argument and, hence, corresponds to a phase factor. The 
superposed state, (7.13), in other words, is just the 
coherent state la1+a.1) multiplied by a phase factor, 
The phase factor has no inftuence upon the density 
operator for the superposed state, which ls 

p= la1+a.1)(a.1+a1!. (7.15) 

To vary the way in which the sources are turned on in 
the imaginary experiment we have described, e.g., to 
turn the two sources on at other times or in the reverse 
order, would only alter the final state through a phase 
factor and would thus lead to the same final density 
operator. The amplitudes of successive coherent 
excitations of the mode add as complex numbers in 
quantum theory, just as they do in classical theory. 

Let us suppose next that the sources in the same 
experiment are somewhat less ideal and that, instead of 
exciting the mode to pure coherent states, they e."\:cite 
it to conditions described by mixtures of coherent states 
of the form· (7.6). The first sourre acting alone, we 
assume, brings the field to a condition described by the 
density operator 

p1= J P1(a1)[a1)(add'a1. (7.16) 

The condition produced by the second source, when it 
acts alone, is assumed to be represented by 

p= f P1(a1)la1}(a2ld2a2, 

= f P1(a1)D(a1)IO)(OIV-1(a1)d'a2 • 

If the second source is turned on after the fint, it brings 
the field to a condition descn"bed by the density oper&tor 

The latter density operator may be written in the 
general form 

J P(a)ia)(ald'a, 

if we define the weight function P(a) for the 1upcrposed 
excitations to be 

We see immediately from Eq. {7,18) that Pis Corrtctly 
normalized if P 1 and P 1 are. The simple convolution 
law for combining the weight functions is one of the 
unique features of the description of fields by means of 
the P representation. It is quite analogous to the law 
we would use in classical theory to describe the proba-
bility distribution of the sum of two uncertain Fourier 
amplitudes for a mode. 

The convolution theorem can often be used to 
separate fields into component fields with Bimpler 
properties. Suppose we have a field described by a 
weight function P(a) which has a mean value of a given 
by 

(7.20) 

It is dear from Eq. (7.19) that any such lield may be 
regarded as the sum of a pure coherent field which 
corresponds to the weight func1ion a{tl(a-cl) and pt 
additional field represented by P(a+a:) for which ihe 
mean value of a vanishes. Fields wilh vanishing mean 
values of a will be referred to as unphased fields. 

The use of the P representation of the density 
operator, where it is not too singular, leads to BimpJifica· 
tions in the calculation of statistical averages which go 
somewhat be\•ond those discussed in the last BCC'tion. 
Thus, for the statistical average of any 
normally ordered product of the creation and annihila-
tion operators, such as (at)•a"', reduces to a simple 
average of (a")"a."' taken with respect to the weight 
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function P(a), i.e., we have 

(7.21) 

This identity means, in practice, that man) quantum· 
mechanical calculations can be carried out by means 
which are analogous tn tl1ose already familiar from 
classical theory. 

The mean number of photons which arc present in a 
mode is the most elementary measure of the intensity 
of its excitation. The operator which represents the 
number of photons present is seen from Eq. (2.18) to 
be ata. The average photon numl1er, ll'rille11 as (n}, is 
therefore given by 

According to Eq. (7 .21), with its tll'O exponents set 
equal to unity, we have 

(7.2.l) 

i.e., the average photon number is just the mean squared 
absolute value of the amplitude a. \Vhen two fields 
described by distributions P1 and P1 are superposed, 
the resulting intensities are found from rules of the form 
which have always been used in classiral rlectromag-
netic theorv. For unphascd fields the i11lensities add 
"incoherenlly"; for coherent state!! the amplituilcs add 
''coherentlv." 

The of the P representation of the density 
operator in describing fields brings many n{ the results 
of quantum electrodynamics into to those 
of classical theory. While these smu!anttes make 
applications of the correspondence 
clear, they must not be interpreted as md1cat.mg that 
classical theory is any sort of adequate subshtute for 
the quantum theory. The weight functions P(a) which 
occur in quantum theore1ica.l applications arc not 
accurately interpretable as probability. distributions, 
nor are they derivable as a rule from classical treatments 
of the radiation sources. They depend upon Planck's 
constant, in genera.I, in ways that arc unfathomable by 
classical or semidassical analysis. 

Since a number of calculations having to do with 
photon statistics have been carried out in the past by 
essentially classical methods, it may be helpful to 
discuss the relation betwfen the P representation and 
the classical theory a bit/further. It is worth noting i!1 
particular that the definition we the 
tutle a as an eigenvalue of the anmhilat1on operator IS 
an intrinsically quantum-mechanical one. If we wish to 
represent a given classical field amplitude for the mod,e 

as an eigenvalue, then we see from Eq .. (2.20) th.e 
appropriate value of a has a magnitude which Lii 
proportional to 1i.-11t. In the dimensionless terms in 
which a is defined, the classical description of the mode 
onh· applies to the region lal>>l of the complex a 

i.e., to amplitudes of oscillation arc 
compared with the range of the zero-point 
present in the wave packet (3.29) and (J.30). Classical 
theorv can therefore, in principle, only furnish us with 
the ijrosscst sort of information about the weight 
function P(a). When the weight function extends 
appreciably into the classical regions of the plane, 
classical theory can only be relied upon, crudely speak-
ing, to tell us average values of the function over 
areas whose dimensions, ! ll.Qj, arc uf order unity or 
larger. From Eq. (7.10) we see that such avernge values 
will always be positive; in the classical limit they may 
all•;ays be interpreted as probabilities, 

VIII. THE GAUSSIAN DENSITY OPERATOR 

The Gaussian 'function is a venerable statistical 
distribution, familiar from countless occurrences in 
classical statistics. We shall indica.!e in this section that 
it has its place in quantum ficlcl theory as well, where 
it furnishes the natural description of the most com-
monly occurring type of incoherence.1 

Le1 us assume that the field mode we are studying is 
coupled to a number of sources which are essentially 
similar but are statistically independent of one another 
in their behavior. Such sources might, in practice, 
simply be several hypothetical subdivisions of one large 
source. If we may represent the contribution of each 
source (numbered j= 1, · · · .'r) to the excitation of the 
mode by means of a weight function p(a,), we may then 
construct the weight function P(a) which describes the 
superposed fields by means of the generalized form of 
the convolution theorem 

f !•'(•-E •1) IT (8.1) 
1-1 1-1 

Since the weight functions. which appear in this 
expression are all real valued, it is sometimes convenient 
to think of the amplitudes a in their arguments not as 
complex numbers, but as I real '\'Cc.tors• 
(i.e., cr==Rea, •,=Ima). Then tf A ts an arbitrary 
complex number represented by the vector l., we 
use a two-dimensional scalar product for the abbrevia-
tion 

Re>.Rea+Im>.Ima=•·l.. (8.2) 

Using ttiis notation, we mar define lhe two-dimensional 
Fourier transform of the weight function p{cr) as 

f e>p(;o.·o)p(a)<f'o. (8.3) 
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The superposition law (8.1) then shows that the Fourier 
transform of the weight function P(a) is given by 

'.E:(l.)= J exp(i.l.·u)P(•)d'Ja, 

(8.4) 

If the individual sources are stationary ones their 
weight funcr.ion P{•) depends only on laf. The trans-
form H1) may then be approximated for smatl values 
of 1>1 by 

1-1>'/ l•l'p(.)<f'o, 

1-!»<l•l'J. (8.5) 

For values of 111 which arc smaller still (i.e., jl.j: 
<N-ln-(lcr/1)-1), the transform ::; for the superposed 
field may be approximated br 

(8.6) 

Since the weight function p(a) may take on negative 
values it is necessary at this point to verify that the 
second moment (jujt) is positive. That it is indeed 
positive is indicated by Eqs. (7.22) and (7,23) which 
show that (lcrl 1) is the mean number of photons which 
would be radiated by each source in the absence of the 
others. For large values of N the transform Z(l.) there-
fore decreases rapidly as !l.] increases. Since the 
function becomes vanishingly small for j).l lying outside 
the range of approximation noted earlier, we may use 
(8.6) more generally as an asymptotic approximation 
to;:: (l.) for large N, When we calculate the transform of 
this asymptotic expression for Z(l.) we find 

oxp(-;.·l)!l(l)d'A, 

I 
oxp(-o'/N(l•I')). (8.7) 

•N(l•l'l 

The mean value of lu!i for such a weight function is 
evidently N([•I'), but by the general theorem expressed 
in EfJ. (7.23), this mean value is just the average of the 
total number of quanta present in the mnde. lf we write 
the latter average as (11}, and resume the use of the 
complex notation for the variable a, the weight func1ion 
(8.7) may be written as 

I 
,..(n) 

(8.8) 

The weight function P(a) is positive everywhere nnd 
takes the same form as the probability distribution for 
the total displacement which from a ran!lom 
walk in the complex plane. However, because the 
coherent states la) are not an orthogonal set, P(a:) can 

only be accurately interpreted as a probability distribu· 
tion for (n)>>I. We may note that it is not ultimately 
necessary, in order to derive Eq. (8.8), lo usume that 
the weight function! corresponding to the individual 
sources arc all the same. All that is requittd to carry 
out the proof is that the moments of the individual 
functions be of comparable magnitudes, The mtau. 
squared value of !al is then given more generally by 
I:;;(la1\ 1>. rather than the value in Eq. (8.7), but this 
value is still the mean number of quanta in the mode, u 
indicated b Eq. (8.8). 

It should be clear from the conditions of the deriva· 
tion that the Gaussian distribu1ion P(a) for the excit ... 
tion of a mode possesses extremely wide applkability. 
The random or chaotic sort of excitation it describes is 
presumably characteristic of most of the familiar types 
of nonroherent macroscopic light !IOurces, such u pa 
disd1argcs, incandesant radiators, etc. 

The Gaussian density operator 

ma.y be seen to take on a very simple form ILll well in the 
basis specifies tl1e photon numbers. To find this 
form we substitute in Eq. (8,9) the expansiofl!I (3.7) 
and (.lA) for the cW1erent stales and note 1he identity 

which holds for C>O. If we write C= (l+(n))/(•) we 
then find 

I l (•) l" -- lm)(mj. 
H(n) • 1+(•) 

(8.10) 

In other words, the number of quanta in the mode hi 
distributed according to the powers of the parameter 
(n)/(l+{n)). The Planck distribution for blackbody 
radiation furnishes an illustration of a density operator 
which has long been known to take the form of Eq. 
(8.10). The lhermal excitation which leads to the black· 
body distribution is an ideal example of the random type 
we have described earlier, and so it should not ht- sur-
prising I hat this distribution is one of the class we have 
derived. It is worth noting, in particular, that while the 
Planck distribution is characterislic of thermal ecuiili· 
brium, no such limitati911 is implicit in the general furm. 
of the density operator (8.9). It will apply whenever 
the excitation has an appropriately random quality, no 
matter how fat the radiator is from thermal equilibrium. 

The Gaussian distribution function exp[ -[ajt/{n)] 
is phrased in terms which are explicitly quantum 
mer.haniral. Jn the limit which would represent a 
classkal field both lali and the average quantum 
number {11) become i"nfinite as 1i-1, but their quotient, 
which is the argument of the Gaussian function, remainl 
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well defined. The form which the distribution takes in 
the classical limit is a familiar one. Historically, one of 
the origins of the random walk problem is to be found 
in the discussion o{ a classical harmonic oscillator which 
is subject to random excitati011s.18 Such osr:illators have 
complex amplitudes which are described under quite 
general conditions by a Gaussian distribution. If we 
were armed with this knowledge, and lacked the 
quantum-mechanical analysis given earlier, we might 
be tempted to assume that a Gaussian distribution 
derived in this way from classical theof}' can describe 
the photon distribution. To demonstrate the fallacy of 
this view we must examine more closely the nature of 
the parameter (n) which is, after all, the only physira\ 
constant involved in the distribution. We may take, as 
a simple illustration, the case of thermal excitation 
corresponding to temperature T. Then the mean photon 
number is given by (n)= [exp(hw/...:T)-1]-1

, where t: is 
Boltzmann's constant, and the distribution P(a) takes 
the form 

I 
P(a)=-[eA•l•T- t] exp[ -(e1"'1d' -1) laJ 2]. (8.11) 

• 
To reach the classical analog of this distribution we 

would assume that the classical field energy in the mode, 
is distributed with a probability 

proportional to exp[ -H/rcT]. The distribution for the 
amplitude o: that results is 

(8.12) 

which is seen to be a first approximation in powers of fl 
to the correct distribution. (Again, we must remember 
that the quantity h!a]2 is to be construed as a classical 
parameter.) The distribution P.i(a) only extends into 
lhe classical region of the plane, lod>>I, for low-
frequency modes, that is, only for (lk.i/KT)<<1 are the 
modes sufficiently excited to be accurately desc:ribed by 
classical theory. For higher frequencies the two distri-
butions differ greatly in nature even though both are 
Gaussian. The classical distribution retains much too 
large a radius in the cc plane as fli.J increases beyond 11T, 
rather than narrowing extremely rapidly as the correct 
distribution does.17 That error, in fact, epitomizes the 
ul traviolct catastrophe of the classical radiation theory. 
The example we have discussed is, of course, an ele-
mentary one, but it should serve to illustrate some of 
the points noted in the preceding section regarding the 
limitations of the classical distribution function. 

The expression for the thermal density operator of an 
oscillator in terms of coherent quantum states appears 

to offer new and instructive approaches to many 
familiar problems. It permils us, for example, to derive 
the thermal averages of exponential functions of the 
operators a and at in an elementary way. The thermal 
average of the operator D(/3) defined by Eq. (3.17) is 
an illustration, It is given by 

tr{pD(jJ)} =-
1-f !f""l•l'l(")(a\D(JJ)[a}rfla. (8.13) 

11"{11) 

The expectation value in the integrand is, in this case 

(•[ D(/3) (O[V-'(a)D(/j)D(•) [O), 
[O), 

(8.14) 
where the properties of D(a) as a displacement operator 
have been used in the intennediate steps. When the 
integration indicated in Eq. (8.13) is carried out, we find 

-IW<(n)+!)], (8.15) 

which is a frequently used corollary of Bloch's theorem 
on the distribution function of an oscillator coordinate.I! 

IX.. DENSITY OPERATORS FOR THE FIELD 

The developments introduced in ·Secs. Ill-VIII have 
all concerned the description of tl1e quantum state of a 
single mode of the electromagnetic field. We may 
desc:ribe the field as a whole by constructing analogous 
methods to deal with all its modes at once. For this 
purpose we introduce a basic set of coherent states for 
the entire field and write them as 

I I••)., (9.1) 
• 

wher6 the nolation which will be used in several 
other connections, stands for the set of all amplitudes 
at. It is clear then, from the arguments of Sec. IV, that 
any state of the field determines uniquely a function 
/((at")) which is an entire function of each of the 
variables ai •. If the Hilbert space vector which repre-
sents the state is known and designated as I!}, the 
function f is given by 

(9.2) 

which is the direct generalization of Eq. (4.11). The 
expansion for the state If) in terms of coherent states 
is then 

If>= (9.3) 
"Lord Ravlcigh, TM TMory of Sointd, (MacMillan and 

Company Ltd., London, 1894), 2nd ed., Vol. I, P· 35; Scimf.tific 
Pa(lllTI (Cambridge University Press, Cambridge, England, 
1899-1920), Vol. I, p. ¥>1, Vol. IV, p. 370. which generalizes Eq. (4.7). 

11 For frequencies in the middle of the a;nd All of the operators which occur in field theory possess 
temp!.'fatuTel!i under 3000°K the quantum mechamca distnbution • • [ . 
(8.11) will have ara dius which corresponds to l11l'«lo-', i.e.,, expansions m terms of the vectors and their 
the distribution b far from clasaical in nature. Comp&r11.ble radii ---
chuacteriu the dllitributions lor oonthermal incobermt aources. 11 F. Bloch, z. Ph)1911r. 7.t, 295 (1932). 
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adjoints. To construct such representations is simply a 
mat1er of generalizing the formulas of Sec. V to deal 
wilh an infinite set of amplitude variables. We therefore 
proceed directly to a discussion of the densit}· operator. 
For any density operator p we may define a function 
R((ak"},(fJ•I) which is an entire function of each of the 
variables ak" and fl• for all modes k. This function, as 
may be seen from Eq. (6.1), is given by 

R((o,'),(#.) [p[ 
Xoxp[j l: (9.4) 

The corresponding representation of the density 
operator is 

xe-t!l<>"ll'+l,!.tl1ld'lcut'Pf3t. (9.5) 

If the set of integers {nk} is used to specify the familiar 
stationary states which have n.t photons in the kth 
mode, we may regard Ras a generating function for the 
matrix elements of p connecting these states, i.e., as a 
generalization of Eq. (6.2) we have 

l: ((n,) [p[ (m.)) 
i••J·l"'ll 

xrr (n.!mt !)-112(0 ..... (9.6) • 
The matrix elements of p in the stationary basis are 
then given by 

= f R({ak"),{flk}) T} 11"-1 (ni !m« !)-1"ak"•(f3.t")"'-" 

(9.7) 

The normali1.ation condition on R is clearly 

The positive definiteness condition, Eq. (6,9), may also 
be generalized in an evident Wa\" to deal with the full 
set of amplitude variables. -

It may help as a Rimple illustration of the foregoing 
formulae to consider the representation of a single-photon 
wave packet. The state which is empty of all photons is 
the one for which the amplitudes ak all vanish. If we 
write tl1at state as lvac), then we may write the most 
general one-photon state as Lk q(k)att Ivar), where the 
function q(k) plays the role of a packet amplitude. The 
function f which represents this state i11 then 

(CJ.9) 

and the corresponding function R which determines the 
densily operator i!> 

The normali7.aliou condition (9.8) corresponde Lo the 
requirement L lq(k)l:=l. Since Lhe state we have 
considered is a pure one, the function R factorizes into 
the product of two functions, one having the form of/ 
and the other of its complex conjugate. If 1hc packet 
ampliludes q(k) were in some degree unpredictable, u 
they usually are, the packet could no longer be repre-
sented b)· n. pure state. ThefunctionR would then bean. 
average taken over the distribution of the amplitudes 
q(k) and hence would lose its factorizable form in 
general. \Vhenever an upper bound exists for the 
number of photons present, i.e., the number of photons 
is required to be less than or equal to some integer A', 
we will find that R is a polynomial of at most Nth 
degree in the variables {ak•} and of the same degree in 
the (.Bd. 

There will, of course, exist manv types of excitation 
for whkh the plmton numbers unbounded. Among 
these are the ones which are more convenienth- de--
scribed by means of a generalized P distribution', i.e., 
the excitations for which there exists a reuonablr well-
behaved real-valued function P(fa-1)) such that 

f P((••)) 

Xexp[ (9.11) 

\Vhen R possesses a repn:sentation of this type the 
density operator (9.5) may be n:duced by means of 
Eq. (4.14) and its complex to the simple form 

J P((a,))[(a.))((a.J[ J}d'a., (9.12) 

which is the man.1·-morle form of tlie P rtpre$tntation 
given by Ef]. (i.6). The function P must salisfy 1he 
positive definiteness condition 

for all possihle chokes of entire functions /({at")). The 
matrix elements of the density operator in the repre-
sentation based on then-photon stales are 

xII n-•nn1"•(ni·)••,-1s111n-a1• (9.t4) 
• 
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Stationary density operators, i.e., ones which commute 
with the Hamiltonian correspond to functions P({ao)) 
which depend on the amplitude variables only through 
their magnitudes { latl }. 

The superposition of two fields is described by form-
ing the convolution integral of their distribution func-
tions, much as in the case of a single mode. Thus, if two 
fields, described by P 1({f3t}) and P2((1',.,)), respectively, 
are superposed, the resulting field has a distribution 
function 

P({tra))= f "IJ.&(2l(at-/Jk-'YJJ 

XP,(lp,))P,((»)) IT<l'p,d'-y,. (9.15) 

For fields which are represented by means of the 
density operator (9.12) all of the averages of normally 
ordered operator-products can be cakulated by means 
of formulas which, as in the case of a single mode, 
greatly resemble those of classical theory. Thus, the 
parameters play much the same role in these 
calculations as the random Fourier amplitudes of the 
field do in the familiar classical theory of microwave 
noise.19 Furthermore, the weight function P{(ai}) plays 
a role similar to that of the probability distribution for 
the Fourier amplitudes, Although this resemblance is 
extremely convenient in calculations, and offers 
immediate insight into the application of the corre-
spondence principle, we must not lose sight of the fact 
that the function P({ak}) is, in general, an explicitly 
quantum-mechanical structure. It may assume negative 
values, and is not accurately interpretable as a proba-· 
bility distribution except in the classical limit of 
strongly excited or low frequency fields. 

In the foregoing discussions we have freely assumed 
that the density operator which describes the field is 
known and that it may, therefore, be expressed either in 
the representalion of Eq. (9.5) or in the P 
tion of Eq. (9.12). For certain types of incoherent 
sources which we have discussed in Sec. VIII and will 
mentioll again in Se<:. X, the·explicit construction of 
these density operators is not at all difficult. But to find 
accurate density operators for other types of sources, 
including the recently developed coherent ones, will 
require a good deal of physical insight. The general 
problem of treating quantum mechanically the inter:_ 
action of a many-atom source both with the radiaticin 
field and with an excitation mechanism of some sort 
promises to be a complicated one. It will have to be 
approached, no doubt, through greatly simplified 
models. 

