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PREFACE

As its title indicates, this volume contains a selection of Feynman’s important scientific
papers together with short comments. Most of the papers contain pure research, but among
them are scattered some articles that are largely pedagogical, such as published lectures that
Feynman gave at advanced physics workshops and summer schools. As the editor I chose
the papers and also provided the comments, except as indicated in the text. Such a selection
cannot avoid arbitrariness, and I apologize to those who feel that their favorites may have
been unjustly omitted.

In the course of preparation, I have consulted some physicists, historians, and others,
whom I would like to thank: Tian Yu Cao, Michael Cohen, Don Ellis, Joan Feynman,
and Robert Michaelson. Carl Iddings and Frank Vernon, Jr. sent me valuable information
concerning their collaborations with Feynman which are included in Part III. Danny Hillis
helped to orient me with regard to the papers on computers. I am especially indebted
to Alexander Fetter for writing the commentary which appears with the liquid helium pa-
pers. I am also greatly obliged for the hospitality of Judith Goodstein and the staff at the
Caltech Archives who assisted me when I was reading Feynman’s unpublished documents,
and provided the bibliography of Feynman’s writings at the end of this volume. Finally,
I wish to acknowledge the great help of the editors at World Scientific.
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RICHARD PHILLIPS FEYNMAN

One of the century’s outstanding scientists, Richard P. Feynman was born on 11 May 1918
at Far Rockaway, Queens, a part of New York City, where he received his education through
high school. He then attended the Massachusetts Institute of Technology; exhibiting superior
mathematical skills, he took advanced physics courses and earned a B.S. degree. According
to S.S. Schweber, “By the time Feynman finished his undergraduate studies at MIT in 1939
he had mastered many of the fields of theoretical physics.” Feynman went on to do graduate
school at Princeton University, where his principal mentor was Professor John A. Wheeler,
under whose sponsorship he wrote a doctoral thesis entitled “The Principle of Least Action
in Quantum Mechanics”; he was awarded a Ph.D. in 1942.

From Princeton Feynman moved to Los Alamos, New Mexico, to work on the wartime
development of the nuclear bomb. There he became an important member, and the youngest
group leader, of the theoretical physics division headed by Hans Bethe of Cornell University.
After the war Bethe persuaded Feynman to accept a faculty position at Cornell, and it was
in Ithaca, New York, that Feynman developed his diagrammatic methods and accomplished
the work that earned him the Nobel Prize in Physics. In 1950 he became a professor at
the California Institute of Technology, being appointed the Richard Chase Tolman Professor
of Physics in 1959. He remained in Pasadena until his death at the age of sixty-nine, on
15 February 1988.

Feynman had three marriages. The first was in 1942 to Arline Greenbaum, who was
incurably ill at the time of the marriage and died in 1945. His second marriage, to Mary
Louise Bell in 1952, ended in divorce. In 1960 he married Gweneth Howarth, with whom he
had a son, Carl, and an adopted daughter, Michelle.

Early in his career, Feynman became well-known to the world physics community for his
brilliant research, his outstanding teaching, and his flamboyant personality. After sharing
the Nobel Prize in 1965 for his work on renormalized quantum electrodynamics (QED) with
Julian Seymour Schwinger and Sin-itiro Tomanaga, he also became an important establish-
ment figure, receiving many invitations to lecture throughout the world (most of which he
politely declined). However, he became a notable public figure only near the end of his life,
when, in January 1986, President Reagan appointed him to a presidential commission to
investigate the cause of the explosion of the space shuttle Challenger. Appearing in the
televised hearing of the investigative committee, Feynman performed a simple experiment
with a glass of ice water and a piece of the shuttle’s failed O ring, in order to demonstrate
the immediate cause of the disaster. His presentation made a deep impression on millions of
television viewers, and, coupled with two best-selling books of his reminiscences ([112] and
[121]*), other television appearances, and adulation in the press, Feynman became some-
thing of a cult figure, especially after his death. A few of the biographies and other books
dealing with him and his work are listed after this account.

Besides the Nobel Prize, Feynman received the Albert Einstein Award (1954), the Ernest
Orlando Lawrence Award for Physics (1962), the Oersted Medal (1972), and the Niels Bohr
International Gold Medal (1973). He was a Member of the Brazilian Academy of Sciences
and a Foreign Fellow of the Royal Society of London (1965). He was elected to the National

*Numbers in square brackets refer to the bibliography at the end of this volume.
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Academy of Sciences (USA), but later resigned, and often declared that he was totally
uninterested in receiving “honors.”

See:

James Gleick, Genius. New York, 1992.

Laurie M. Brown and John S. Rigden (eds.), Most of the Good Stuff. New York, 1993.
Jagdish Mehra, The Beat of a Different Drum. Oxford, 1994.

Silvan S. Schweber, QFED and the Men Who Made It. Princeton, 1994.

Christopher Sykes (ed.), No Ordinary Genius. New York, 1994.

David Goodstein and Judith Goodstein, Feynman’s Lost Lecture: The Motion of Planets
Around the Sun. New York, 1996.

John Gribbin and Mary Gribbin, Richard Feynman: A Life in Science. New York, 1997.