Since very liltle is known about the density operator 
f•1r rarliation fields, some insight may be gained by 
1:r.:unir1inl( 1hc form it takes on in one of th!" few com-

pletely soluble problems of quantum electrodyna.m.ics. 
We shall study the photon field radiated by an electric 
current distribution which is essentially classical in 
nature, one that does not suffer any noticeable reaction 
from the process of radiation. We may then represent 
the radiating current by a prescribed vector function of 
space and time j(r,t). The Hamiltonian which describes 
the coupling of the quantized electromagnetic field to 
the current distribution takes the form 

f H•,<l· A(r,l)d•. (9.16) 

The introduction of an explicitly time-dependent 
interaction of this type mearis that the state ve<:tor for 
the field, I ). wbich previously was fixed (corresponding 
to the Heisenberg picture) will begin to change with 
time in accordance with the SchrOdinger equation 

(9.17) 

which is the one appropriate to the interaction repre-
sentation. The solution of this equation is easily found.1111 

If we assume that the initial state of the field at time 
t= - oo is one empty of all photons, then the state of 
the field at time t may be written in the form 

It)= dt' /;(r,t')· A(r,t')dr+i.p(t)} Jvac). 

(9.18) 

The function .p(t) which occurs in the exponent is a 
real-valued phase function. It is easily 
evaluated, but cancels out of the product lt}(tl and so 
has no bearing on the construction of the density 
operator. The exponential operator which occurs in 
Eq. (9.18) may be expressed quite simply in terms of 
the displacement operators we discussed in Sec. 111. 
For this purpose we define a displacement operator D.t 
for the kth mode as 

(9.19) 

Then it is clear from the expansion (2.10) for the vector 
potential that we may wrile 

/j(r,t')· A(r,t')dr} = IJ Dk[cn(t)], (9.20) 

where the time-dependent amplitudeso.(1) are given by 

a•(I)=-'-· -f1 

(9.21) 
(2fiw)1/2 -

The density operator 11.t time t may 1bcrefore be written 

• R. J. Glauber, Phys. Rev. 84, 395 (1951). 

• 
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I IT D,[a,(1))1 va<)(vacl IT v,-•[.,(I)] (9.22) • • 

<••Olll(I••@ I· (9.23) 

The radiation by any prescribed current distribution, 
in other words, always leads to a pure coherent state. 

It is only a slight generalization of the model we have 
just considered. to imagine that the current distribution 
j(r,t) is not wholly predictable. In that case the ampli-
tudes a.t(l) defined by Eq. (9.21) become random 
variables which possess collectively a probability distri-
bution function which we may write as p({at},t). The 
density operator for the field radiated by such a random 
current then becomes 

p(l)= J p({at},f) I }({od [ IJ. rPa,,.. (9.24) 

We see that the density operator for a field radiated by 
a random current which suffers no recoil in the radiation 
process always takes the form of the P r<'presentation 
of Eq. (9.12). The weight function in this case does 
admit interpretation as a probability <listribulion;'but 
it has a classical structure associated directly with the 
properties of the radiating current rather than with 
particular (nonorthogonal) states of the field. The 
assumption we have made in defining the model, that 
the current suffers negligible reaction, is a strong one 
but is fairly well fulfilled in radiating systems operated 
at radio or microwave frequencies. The fields produced 
by such systems should be accurately described by 
density operators of the form (9.24). 

X. CORltELATION AND COHERENCE PROPERTIES 
OF THE FIELD 

Any eigenvalue function E(rt) whkh si1tllifics the 
appropriate field equations and contains only positive 
frequency terms determines a set of mode amplitudes 
{at} uniquc\y through the expansion (2.20). This set of 
mode amplitudes then determines a coherent stale of 
the field, I such that 

E<+• (n) I (••l) = £(n) I I••)). (IO.I) 

To discuss the general form which the field correlation 
funclions take in such states it is convenient to abbrevi-
ate a set of coordinates (r1,t1) by a single symbol x;. The 
nth-order correlation function is then defined as1 

XE..,. (%,.)E..,o+, !·H (x,.H) • · · (+J (.rh)} . (10.2) 

The density operator for the coherent state defined by 
Eq. (10.1) is the projection operator 

(IO.J) 

For this operatoi it follows from Eq. (10.1) and ill 
Hermitian adjoint that the correlation functiom reduce 
to the factori1.ed form . .. 

G..,1 ... ,.,.("'(x1·· ·:s,,)-Il Il l,.1(s,). (IOA) 
1-l 1--+1 

In other words, the field which corresponds to the It.ate 
I {ot)} satisfies the conditiorui for full coherence accord-
ing to the definition• given earlier. 

It is worth noting that the state I {at}) is not the 
only one which leads to the set of correlation functiom 
(10.4). Indeed, let us consider a state which corrc:spondl 
not to the amplitudes {at) 1 but to a set which 
differs by a common phase factor (i.e., f' is real and 
independent of k). Then the corresponding eigenvalue 
function becomes ei"E(rt), but such a change leaves tht 
correlation functions (10.4) unaltered. It is clear from 
this invariance property of the correlation functiom 
that certain mixtures of the coherent 9tates also lead to 
the same set of functions. Thus, if I {a:l)} is the it.ate 
defined by Eq. (10.1), and .C(.p) i.I any ral-valued 
function of <P normalized in the sense 

J. 
.. 

0 .C(.p)drp= 1, (10.5) 

we see that the density operator 

(10.6) 

leads for all choices of .C(<P) to the set of correlation 
functions (10.4). Such a density operator is, of coww, 
a special case of lhe general form (9.12), one which 
corresponds to an o\rer-all uncertainty in lhe phase of 
the {at}. The particular choice .C(<t) 20 (2r)-1, which 
correi;ponds lo complete ignorance of the phue, 
sents the usual state of our knowledge about high-
frequency fields. We have been careful, therefore, lo 
define coherence in terms of a set of correlatfon fuftc1iont 
which are independent of the over-all phase. 

Since nonslationary fields of many sorts can be 
represented by means of eigenvalue functions, ii 
becomes a sipiple matter to construct corresponding 
quantum states. As an illustration we may consider the 
example of an amplitude-modulated plane wave. 
this purpose we make use of the particular set of mode 
funclions defined by Eq. (2.9). Then if the carrier wave 
has frequency w and the modulation is periodic and hu 
frequency tw where 0<t<1, we may write an appro-
priate eigenvalue function as 

B(rt)=i(""' 
2L' 

X ( l+M coa[t(k·r-wt)-&]J•"•·,_11. (10.7) 
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\Vhcn this expression is cxpa11ded in plane-wave modes 
it has only three amplitude coefficients. 

are ll't itself and the two sideband amplitudes 

a:to-n= 1l!(l-l)-112e' 1at, 

O:t(Hf) = !,3/ ( l 
(10.8) 

The coherent stale which corresponds to the modulatcr\ 
wave may be constructed immediately from the know-
ledge of these amplitudes. In practice, of course, we will 
not often know the phase of ak, and so the wave should 
he represented not by a single coherent state, but by a 
mi)>ture of the form (10.6), Representations of otl1er 
forms of modulated waves may be construrted similarly. 

Incoherent fields, or the broad class of fields for 
which the correlation functions do not factorize, musl 
he described by means of density operators which are 
more general in their struclure than those of Eqs. (10.3) 
or (10.6). To illustrate the form taken by the correlation 
!unctions for such cases we may suppose t11e field to be 
drscrihed by the P reprrsenla1 ion of the density 
operator. Then the first-order correlation function is 
gh·en by 

G •• u1 (rl,r't')= f P({cu}) 'E !li(ww')11tftt1.°(r)uk·•(r') 
i,k' 

Xak0Cfk•t((<H-w'l'J n tPn1. (t0.9) 

' 
fields for which the P representation is inconveniently 
singular may, as we have noted earlier, always he 
described hr means of analytic functions R({a:*"),(,Bk}) 
and corresponding density operators of the form (9.5). 
\Vhcn that form of densitr operator is used to evaluate 
the first-order correlation function we find 

xn (10.10) 

' 
where the differentials dµ(o:r) and dµ(fJ,) are those 
defined by Eri. (5.14). The higher order correlation 
function<; are given by integrals analogous lo (10.9) and 
(10.10). Their intrgrands contain polynomials of the 
2nth degree in the amplitude variables txk and in 
place of the quadratic forms which nccur in the first-
order functions. 

The energy of a radiation field is easily 
daived from a knowle<lge of its first·order correlation 
function. If we return for n moment to Lhe expansion 
(2.19) fur the positive-frequency field operator, andr 
write the negative-frequency field as its Hermitian 

adjoint, we see that these operators obey the identity 

2 f £1->(r!)· E<+l(rt')dr 

= E hwaktal exp[iw(t-1')]. (10.11) • 
If we take the statistical average of both sides of this 
equation we may write the resulting relation as 

f Gl'l'< 1>(rl,rl')dr= ! 'E ttw(nk) exp[r'.w(l-1')], (10.12) 
' . 

where (no) is the average nuffiber of photons in the klh 
mode. The Fourier representation of lhevolume integral 
of therefore identifies the energy spectrum 
!w(11k) quite generally. 

For fields which may be represented by stationary 
density operators, it becomes still simpler to extract the 
energy spectrum from the correlation function. For such 
fields the weight function P(la:k)) depends only on the 
absolute values of theak, so that we have 

f P((a.})a••"a••• i;r d'a1= ([ak' 12)8•·•·· 
= (n,.)1h•k". (10J3) 

By using Eq. (10.9) to evaluate the correlation function, 
and specializing to the case of plane-wa'\o·e modes, we 
then find 

L fL-3 'E (10.14) 
•.> 

in which we have explicitly indicated the role of the 
polarization index h. If the volume which contains the 
field is sufficiently large in comparison to the wave-
lengths of the excited modes, the sum over the modes 
in Eq. (10.14) may he expressed as an integral over k 
space a=.-fL3(2,..)--Jdk]. By defining an energy 
spectrum for the quanta present (i.e., an energy per 
unit interval of w) as 

w(w)= (2-ir)--.lfik3 f (10.15) 

where dn1< is an element of solid angle in k space, we 
may then rewrite Eq. (10.14) in the form 

L ("" w(w)e'"'ti-i'ldw. (10.16) 
' J. 

With the understanding that w(w)=O for c.i <0, we may 
extend the integral over w from - QO to QO, It is then 
clear that the relation (10.16) may be inverted to ex-
press the energy spectrum as the Fourier transform of 
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the time-dependent correlation function, 

l J" 'E . - ' 
(10.17) 

A pair of relations analogous to Eqs. (10.16) and 
(10.17), and together called the Wiener-Khintchine 
theorem, has long been of use in the classical theory of 
random fields.21 The relations we have derived are, in a 
sense, the natural quantum mechanical generalization 
of the Wiener- Khintchine theorem. All we have assumed 
is that the field is describable by a stationary form of 
the P representation of the density operator. The proof 
need not, in fact, rest upon the use of the P representa-
tion since we can construct a corresponding statement 
in terms of the more general representation (9.5). 

Stationary fields, according to Eq. (6.10), are 
represented by entire functions R=.S({a.",B.}), i.e., 
functions which depend only on the set of products 
«•"P•· For such fields, then, the integral over the a and fl 
planes which is required in Eq. (10.10) takes the form 

(fJ •• •al")= f S((at0 ,6t))fl•·"at•• f! 
(to.IS) 

Since the range of integration of each of the a: and P 
variables covers the entire complex plane, this integral 
cannot be altered if we change the signs of any of the 
variables. If, however, we replace the particular 
variables a:•" and p ... by -a•" and -p,., the integral 
is seen to reverse in sign, unless we have 

(10.19) 

The average (/J,"a•}, we may note from Eqs. (S.11) and 
(6.5), is just the mean number of quanta in the kth 
mode, 

(ftta.,)= tr{pa' ta•) = (111<). (10.20) 

We have thus shown that the general expression (10.10) 
for the first-order correlation function always satisfies 
Eq. (10.14) when the field is described by a stationary 
density operator. The derivation of the equations 
relating the energy spectrum to the time-dependent 
correlation function then proceeds as before. 

The simplest and most universal example of an 
incoherent field is the type generated by superposing 
the outputs of stationary sources. We have shown in 
some detail in Sec. VIII that as the number of sources 
which contribute to the excitation of a single mode 
increases, the density operator for the mode takes on a 
Gaussia11 form in the P representation. It is not difficult 
to derive an analogous result for the case of sources 

of 
funttion lot the cla$9kal licld rather than a tomplcx one for 
the Jkl.ds El±-1. The WfllplCll torrclalion functions ue considerably 
more convenient to ult for quantum mechanical purpooes, :lS 1s 
shown in Ref. 3. 

which excite many modes at once. We shall suppose 
lhat Lhe sources (j = 1 · · · /\-) are essentially identical, 
and that their contributions to the excitation are 
described by a weight function p(la1l)). The weight 
function P((a:t)) for the superposed fields i! then givua 
by the convolution theorem as 

P({al})= f II 6(2l(a•- f: a1•) fi. ,((a1•D II d'as-. 
• ;-1 f-1 • 

(10.21) 

Since the individual sources are assumed to be 1ta-
tionary, the function p({a.1•)) will only depend on the 
variables«;• through their absolute magnitudes, ja,. r. 

The derivation which leads from Eq. (10.21) to a 
Gaussian asymptotic form for P(ta.}) i! so cl<>1ely 
parallel to that of Eqs. (8.1)-(8.8) that there is no need 
to write it out in detail. The argument makes uae of 
second-order moments of the function p which may, 
with the same type of vector notation used previoualy, 
be written as 

(a.«•·)= f 11'-•'P((«t}) i;i tPa:1. (10.22) 

The stationary character of the function p implies that 
such moments vanish for With this observation, 
we may retrace our earlier steps to show that the many-
dimensional Fourier transform of P takes the form of a 
product of Gaussians, one for each mode and each 
similar in forin to that of Eq. (8.6). Jt then follows 
immediately that the weight function P for the field as 
a whole is given by a product of Gaussian factors each 
of the form of Eq. {8.8). We thus have 

l 
P((at})-Il ------r1._111tru1, 

• r(llt) 
(l ll) 

where (n.) is the average number of photons present in 
the kth mode when the :fields are fully superposed. One 
of the striking features of this weight function is it1 
factorized form. It is interesting to remember, therefore, 
that no assumption of factorizability has been made 
regarding the weight functions p which describe the 
individual sources. These sources may, indeed, be ones 
for which the various mode amplitudes are strongly 
coupled in magnitude. It is the stationary property of 
the sources which leads, because of the vanishing of the 
moments (10.22) for to the factoriO?:ed form for 
the weight function (10.23). 

The density operator which corresponds to the 
Gaussian weight function (10.2,3) evidently describes 
an ideally random sort of excitalion of tl1e field modC!I. 
We mav reasonably surmise that it applks, at least as a 
good aPproximation, to all of the familiar sorts ?f 
incoherenl sources in laboratorv use. It is clear, in 
p.i.rticular, from the arguments -of Sec. VII that the 

wdght func1ion describes thermal sources 
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cnrrer.tlv. The substitution of the l'lanrk tlistributioH 
Eq. (10.23) leads to the 

density operator for the entire thermal radiation field. 
To the extent that the Gaussian weight function (10.23) 
may describe radiation by a great variety of incoherent 

there will be certain dct'p-scatcd similarities in 
the photon fidds generated by a\[ of them. One may, 
for example, think of these sources all as resembling 
1hcrmal ones and differing from them only in the 
·,pcctral distributions of their outputs. As a way of 
illustrating these similarities we might imagine passing 
blackbody radiation through a filter which is designed 
t0 give the spectral distribution of the emerging light a 
pitrticu!ar line profile. We may choose this artificial line 
profile to be the same RS that o( some true emission line 
radiated, say, by a discharge tube. We then ask whether 
ml'asurements carried out upon the photon field can 
distinguish the true emission-line source from the 
artificial one. If the radiation by the discharge tube is 
described, as we presume, by a Gaussian weight func-
tion, it is dear that the two sources will be indistin-
i.;11ishable from the standpoint of any photon counting 
experiments. They are equivalent sorts of narrow-band, 
•1uantum-mechanical noise generators. 

Tt i!' a simple matler to find the correlation functions 
f,,r thr incoherent described by the Gaussian 
weight function (10.23). If we substitute this weight 
function into the expansion (10.9) for the first-order 
correlation function we fincl 

r;.,m(rl,r't')=! E tzwuh"(r)ub(r')(n.)e"'u-1·i. (t0.24) • 
\\'ht'"n the mode functions Ut(r) are the plane waves of 
E•J. (2.9), and the volume of the system is sufficiently 
brge, we may write the correlation function as the 
iu!cgral 

f E e/Al"e.cAl(n,,A)k 
2(2"11")1 

X•xp(-i[k· (<-")-w(t-nJ)dl<, (I0.25) 

iii which the index>. again labels polarizations. To find 
I he !ienmrl-order correlation funclion defined by 
E'J. (10.2) we may write it likewi'iie as an expansion in 
lcrms rJf mode functions. The only new moments of lhe 
w1·ig:l1t function which we need to know are those given 
by (Jal(t)=2(lal!2}i=2(nt}2• We then find that the 
'ccoml-order correlation funclion may be expressed in 
11·nns of the first-order function as 

It is eru;ily shown that all oi the higher order correlation 
-,mrtions as well reduce lo sums of products of the first. 
,ro\er function. The nth-order correlation function may 

he wriHt•n 

where the indicc• 111 and Lhe coordinates y; for j= I·· .,J 
are a permutati(lll of the two sets · · · µ 2n nnd 
X"t-1 · · · :r!"' an<l lhe sum is carried oul over all of the 
n ! permutations. One of the family whirh 
links all fields reprcscnte<l by the weight funeti011 
(10.23) is that their properties may be fully described 
Lhrough knowledge of the first-order correlation 
function. 

The fields whicl1 have trad,itionally been called 
coherent ones in optical terminology are easily de-
scribed in terms C1f the first-order correlation function 
given by Eq. (10.25). Since the light in such fields is 
accurately collimated and nearly monochromatic, the 
mean occupation number vanishes outside a small 
volume of k-space. The criterion for accurate coherence 
is ordinarily that the dimensions of this volume be 
extremely small in comparison to the magnitude of k. 
Tt is easily verified, if the field is fully polarized, and the 
two points (r,t) and (r',I') are not too distantly 
separated, that the correlation function (l0.25) falls 
approximately into the factorized form of Eq. (2.4). 
That is to say, fields of the type we have described 
approximately fulfill the condition for first-order 
coherence.1 It is easily seen, however, from the structure 
of the higher order correlation funclions that these 
fields can never have second or higher order coheren<'l . 
In fact, if we evaluate the function GI") given by 
Eq. (10.27) for the particular case in which a.\J of the 
coordinates are set equal, r 1 = · · ·=:rt.= r, and all of 
the indices as well, µ1= · • · =µi,.=µ, we find the result 

G11 •• t•l(r· · · r,x· · · .:r) = n {x,.:r)]•. (10.28) 

The presence of the coefficient n t in this expression is 
incompalible with the factorization condition (10.4) for 
the correlation functions of order n greater than one. 
The absence of second or higher order coherence is thus 
a general feature of stalionary fields described by the 
Gaussian weight function (10.23). There exists, in other 

a fundamental sense in which these fields remain 
incoherent no matter how monochromatic or accuralely 
collimatM. they arc. We need hardly add that other 
types of fie!; \such as those generated by radio trans-
mitters or masers may possess arbitrarily high orders 
of coherence. 

During the completion of the ]>resent paper a note by 
Sudarshan1t has appeared which deals with some of the 
problems of photon statistics that. have been treated 
here.tt Sudarshan has observed the existence of "'hat 

11 In an attompanyinR note, L. Mandel 1111d E. Wolf (Phys. 
Rev. I..etten 10, 216 {1963)] warmly defend the clasmcal approach 
to photon problems. of the possibilities and fundamental 
lirnitation1 of this approach should be evident from ou:r earlier 
work. We may mention that the "implication" they draw from 
Rd. I and disagree ll'ith cannot hr: validly infem:d from 1111y 
reading of that paper-. 
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we have called the P representation of the densily 
operator and has stated its connection with the repre-
sentation based on the n-quantum slates. To that 
extent, his work agrees with ours in Secs. VII and IX. 
He has, however, made a number of statements which 
appear to attach an altogether different interpretation 
to the P representation, In particular, he regards its 
existence as demonstrating the "complete equivalence" 
of the classical and quantum.mechanical approaC"hes to 
photon statistics. He states further that there is a 
"one-to-one correspondence" between the weight func-
tions P and the probability distributions for the field 
amplitudes of classical theory. 

The relation between the P representation and 
classical theory has already been discussed at some 
length in Secs. VII-IX. We have shown there that the 

weight function P(a) is, in general, an intrinsically 
quantum-mechanical structure and not derivable from 
classical arguments. In the limit fl- 0, which corre-
sponds to large amplitudes of excitation for the modes, 
the weight functions P(a) may approach claaical 
probability functions as asymptotic fon:m. Since 
infinitely many quantum states of the fi.eld may 
approach the same asymptotic form, it ii clear that 
the correspondence between the weight function• P(o:) 
and classical probability distributions ii not at all 
one-to-one. 
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Note on Numbering of Equations: 

In the lectures which follow, references to equations in the preceding reprint 
are indicated by a capital R followed by the equation number. 

Lecture XII RADIATION BY A PREDETERMINED 
CHARGE-CURRENT DISTRIBUTION 

Not many problems of quantum electroctynamics are in any sense exactly sol-
uble. But there does exist one simple, completely soluble problem which has 
considerable physical meaning. That is the problem of finding- the photon field 
radiated by an electric current distribution which is essentially ·Classical in nature. 
By "classical" in this case we mean that we may represent the current by a pre-
scribed vector function of space and time, j (rt). 

Such a model clearly can not represent the process of radiation by an indivi-
dual atom, since the atomic current is affected by radiation recoil in essentially 
unpredictable ways. The model may, however, be an excellent approximation for 
dealihg with radiation by aggregates of atoms which are large enough to show sta-
tistically predictable behavior for the total current vector. Note that in saying this 
we are not at all ignoring the reaction of the radiation process back upon the cur-
rent. All we require is that whatever the reaction ls, it be predictable at least in 
principle (as the radiation resistance of an antenna,is, for example). It seems 
likely that this model, when allowance is made for statistical uncertainties in the 
current distribution, will accurately account for the photon fields generated by 
most macroscopic sources. 

The interaction Hamiltonian which describes the coupling of the quantized 
electromagnetic field to the current distribution takes the form 

JC 1 (t) = fl (r, t) · A(r, t) dr. ( 12. l) 

The state vector of the field changes with time in the interaction representation, 
obeying the Schrlkiinger equation 

iii It>= JCdt>. ( 12, 2) 

Now let us, as an abbreviation, introduce the operator B( t) which is defined as 

B(t) = Ji (r, t) · A(r, t) dr. ( 12. 3) 

The operator B( t) is simply a linear combination of values of the vector potential, 
and hence obeys a commutation relation of the same general type as the vector 
potential. 1n general [ B(t), B(t')] will be different from zero, but It is always an 
ordinary number. 

Now the Schr&linger equation, Eq. (ta. 2), can be rewritten as 

d 
dt lt>=B(t)lt>. ( 12. 4) 

Because of the operatqr character of B( t) the solution of this equation is not 

exp { B( t') } I t, > ( 12.5) 

as it would be if B(t) were an ordinary number. However because of the simple 
commutation relation obeyed by the B's this expression will turn out not to be quite 
as. wrong as we might· perhaps expect. 

We know that the state It > at time t can be expressed by means of a unitary 
operator, U(t,t0 ),applied to the state Ito >as i.e., 
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It> = U(t,t,)lto> . ( 12.8) 

The equations which determine U(t, to) are evidently 

( 12. 7) :t U(t, t,) = B(t) U(t, t,) 

and the Initial condition U(t., t,) = 1 . 
In order to solve for the operator U let us begin by dividing the time interval 

(to_ t) into sub-intervals of length .6.t extending between the times ti= to+ j.6.t, 
where j is an integral. we may then reach the solution of Eq. ( 12. 7) through a 
simple limiting process. we assume that the operator B(t) is constant 
during each of the sub-intervals of time and allow its value to change at the times 
t J. A rather fanciful picture of this variation is shown in the "graph" of the 
operator B versus time given by Fig. 11. 

B(tl 

Figure 11 

t, 

Since the operator B is constant in each of the sub-intervals, we can easily 
Integrate the differential equation ( 12. 7) for the individual sub-intervals. If B( I) 
takes on the value Bi in the interval from ti-t to tJ then we evidently have 

( 12.8) 

Hence the transformation operator which corresponds to a succession of sub-inter-
vals must be 

U(t.,t.) 
8.6.t B 1.i =en en-

Now we can use the familiar theorem for multiplication of exponentials, 
3. 20) to evaluate the product. For n = 2, for example we have 

Bi6-t B b.t 1 2 U(t,,t,) = e. e 1 = exp{(B1 +B,)<1.t+2[B,, B1]('1t) }. 

The repetition of similar multiplications clearly leads to 
n 1 '\' 

U(tn, to) =exp { .L B1.i.t + 2 w (Bp a.] (.i.t)'} 
J=l J>k 

( 12.9) 

Eq. (R 

(12.10) 

(12.11) 

which is an exact solution as long as B(t) has the discontinuous time variation.we 
have assumed. we may consider the case in which the operator B( t) varies continuously with 
time to be the limit in which At-o, i.e., we assume tn = t remains fixed and let 
n-oo. In that limit Eq. ( 12.12) becomes the general solution 

U(t,t,) =exp { B(t')dt' + [B(t'), B(t")]}.. \U.12) 
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U we compare this solution with the expression ( 12. 5), which was reached by na-
ively ignoring the operator character of B( t), we may see that the difference Hes 
only in the addition of the term 

1 t• 2 f,ctr• [B(t'), B(t")] (12. 13) 

to the exponent. The commutator in this integral is an ordinary number and, in 
fact, a purely imaginary one. Hence the solution (12.12) only differs from ( 12. 5) 
by a time dependent phase factor. If we let i<p (t) represent the integral (12.14), 
then we may write the transformation operator as 

U(t,t,) =exp { j'B(t') dt' +I cp (t)} • 
= exp { .i J.' j (r, t') · A (r, t') dt' dr + lcp (t) 

uC • 

( 12.14) 

Although the phase function <p ( t) is not altogether lacking in physical interest, 
(there is information contained in it, for example, on the interaction energy of the 
current and field) it does not have any influence on the calculation of density oper-
ators for the field, i.e., if the density operator has the initial value p(to). then its 
value at time t is 

p(t) = U(t, t,) p(t,) ut(t, t,), ( 12. 15) 

and we see immediately tha.: the phase factor cancels. 
If in particular the initial state is the vacuum state 

I to>= I vac>, ( 12. 16) 

then at time t we have 

.-•.!•I It>= exp { _.!_ J' j (r. t') · A (r, t') drdt'} I vac '> • (12, 17) nc lo 

No'v \f we introduce the expansion of the operator A in normal modes, Eq. (R 2.10), 
we see that the unitary operator which is applied to the vacuum state on the right 
side of Eq. ( 12. 17} is simply a product of displacement operators ¥.:hich take the 
form 

Dt(ak) = exp [akaJ- at atJ . 

More precisely, if we define the set of time-dependent amplitudes 

ak(t) =( 2tiwk)112 (r,t'} • (r,t') e-1wi.Ydrdt' 

then Eq. ( 12. 17) may be rewritten as 

.-••<ti It > = n D,(a,(t)) lvac > • 

( 12. 18) 

(12.19) 

( 12. 20) 

It is clear from this result that a prescribed current distribution, radiating 
into the Vacuum, always brings the field to a coherent state 

.-t•<'l It>= l{a,(t)} >. ( 12, 21) 
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More generally, if the field is initially in an arbitrary coherent state its state re-
mains coherent under the influence of the current distribution, 

The solution to the radiation problem we have found takes accurate account of 
the quantum mechanical properties of the field. It is related, however, in a sim-
ple way to the solution of the corresponding classical problem. The amplitudes 
ok(t) are simply related to the time-dependent mode amplitudes for the classical-
ly radiated field through Eq. ( 8. 22). 

The density operator at time t which corresponds to the coherent state ( 12.21) 
is simply 

p(t) = l{a,(t)}>< {a,(t)}I, 
which may be written in the P-representation as 

by making use of the P-function 

= 6 <•l - a,(t)), 

( 12. 22) 

(12.23) 

( 12. 24) 

The calculations we have c;,,rried out have dealt with a predetermined current 
distribution, i.e., one which behaves in a way which is!!! predictable. 
But in practice, of course, we may lack the information necessary to make such 
predictions and may have to resort to a statistical description of the behavior of 
the current. In that case, since we do not know the current j(r, t} at any given 
time, it becomes impossible to make an exact specification of the set of amplitudes 
a,(t) through Eq. ( 12.19), The best we can do Is to state that the coefficients a, 
have a certain probability distribution p ( { ak}, t) at time t whose dispersion corre-
sponds to whatever randomness is present. Then it is clear that the density opera-
tor can be written in the form 

.O = J p( {a.} ,t)/ {a,}> < {a,} d2 ( 12. 25) 

which is a fairly general form for the P-representatfon, but one in which the func-
tion P is obviously always positive. 

Density operators having the general form of Eq. ( 12, 25) with p( {a,}, t) posi-
tive may arise from a variety of sources (e.g., thermal radiators, discharge tubes, 
etc.}. Hence it is interesting to note that our arguments indicate that we can 
always construct for these cases some sort of random classical current distribution 
which will lead to the same field, 1. e., the same density operator. 

Lecture Xm PHASE-SPACE FOR THE FIELD 

In classical mechanics we can specify the state of a system by giving the in-
stantaneous values of all coordinates and momenta. The evolution of the syStem 
then follows uniquely from the equations of motion. It can be visualized by con-
sidering the n coordinates and n momenta of the system as the coordinates of a point 
in a 2n-dimensional space, the phase space. The point which represents a system 
in this space moves along a uniquely determined trajectory. This picture is ea.8Uy 
adapted to the uses of classical statistical mechanics. There, since we are c'1ar-
acteristically uncertain of the initial coordinates and momenta of the system, we 
can speak only of probability distributions Pc1 ( p1 1 • • • Pn', q1 ', • • ·, q 0

1 ) for these 
variables. Instead of following the motion of a single point through the phase space, 
we must follow the motion of a whole "cloud " of them representing an ensemble 
of similarly prepared systems. The expectation value of any fWlctiOn of thel>: and 
q 1' can then be calculated by means of an integral, involving the probability P c1 as 
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a "\Veight function. 
There has been, since the earliest 'days of quantum mechanics, a prevailing 

temptation to use the same sort of phase space picture for the description of quan-
tum mechanical uncertainties. We shall not attempt to discuss these representa-
tions here in much generality since our interests are confined to the electromagnetic 
field. From a dynamical standpoint, the oscillations of each mode of the field are 
those of a harmonic oscillator. It will be quite sufficient, for the present discus-
sion, to confine our attention to a single mode. In that case, the classical phase 
space has only two dimensions, corresponding to the variables p' and q'. The 
phase point for a mode with energy E moves Classically along the ellipse p12 +w2 q' 2 

=. 2 E. (The mass parameter is set equal to unity.) 
A coherent state of the mode will exist corresponding to any complex eigen-

value we specify for the operator 

' a= (21\w)-• (wq+ip). ( 13.1) 
The amplitude a corresponding to the state I a> may be written as 

a= (2llw)-! (wq• +ip'), ( 13. 2) 
where q1 and p' are real numbers. Now we have shown in Section ill of the reprint-
ed paper that the state I a> may be described by a wave packet which has minimum 
uncertainty and the mean coordinate q' and the mean momentum p'. 

Furthermore if we use the Schrndinger picture and follow the motion of the 
stale with time, we know that the state remains coherent at all times, and that its 
tin1e-dependent amplitude is simply ae -v..it. The motion of the amplitude vector 
in the complex a-plane takes place on the circle I al = const. which simply repre-
sents an ellipse of the type noted earlier in the "fl 1 q' plane. 

It is clear that the complex a-plane is simply a species of two-dimensional 
phase space. One therefore inevitably feels a great temptation to think of the 
coherent state wave packets in terms of probability "clouds" whose centers move 
on circular paths. Such an image, however, is an intrinsically classical one, In 
quantum mechanics the observables p and q are not simultaneously measureable 
(with more than limited accuracy), and therefore a certain lack of meaning, or 
at best an arbitrariness of meaning characterizes any attempt to speak of a joint 
probability distribution for the variables p' and q', We can, of course, speak of 
the distribution of either variable in precisely defined terms, but these are alter-
native descriptions of the oscillator rather than a way of dealing with p' and q' 
simultaneously. 

The P-representation of the density operator, which we introduced in the re-
printed paper, can often be regarded as defining something at least comparable to 
a phase space distribution. The complex a-plane on which the P-function is de-
fined, is indeed a species of phase space. Furthermore as we have noted in the 
paper, the P-function has a number of properties in commoD with probability dis-
tributions. However, as we have also seen, the function may take on negative 
values, and behave in singular ways which are altogether unlike those Of a probabil-
ity density. There is nothing inconsistent about such strange behavior because 
the function is not accessible to measurement as a joint probability distribution. 

From the standpoint of similarity to classical theory, the function P (a) is 
simply one of a class of functions which possess, by definition, some of the prop-
erties at a phase space distribution and then inevitably lack others. We will dis-
cuss some other examples of such functions, which are perhaps best called quasi-
probability densities, later in the lecture, and show their relation to the P-repre-
sentation. First, however, let us turn to the question of how generally applicable 
the P-.representation is. 
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THE P-REPRESENTATION AND THE MOMENT PROBLEM 

Although it is clear, from the examples given in the reprinted paper that the 
P-representation of the density operator is capable of representing a fairiy broad 
variety of fields, no effort was made 

1
there to characterize that class of fields. 

Sudarshan has stated in a brief note, however, that a "diagonal" representation 
of the density _operator in terms of the coherent states may be used to represent 
an arbitrary field, He has given an explicit construction for the weight function of 
such a representation as an infinite sum of arbitrarily high-order derivatives of 
a delta function. He has said that, as a consequence of this construction ''the 
description of- statistical states of a quantum mechanical system ••• is 
equivalent to the description in terms of classical probability distributions." 

The way in which Sudarshan' s construction for the fwiction P( a) may be 
reached is as follows: we consider the matrix elements of the density operator in 
the n-quantum state representation as known and note that, according to Eq. ( R. 7. 
12) , these matrix elements are the complex moments, 

< nlplm > = (nl ml)-i f P(a) (a•)m a•d'a 
of the weight function P( a) , We Ulen consider this sequence of equations for all n 
and m to define a species of two-dimensional moment problem, i, e., we seek a 
function P( a) which has the correct matrix of moments. The general problem 
when stated thus becomes a notoriously difficult one and one which need not, for 
arbitrary matrix elements < nl p Im > , have a solution of any sort 
Sudarshan' s solution corresponds to taking advantage of some remarkable prop: 
erties of the delta function and its derivatives which are perhaps most easily il-
lustrated in a one-dimensional context. 

Let us suppose that we are given the problem of finding a function f(x) on the 
interval - 00 < x < oo which has a specified set of moments Mn, i.e., we have 

00 

J f(x) x" dx = M, n = 0, 1, 2, 
- 00 

U we write the j-th derivative of the delta function as 

ofi1(x) 6(x), 

then we observe that its moments are given by 

00 fj) J x •o (x) dx = (-1) 1 j! 6"" 
- 00 

(13.3) 

( 13. 4) 

( 13. 5) 

In other words, each derivative of the delta function has one and only one non-van-
ishing moment. It would seem then that we can construct a "solution" of the gen-
eral moment problem simply by writing 

00 

f(x) = 6 t;jl'.'. Mn6 (n) (x), (13. 6) 
n=o n. 

The test of such a" solution" is ultimately whether or not it means anything. 
Mathematicians have long noted that the delta function and its derivatives are. 

not, strictly speaking, functions at all. More recently they have provided us with 
the theory of distributions {or generalized functions) as a means of dealing with 
these structures in more meaningful and rigorous terms. 

Equations (13.4) and (13. 5) assume a well-defined meaning in terms of dis-
tribution theory, but the theory shows that there is in general no useful meanlng 
which can be attached to an Infinite sum such as F.q. (13. 6), 
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The "solution" exhibited by Sudarshan for the two dimensional moment prob-
lem takes the explicit form 

00 00 ! 
P,(a) = '>', '>' (n! ml)' <nl Im> _l_e l•l'-1(,-ml• O(lal)} 

l' i., ( n + m) I p 2•1 al a I a I ' 
n=om=o (13.7) 

where we have written a= I ale 19 • Recently Holliday and Sage2 have shown, by 
considering a simple example explicitly, that this expression cannot be construed 
as a generalized function of any sort. The example was that of the thermal density 
operator, and for it they showed that when the series (13. 7) is ,multiplied by an 
extremeley well behaved test function (which vanishes outside a circle of finite 
radius in the and the product is then the integral diverges. 
More recently, Cahill has shown that whenever there is no upper bound to the 
number of quanta present, the series (13. 7) will fail to be interpretable as a dis-
trib.ltion (or a generalized function) . 

While these results indicate that Sudarshan1 s proposed representation is not, 
in general, meaningful, they leave open the larger question of the generality of the 
P-representation •. They allow the possibility, in other words, that there might 
exist other constructions of the P-representation which are meaningful for all 
states of the field. Recently, however, D. Kastler and the lecturer" have demon-
strated that the P-representation lacks the generality necessary to represent all 
states. They have shown in particular that there exist quantum states of the field 
for which it is not possible to find functions P(a) which are distributions. That 
means that all general results derived by using the P-representation must be quali-
fied by the assumption that the representation exists. 

A POSITIVE-DEF1NITE "PHASE SPACE DENSITY" 

We will now consider some other examples of quasiprobability functions, with 
different types of behavior and different degrees of usefulness. The first of these 
is the diagonal element.< a Ip la>. of the density operator. It is clear that< a IP la> 
is non-negative and that it is a well-defined function Of a for all p. It is therefore 
a good deal closer to being a phase space density in Its behavior than ts P(a), 

From the general expression for R(a*, J3) given by Eq. (R 6.1), 

_R( a*, m = <a IP exp { (I a 12 + I')}, 
we have 

-Jal' <alpla>=R(a*, a)e . (13.8) 

Hence, according to Eq. ( R 6. the normalization condition on < a IP )a > is 

fR(a*, a) .-Jal' d'a= 1, (13.9) 

If the P-representation exists for the density operator p and has a weight function 
P( m, we clearly have 

< alPla > = f PCml<aJp >I' d'p 

= f PCm .-1a - M' 

( 13.10) 

The function we are considering is simply a Gaussian convolution of the P-function. 
We can use the function <alp I a> to calculate averages of products of opera-

tors which arc in antinormal order in much the same way as products in normal 
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order are averaged by means of the P-representation. Let us consider, for ex-
ample, the average 

Tr {p J(a) K(at)}, 
where J and K can be any functions of the annihilation and creation operators 
spectively. ' 

We can write this average as 

re-

Tr{K(af)p J(a)} =} J Tr{ I a>< a I K(at)p J(a) }d'a 

=} J d' a< a IK{at)pJ(a) J <a IP la> K(a*)J(a)d'a. ( 13.11) 

Unfortunately we are not too often interested in evaluati11g the expectation values of 
antinormally ordered products of field operators. When the full set of modes of 
the field is considered such expectation values tend to contain divergent contribu-
tions from the vacuum fluctuations. 

The function <a IP la> takes an interesting form for then-th excited state of 
the oscillator. For these states we have 

P, = ln><nl (at)'JO><OJa•, ( 13.12) 

and therefore the result 

<aiPla>=nt <aJn> I'= 1:1t• e -Jal' ( 13.13) 

This is an extremely well-behaved function, especWly when we compare it with 
the analogous expression in the P-representation, which contains the 2n-th deriva-
tive of a delta function. The function x n e-x has a maximum at x = n and is quite 
sharply peaked there for large values of n. If we want to express the result ( 13.13) 
as a distribution in phase space we can substitute the expression (13. 2) for a and 
write 

< a IP I a > = _!_ (P' 
2 

+ w' q' 
2 
)' exp { - P'' + w' q" } 

nl ( 21iw)• 21iw (13.14) 

This function evidently has Its maximum value on the ellipse(l/2)(P'' + w' q• 2 ) = 
ntiw, that is to say on the classical orbit in phase space. It drops to zero on either 
side of the classical orbit while remaining positive everywhere. 

Another example for which we can easily illustrate this "phase space density" 
is that of the Gaussian density operator. For that case we have 

R(a*, m = f P(y) exp{a* y + y* - Jyl 2}d2 y 

J exp { -<1"( + a•y·+ - Jyl'} d1 y n, 

+a•y +py•} d'y. 
(13.15) 

• We can now make the = y{ 1 + <n>}' 
gr al to the standard form <n > , which reduces the inte· 
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' 1 J <n> 1' R(o*, = rr(l + <n>) exp{ - 1.<1' +[ l+<n> (a* ( + (*)} d'( 

Hence we find 

1 { <n> •o} exp l+<n> a/J. rr (1 + <n>) 

} -I al' <alp la>= R(a*, a e 

1 lo!' 
= rr(l +<n>) exp{-! +<n>} 

( 13.16) 

(13.17) 

If< n > goes to zero this expression becomes the Gaussian function(1/1T) exp( - la 12 }. 

In the same case the weight function P( a) would be a delta function at tpe origin. 
If< n > goes to infinity we have , 

1 _ 
<a IP la>"" rr <n> o <ii>" P(o}. (13.18) 

In this limit < alp I a > becomes equal to the P-distribution. That is so because 
the limit of large < n > is just the classical limit. There P{ a) does indeed become 
interpretable as a classical phase space density, and the distinction between normal-
ly and antinormally ordered operators also vanishes, as a consequence of the 
correspondence principle. 

WIGNER'S" PHASE SPACE DENSITY" 

The Wigner distribution can be considered as the grandfather of all our quasi-
probability functions. It exists and is well-behaved for all qi\3.Dtum states but 
seems to take on negative values without hesitation. We shall follow the approach 
used by Moyal5 to define the Wigner distribution. 

We begin by discussing a species of characteristic function which is defined as 

X (µ, v) = <el(µ P +vq)>, ( 13.19) 

where p and q are operators. By using our theorem for the decompositon of ex-
ponentials, Eq. ( R 3. 20), we may write this expression as 

- l X(µ, v) = Tr{p e•- e"' e 2 (13.20) 

If we restrict consideration to a pure state, use the coordinate representation, 
and recall the interpretation of exponential functions of the momentum as coordinate 
displacement operators, we may rewrite Eq. ( 13. 20) as 

X(µ, v) = f l{l*(q• - µ2fi }e 1.,. l{l(q• + µ2fi) dq•, (13,21) 

where ljl( q') is the wave function of the pure state. The Wigner function is then the 
Fourier transform of this characteristic function 

W(p', q'}• J exp{- i(µp' + vq'} }X(µ, v) dµ dv 

= J exp{ -1(µ p' + vq')} J 1/l*(q• - µ2fi) e ,.,. X 

1{I (q' + µ2fi } dq" dµ dv 

R, J, GLAUBER 141 

= f f 1/l*(q• - µ2fi) O(q' -q•) tl(q• + µ2fi} dq' dµ 

( 13. 22) 

If we substitue y = - µ li in the latter expression we derive the form of the distribu-
tion originally stated by Wigner, 

1 f 1 !>'.> 1 W(p', q') = 2nfi 1/l*(q' +2y} e" 1/J(q' -2y) dy. (13.23) 

is. obvious that whenever we have a wave function we can derive a Wigner 
from it. Thus the distribution always exists, but it is not necessarily 

pos1t1ve. When we have a mixture of states we must of course take a suitably 
weighted average of ( 13. 23) ave .. · all the states which occur. 
The normalization condition for W( q', p ) is 

f W(q', p'} dp' dq' = J O(v} X(µ, v) dµ dv 
= X(O, 0) 

= 1. ( 13. 24) 

To compare the Wigner distribution with the others we have discussed, it is 
useful to express it in terms of the creation and annihilation operators at and a. 
Then if we define a complex Fourier transform variable 

' . 
{ fiw } ' . { n ' ii.=-µ 2 +1v2W} . (13. 25) 

we may write the operator which occurs in the exponent of the characteristic 
function as · 

- i(µp + vq} = !I.at - !l.*a (13. 26) 

and the characteristic function itself becomes 

X ( µ 
1 

v) = < e >.aL.1.•a > 
= Tr { pe >.at e -.\•a } e - ! '" 12 

(13. 27} 

We can now use the normally ordered form to express the Wigner function in terms 
of the P-representation. If we assume that the density operator possesses 'a P-
representation, the characteristic function is given by 

X(µ,v} =fP<m<p/e"' e"'' 

=fP(M (13. 28) 

In .calculating the Fourier of X, i.e., the Wigner function, it is 
convenient to use a linear combination of a and a* in the exponent rather than a 
combination of the classical variables q' and p'. We therefore write 

l(µp'+vq') (13. 29) 
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and 

Then the Fourier transform becomes 

W(q' p') = - 1-fTr{pe •C•1-,.l (2rr)' 

(13. 30) 

= 2; 6 fP(mexp{ll(fi•-a•) -X*(fi-a) d'll (13.31) 

We can reduce this integral to a standard form by the substitlltion which 
leads to 2 

W(q', p') fP(m exp{v'2((fi*-a*) -v'2(*(fi-a) 

= f P<m exp{ -2Jfi-al') d'fi. (13. 32) 

It is sometimes convenient to think of the Wigner function more directly as a 
function of the complex variable a, and to change its normalization accordingly. 
We therefore recall that 

d2a= _1_1 dq' = dp' dq' 
{2Hw}' 2H 2H (13. 33) 

and define the function 

W(a) = 2HW(p', q') (13. 34) 
so that 

fw(a) d2 a= 1 ( 13. 35) 
The Wigner function of complex argument is then given by 

2J -21,B-a·l 2 
w(a)=- P(me rr ( 13. 36) 

When we compare expression with the one derived in the preceding section, 

< alPI a>= f P(m e- Jfi-a 
12 

(!3. 37) 

We see that both of these expressions are simply Gaussian convolutions of the P-
distribution (when the latter exists). The quality which the Wigner distribution 
shares with the P-distribution, of becoming negative in places, would seem to be 
due to the fact that the process expressed by Eq. ( 13. 36) takes place 
over a radius which is (,12}- times smaller than that expressed by Eq. ( 13. 37). 

As an example, let us evaluate the Wigner distribution for a field described 
by a Gaussian density operator. For this case we have1 according to Eq. ( 13. 36), 

W( a) = { - - 2 lfi - a I'} d' 

2 e-2la·r 2 

•'<n> J exp{ - lfi J
2 (2 + +2(fi* a+ a•fij)d'fi . 

(13. 38) 
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• . {1 +2<n>}' We now use the substitution Y= <n> f3 to reduce the integral to the stand-

ard form 
- 2 ' O' J 2 l 

2 e J { . , { <n> }' )} , W(a)-rr'( 2<n>+l) exp -,yJ +2 2<n>+l (y•a+a*y dy 

• 
2 j' I { <n> }' I'} ' =, -,-(-2_<_n_>_+_l_) exp {- IY - 2 2<n> + 1 a d yX 

exp{[ -2]1al'} (13. 39) 

The latter integral leads immediately to the result 
2 2 

W(a) = rr(2<n>+ 1) exp {-2<n>+ 1 Jal'} (13. 40) 

Thus, the Wigner distribution also has the Gaussian shape. We consider again the 
two limiting cases < n > = o, for which 

2 - 2lo:1 2 

W(a) = - e (13. 41) 
" 

and < n > - oo, for which 
1 !al' 

W(a)" ,<n> e-= = P(a) . (13.42) 

The latter result is the one we anticipate for the correspondence limit. 
The simple Gaussian form given by Eq. ( 13. 40) may be used to derive the 

complete set of Wigner distributions for the n-quantum states. This is possible 
because the function ( 13. 40) may be regarded as a generating function for the 
Wigner distributions. Let us consider, for a moment, the general case of a density 
operator which may be written in the form 

p = ( l - x) L x" In > < n I , (13, 43) 
n=D 

where xis an arbitrary parameter. If we let Wn {a) be the Wigner function for the 
n-th quantum state, then, as a consequence of the linearity of W in p, we must 
have 

W(a) = (1-x) L· x"W,(a) ( 13. 44) 
n=O 

Now if we make the identification x = < n >/( 1 + < n > ). it becomes clear from 
Eq, ( R 8. 10) that p given by Eq. ( 13. 43) is simply the Gaussian density operator. 
We can therefore write Eq. ( 13. 40) alternatively in terms of the variable x as 

W(a) 2( 1 - x) 
•( 1 + x) exp { -2 ( : ) I a I' ) 

2( 1 - x) { x ') { '} =( 1 )exp 1--41al exp-2Jol. 
1T +x + x ( 13. 45) 

This rather complicated exponential is just the generating function for the Laguerre 
polynomials Ln. In more familiar notation the generating function reads as 
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exp { - _p_u_} ., 
1 - u n u" 

= I L, (p) -
- u n ;:o n! ( 13. 46) 

Hence Eq. ( 13. 45) yields the expansion 

2., '-1')'• I ' W(a) = (1-x) - L'. L.(41al')e-• •I (13.47) 
1T11.=o nl _ 

Wigner function for the n-th excited state of the oscillator may thus be identi-
fied as 

W, L,(4Jal') 0 -21•1' ( 13. 48) 

functions have quite a wiggly behavior in the complex phase plane. Then-th 
function has nodes on n concentric circles. 

For the first two states we have, more explicitly, 

Wo(a) = e-• I exp{- P" ;:' q•' } ( 13. 48) 

(13.49) 

The function W 1 (a) is sketched in Fig. 12. 

0 

Figure 12 

Its maximun1 lies at the radius a = "372 . 
Each of the functions we have considered (the P-function the function 

<a IP la> , and the Wigner distribution) has its particular It should, 
however, be clear from the preceding discussions that we can construct numerous 
other such functions, each with virtues of its own. An element of arbitrariness 
underlies all such discussions of phase space distributions. 

_Note added in proof: In a recent preprint, Klauder, McKenna, and Currie 
the conclusion that no useful weight function P need exist for arbitrary 

density operators. To minimize this difficulty they express matrix elements of 
the density operator through a limiting procedure involving an infinite sequence 
of 011crators expressed as P-rcpresentations. This procedure, however, does not 

the most useful property of the P-representation, the reduction of sta-
tistical averages to simple integrals over the complex a-plane. 

• 
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QUASIPROBABILITY DISTRIBUTIONS 
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In this lecture and in the ones which follow we shall begin to discuss applica-
tions of our formalism in somewhat more concrete terms. AB a first step in that 
direction it will be useful to amplify several of the points which are stated rather 
briefly in the last section of the reprinted paper. 

Let us suppose that the electromagnetic field is in a pure coherent state which 
we denote by l{a•} >. Then l{a.} >is an eigenstate of the operator EM, 

(14.1) 

and the corresponding eigenvalue function & , is a linear form in the variables 
{ a 1,J, i.e., we have 

&(rt {a,})= IL-• u(r)e • a. ""tBw) f -tw t 
.k 2 .k Ir: 

( 14. 2) 

The corresponding field is fully coherent since the correlation functions for all 
orders n fall into the factorized form 

' 2n 
(x1 ••• x2,) =II •: (x {a,}) II "• (x1{a.}). 

J•l J I ro+l J (14.3) 

We have already noted that the term "coherence" is used frequently in the 
discussion of quantum mechanical problems of all sorts. Since the term is usually 
meant to imply that interference phenon1ena can take place, many of its uses are 
to be found in discussions of pure quantum mechanical states. Pure states, how-
ever, by no means exhaust the possibilities of securing interference. For most 
quantum mechanical systems there exist certain statistical mixtures of states 
which preserve essentially the same interference phenomena as are found for pure 
states. It is easy to exhibit these mixtures for the case of the electromagnetic 
field and to show that they may correspond to fields which are fully coherent in the 
sense of Eq. ( 14. 3). 

Instead of considering th.e field which corresponds to the set of amplitudes 
{a.1r:}, let us consider the field corresponding to a set {a11:'} which we obtain by 
multiplying each of the coefficients a1i; by a phase factor, e14>, which i& the same 
for all modes. If we have 

( 14. 4) 

then, since the eigenvalue function, & , is linear, we must have 

If, (rt {a.'}l = e'0 If, (rt{ a,}). µ µ . ( 14. 5) 

Because the phase factors cancel when we construct the correlation it 
is clear that the altered state of the field leads to the same set of correlation 
functions ( 14. 3) as the original state. This invariance property, which is implicit 
in our definition of the correlation functions, means that we secure the same cor-
relation functions not only for pure states corresponding to different values of · 
the phase¢, but for arbitrary mixtures of such states as well. 

Let us suppose that J!. ( </>) is a function which satisfies the normalization con-
dition 

" f E(</>) d</>= 1. 
0 

( 14. 6) 
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Then we may construct a density operator 

" P = J .C (c/>) l{a.e'"}> < {a,e'"}ldc/>, 
0 (14. 7) 

which represents mixtures of states with different values of the overall phase¢. 
(Note that£(¢) must also statisfy a positive definiteness condition analogous to 
Eq, (R 7. 9).) All such mixtures, i. e, all choices of£ ( ¢), lead to precisely the 
set of correlation fw1ctions ( 14. 3) i hence all such mixed states correspond to fully 
coherent fields. 

It is most important, from a practical standpoint, that our definitions permit 
these mixed to correspond to coherent fields. P-riori knowledge of 
the state of high frequency fields usually contains no information about the overall 
phase ¢. An ensemble of experiments performed with such fields must then be 
described by using a density operator of the form ( 14. 7) with the special choice. 

1 .c (</>) =-
2rr' ( 14. 8) 

\Vhich represents our total ignorance of the phase. The indefinite character of 
this phase does not influence any of the interference intensities we have discussed 
thus far_. It must therefore have no bearing on the coherence properties of a fielda 
Our definition of coherence would hardly be very useful physically if it did not allow 
the appropriate mixed states as well as pure ones to be coherent. 

FIRST ORDER CORRELATION FUNCTIONS FOR STATIONARY FIELDS 

Virtually all of the famous experiments of optics 1nay be described in terms 
of the first. order correlation function for stationary light beams. Let us begin 
the of such a correlation function by using the normal mode expansion 
for the held operators to write it in the form 

G Ill (rt 
/lV ' x 

( 14. 9) 

To evaluate the statistical averages Tr {pat" a k'} we first note that these will 
always vanish when the modes k and k' are non-degenerate. We may prove that 
they va11ish in this case by recalling that for stationary fields p commutes with the 
field Hamiltonian .J<-0. Thus we have, for example, 

1 IJG:it 
P = e -,- ""' p e ii ( 14. 10) 

for all values of the parameter t. If we substitute the latter form for the operator 
into the expression for the desired trace we find 

Tr{pat, a.,}= Tr{p e k>-01 a,t a., e-k"o'} 

- T { t } ll••-•.,Jt - r pak ak' e ( 14. 11) 

Since the trace is independent of the parameter t, it must vanish whenever 41 k ¢wk'. 

For the case of two different but degenerate modes k andk' on the other hand 
the quantity Tr(p att ak') need not vanish. More if there are N de- ' 
generate modes the corresponding averages Tr(p altt ak') can be regarded as 
forming the elements of an N x N Hermitian matrix which is not, in general, 
onal. It is always possible to diagonalize this matrix, however, by means of a 

i 
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linear transformation which amounts simply to a redefinition of the set of degen-
erate mode functions. For any stationary state of the field represented. by a den-
sity operator p, in other words, there will exist some particular choice of mode 
functions Ut (r) such that the matrix reduces to diagonal form, 1. e. we have 

Tr(p alt t ak' ) = <n.11: > O tk' , ( 14.12) 

where <nt >is the mean occupation number of the k-th mode. 
The convenience of working with particular choices of degenerate mode func-

tions is easily illustrated by means of the polarization properties of light beams. 
For any plane wave state of a beam there are two degenerate polarization modes 
which are othogonal. If we were to choose a pair of plane polarization states as a 
basis, and were to describe a circularly polarized beam, for example, the quanti-
ties Tr(pa.11:t alt") would form a 2 x 2 matrix with four non-vanishing components. 
It is no surprise then that a more convenient choice of mode functions for that case 
consists of the two orthogonal circular polarizations. That choice reduces the 
matrix to one with only a single non-vanishing 

Let us now return to our calculation of the first order correlation function for 
stationary fields. We see from Eqs. ( 14. 12) and ( 14. 9) that with a suitable choice 
of basis functions it is always possible to write the correlation function as an ex-
pansion of the form 

G <•I (rt, r't') = Lnw. <n, (r)u,,(r') e 1w,(l-•l 
µv II. /J. 

( 14. 13) 

which is determined simply by the set of average occupation numbers< "" >. An 
expansion of this type which is often useful is based on the set of plane wave modes 
of a large cubical volume of side L. These modes, whose functions Ut(r) are 
given by Eq. (R 2. 9), are so densely distributed in the space of the propagation 
vector k, when the volume of the system is large, that the sum over the states re-
quired in Eq. ( 14. 13) may be replaced by the integral ( L/2rr)' f dk... • The ex-
pansion of the correlation function is then 

G<ll(rt f "\' @<•I'@ !>l <n >k x ' 2(2tr)3 LJ µ. Ii k,A 
, A=l, 2 

exp { -l[k·(r - r')-w.(t -t')]) dk, (14.14) 

where :>i. is an index which labels the polarizations associated with propagation 
vector. 

Let us suppose that the field consists of a well collimated light beam which is 
nearly monochromatic and is fully polarized. Then the mean occupation number 
< nt,l. > will only talce on non-vanishing values within a very small cell of k-space 
ar.ct, say, for A= 1. Under these circumstances, if the magnitudes of Ir - r' I and 
c It - t' I remain small in comparison to the reciprocal dimensions of the volume 
in which< n k. ,_ >differs from zero, it becomes possible to approximate the tD-
tegral in Eq. ( 14. 14) by neglecting the variation of the exponential in the integrand. 
H ko and "'b are the mean propagation vector and frequency of the beam we have 

G ill (rt r't') fie N*(l)• ,_ (1) e -l[ko"(r-'f")-wo(t-t')] 
µv ' z 2(2rr)' "µ "v (14. 15) 

where 

(14.16) 
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The light beam we have described is of just the sort most often used in interference 
experiments. It is also the kind most often referred to as "coherentu in the tra-
ditional terminology of optics. Now it is evident that by defining the field 

&(r t) J_. l\c IN t a CI) IC"o·r-•otl 
' /1(2rr)'l e (14.17) 

we may write the expression ( 14. 15) for the correlation function in the factorized 
form 

Gi'l (rt, r't') ll *(rt) /l (r't'). µv µ v (14.18) 

Hefice the field in question does indeed satisfy the condition for first order coher-
ence. It is worth emphasizing, however, that the factorization in Eq. ( 14.18) is 
an approximate one which tends to be most accurate for points r', t' near r, t. 
The imperfect collimation and monochromaticity of the beam define finite ranges 
of the variables r - r' and t - t1 , i. e. coherence distances and a coherence time, 
within which the factorization condition is obeyed. These ranges can, in principle, 
be made arbitrarily large by Improving the quality of the beam. 

This example illustrates the sense in which the coherence conditions must 
usually be regarded as idealizations. Given the practical sorts of field sources at 
our disposal, we cannot expect that the field correlations they generate will obey 
the coherence conditions over infinite ranges of the coordinate variables (even 
though in the case of laser fields these conditions may be known to hold over tens 
of thousands of miles). 

CORRELATION FUNCTIONS FOR CHAOTIC F1ELDS 

A particularly important class of stationary fields, which arises whenever the 
source is essentially chaotic in nature, is one in which the weight function in the 
P-representation is a product of Gaussian factors, one for each mode. The density 
operator ls then specllied by 

la 12 
1 --•-

P({a,)) = rr<n.> e <">> ( 14.19) 

and it follovis that all of the statistical properties of the field are determined by 
the set of average occupation numbers < n11: >. The knowledge of this same set of 
numbers, on the other hand, is equivalent, according to Eq. ( 14.13), to specifying 
the first order correlation function for the field. There thus exists a fundamental 
sense in which the first order correlation function furnishes all the information we 
need for the description of fields specified by Gaussian weight functions. We may 
demonstrate this simplifying property more explicitly by showing that all of the 
higher order correlation functions for such fields can be expressed as sums of 
products of first order correlation functions. 

In order to prove this theorem we shall construct a species of generating 
functional for the set of all correlation functions of the field. The essential tool 
!or doing this is the operation of functional differentiation. U Is a func-
tional of ( x) , I. e. a function of the set of values of t ( x) for all x, then we define 
Its functional derivative with respect to t(Xo) to be 

=!Im (xJ+<O C<l (x - Xo)] -F(t(x) J}, (14.20) 
• - 0 

where o<•l is a four-dimensional (space-time) delta function. As an illustration, 
if we apply this definition to an integral operator of the form 

J 
' 

l 

I 
l 

1 
\ 

we find 
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F= ft(x) E(-)(x)d'x 

Now, let us define the generating functional 

f (-) • :=: ['(x), =Tr )p e HC.JE (x)d' /11(x')E(+) (ll")d°'xo 1 
e I 
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(14. 21) 

(14. 22) 

( 14. 23) 

which depends upon two independent functions C(x) and 17(x) and is the trace of a 
normally ordered product. Then we easily see that the functional derivatives of 
this expression, evaluated for C(x) = 17(x) = 0, are the correlation functions of 
the field; i. e. we have 

o' -1 =Tr:p E(-) (x1) EC+l (x2)' =Gill (x 1, X2) 1 6'1xtl lil)(x,) " <=•=• 
( 14. 24) 

and more generally 

( 14.25) 

(The tensor indices which have been suppressed in these expressions nlay be re-
stored by considering each coordinate x to specify a con1ponent index as well as a 
position and a time, e.g. the function C ( x) is actually a set of four functions t) 
forµ= 1,···4, etc.) 

It is convenient, at this point, to introduce the abbrevi3.tion 
I 

e(x, k) = i { fl;lt l·l U1r;(r) e -lwkt (14. 26) 

which permits us to write the expansion of the operator E ( <-l in terms of the mode 
functions as 

E "1 (x) = '>' ( k) 6 e x, a,. (14. 27) 
• 

Then when we use the P-representation for the density operator with the Gaussian 
weight function ( 14.19), the generating functional ( 14. 23) may be written as 

la. 12 4 

f E -. e fft(x) e•(xk)o' d x 
"- = e - • <">> 

( 14, 28) 

This multiple integral factors into a product of integrals, one for each mode k. U 
we introduce the pair of complex parameters 

= J' (x) e*(x, k) d4 x 

Yt = J 17(x') e(x', k) d4 x', 

the integral factor for the k-th mode takes the familiar form 

( 14. 29) 
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J llatl
2 * /d'a• { exp 1- <n1c > + /3, at + Yt a.Ii: f > = exp /311. 'Yt < n1r; > } • 

Hence the generating functional is given by the product 

:=: = n exp y0 < n.> } • 

( 14. 30) 

=exp{ ft(x)L e*(x, k)e(x', k) (14.31) 
• 

Now, according to Eqs. ( 14. 13) and ( 14. 26), the first order correlation function 
for the field is given by the expansion 

Ill '>' G (x, x') = u e•(x, k) e(x\ k) <nt >, ( 14. 32) 
• 

which Is just the sum which occurs in the exponential function of Eq. ( 14. 31), 
Hence the generating functional for the correlation functions of all orders may be 
expressed in terms of the first order correlation functipn as 

Z[t(x), =exp{ ft(x)G(11(x, d'xd'x'}. 
( 14. 33) 

We may now derive explicit expressions for the higher order correlation 
functions by evaluating the appropriate functional derivatives. In particular the 
n-th derivative with respect to may be written as 

o• _ { • f 11i , } _ 
Ol;(xi)···ot(x;J"' = G (xi, x' "' . (14.34) 

To evaluate the n-th order correlation function we must next differentiate n times 
with respect to the function 71. (x) is finally to be set equal to zero it is 
easy to see that all of the terms which come from differentiating the factor ::: on 
the right side of Eq, (14. 34) with respect will finally vanish. Hence we have 
simply 

o'" I ot(xtl· · • ot(x.) tl!j(x,..) · "tl!j(x,.)::;: ' = o 
'II = 0 

o• 

"' • ( 1) 
'=- L· Il G (xH XP(n+J)); 

p J=l 
( 14. 35) 

i.e., the derivative ls a sum taken over the n I possible ways of permuting the set 
of coordinates x n+lJ • • • x2n. Since the we have evaluated, according to 
Eq. ( 14. 25), is then-th order correlatibn function, we have finally 

G C•l (x · · · x x • "x ) - '>' n" G Cll ( ) ( 14 36) 1 II.I n+t 2n - i' J-1 Xj, x P(n+J) • • 

The n-th order correlation function for Gaussian fields is just a symmetrical sum 
of products of first order correlation functions. 

To illustrate this result for the second order correlation function we may 
write 

(x1 x2 , x.x.) =Gell (x1 x,)G(ll (x,x,) 

+ G111 (x1x,)G(t) (x,x,). 
( 14. 37) 
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Now if the field in question possesses first order coherence we may write the 
first order correlation function in the factorized form of Eq: ( 7 .15) . The two : 
terms of Eq. ( 14. 37) are then equal and we find 

(2) G (x,x,, x,x,) =2o*(xi)&•(x,)&(x3 ) 0 (x,). ( 14. 38) 

The second order correlation function factorizes, but because of the presence 
of the factor of 2, it does so in a way which precludes the possibility that the field 
has second or higher order coherence. The n-th order correlation function for 
such fields in evidently given by . 

G (x1···x2n)=n! Il &*(x) 
J=l 

QUASIPROBABILITY DISTRIBUTION FOR THE FIELD AMPLITUDE 

( 14. 39) 

Whenever the density operator for the field may be specified by means of the 
P-representation the function P({a11J) plays a role analogous to that of a probabil-
ity density for the individual mode amplitudes a1r;. Of course when we make mea-
surements upon a light beam, we are typically measuring not the individual ampli-
tudes a11:, but the average values of various functions of the complex field strength 
eigenvalue, & (rt), which is a particular linear sum of the mode amplitudes, 

& (x, {a0}) = L e (x, k) a,. ( 14. 40) 
• 

To describe the fullest variety of such measurements which we can make at a 
single space-time point x = { r, t), it is convenient to derive from P{ {a } ) a 
species of reduced quasiprobability distribution for the complex field amplitude 
o ( x, {a,}) . This distribution function for the field amplitude will be quite useful 
in discussing the origin of the photon correlation effect discovered by Hanbury 
Brown, and Twiss. 

To illustrate the kinds of averages we frequently want to discuss, let us note 
that the average intensity of the field at the point x is 

(l) J } I I' G (x, x) = P({a, ) g(x{a,}) ( 14. 41) 

and the average coincidence rate for the limiting case in which the two counters 
are placed at the same point and are sensitive at the same time is 

(1) J I • G (xx, xx) = P({a.}) &(x{aJ) I n d'a,. 
k 

(14. 42) 

These are examples of a general class of averages which take the form 

f P({a,}) F( c>(x{a,})) n d'a 
• k 

( 14. 43) 

for suitably determined functions F. It is convenient now to separate the multi-
dimensional integration over the complex amplitude paranieters a1r. into two steps, 
the integration over the subspace of the ak-parameters in which the linear combina .. 
tion · 

&(x{a0}) = °Le(x,k)a, 

remains constant, and then the further integration over the values this sum may 
take on. The first of these integrations is accomplished by defining the function 

W(o;, x) =fP({a,}) oC'l(g-'l e(x, k) a,) Ud'a,. ( 14. 44) 
• • 
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We may then write the complete integral ( 14. 43) in the form 

)Pl :ak))F(;; (x{o.)\) Il d'a, =ff P( -L,e(x, k)a,) x 
• k 

F( & ) n d' a,d' & 
k 

= f W(o, x) F(o)d'o, ( 14. 45) 

where d
2
& = d( Re&) d( Im & ) is a real element of area in the complex field ampli-

tude plane. The function W( & , x) defined by Eq. ( 14. 44) evidently plays a role 
analogous to that of a probability distribution for the complex field amplitude at 
the space-time point x. Of course, since the function P from which it is derived 
is only a quasiprobability distribution, and is subject to all the restrictions 
mentioned in the last lecture, the same limitations will apply to the physical in-
terpretation of the function W{ & , x). It too can take on negative values, for ex-
an1ple. 

The function W furnishes a particularly simple description of fields which con-
sist of many independently excited modes. Since the total field amplitude f;, is then 
the su1n of a large number of independently distributed complex amplitudes pro-
portional to the ok, the distribution of the amplihlde G; \Vill correspond to that of 
the endpoint of a 1nany-step random walk in the complex plane. This distribution 
tends to take on a Gaussian form when the number of contributing modes is large, 
no n1atter how the n1ode amplitudes may be distributed individually. From a 
JH,1the1natical standpoint this argument differs hardly at all from the discussion of 
'hL• LL'ntral linlil theore1n given in Section VIII of the reprinted paper; i.e., the 
st;1r1 point, Eq. ( 14. 44), becomes similar in structure to Eq. ( R 8. 1) when 
l llL' function P ( { okf) is assu1ned to factorize into a product fl Pk ( ok) . As a slight • generalization of the discussion given there we may let the individual mode ex-
citations \Je non-stationary in character-and have mean amplitudes 

( 14. 46) 

Then by applying the central limit theorem, we find 

W(&, xi 1 x 
k) l'{<iakf'>- l<a.> 1 2) 

( 14. 47) 
j [& e(x, k)<a•> I' I 

exp 1- k)I'{< l••I'>- l<a,> I'} I 

If the mean amplitudes < ak >vanish, as they do for example in the case of 
stationary fields, we have 

1 I{;, I z 
-,=c-"----,-- e - o< 11 (JI, xl 
7r GCI) (x, x) ( 14. 48) 

To illustrate the use of this expression for W( & 1 x), let us calculate the n-th 
order correlation function with all arguments equal. By letting F( & ) = I & 12 n in 
Eq. ( 14. 45) we find 

G''1(x··· x) =fW(o, x) fol,. d'o. ( 14. 49) 

) 

.J 

·' ' 

I 

J 
i 
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For the Gaussian form of W given by Eq. ( 14. 48), the latter Integral Is simply 

l•l { (I) }' G (x ... x)= nl G (x, x) • (14. 50) 

An important class of fields which obey the separability conditions we have as-
sumed in deriving these results is that specified by the Gaussian density opera-
tors discussed earlier. For these fields, in fact, Eq. (14. 50) follows directly 
from Eq. ( 14. 36). But since we have not had to assume that the functions P 11 (a 11) 
are individually Gaussian in form to derive Eqs. 48) and (14. 50), these 
results evidently hold true for a considerably broader variety of field excitations. 

A sketch of the Gaussian distribution function W( & , x) is given in Fig. 13. 
Since this function plays a role akin to that of a probability distribution for the 
complex field amplitude & , it is evident that the absolute magnitude of the field 
undergoes a considerable amount of fluctuation. Thus, while the most probable 
value of the field amplitude is & = O, the amplitude will occasionally stray out 

w(o;,x) 

Re o Imo 

Figure 13 

into the regions of the complex plane which represent the "tail" of the Gaussian 
and correspond to arbitrarily strong fields. The relation { 14. 50) between values 
of the correlation functions may also be stated as the relation 

<fol'" >=n! {<fol'>}" (14. 51) 

between average moments < I & I J >of the function W, The extremely rapid in-
crease with n of the ratio <I& 12n >/{<1&1 2 >}n, which the Gaussian distri-
bution shows, is due to its" long-tailed" characterf' 

Although the Gaussian form for the function W ( & , x) will presumably apply 
almost universally to the radiation from natural or essentially chaotic sources, 
altogether different distributions n1ay be required to describe the radiation from 
certain man-made sources. In fact the avoidance of fields which have the ex-
tremely random or noisy character of the Gaussian for1n of W( & , x) has been one 
of the major goals of radio-frequency technology. One of its earliest accomplish-
ments was the development of oscillators which generate fields of extremely stable 
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modulus, e.g. broadcast carrier waves. These oscillators are non-linear de-
vices and the contributions of the various mode amplitudes to the total field are 
not at all independently distributed as in the Gaussian case. For a stationary 
field generated by such an oscillator we might find the function W( & , x) to assume 
a form similar to that shown in Fig. (14} j i.e., the modulus of the field, I &I, 

W{G;, x) 

Reo Imo 

Figure 14 

has only a very small probability for taking on values appreciably smaller 
or larger than its root-mean-square value, { < I G; 12> } 2 • . 

The shape of the function W( t;, x) furnishes an elementary insight into the 
origin of the photon correlation effect which was discovered by Hanbury Brown 
and Twiss by means of the experiment described in Lecture vm. Let us consider 
the two-fold coincidence counting rate for photons when the two detectors D1 and 
D2 of Fig. 9 occupy precisely symmetrical positions relative to the 
ed mirror m, and when the detectors are adjusted so that they register coincidences 
with no time delay. Since the arrangement is one in which the counters, in effect , 
occupy the same position and are sensitive at the same time, the coincidence rate 
is given by a correlation function of the form 

(2) G (xx, xx)= <lo(x)I'>. (14. 52) 

Now, according to Eqs. ( 14. 50) or ( 14. 51), for all chaotic light sources we should 
find 

<lo;(x)I' >=2<1& (x)l 2 >' 

= 2{d 11 (x, x)}'. ( 14. 53) 
(2) ( 1) 2 The amount by which G (xx, xx) exceeds { G (x, x)} Is a measure of the 

non-random tendency of the photons to be recorded as simultaneously arriving 
pairs; i.e., it is a measure of the height of the ''bump' on the coincidence rate 
curve shown in Fig. 10 . Since the coincidence rate for zero time delay is twice ' ' 
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the background or accidental coincidence rate, the correlation effect is not a 
one. (The original observations of the effect were made dllflcult by the 
long response times of the counting systems compared with the Ume interval over ·-'. 
which the correlation persists.) :'; ' 

To see the nature of the photon correlation effect for other types of dlatribu.- .J 
tions W( G , x) , let us note that it is proportional to · .,.,_ _ 

G121 (xx, xx)-{G 111 (x, x)}'=<Jo;(x)I'>-< J',;:l 
. - l 

= fw(&, x){fgf' -<l&I'>}' d'o;. (14.54) ''" 

One of the curious quantum mechanical properties of this expression is that, al· 
though It resembles a statistical variance for the quantity I g I', It may actually ; f " 
take on negative as well as positive values. That is true since W( 6, , x) as we 7j µ 
have noted, Is not strictly speaking a probability distribution. It Is not difficult , 
to find states of the field for which W takes on negative values at least locally and 
for which the average ( 14. 54) is consequently negative. When the field ls In such 
states photon coincidences will be recorded with less than the random background 
rate by the Hanbury Brown-Twiss detection apparatus, an effect which is the re-
verse of the one observed for natural radiation sources. 

Whenever the field is generated by an essentially classical source, i. e. , one 
with predetermined behavior, it will be possible, as we have seen Lecture XU, to 
construct a P-representatlon for the density operator with a non-negative weight 
function P( {a,}) . Then the function W( & , x) defined by Eq. ( 14. 44) will Ukewlse 
take on no negative values. We may thus state that for all classically generatable 
fields, the Hanbury Brown-Twiss correlation is positive, 

G121 {xx, xx) - {G Ill (x, x) }' 2' 0, 

If the correlation effect is to vanish for fields of this type we must evldently 
have 

W( & , xl{ I & I' - < I & I' >}' = O (14. 56) 

for all G • The function W( G;, x) can therefore only take on non-vanishing values 
at points lying on the circle I & I ' = < I & I 2 > • If the function W ( G , x) , In other 
words, is of a form which allows no amplitude modulation of the field, the correla• 
tion effect will vanish and conversely. In fact in that limit we have more generall.J 

G1' 1 (X"'X)=<1&1 2">=< l&i'>'={G111 (x, xJ}' ( 14. 57) 

and all n-fold coincidence experiments show an absence of any tendency toward 
statistical correlations. 

A number of the published discussions of the Hanbury Brown-Twiss effect ex-
plain it as being caused by the fact that photons are Bose particles and consequent-
ly have a certain tendency to cluster. That such explanations are far from com-
plete is made evident by the fact that the quantum mechanical form of the effect 
may have either sign; it may constitute an anticorrelatioD. or 11 replusion1 '' rather 
than a positive correlation or'' clumping." Ftlrthermore the fact that classical 
fields have only a positive correlation effect is a clear demonstration that the · 
average quantities one evaluates by means of the correlation functions (even where 
the P·representation exists) are not always equivalent in quantum theory and 
classical theory. The variety of fields encountered in the quantum theory ta aim· 
ply much larger than that allowed by classical theory. 

It should be evident that the measurement of the photon correlation effect,. at 
least at zero delay time, simply furnishes a measure of the amount of random 
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amplitude modulation present in fields .with positive W( &; , x) . The effect should 
be nearly absent from the field generated by a well stabilized oscillator. In 
particular a gas laser operating well above its threshold is presumably quite 
a stable oscillator, any Hanbury Brown-Twiss correlation found in its beam should 
be quite small in magnitude. 

The fact that a photon correlation experiment, or its analogue in the radio-
frequency region, an intensity correlation experiment, can furnish a simple way 
of telling whether a radiation field comes from a natrual source or a man-made 

have interesting if rather far-fetched astronomical consequences. 
If intelhgent beings elsewhere in the galaxy want to communicate with us it seems 
reasonable to suppose that they would use amplitude-stabilized pscillato;s of some 
sort as radiators. In that case their signals, as we have seen, W'ouldhaveanunmis-
takable character even when no message was being transmitted,' In fact the un-
modulated signal could be easier to distinguish from background noise than the 
modulated one. 

QUAS!PROBAB!L!TY DISTRIBUTION FOR THE FIELD AMPLITUDES AT TWO 
SPACE-TIME POINTS 

A number of the. correlation functions and other expectation values which in-
terest us depend on the fields at two different space-time points x1 and x2. These 
averages may be expressed, when the P-representation exists, in the general form 

( 14. 58) 

where the function Fis suitably defined for each case. Two familiar examples of 
such averages are the first order correlation function G(I) (x1 , x2), for which we . 
would choose 

( 14. 59) 

and the delayed coincidence _counting rate, G(2) (x1 x2, x2x1 ), for which we would 
choose 

F= l&(x1 {a,})1 2 l&(x, {aJ)f'. ( 14. 60) 

Now, if we define a species of distribution function W( & 1x 1 & 2x2 ) for the 
complex field amplitudes at the two points by means of the ' 

W(&,x,, &,x,) = fP({aJ)a (•l(&, -&(x,{aJ)o('l(& 2 -&(x.{a,}))Ild'a,, 
• ( 14. 61) 

then an average quantity of the form ( 14. 58) ts given by the Integral , 
fwc& 1x1, &2x2) F(& 1, &2)d2 &:1d2 &:2. ( 14. 62) 

The function W( 5, 1X1, & 2x2), more specifically, is a quasiprobability distribution 
which plays the same role in averaging functions of two space-time variables as 
the function W( & , x), which we discussed earlier, plays in the calculation of 
averages f?r a single space-time point. We may, in fact obtain W( f;,, x} from 
the two-pomt function by integrating over either of the field variables, 

W(&, x) = f W( ox, &' x') d 2 &' 

= fw(&' x', & x) d'&•. ( 14. 63) 
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When the function P({ a.}) factorizes Into a product of Independent weight 
functions, one for each mode, and when the number of excited modes is large, tt ta 
easy to show, again by techniques similar to those used in section vm of the re-
printed paper, that W( & ix1, &, 2x2) assumes a Gaussian form in the two complex 
amplitude variables ,g 1 and &, 2. To carry out the derivation we simply show that 
the double Fourier transform of W(&, 1 x 1 , t; ax2) with respect to the amplitude 
variables &, 1 and G 2 is asymptotically Gaussian in form when the number of excited 
modes becomes infinite. Inversion of the transform then yields a result which, for 
the case of stationary fields, can be written as 

W(01X1,&2X2) = 2 (1) 1 x 
G (x1 x,)G(l) (x,x,){l- fg(ll (x1 x,)I'} 

' ' I) (14.64) I & I _ 2 Re !; 1 (,*g( (x,x,) , I 
_ G(l) (x,x,) G(ll (x2x2) {G(I) (x1 x1)G(ll (x2x2)}' 

exp (l) 
1 - fg (x,x,) I' 

where g(l) is the normalized form of the first order correlation function defined 
by Eq. ( 7. 5) . As a simple check of this result it is easy to verify that the average 
of the function (14. 59) is 

as required, and that the average of the function ( 14. 60) is indeed 

G(I) (x1,x1)G(l)(x2,x2) + IG(t) (x1, x2) 12 = Gf2l (x1X2, xax1). 

·. (14.65) 

( 14. 66) 

The function W( G 1x1, fi, 2X2) plays a role in the theory which is analogous ID 
that of a probability density for a compound event, i.e., finding the field €. 1 at x 1 
= ( r 1, t 1) and G 2 at x2 = ( r2, t2) . In probability theory it is often of interest, in 
dealing with such compound events, to imagine that the first part of the event has 
already taken place and to calculate the probability that the compound event is then 
completed. We may define an analogue of such a conditioned probability function 
by means of the relation 

( 14. 67) 

where W( 0 1 , x1) is the function defined by Eq. ( 14. 44). The function W( (, 1 x1 I 
is analogous to a probability density for the field amplitude to have values 

in the neighborhood of f 2 at x2 = ( r2, ta) , given that it had the value f.. 1 at X1 = 
( r 1 , t 1). We shall call the function the conditioned quasiprobability density; it is, 
strictly speaking, only measurable as a probability density in the classical or 
strong field limit. 

When we calculate the ratio of the functions given by Eqs. ( 14. 64) and ( 14. 48) 
we find the result 

1 = -
Tr G(O 

1 
(x2 x2 ){ 1 -fg(ll 

x 
(14, 68) 

) I , , f, 1 gfl) 

'···11 - {G(I) (x,x2)}) - {G('l (x 1x 1)}l 
exp 

1 - I g(I) (x1 x,) I' 
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for the cond!t!oned quas!probab!ltty distribution. The field a In other words, has 
a Gaussian distribution about the mean value 

<< >= (!) (x1 xa) 
\!13 g 1 ..... (1) 

"' (x1 xi) 
( 14. 69) 

with a dispersion proportional to G ( •> ( x, ){ 1 - I g ( x1 x,) I ' } , which vanishes 
for X2 near X1 and tends to approach a< 2l (x3 x3 ) as Xa recedes from x1 • We shall 
examine these expressions more closely once we have illustrated the evaluation 
of the correlation functions on which they depend. 

Lecture XV ELEMENTARY MODELS OF LIGHT BEAMS 

Since our results to this point have all been stated in fairly general terms, it 
may be of help to discuss an illustrative example or two. Let us consider, as a -
particularly simple example, a stationary light beam which may be thought of as a 
plane wave progressing along the positive y-axis. We shall allow the beam to have 
an arbitrary frequency bandwidth, but shall take it to have a specific polarization 
@. The first order correlation function for the beam· may then be evaluated as a 
sum over plane wave mode functions by, means of Eq. ( 14.13). The index which 
labels the mode functions in this case may be taken to k,, the y-component of the 
propagation vector. (The other components vanish.) Since the values of k

7 
are 

densely distributed, when the size L of the quantization volume is large, the sum 
over k 1 is equivalent to a one-dimensional integration 

l; f dk, ••. · ., . 
When the mode functions given by Eq, (R 2. 9) are substituted In Eq. ( 14.13) and 
the sum is replaced by an integral, we find 

ftl lie Jo0 <nk> G (y,t,, y,t,) = 4, 
0 

r;;-kexp{-![k,(y1 -y2 )-w.(t1 -t2 )j}dk,. 

( 15.1) 

where Gfll is understood to be a correlation function for the field components in the 
direction @, as In Eq. ( 4. 21). Since the beam contains no backward travell!ng 
waves, (which would be represented by negative values of k1 ,) we may write the 
integral equally well as one over the frequency variable wk= ck,. Then if we in-
troduce the parameter 

1 s =ti - t, + c (y, ,- Ya) ( 15. 2) 

to express the space-time interval which occurs as an argument, we may write 

( 15. 3) 

The expression <nk > Jiwt, which occurs in the integrand of Eq. ( 15. 3), is 
the average energy of excitation of the k-th mode. Let us assume as an example 
that our beam has a spectral profile of the Lorentz form by ' 

u. ( 15. 4) 
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Here w0 Is the central frequency, 'Y Is the half-width at half height, and the COD!ltant ·'f< 
U is a measure of the intensity of the beam. Since the frequency w0 la typtcan, ( 
much larger than'>'• only a very small numerical error Is made In the Integration ·,· 
over the spectral porfile if the lower limit w = 0 in Eq. ( 15. 3) 1s replaced bf w • 
-oo. By making this approximation and letting w' = w - Wowe find 

1w•1 
e2 2 dw'. 

W' + y 

The singularities of the function 

1 1 ! 1 1 l 
,.-;+"'yT" = 21')' ) w• - !y - w• + ly I 

(11.1) 
1·; 

( 15,6) 

•' 

are a pair of simple poles lying at± !y In the complex w• -plane, The Integral In 
Eq. ( 15. 5) can be written as a contour Integral arowid a closed path In the w' -plane 
in either of two simple ways, depending on the sign of the variable s. For s > 0 
the contour may be closed by means of an infinite semicircle in the upper half 
plane (Im w' > O) ; for s < 0 it may be closed by a semicircle In the lower half 
plane. Since the integrals along both semicircles vanish, we find by applylna !be 
residue theorem 

., 1 
f 21,, -., 

1_1_ - _1_\ 
1w-!y W+!')'I 

( 1 -ya 
)2iy e • 

e. 1
w

11 dw = 211'1l 1 y• 2iY e ' 

s> 0 

s < o.· 
( 15. 7) 

The first order correlation function, aocordlng to Eq. ( 15. 5), Is therefore given 
by 

( 15. 8) 

The Intensity of the field is found by letting y, = y, and t 1 = ta, For thffe 
values of the coordinates, which correspond to s = 01 we have 

( 15. 9) 

This is the average of the squared magnitude of the complex field E (+l. It Is easy 
to see, lf we recall the formulae of elementary electrodynamics, that the para ... 
meter U Is equal to the average total of the electric and magnetic energy deD11lti011 
for the field. 

The correlation !unction given by Eq. ( 15, 8) shows that our light beam exhibits 
approximate !!rst order coherence when !ts frequency band width 'Y Is sufficiently 
small. Thus, when we have 

! » 1•1 c lt1 -t, _!(y, -y,)I, 
'Y c 

( 1&.10) 

the factor e·>·l•I In Eq, ( 15. 8) may be approximated by unity, and the remalnder of 
the expression for the correlation function may be written 1n the appropriate factor-
ized form. As an alternative way of discussing first order coherence we note that 
the normalized form of the correlation function is 

t) 
_ at1l(y1 t 1 , y2 t,) 

g(ll(y1t1, y :a - 1 
' jat 1>(y1ti, y,t,)G'"(y,t,, yat.)f• 

=exp [ !WoS - ylsl ]. ( 15.11) 
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This function Indeed has absolute magnitude close to unity as long as yl s I is su!-
f!ciently small. 

A good deal of attention has been directed experimentally to the problem of 
developing light sources with narrow line width. In the best of sources of 
the ordinary gas discharge or chaotic variety y is of the order of 109 cycles per 
second. In ordinary laboratory sources it is often of order 1011 cycles per second 
or larger. The corresponding coherence ranges are 30 cm. and . 3 cm. respec-
tively. 

Although we have been discussing the way in which monochrOmaticity may imply 
coherence, it may be worth recalling that it is not a necessary condition even for 
first order coherence. The coherence condition only becomes linked to a require-
ment of monochromaticity when we restrict our consideration t6 stationary fields, 
as we noted in connection with Eq. ( 7. 24). For the case of statiC>nary laser beams, 
the range of first order coherence is determined by the spectral bandwidth just as 
for ordinary sources. For the case of gas lasers it is possible to reduce the band 
width y to values of the order of cyales per second without too much difficulty, 
and it seems passible to achieve frequency stabilization to within about 10 cycles 
per second over brief intervals. The coherence ranges corresponding to these 
band widths are 300 km, and 30, 000 km. respectively. 

Before we can calculate the second and higher order correlation functions for 
our light beam, we must specify its statistical nature somewhat further. It is at 
this point that the descriptions of beams generated by natural sources and those 
generated by coherent sources become qualitatively different. Let us assume that 
our source is of the usual chaotic variety. Then the higher order correlation 
functions may all be expressed as sums of products of first order correlation 
functions, as we have seen in Eq. ( 14. 36). The spectral density function of our 
plane wave beam, in other words, completely determines the statistical properties 
of the field. In particular the delayed coincidence rate for counting pairs of photons 
is given by 

G ( 2l(Y1 ti, Y2 t2, Y2 t2, Y1 t1) = G( 11 (y1 t1, Y1 t1) G( •1(y2 t2, Y2 ta) + IG 1 0(y1ti, Y2t2) 12 

= o"i( y,t,, y, ti) o"i ( y,t,, y,t.){ 1 + lg"'(y,t,, y,t,)I '} 

=( i U) 
2 

{ 1 + e->Yl• I } • ( 15.12) 

The presence of the term e-2'l'Ja1 in this expression shows that the beam can never 
possess second order coherence. Furthermore when we plot the coincidence rate 
against s as in Fig. 15 we see that that term constitutes the "bumP'' on the 
Hanbury Brown-Twiss correlation curve, i.e. the deviation of the curve from the 
accidental or background coincidence rate. The experimental curve shown earlier 
in Fig. 10 corresponds to a curve of the form shown here after the resolution 
properties of the counter system have been folded in. 

2 4Gl2l1u2 

0 
S=t,-t2-tly1-y2) 

Figure 15 j 
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we have noted In !he last lecture !hat !he origin of !he correlation effect Uea 
in !he random amplitude modulation of our light beam. Thus the factors of n I by 
which the n-fold coincidence rate (at zero time delay) exceeds the random colnci· 
dence rate are easily explained in terms of the moments of the Gaussian amplitude 
distribution w( 0, x) given by Eq. ( 14. 48), To understand !he behavior of the 
correlation effect for non-vanishing time delays, and to see, for example, why the 
effect disappears for Is I >> 1/2'>', we may make use of the quasiprobability dtatri-
butions defined for pairs of values of !he field amplitude In the last lecture. When 
we substitute !he values given by Eqs. (15.8) and (15.11) for !he correlation 
functions Into the expression ( 14. 65) for the conditioned quaslprobabillty func!ion 
W(&1X1IG:2X2), wefind 

I l I &2 - G1e1_...,u8-t1a1 Isl 
w(<:,y,t,1 &,y,t,) = ' _,,,,,)exp - 'u (1- _,,,,,) I 

,.u(l-e • • (15.13) 

This function is to be interpreted as the distribution of values of the field amplitude 
&2 at y2 t2, when the amplitude is known to take on the value & l at Y1t1. When the 
parameter s vanishes, the mean radius of the Gaussian peak 

21
of this expression 

vanishes and the distribution reduces to !he delta function o< ( &, - o,) • As Isl 
' whi his gi b & e iwos-ylal de increases from zero, the mean value of (1' 2, c ven Y i , -

scribes an exponential spiral in the complex &2 -plane while relaxing to the value 
zero. The spiral which corresponds to s < 0 is shown in exaggerated form in 
Fig • 16 • At !he same time !he mean squared radius of !he Gaussian ,peak of !he 

I " \ \ 
'- I 

_ _.; I I 

Figure 16 
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distribution Increases to !he asymptotic value(l/2)U. For values of Isl much 
greater than 1/y !he conditioned distribution ( 15. l3) relaxes to a form centered <Jll 
the origin, which is simply !he unconditioned distributlon.W( &,, Y.2t2) given by 
Eq. ( 14. 48). The time 1/y is a relaxation time for !he d!str!but!ooa, 
o r knowledge of & 1 ceases to have much influence on the d1str1bution of &a for 
I :1 > 1/y. It is not surprising then !hat for Intervals for which I• I » 1/y the two-
photon coincidence rate, which is given by 
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o1
'
1< t f Y• •Y•t..,y,i,y,t,) = W(.t:,y,t,, 

= fw(.t:,y,t,)W(o,y,tt10,y,t,) 1 •i1'1 • 2 1'd' 0.d'o,, 
(15.14) 

reduces .to the factorized form 

y,t,.y,t,) = G10(y1t., y1 t1 )GC 1l(y,t,, y,t,). 

The tendency toward photon coincidences is wiped out in other words when th 
Interval s - t - • c· 1 ( ) b ' • e 
, ( ) - 1 "2 - Y1 - Ya ecomes large because the field amplitudes 
• y,t, and o (y,t,) cease to be statistically correlated. . 

To see how the full time dependence of the coincidence rate emerges from the 
Integral ( 15.14), we note that when the conditioned distribution function ts given by 
Eq. (15. 13), the .average value of f o , I' when o 1 ls fixed ts 

f W( o ,y, til o a Y• t,) Io, I' cl' o, = I oil' e ""'1' 1 + ! U( 1 - e -2,1•1) . 2 • ( 15. 16) 

When this expression Is multiplied by I o 1 I' and averaged as In Eq ( 15, 14), over 
the Gaussian form for W( lb 1 y 1 t1 ), we find ' • 

0'
21

(y1t1, Y2t2, Y2t2, Y1t1) =(iu>ll{ 2e·2"1B1 +1-e·2'rlsl} 

1 • { 
=(2U) .l+e-2,101}, (15.17) 

which verifies the value of the coincidence rate found earlier in Eq. ( 15. 12) • 
The values we have derived for the correlation functions have all been based 

on the assumption that the energy spectrum of our light beam has the Lorentz 
shape. The corresponding results are easily derived for other spectra for which 
the Fourier transform of the energy distribution ts known. Other simple smooth 

of the profile of a spectrum line, for example, lead to 
which are qualitatively similar to those for the Lorentz line 

Since the photon correlation effect extends over delay ti.mes of the order of the 
Inverse band width, y, It might appear that this time can be stretched out by a 
factor of a million or more by using the extremely monochromatic light of the laser 
rather than light from natural sources. The error in such reasoning lies in the fact 
that the s.tatlstlcal properties of the laser beam are quite different from those of 
the chaotically generated beams we have been discussing. Lasers, when they are 
operating most monochromatical.ly, generate beams with very little amplitude 

and for these, as we have seen in the last lecture, there would be 
virtually no photon correlation effect at all. 

MODEL FOR IDEAL LASER FIELDS 

For fields generated by chaotic sources, knowledge simply Of the average 
occupation numbers < Dk> ls sufficient to determine the density operator p and 

It all of the statistical properties of the field, However if our source 'ts not 
c_ otic in nature, J cannot expect that there will exist any self-evident way of 
finding the operator for the field It generates without analyzing the mech-
anism by which it radiates in some detail. The only reliable method we have of 
constructing density operators, in general, ls to devise theoretical models of the 
system under study and to integrate corresponding Schr&Hnger equation, or uiv-
alently to solve the equation of motion for the density operator. These 
are formidable ones for the case of the laser oscillator and have not been carried 
out to date In quantum mechanical terms. The greatest part of the dlfflculty Iles 
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In the mathematical complications associated with the nonlinearity of the dence. ·'r i; 
The nonlinearity plays an essentW role In stabilizing the field generated by the · . ·fl "·l1.\ 
laser. It seems unlikely, therefore, that we shall have a quantum mechanlcallJ ' ' l 
consistent picture of the frequency bandwidth of the laser or of the nuctuatloDI of 
its output until further progress is made with these problems. 

If we are willing to overlook the noise and band width problems for the moment, 
and to confine our discussion to the case of an ideally monochromatic laser, then it 
Is not difficult to find a representation for the density operator of the beam It gen-
erates. The radiation field Is coupled within the laser to the electric dipole vectora 
of all of the atoms of the active medium. These atoms have a polarization which 
oscillates with the field and at the same time radiates energy into it. If we vtew 
the active medium as a whole, we see that it has an oscillating polarization density 
of macroscopic proportions, i.e., all neighboring atoms contribute similarly to 
the total polarization density. If we remember that the time derivative of a polari-
zation density ls, in effect, a current distrbution, then we may think of the field aa 
being radiated by the oscillating current distribution. When the laser Is operating 
well above Its threshold there Is nothing weak about this current distribution; it is 
essentWly of classical magnitude. Furthermore, if the laser has the Ideal atal>ll-
ity we have assumed, the current simply oscillates steadily in a perfectly pre .. 
dictable way. We may, in other words, to an excellent approximation, describe 
the bound current in the active medium as a c-number current density. 

The general problem of finding the fields radiated by prescribed current 
distributions has been solved in Lecture XU. The most important property of the 
solution is that radiation by a known current distribution always brings the field to 
a coherent state (assuming that no other radiation was present initially). If the 
current oscillates with a single frequency, only the field modes with precisely that 
frequency will be excited. If we assume, for simplicity, that the geometry of our 
system favors the excitation of only one mode of the field, then the density operator 
for the field may be written in the form 

P= la><al, ( 15.18) 

where la> is a coherent state for the excited mode, and the amplitude a is given 
by an Integral of the form ( 12. 20) taken over the bound current distribution, 

Let us write the complex field eigenvalue which corresponds to the amplitude 
a as 

• 
6:(rt) = l(lit)' u (r) e·1w1 a ( 15.19) 

Then, since the density operator ( 15. 18) corresponds to a pure coherent state, the 
correlation functions of all orders will factorize to the form of Eq. ( 8. 5), l. e., the 
beam will possess full coherence, It follows then that the n-!old delayed coincidence 
rates will factorize to the form 

(2) ) • (l)( ) G (X1••• Xa, Xn••• X1 =fl G x,, Xj, 
t= 1 

( 15.20) 

and no photon coincidence correlations of any order will be detectable in the ideal 
laser beam. 

The argument which led to the density operator ( 15. 18) for the laser beam' 
assumed that the oscillating current distribution is known precisely i.e., that we 
know its phase of oscillation as well as its amplitude. In practice our knowledge 
about quantities which oscillate at extremely high frequencies rarely includes any 
information about their absolutt. phase. (This is due more to the absence of a 
suitable clock to use as a reference standard than it is to any difficulty of principle 
In defining or measuring the phase of essentially classical quantities such as the 



164 '!CAL COHERENCE AND PHOTON STATISTICS 

bound current in the laser.) When we lack any knowledge of the phase of oscilla-
tion of the current, the density operatoI'.·should be written in an appropriately 
specialized form of Eq. ( 12. 30) • It Is clear that this form Is simply the expression 
{ 15. 8) for the density operator averaged over the phase of the complex amplitude 
a, i.e., 

3 '11 de P=f I lale"><lale"l-o 2" 

= J 2,fai - lal) ( 15, 21) 

These forms of the density operator depend on a only thr'Ju'gh its absolute 
value, and hence represent stationary fields. They represent mixed rather than 
pure states of the field, but as we have noted in the last lecture, mixtures corre-
sponding to averaging an overall phase variable do not alter the coherence pro-
perties of the field. It is easy to verify that the correlation functions which are 
derived from the density operator { 15. 21) are identical to those which follow from 
(15,18). 

The explicit construction of the density operator for an ideal laser beam 
shows that no photon correlations are to be detected in such a beam. The reason 
for the absence of such correlations is evident from the analysis of the last lecture. 
The quasiprobability function W( x) which corresponds to the stationary density 
operator ( 15, 21) Is immediately seen from Eqs. ( 14. 44) and ( 15.19) to be 

1 (llw) W( & , x) = (llw\2 6( I &I_ - 2 I u( r)a I) . ( 15. 22) 
Tl lu(r)al 

This function vanishes everywhere in the complex &-plane except on a circle where 
the delta function is singular. It describes a fielci which undergoes no amplitude 
modulation at all, and that is the basic reason for the absence of photon correla-
tions in an ideal laser berun. 

It is also possible, by making use of the correspondence principle, to see the 
orig1n of this property of coherently radiated beams more directly. We shall sim-
plify our picture of the laser by regarding it simply as an oscillating charge dis-
tribution which radiates much as an antenna does. The charge, we assume, has 
only a single mode of vibration whose amplitude is, in effect, that of a harmonic 
oscillator. Since the electric polarization of this oscillator assumes macroscopic 
proportions we must regard the oscillator coordinate as an essentially classical 
quantity; i. e., the oscillator is typically in highly excited quantum states which 
have enormous quantum numbers, 

When the oscillator is decoupled from whatever mechanism has excited it and 
allowed to radiate spontaneously, its runplitude of vibration will decrease quite 
slowly in relation to the oscillation period. Since the behavior of the oscillator is 
essentially classical, the current due to its m0ving charge distribution is quite pre-
dictable. As we have noted earlier, the radiation by such a current brings the 
field to a coherent state. If, on the other hand, we look at the oscillator from a 
quantum mechanical standpoint, we may think of it as making transitions downward 
in energy, step by step, passing through states with quantum numbers n, n - 1, 
n - 2 · • •· where n >> 1. The length of time the oscillator spends in each of these 
states is distributed exponentially and, since n is so large, the average lifetimes of 
the states do not vary significantly from one state to the next. Each transition is 
accompanied by the emission of a photon. We are therefore not surprised to find 
that when the photons are detected by a counter, the intervals between their suc-
cessiye arrival times are exponentially distributed. This exponential distribution 
of time intervals indicates the absence of any tendency toward pair or higher order 
correlations. It is the characteristic distribution for the intervals between totally 
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which ha pen at a fixed average rate. It ts clear that where t'Wo 
uncorrelated teventsre used lere will be no time-dependent correlations of their 
or more coun ers a .-. 

outputs. . 

MODEL OF A LASER FIBLD WITH FINITE BANDWIDTH .. ;; 

An ta! laser beam In contrast to the Ideal variety we have just dlscueaecl, 
acu ' It f ency is bound to vary more or 

will never be precisely to which have their origin 
itseU. we shall construct a simple ::1el of. 

a laser field with finite frequency bandwidth by that the mec csm 
which disturbs the laser is essentially stochastic is nature. in 1 ode of. 

Let us assume, for simplicity, that the laser for 
the electromagnetic field which has frequency Wo • en e 
that mode is 

· lnfl the time-dependent and in the absence of any perturbing uences, t by 
a(t) and at(t) are given in terms of the time-independent ones, a and a , 

a(t) = a e-twot 

at (t) =at• •wot 

( 15. 23) 

The completely harmonic behavior of the oscillating f1;}: ;1!h =e 
various interactions of the field with other addition of a term to the field 
effect of these interactions can be represen d m functions of time f( t). U we 
Hamiltonian which depends on one or o H ( t) the total field Hamilton-
write this stochastic addition to the Hamiltonian as i , 

ian becomes 

H=Ho +H,(t). 
( 15. 24) 

the influence of the stochastic term most clearly we shall solve the 
equation in the interaction representation. The interaction Hamilton-

ian Is then 
.!_Hot -knot 

H,' (t) = e' H,(t) e 
( 15. 25) 

We define the unitary operator Ui (t, t') as the solution of the Schrtsdinger equation 

U.Ct, t') =H,•(t) u.Ct, t') (15.26) 

which obeys the initial condition 

U1 (t', ti)= 1. 

Then, if we write the state vector of the field at time t aS 
evolves according to the transformation 

lt>=Udt, t') It'>. 

( 15. 27) 

It>, we see that it 

The equation of motion for the density. operator in the interaction representation, 
which we shall write as P 1 ( t) ' is 

p,(t) =[Hr' (t), P1(t) J. at 
( 15. 28) 
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The solution for the time development of the density operator may be written in 
terms of the unitary operator U 1 as 

p i(t) = u, (t, t') p i(t') u, -· (t, t'). ( 15. 29) 

The expressions for the field correlation functions which we have discussed 
earlier in these lectures have all been constructed according to Heisenberg picture 
of quantum mechanics in which the state vectors and the density operator are In-
dependent of time. When these vary with time, as in interaction representation, 
the expectation values we require must be constructed somewhat differently, The 
required expressions can be found by starting with the form the expectation values 
take in the Heisenberg representation and carrying out the unttiry transformation 
to the interaction representation. , 

Let us consider two arbitrary operators which take the time-dependent forms 
L(t) and M(t) In the Heisenberg representation. An example of the kind of 
statistical average·whichisusedin the construction of the correlation functions is 
the averaged product which may be wrltien as< L(t)M(t') >, , The subscript 
on the average means that it is computed for a particular behavior of the random 
function f(t) on which the stochastic Hamiltonian dependens. The average, when 
evaluated in the Heisenberg representation, is clearly 

<L(t)M(t')>, = Tr{L(t)M(t')p} ( 15. 30) 

where p is the time-independent Heisenberg density operator. 
One of the ways of defining the Heisenberg representation (which is unitarily 

equivalent to all other ways) is to let the fixed Heisenberg state vector for the 
system be identical to the state vector ln the interaction representation at a 
particular time t 0 , Then the relation 

Jt>= u.,(t, lo) Ito> ( 15. 31) 

expresses the unitary transformation from Heisenberg states I to> to states It >in 
the interaction representation. The corresponding transformations of the Operators 
L, M and pare 

L,(e = u,(t, t,) L(t) u,-'(t, t,) 

M, (t) = U,( t, lo) M(t) U1 -:(t, lo) 

P1(t) = U.(t, to) p u.-'(t, lo), 

( 15, 32) 

where the subscripts i denote the forms of the operators in the interaction repre-
sentation. When the inverted forms of these relations are used to express the 
operators In Eq, ( 15. 30) we find 

<L( t) M(t') >• = Tr{Ur1(t, t,) L, (t) u,(t, to) u;'(t', t.) M, (t') x 

P1(t')Ur(t', t.)}. ( 15. 33) 

Since the time displacement operator Ur obeys the multiplication law 

Ur (t, t') Ur (t', t,) = U,(t, lo), ( 15. 34) 

the expression for the average may be reduced to the form 

<L(t)M(t') >. = Tr{L,(t)U,(t, t')M,(t')po(t•)u,-1(t, t')}. (15.35) 

'· ' R. J. GLAUBER 

The occurrences of the operator u, in this expression evidently take into 
the effect of the disturbance of the field during the Interval from t' tot. The di8·""i 
turbance, we are assuming, Is a random one and the average ( 15. 35) has been . ,'!\ 
evaluated for some particular way in which it may behave, i.e., it la evaluated for.J..°'-
a particular random function f{t). Before the average can be compared with a- !If 
perlments It must again be averaged over a suitable ensemble of random 
f(t). The latter averaging process Is simplified by our use of the Interaction . .:, 
representation. 1. 

Since the products LM which interest us are in normally ordered form lt will 
be extremely convenient to make use of the P-representatlon for the density opera-
tor. We shall therefore only consider the class of stochastic Hamlltontana which ·:w.<· 
preserve the possibility of expressing the density operator by means of the P-rlP-"> 
resentation. We assume, in other words, that pt ( t) may be written in the form :-tJ 1 · 

.. ''· 
p,(t) = J P(a, t)Ja><aJd2 a (15.38)1 . 

at all times t. 
If the density operator at time t' corresponds to the pure coherent state I a>, 

1. e. 

p,(t') = la><al, ( 15. 3'1) 

then, according to Eq. ( 15. 29), at time t It will be 

P1(t) = U1(t, t') pi(t') U1" 1(t, t') 

= Ut{t, t') Ja><a1u;1(t, t'). ( 15. 38) 

Now, according to Eq. ( 15. 36), this operator too wW have a P-representation for 
which we may introduce the special notation 

p1(t) = f P(at'i{lt) l!l><{lld'fl. ( 15. 39) 

The function P( at• I /II) is evidently a conditioned quaslprobabllity function. n 
corresponds In the classical limit to a probability distribution for the complex amp-
litude /l at time t, when we are given the knowledge that it had (or will have) the 
value a at time t'. 

To illustrate the use of these relations in evaluating statistical averages, let 
us consider the average of the product at(t) a(t') which occurs in the first order 
correlation function. If we substitute L(t) = at(t) and M(t) = a(t) Into Eq. (15.35) 
we find, by using Eq, ( 15. 23) 

t t i«• I ' <a (t)a{t') >1= Tr{a e • Ut(t, t•)ae"1
"•

1 p 1(t•)u;'(t, t')}. (15. 40) 

Next we make use of Eq. (15,36) for the density operator, and the fact that la > 
is an eigenstate of a to write 

< at (t) a(t') >• = Tr{ u, (t, t') JP( at') a JaX a Jd' au;• (t, t') a t}e 1•01t-r1 • 

( 15. 41) 
The unitary transformation inside the brackets may now be carried out by using Eq. 
( 15. 39) to represent the density operator indicated In Eq. ( 15. 38). We then have 

<a t(t) a(t') >, = Tr{f P( at') aP(at' I /II) J fl X{JJ fl* d' ad' {l}e 1•oft·I") 

= f P(at' )P(at' I /31) a fl• d'a d' /le 1•olt-t'l • 
( 15. 42) 
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The latter expression for the average bears a close resemblance to forms which 
occur in the classical theory of contin'1.ous Markoff processes. We now 
member that the average we have constructed corresponds to some P.art1cular 
behavior of the random Hamiltonian. The quantity to be compared with 
is not any one such value, but the average of all such values taken over a suitable 
ensemble of random functions f( t) . We may write this average as 

*d'ad2 iwo(t·t'l ( 15 43) 
<at(t)a(t')>=f<P(at')P(at'IJ31)> .,. ap pe • · 

over f 
The foregoing equations furnish us with a fairly general framework .for dis-

cussing the influence of random disturbances on the oscillations 9f the field. We 
shall now use this formalism in constructing a simple model of a beam of 
finite bandwidth. f" it f 

Surely the simplest way to give the oscillating mocfe of the field a m e re-
quency bandwidth is to assume that its frequency is a random function of time. We 
may do this by writing the total field Hamiltonian of Eq. ( 15. 24) as 

H=l'i[wo +f(t}] ata, (15.44) 

where f(t) is a random function of some sort whose ensemble average,<f(t)>, 
vanishes. 

Since the random Hamiltonian is evidently 

) t ( 15. 45) Hr (t) = l'if(t a a, 
and it commutes with Ho = fiwat a, the interaction Hamiltonian according to Eq. 
( 15. 25) ls simply Hr itself. 

The Schr&linger equation ( 15. 26) then takes the form 

t') = f(t)ataur(t, t'). 
at 

( 15. 46) 

Its solution is simply an exponential function which may be written in the form 

t.li(t, t') = e·lata<ll(tt') (15. 47) 

where ¢ is defined by 
• c/>(!t') = J, f(t")dt" . • 

( 15. 48) 

To see the effect of the transformation U1 on the states of the field, let us 
suppose that the field is in the coherent state I a >at time t'. Then at time t the 
state will be 

It>= Ur(t, r) la> 

= e·la1al/>(tt') 1a > 
= e -1at a<11(u·1 r {a •Ant) -i}1n > (15.49) 

ll=O 

an e·ln<?ftt') In> 

= lae -l'il(tt'l >. 
The particular random Hamiltonian we have assumed just transforms one coherent 
state into another for which the parameter differs from the original one 

;-' 

i. 
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by a phase factor. There is evidently no amplitude modulation in this model at alL 
When we use Eq. (15. 46) to construct the density operator represented by , 

Eqs. ( 15. 38) and ( 15. 39) we find 

(15.50)". 
·' 

from which we see that we may take the conditioned quasiprobabillty density to be '.:'/. 
simply the delta function ·· 

( 15. 51) 

If we introduce the phases of the amplitudes a and (3 via the definitions 

a= lale"o (15.52) 
{3=1,Bleifl, 

then the two-dimensional delta function ( 15. 51) can be written In terms of a product 
of two one-dimensional ones as 

P(at'/J31) = 6(IPI - lal) 6(9 -9,+ c/>(tt')). ( 15. 53) 

This function describes the evolution of the state of the field from the coherent 
state la> at time t', when we are given any particular random fuhction f(t). To 
find the state at time t which is typical of the set of possible random functions, we 
must average Eq. (15. 53) over the ensemble of functions f{t). We may write this 
average as 

P,. (at' IJ31) = -
1
1

1 
6( IPI - la 1)<6(9 - 80 + c/>(tt')> a . n-r. ( 15. 54) 

Now, if we recall that the function l>(O) has the Fourier series expansion 
., 

6(9)=_!. 
2rr m= -o 

etm11 ' ( 15. 55) 

we see that the averaged delta function in Eq. ( 15. 54) may be written as 

>avover(, 
( 15. 56) 

We must clearly specify some of the properties of the random functions f(t) before 
the exponential functions in Eq. ( 15. 56) can be averaged over them. 

The different physical processes which may perturb the frequency of our field 
oscillator require in general that we discuss various kinds .of random functions 
f(t). For the present, however, we shall only consider one of the simpler types 
of random functions. We shall assume that f(t) is a stationary Gaussian stochastic 
process, i.e., that at any time t the ensemble of values of f(t) has a fixed Gaussian 
distribution. Then it is not difficult to show that the averaged exponentials in Eq. 
( 15. 56) are given by 

t 1 • t t 
<exp{ Im J f(t")dt"} > " =exp J- - m' J J 

t' 2 t' t' over r ( 15. 57) 
< f(t") f(t"'}> dt"dt"'}, 

where the ensemble average< f(t''} f (t''') >is simply the auto-correlation function 1, 

of the random process f ( t) . 
Let us assume, simply as an illustration, that the function f( t) fluctuates so 
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rapidly that its autocorrelation function can be taken to have the form 

<f(t")f(t"')> = 2, 5(t" - t"') ( 15. 58) 

t Then the averaged exponential in Eq.( 15. 57) re-where is a positive constan . 
duces to 

<exp{imj f(t")dt"} > •• =exp{ -m'(lt -t'I}, 
tl ov11r f 

and the averaged delta function in Eq. ( 15. 56) becomes 
1 f e 1m(ll-110)-m

2i:!t-t'I < 6(B - Bo+ l = 2'7T 

( 15. 59) 

( 15. 60) 

It is interesting to note that this function is simply the .. Gre.en' s func:ion the it 
partial differential equation for the diffusion of heat on a circular ring, i.e., 
satisfies the equation 

( ..£.._ ' _£_)< Me - e, +<I>)>,.= o 
at ae2 

d d t •( e e ) for t = t' It is clear then that the conditioned for t > t• an re uces o v - o · . 
quasiprobability function ( 15. 54), which we may write as 

1 '1 im(1•-1101-1112 t11-1•1 (15.61) 
p,. (a t• I 13!) = 2, 1 al 0 (I - I al )mC .. e 

describes a kind of random phase modulation in which the phase variable 8 = arg f3 
"diffuses" away from its initial value, 80 • . 

The reciprocal of the diffusion constant defines a t!:e 
base variable. For time intervals t - t' which greatly excee ., e r 15. 61) reduces to a constant, circularly symmetric form; the phase 8 becomes 

to the question of evaluating the first order correlation 
function for the field. According to Eq. ( 15. 43) we may construct the function as 
soon as we have evaluated the average 

<P(a t')P(at'I 13!) > •• · 
' o1'e r f 

( 15. 62) 

we shall assume that we have no knowledge of the initial of oscillation of the 
field. Since the random perturbation of the _field only shifts its phase;e 
remains uniformly distributed at all times; l. e.' we _never fi ld is 

base than we did initially. The density operator which represen s e e 
\;,ere!ore stationary. The function P( a, ; ) t 1Et ( 
through its absolute value and is indepen en o ' an . t') ma be 
f( t) as well. In this most frequently occurring case, the function P( a, Y 
written as P( I al) and removed from the averaging brackets in the expression 
( 15. 62). That expression then reduces to the form 

P( I al) P.,(at' , 

where the second factor is given by Eq. ( 15. 61). 
Now It is evident from Eq. ( 15. 61) that .. f 6( - !al) f, 

0 J • ' 1 P., (at' 113!) d 2rrlal 
[,e lrnft1-fl0J-m2i:11-1• I d 0 

=lale-Wo·t;lt-l'I = 

( 15. 63) 

x 

( 15. 64) 

( 
R. J. GLAUSER 1T1 f' 

On substituting the expression ( 15. 63) Into the correlation function ( 15. 43) and ·•·.· 
making use of the integral just evaluated we find •>; ·· 

<at(t)a(t')> = JP( lal) lal'd'a e ••oft-t'l-<11-••1 

( 15. 85) 

where the symbol <I al 2 >has been used for the mean squared amplitude of excita- .1 
tion, or average number of photons in the mode. "-1 

If we assume th t the mode function u( r) for the field does not change as a 
result of the perturb lion, then the full space-time dependence of the first order 
correlation function may be found by multiplying the expression { 15. 65) by a prod• 
uct of the form u• ( r) u( r•) . According to Eq. ( R 10. 17), which Is a quantum ,. 
mechanical form of the Wiener-Khintchine theorem, the energy spectrum of the 
field will be porportional to the Fourier transform of the correlation function 
( 15. 65). When we calculate the transform we find .. .. J <at(O)a(t')> elwt'dt' = <la/2> J e1(w-woH'-tll'I dt' 

-oo (15, 66) 

- <I I'> 
2

' - a 

Our phase diffusion model thus has an energy spectrum of Lorentzian shape, and 
the diffusion conetant ( Is Its half-width. 

From a spectroscopic standpoint, the field we are describing could not be 
distinguished from the chaotically generated field of Lorentzian line shape which we 
discussed earlier, if we happened to have t = y. The fundamentally different nature 
of these two fields is best expressed by means of their higher order correlation 
functions. These functions may be evaluated for the phase diffusion model through 
simple extensions of the methods we have developed, but we shall not do so here. 
One fairly obvious result, however, is worth mentioning. Since the random phase 
modulation we have described carries no amplitude modulation with it, it will not 
introduce any photon coincidence correlations. 

There are a number of Ways in which the simple phase diffusion model which we 
have presented as an illustration can be generalized and made more realistic. We 
may easily remove, for example, the assumption that the stochastic process f(t) 
has a vanishingly E.mall relaxation time. Furthermore we may consider other types 
of stochastic processes than Gaussian ones. Finally, we may consider other form.a 
of the random Hamiltonian than ( 15. 45) and attempt In that way to account for some 
of the effects of random amplitude modulation as well as phase modulation. 

Lecture XVI INTERFERENCE 
OF.INDEPENDENT LIGHT BEAMS 

One of the questions having to do with coherence which has given rise to much 
discussion and a certain amount of confusion recE;ntly is that of interference between 
independent light beams. That such interference phenomena can exist should come 
as no great surprise; they have been observed long ago with radio waves of fixed 
frequency. If we have had to wait until recently 1 to see such phenomena at optf ... 
cal frequencies, the delay has been wholly due to instrumental difficulties. 

The problems which have arisen in the discussion of these interference phe· 
nomena concern the precise way in which they should be understood and described. 
It would be quite difficult to say how much of the misunderstanding we have mep.-
tioned is simply semantic in nature and how much is more deeply conceptual. There 
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is for example nothing intrinsically quantum mechanical about the interference 
or' independent beams. Yet the fact thaf altogether different sets of quanta must 
somehow interfere with one another seems to have contributed greatly to the con-
fusion. We shall not recount the history of this subject here but shall only discuss 
a few of the simplest possible examples of the interference phenomenon. 

The simplest sort of experimental arrangement we can have is essentially 
that illustrated in Fig. 17. Two independent laser sources (or possibly other 
types of sources), L1 and L2 project their beams in ".'hich are nearly 
parallel, but slightly convergent. The beams fall upon overlapping areas _of a 
screen 1:. Uthe light intensities are high enbugh, or we have sufficient time 
available to record over a long period, we may let our detector be a photographic 
film in the plane 1:. If the conditions do not favor photography, on the other hand, 
we might use a mosaic of photon counters in the plane In either case we will 
look for interference fringes in the area of overlap of the beams. 

Figure 17 

Let us assume that the way in which each light source the field can be 
described in the P-represenlation by means of !unctions P1 ({a,.)) and P2 ((an l) • 
The single P-function which describes the superJ>:OSed fields is then given, accord-
ing to Eq. (R7. 18) or (R9.15), by 

J (2\ ,j' d' P({a,)) = P,({aa ))P,({a,. )) U 0 (a, - a,.- a, d aa a,., 
k 

( 16. 1) 
The average intensity of the superposed fields at any space-time point x is given 
by the first order correlation function 

o10(x, x) = f P( {a,)) I• (x, laJ) I' d'a, (16. 2) 

= fp,({au)) P,({a,.)) l<:(x,{a>.J<+<•.-lll' 

In reaching the second of these expressions we have made use of Eq. ( 16. 1) and 
have carried out the integrations over the variables {at} . Now let us note that the 
eigenvalue field g ( x, {at)) depends linearly upon the amplitudes a. so that we 
have 

o(x, lan+a,.)) =&(x,(a,.))+ &(x, {anl), ( 16. 3) 

a statement which corresponds to the classical superposition principle. If we 
substitute this relation In Eq. ( 16. 2), and let the symbols { G"1(x, x) J, with 
J. = 1 2 be the intensities which would be produced by either source in the absence •• of the other, then we may write the total intensity as 

-,'.·\. .. 
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x)={G1"(x x)),+{G1"(x x)} · 
. • • ' (16.4)'"' 

G( 1l(x, 

+ 2Re {JP,( (a"')) g '(x{ aal) Ud'auf P,( (an)) cl:(x{a,J) lld'.., \ • ; 
k II f ..f, --

The third term of this sum is evidently an interference term, We must next ask 
when it contributes to the observed intensities and when it does not. 

We have noted In Section VIl of the reprinted paper that any light beam described 
in the P-representation can be regarded as the superposition of two fields, one of 
which corresponds to a pure coherent state and the other of which is of the Wlphased 
form, i.e., it has vanishing expectation value for the complex field strength. When 
each of the fields generated by the two sources is analyzed in this way, it becomes: .. 
clear that the unphased components of the fields will not contribute to the inter-
ference term in Eq. ( 16. 4). The interference term will, in fact, vanish completelJ 
unless the field generated by each of the two sources has a non-zero coherent 
component. · 

The most elementary kind of example in which the interference term is dllfereut 
from zero is one in which the two sources acting separately bring the field to 
coherent states represented by 

P,( {a,. ) )= u 0121( a..- . 
' k 

( 16.5) 

Then the interference term of Eq. ( 16. 4) reduces to ., 
2Re{ o'(x, (fi"')) g(x, {,n.}) ). ( 16. 6) 

The analysis of this term may be simplified by assuming that the two sources 
are ideal lasers which are similar in construction and that each excites only a 
single plane wave mode. The two plane wave modes are then not identical since 
their propagation vectors are not quite parallel, but they have the same frequency. 
Under these conditions it is easy to see that the interference term ( 16. 6) describe• 
stationary intensity fringes which are seen on the screen in the area in which the 
two beams overlap. The fringes are perpendicular to the plane which contains the 
two propagation vectors and may be made narrow or broad by making the angle 
between the beams large or small. • 

Let us.suppose that the single mode excited by source 1 has amplitude {31 and 
that excited by source 2 has amplitude (32 • Then, since the plane wave mode func .. 
tions are intrinsically complex, it is clear that the position of the fringe system on 
the screen 1: (i.e. , its displacement in the direction perpendicular to the fringes) 
will depend on the phase difference of the amplitudes (31 and f3a. Uthe 
geometry of the experiment is sufficiently well determined, then by observing the 
fringe system we may measure the phase difference. 

No difficulty of principle stands in the way of our actually carrying out ex-
periments of the type we have just described with two laser beams. But in practice 
we never have the complete knowledge of the excitation amplitudes which we assum-
ed, for example, In constructing Eqs. ( 16. 5) and ( 16. 6). As we have remarked 
many times earlier, we are almost always lacking knowledge of overall phase 
parameters. As long as this is so we do not know the phases of oscillation of our 
lasers, and the only way we can honestly represent the density operators for the 
modes they excite is by means of the functions 

1 
P,(a,) = I O(la1 I I) ( 16. 7) 

for j = 1, 2. These functions represent the stationary density operators which are 
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obtained, as in Eq. ( 15. 21), by averaging the coherent states over phase. But the 
P-functions ( 16. 7) are of the unphased variety; they correspond to vanishing aver-
aged complex fields. When the descriptions of our two sources are stationary, in 
other words, the interference term in Eq. ( 16. 4) vanishes identically. 

If this result is taken to mean that there are no fringes to be seen on the 
screen, then our ignorance of the phase parameters has somehow wiped out a 
large scale physical phenomenon. To bring the paradox of such a conclusion. into 
sharper focus it is possible to argue that each of our laser is essentially 
classical in nature and really has a well defined phase of oscillation. Consequently 
the fringes should be visible on the screen both to people who do and who don't 
know the phases alike. .. 

To see that we have not really encountered any fundamental dilemma we must 
recall that density operators are constructed for the of describing en-
sembles of quantum mechanicai. experiments. The need to repeat experiments 
upon many similarly prepared systems arises for reasons which are quite basic 
to quantum mechanics. The quantities measured in general fluctuate unpredictably 
from one system to another, even when all the systems are prepared in precisely 
the same quantum state. When the quantum state itself is random there is still a 
further reason for carrying out experiments on a large number of systems and 
averaging their results. 

The two P-functions given by Eq. ( 16. 5) represent, for example, pure states 
of the field. In any single experiment carried out with two sources for which all 
the excitation amplitudes and phases are known, we would probably detect a rhore-
or-less noisy form of the interference pattern we have been discussing. The inter-
ference pattern would assume the smooth form given by Eq. ( 16. 6) only after we 
had averaged over many experiments performed with identically prepared sources. 

when we have no knowledge of the phases of oscillation of our two laser 
our formalism describes an ensemble of experiments in which the _phases 

are allowed to be completely random. It is true that the contribution of the inter-
ference effect to the average intensity for this ensemble vanishes. But one can 
not conclude from the vanishing of the ensemble average that the fringes do not 
show up in the individual experiments. This experiment is one in which the mem-
bers of the ensemble are individually quite unlike their ensemble average. Each of 
the experiments will exhibit a stationary fringe pattern on the screen, just. as when 
the oscillation phases are known. But since the phases are random, the displace-
ment of the pattern will vary randomly from one experiment to the next. It is the 
averaging over the random displacement which wipes away the fringes in the en-
semble average. 

A question we might now ask is how we can use the density operator formal-
ism at all to make statistical statements about the fringe pattern. When the 
sources are stationary it has appeared to tell us nothing but that the ensemble 
average of the interference intensity vanishes at every point on the screen. Let us 
imagine that we are performing the experiment with a pair of lasers chosen from 
our random phase ensemble. To determine that there is indeed an interference 
pattern on the screen we must measure the intensity at a considerable number of 
points on the screen. We do not prepare the system anew for each of these mea-
surements; they are carried out for a single preparation of the lasers. Now just 
the first of the intensity measurements at a known point on the screen goes a long 
way toward determining the phase difference of the two lasers. It determines a 
linear combination of the sine and cosine of the phase difference of the amplitudes 
13

1 
and (32 which restricts the phase difference to either two discrete values. 

Measurment of the intensity at another point then determmes the phase difference. 
Once we have used intensity measurements at a couple of points to determine 

the phase difference we can predict the appearance of the rest of the interference 
pattern in an ensemble average sense. Of course the ensemble in this case is no 
longer the one we began with, though it still remains a stationary one. Our initial 
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intensity measurements furnish us with information which requires that we reduce''.·,"-: 
the size of our Initial ensemble by retaining only those experiments In which the 
phase difference is found to be nearly the same. This reduced ensemble will be 
described by a stationary density operator since a phase factor common to 
amplitudes jJ1 and {:Ja of a pair of degenerate modes remains completely random. · r<-

Let us suppose that we find the phase difference of the two beams to be 

arg f31 - arg f32 = B. ( 16. 8) 

Then the selection process by which we reduce the ensemble to one appropriate to 
experiments for fixed 8 can be represented by inserting a factor 

I a(arg a, - arg a, - e) (16.8) 

Into the Integrand of the P-functlon ( 16. !) • Once we have located the fringe pat-
tern by experimentally determing its unpredictable position, we have no difficulty 
in constructing a stationary density operator which predicts the average tntenaiUee 
in the pattern. 

The idea of reducing the size of our ensemble to reflect the acquisition of 
knowledge about a system should not be too unfamiliar. In any multi-step game ol 
chance, for example, the odds for winning, which one hopes are even initially, 
change as one completes each move, The initial odds are calculated by using the 
complete ensemble of possible games, but the odds calculated at the later states 
use only the reduced ensembles appropriate to the information which was revealed 
by the earlier moves. 

Another sense, though a rather different one, in which the use of the stationary 
density operator furnishes information about the randomly placed interference 
pattern may be seen by discussing the second order correlation function. It Js euy 
to show that the two-fold coincidence counting rate 

Gt" (rt r' t', r' t' rt) = JP( {a; } ) / o (rt {a; } ) I' I o ( r' t {a; }} I' n d' a. • ( 16.10) 

contains a term which oscillates as a function of the positions r and r' on the screen. 
This type of interference term may be derived by means of essentially the same 
argument as we used in discussing the intensity interference experiments in 
Lecture II. The oscillation of the intensity correlation function must evidently re-
flect oscillation of the intensity itself. Furthermore since the unknown phase 
angles of {31 and /32 cancel out of the second order correlation function nothing 
need be known about them to calculate it. 

However a simple measurement of the intensity of a random fringe pattern 
(e.g. , by examining a photograph) is not the same as a measurement of G(Z), and 
there is no simple way of concluding in general from a knowledge of G' 21 what the 
intensity pattern of the random fringe system should be. Thus, while ofZl and the 
other even order correlation functions are useful in their own right, they offer no 
alternative way of discussing the fringe intensJties. If w.e want the intensities we 
must derive them from the density operators for appropriately reduced ensembles. 

We have assumed to this point that our light sources are ideal noise-free la,Jen. 
We now ask what happens when the random modulation of the devices is taken into 
account. Since the most important of the parameters in determing the two-beam 
interference pattern is the phase of oscillation of the laser, we can secure a good 
idea of what goes on by using the phase diffusion model to represent the laser 
beams. According to that model, the phase of a laser beam wanders appreciably 
over time-intervals long compared to a relaxation time and remains relative .. 
ly fixed over time intervals which are much shorter in length. 

When the two laser beams are represented by such models, the light intensities 
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we record on the screen will depend on the length of time we require to make our 
measurements. If the intensities a.re sufficiently great that we can record them in 
a time short compared to then the two beams will retain nearly the initial 
values of their phases while the measurements are being made. A randomly situ-
ated fringe pattern of the sort we have already discussed should then show up. But 
a similar measurement made, say, half a relaxation time later would reveal a 
differently placed set of fringes, corresponding to the fluctuation that had taken 
place in the phase difference of the two beams. 

If we could follow the fringe intensity as a function ·af time, we should see the 
parallel fringe system execute a sort of random wandering back and forth on the 
screen. U we were to try recording the intensities on the scree'h by integrating 
these over a period much longer than the relaxation time we would find that the 
fringe structure is washed out and only a uniform intensity remains. 

Laser sources are convenient ones for such two-beam experiments, because 
they are intense, and monochromatic eno\lgh to have relatively long relaxation times. 
It is also quite possible, in principle, to carry out such experiments with beams 
from ordinary chaotic sources. The random amplitude modulation of these beams 
will mean that the fringes fluctuate greatly in contrast as well as in position. The 
relaxation time for these variations will be the inverse frequency bandwidth of the 
sources. H such fringes have not been photographed to date, it is because ex-
posure times shorter than 10- 10 sec. would be necessary. 
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Lecture XVII PHOTON COUNTING EXPERIMENTS 

The number of photons which a counter records in any interval of time fluctu-
ates randomly. In a simple type of counting experiment we might imagine that the 
counter is exposed to the field for a fixed interval of time t. Then, by repeating 
the experiment many times, we should find a distribution function for the number 
of counts received in that interval. Although the average number of counts is fre-
quentJy all that we require, the way in which the number fluctuates about its aver-
age value can be fully understood only when we know the distribution function and 
its moments. In this lecture we shall discuss ways of predicting the distribution 
function and the relation between the form of the distribution and the coherence of 
the field. 

Let us first recall some of the results we established. in Lecture V. We cal-
culated there the probability that in an interval of time from to to t all n atoms of 
a hypothetical n-atom photodetector undergo photoabsorption transitions which are 
registered as photon counts. When we eliminate the tensor indices by assuming 
the field to be fully polarized, this probability Is given by Eq. ( 5. 8), I.e., we 
have 

' ' . p<nl(t) =I···l I1 S(tJ" -!:t') G(n)(r1t1 1 ···rntn1 , rntJ'···r1t111 ) x 
0 0 J =1 

• 
n dtJ' dt" 
J =1 :I ' 

( 17. 1) 

where the sensitivity function S Is defined by Eqs. ( 4. 12) and ( 4. 10) , and we have 
set to'= 0. If our detector happens to be of the broadband variety, we may use Eq. 
( 4. 14) to reduce the number of time integrations in this integral from 2n to n. but 

,, 

I, .·_· 
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this reduction is not a necessary one for the arguments to follow. .f 

We must now consider a more realistic model of a counter which contains an 20 -, .. 
enormous number of atoms, say N...., 10 , which are capable of detecting photons 
by undergoing photoabsorption processes. Needless to say, it will virtually never . 
happen that all N of these atoms do undergo absorption processes in any finite 
interval of time. The total number of photoabsorptions is much smaller as a rule 
and we shall try to use Eq. ( 17. 1) to find its distribution law. ' 

The total number of photocounts recorded in any interval of time may be re ... 
garded as a sum of random variables, one for each atom of the detector. To do 
this, let us introduce the random variable z 1 for the j-th atom, which takes on the 
values 

_ \ 0 if no photoabsorption process is recorded for the i· -th atom ZJ l 1 if a photoabsorption process is recorded for the j-th atom. ( 17. 2) 
Then the random variable which represents the total number of counts will be 

" c = T Zj. 
:I =l 

( 17. 3) 

Associated with each final state of the system i.e., any set of values z 1 ··•ZN, 
there is a probability function !P ( z1 ···ZN, t). The statistical average of any func-
tion of the z:1's is then found by averaging the function over the probability distri-
bution. For example, the average number of counts is given by 

N 

<C>= '5' [, z, O'(z,-··z.,t), (17.4) 

where the final summation is over the values O and 1 for the entire set or variable& 
ZJ. We shall write such sums in the future as sums over l ZJ } . we next introduce 
the reduced probability function for the j-th atom which we define as 

PJ (ZJit) = [: g:>(z1···z"1 t). ( 17. 5) 
{ z k, k 

The average number of counts may be written in terms of the reduced proba-
bilities PJ as 

N 

< C> = L· I z,p,(z,, t) 
{"'k} J=l 

N (17.6) 

= p, ( 1, t) • 

The probability PJ ( 1, t) which occurs in the latter expression is clearly equal to 
the one-atom transition probability p(IJ(t) evaluated for the j-th atom, That proba-
bility is given by Eq. (17.1) fern= I, withr1 =rJ, andweshallwriteitas 
P(l\ (t). The average number of counts is thus 

< c >= ,t p< 11 , (t) (17. 7) 

We shall now introduce a generating function' which will enable us to solve 
simultaneously for the unknown distribution of photocounts and for its moments . 
We could, of find the moments directly by generalizing the way in which 
< C >was obtained, but the present method has the advantage of enabling us to ob-
tain all the quantities of interest from a single function. The generating function 
we choose is 

Q( >., t) = < ( 1 - >.) C >, ( 17. 8) 
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where C is the random integer given by Eq. ( 17. 3), the brackets indicate an en-
semble average, and the variable A is intended simply to be a useful parameter, 

If we write Q as a sum over the integer values which C may take on we have 
an expansion of the form 

N 

Q(A, t) = ( 1 - A)m p(m, t), (17.9) 
m.=O 

where p( m, t) is the prC1bability that the counter has recorded m photocounts at 
the time t. It Is clear that If Q( A, t) Is known p( m, t) ·can be obtained by differ-
entiation, 

{-l)m [dm J p{m, t) = -;;;r ;nm- Q(A, t) , 
m. UA 1 " I 

(17.10) 

since Eq.(17.9) may be regarded as a Taylor expansion for Q about A= 1. 
If, on the other hand, we expand Q( A, t) in a power series about ); = 0 we have 

N A" [d" J Q(A, tl =.I; nr iK'" Q(A, t> (17.11) ... 
The derivatives which occur in this expansion are given by 

(-1)"[;£.- Q(A, l)J •=• 
(17.12) 

= <C(C-1), •• (C-n+l) >. 
The averages on the right of this equation are known as factorial moments. They 
are simple linear combinations of the ordinary moments <en> of the distribution 
of photocounts. It is clear from these relations that a knowledge of the generating 
function enables us to find both the probability distribution and its moments. We 
must next show how it is possible to evaluate the generating function in terms of 
the photoabsorptlon probabilities p<"l(t). 

First let us note that Q( A, t) can be written as . 
'1 :t zj Q(A, t) = L' .cP(z1 ••• z,t) (1-A)Fl 

{. Ir.} 

( 17.13) 
• = [,.cP(z.·••Z•t) II (1- A)"l . 

{•1r.} J= 1 

The latter form, however, may be simplified by using the identity 

(1-A)'l = 1-ZJA 

which holds because z 1 takes on only the values zero and one. 
!!cation, Eq. ( 17. 13) becomes 

N 
Q(A, t) = L o>(z1 •.• z,, t) II (1 - AZ 1). 

J = l 
{ •t} 

(17.14) 

With this slmpll-

(17.15) 

When the N-fold product in this expression is expanded in powers of A, we have 
N 

Q(A, t) =I (-A)' I 
a=O { •j} n-fold 

combtnat101111 

(17.18) 
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where the first sum is taken over all the ways of choosing n atoms from the set of 
N. 

If we now define the n-!old joint probability that atoms Ji, . , j, all undergo 
photoabsorption processes as 

p(nl, 1 •• ,Jn (t) = ZJ 1 ••• Zf8 U>(z1•••ZNt), 
{">) 

then we may write the generating function in the form 

(17.17) 

' Q(A, t) = l (-A)" l p<•li,·•·l, (t). (17.18) 
11:0 n-foJd combinations 

Now the number p(nJ, 1 ••• Jn {t) has been defined as the probability t.hat each of a 
particular set of n atoms absorbs a photon, regardless of what all the other atoms 
do. This probability Is simply the expression p<•l(t) given by Eq. (17.1) and evalu-
ated for the particular atoms j 1 ••• jn. Hence we know all the terms of Eq. (17.1$ 
and the problem is simply to sum them. What we shall do, in fact. is to turn the 
sums over atoms into volume integrations. 

Since the probabilities p<nl(t) are only large for values of n which are extreme· 
ly small in comparison with N, we may approximate the sums over n-fold combina-
tions by writing 

1 N l 
n-fold combtnallo1'18 n. h=l 

(17.19) 

Then the sums over the individual atoms may be carried out as spatial integrations 
by letting the number of atoms per unit volume be a( r) and writing 

I .. · = J dr, a( r,) ... 
J1=l 

(17.20) 

We are, in effect, dealing with the limit N- co. When the probabilities given by 
Eq. ( 17. 1) are substituted in the expression ( 17. 18) for the generating function 
and the sum over combinations of atoms is transformed as we have indicated, we 
find 

- ( -A)ri JI J 1 Q( A, t) - 6 -;;'! • ,. f . . . , f 
n=l n • t 0 t 0 Vol. of Detector Vol. of Detector 

GC•l(r't' r't' r't" •t,") ll•••11D 1 n11•••r1 x (17,21) 

• 
Il a(rJ') S(tl' - tJ') drJ' dtJ' dtJ''. 

J=l 

To abbreviate this expression a bit, let us define the function 

V(x', x") = a(r') 6(r' - r'') S(t• - t•), (17.22) 

where x indicates both the position r and the time t. Then the expression for the 
generating function reduces to 

(-A)' f f (•l ' Q(A, t) = L· ---,-- • •• G (x1 ••• x,', x!' ... x1 n) x 
n=i n! .. 

• n v (xJ' xJ'') d"'xs' d4 xJ''. (17.23) 
f;:l 

Since this is a power series expansion about ;\, = O, the factorial moments must be 
given, according to Eqs. (7.11) and (7.12), by 



180 Ol ,AL COHERENCES AND PHOTON STATISTICS 

<(c ... fG1"1(x,' ··· x,', x," ···x,") x 

" 
( 17. 24) 

J=l 

where the integrations are carried out over the sensitive volume of the counter and 
the time interval from O to t. 

As an illustration of the usefulness of these results, let us consider the case of 
a fully coherent field. For such a field we have the 

o'nl(x1'··· Xn', x,," ••• x1") =fl G(l)(Xj 1, xJ''), 
l=' 

so that the series for Q( A, t) may be summed to the form 

Q(A, t) = G(l)(x',x")V(x'x"}d•x•d'x" • 

But from Eq. ( 17. 24) we see that the average number of counts is just 

<C> = J Jo(tl(x', x"} V(x'x11 ) d4 x' d4 x"; 

so that the generating function may be written as 

Now by using Eq. ( 17.12) we derive the factorial moments 

= <C>', 
and by using Eq. ( 17 .10) we find that the probability distribution is 

( t) - <C)"' e-<c> pm, - mr 

(17.25) 

(17.26) 

(17.27) 

( 17. 28) 

(17.29) 

(17.30) 

i.e., when the field is fully coherent we always have a Poisson distribution for the 
number of counts. 

. Wnen the field does not possess full coherence we can nevertheless use the 
coherent states as a basis for describing it. To illustrate the form the statistical 
calculations take, we shall use the P-representation for the density operator of 
the field. The R-representation, which applies more generally, can also be used 
similarly. In the P-representation G<nl ls given by the integral 

G(nl(x1 ••• X2n) = J P({atl) &*(xj{akl) 
j=l 

x 

,. 
n & (x,la,J) nd'a.. (17.31) 

j=n+l k 

When this expression is substituted into the series ( 17. 23) we find that the series 
may be summed to the closed form 

t) = f P(la,I) e-'"11 "" 11 Ild'a., • 
(17.32) 

where 

(17. 33) 

Furthetmore we see from Eq. (17 .12) that the factorial moments are 

,, 
• 
' J 

' l 
·' ' 

I 
) 

I 

' 
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/. C! > = fP(la.J )ll'(!a.J) Ild'a, "(C-nf) , 
and from Eq. ( 17.10) that the probability distribution is given by 

p(m, t) = f P(\a,J) • 

'· 
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(17.34) 

(17.35) 

The probability of counting m photons is evidently a species of average over the 
corresponding probabilities for an ensemble of Poisson distributions. We hardly 
need emphasize that the averaging process is not a classical one and that the 
quasiprobability function P may assume negative values. 

As a further illustration of the methods we are discussing let us consider the 
general case of a chaotically generated field. The density operators of such fieldll 
may be represented by means of the Gaussian function 

1 _ lokl • 
P(!a.J) =II > e o;-> (17,38) 

k 1J ......... lk k 

Then, since the function n is a quadratic form in the variables a., it will be pos-
sible to evaluate the integral ( 17. 32) for the generating function In full generality, 

Beforewedothis, however, let us introduce someusefulnotation. We may ex-
press the function o ( x,l a,J) ae a linear form In the variables "" by using the normal 
mode expansion 

o (x,la,J) = L; e(x, k)a., 
• 

(17.3'1) 

where the functions e are given by Eq. ( 14. 26) . U we then define the matrix 

B•'•• = J e*(x'k') V(x'x") e(x"k") d'x' d'x", (17.38) 

we may write the quadratic form S1 as 

(17.39) 

When this expression for n and the Gaussian form for P are substituted ln Eq. 
( 17. 32) we find that the generating function is given by 

Q(A, t) = f · ·· f exp i- l; <la>>f - A l; a:• 
' Ji:. Dk kl kll 

If we then introduce the variables 

and define the matrix 

' = a,/ { <n, >}., 

' ' Mk 1 .. 11 ={ <nk1>l 2 Bk'1<"{<nk">l 2, 

the integral for the generating function may be simplified to the form 

Q(A, t) = f···f exp {- l; - M•'•" P•• 
k 1<'T1t.11 • k 1T 

(17,«>) 

(17,40 

(17. 42) 

Now we can consider the set of numbers {31r. as forming the components of a 
complex vector fi. Then if we let M represent the matrix whose components are 
given by Eq. ( 17. 41) , we may write the exponent In the integrand of Eq. ( 17. 42) 
as the product 
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Since the Matrix M is Hermitian it may be diagonalized by carrying out a unitary 
transformation upon the vector {3. Then if we let the eigenvalues of M be (fl/ 1 , and 
let the transformed complex coordinates be y1, the integral for the generating 
function reduces to the elementary form 

Q(:I., t) = f· · · f exp/ - ( 1 + ;1.1)11.) l'Y1 ¥ 
1 (17.43a) II(l + :1.1)11,) 

' 
1 (17. 43b) det (l + :1.M) 

It is worth noting that the matrix M must be positive definite, since the quad-
ratic form !l defined hy Eqs. ( 17. 33) or ( 17. 39) is the average number of photons 
counted in a particular coherent field. Hence the eigenvalues ()111 are positive, 
and the singularities of the generating furiction lie on the negative real a.xis of the 
variable A. Since Q is analytic in the hall-plane Rei\ O, we see that if we are 
given Q as a power series expansion about either of the points A= 0 or i\ = 1, the 
series expansion about the other of the points may be evaluated, in principle by 
analytic continuation. This argument shows that the procedure we have been using, 
of evaluating the generating function by means of its expansion about i\ = O, actually 
leads to a unique answer for the probability distribution. 

Since the matrix M is in general of infinite rank, neither of the expressions 
( 17. 43) is easy to evaluate directly. Let us note, however, that det ( 1 + AM) may 
be written as 

+:1.1)11,) =exp (1 • ;1.1)11,)( 

Now for I i\f <(111mai)-1, where Wmu: is the largest of the eigenvalues rm 11 we may ex-
pand the logarithm in the exponent in a convergent power series. In this way we 
see that 

det(l •:1.M) =exp{L;c:1.l)ll, -i:1.'l)ll,'+···l} 

{ 

1 f 2 2 =exp Tr (AM -2:\. M +•·•) 

= exp{Tr log (1 + :\. M)} (17.44) 

where Tr, as always, stands for the trace. By making use of this identity we can 
express the generating function as 

Q(i\, t) = {17.45) 

If we expand the logarithm in powers of i\, we may write this function in the form 

Q{:I., t) =exp l <;-")' 1,( (17.46) 

where Lr is defined by 

!, = Tr{M' }. (17.47) 

If we recall the definition of the matrix M given by Eqs. ( 17. 41) and ( 17. 38) , 
then we see that for r = 1 we have 
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11 = ff L; e*(x'k) e(x" k) <n•> V(x' x") d'x' d'x''. 
k 

The sum over kin the Integrand, according to Eq. (14.32), Is simply the first 
order correlation function. The integral thus reduces to 

11 =ff G (x! x•) V(x' x") d'x' d'x•. (17.48) 

If we compare Eq. ( 17. 46) with Eqs. ( 14. 27) and ( 14. 28) we see that this r = 1 
term is of the same form as the exponent of the generating function for the case 
of a pure coherent field. The lack of coherence for the Gaussian case la reflected 
by the presence in the exponent of the additional terms with r 2. By making 
further use of the matrix M we can show that the general expression for L le the 
cyclic integral 

(17. 49) 

in which the coordinate Xr+i" is to be interpreted as x1". For the case of broad-
band detectors the definitions ( 17. 22) and ( 4. 14) allow us to simplify this Integral 
to the form 

' ' 
Ir =s" Ildt/ f···Jno01 (ri' tJ', r1+1' t1+l) a(r1')dr1'. (17.50) 

' ' 
To discuss the evaluation of these integrals let us suppose that our counting 

experiment has particularly simple geometry. We shall assume that our field 
consists of plane waves travelling in the positive y-direction, so that the flrst ord*' 
correlation function Is given by Eq. (15.1). This function naturally depends only 
on the y-coordinates of its spatial arguments. We next assume that the sensitive 
region of the counter, i.e., its photocathode, is a very thin layer of atoms lying 
in a plane perpendicular to the y-axis. The function a( r), in other words, is 
essentially a delta function of the y-coordinate. With these assumptions which ex-
periments often approximate quite closely in practice, the spatial integ;ations in 
Eq. ( 17. 50) become trivial. The functions G (ll are independent of their position 
variables for all of the points for which er( r) differs from zero, 

The time integrals in Eq. (17.50) are considerably less trivial, but we may 
discuss the forms they take for short tinies and for long times. If the time tis 
much smaller than the inverse frequency bandwidth of the radiation present, the 
functions 0<11 will hardly vary at all in the interval from 0 to t. For such times 
the integral Ir must simply be proportional to tr . If we write 11 as wt, where w ts 
a proportionality constant, then the elementary character of the spatial integrations 
shows that the general result must be 

J,= (wt)'. (17. 51) 

When this result is substituted in Eq. ( 17. 46) , we find that the generating function 
for small values of t is 

Q(.\, t) =exp{-log(l+:l.wt)} 
1 

= 1 +:I.wt 

The probability distribution for the number of counts is then given, 
(17.10), by 

{wt)m 
p(m, t) = ( 1 + wt)mu 

(17.52)' 

according to Eq. 

( 17. 53) 
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The distribution for short times is thus given by a power law not unlike the Planck 
distribution. The mean number of c.ounts is wt, so that w is simply the average 
counting rate. 

For times t which considerably exceed the inverse bandwith of the radiation 
field, it is also possible to simplify the integrals Lo. In this case, however, their 
values depend on the spectral distribution of the energy present 1n the 
field. Let us therefore assume, as.an example, that the frequency spectrum has 
the Lorentz form 

constant 
<nt > liw. = ( )z a w-wo +y (17. 54) 

The time dependence of the first order correlation !unction fk then given by Eq. 
{ 15. 8). When this function Is substituted Into the Integral { 17. 50), we see that, 
because of the cyclical structure of the integrand, all of the Lo will increase linearly 
with time fort >>y- 1

, We may again define the average counting rate, w, by writ-
ing the Integral I, as wt. Then It Is not difficult to show that the full set of Integrals 
Ir may be written in the form 

1 d ·-· 1 I. = 2\r-=-T) ! ( - 2y dY) y (17. 55) 

fort >>y-.i. 
With these values for the Ir it is possible to sum the series in the exponent of 

Eq. ( 17. 46) in closed form. When this is done we find that the generating function 
Is 

xp{ ' 1 Q(>., t) = e -[ (y + 2yw>.)• - y ]t}. (17.56) 

When the counting rate w is small compared to the frequency bandwidth i.e. , 
w <<y, then the expression in the exponent may be expanded, and we find that in the 
lowest approximation the generating function reduces to 

Q(>., t) = e-•wt. (17.57) 

This function, as we have seen, leads to a Poisson distribution. It is the distribution 
we would find if there were no tendency for the photons to arrive in correlated 
bunches, or for the field amplitude to fluctuate randomly. 

To discuss the distribution and moments which follow from the generating 
function ( 17. 5 ) , it is useful to introduct the set of inverse polynomials 

so(O = s1 W = 1 
1 

•• w 
s,(O 

<' 
6 15 15 =1+-+7£+-e 

The further members of the sequence are given by the recursion tormula 

(17.58) 

(17.59) 

These polynomials are quite familiar in the theory of Bessel functions. They may 
also be calculated from the expression 

' •• m = • K.-,,.m, (17.60) 

• , 
' 

" ' 

•• 

,, 
i 
,• 
,j 
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where Kn-.i/2 is a modified Hankel function of half-integral order. 
U we now expand the generating function ( 17. 56) in a power series about A = 1 

and examine Its coefficients we find that the probability of receiving m counlll In 
time t is 

p(m, t) =-Jr ( .. l'.!!.f Sm(rt) e-{r-y)I m .. r ' (17.81) 

where we have written 

r = (,,' + 2wy) t. (17.82) 
The distribution ( 17. 61) has the same mean value, wt, as the Poisson distribution 
which follows from the generating function (17.57). Its variance, however, is 
always larger than that of the Poisson distribution because of the photon clumping 
effect. 

The power series expansion of the generating function ( 17. 56) about A= 0 la 

Q(>.t) = 
n=O 

(->.wt). n! Sn • (17. 83) 

We conclude from this expansion that the factorial moments of the distribution 
(17.61) are given by 

=(wt)" s. (yt) 

= <I:(C- l)"""(C-n+l)>. (17.84) 
For a Poisson distribution these moments would be simply (wt) n • The first two 
of the moments ( 17. 84) are 

<C> =wt 

<C(C - 1) > = (wt)' ( 1 ) • 

The variance of the number of counts is thus 

<C' > - <C>' = <C> {1 + 

(17.85) 

(17.88) 

(17.67) 

The term <C>' /yt Is the addition to the variance which is due to the fact that the 
photon arrival times are not statistically independent of one another. 


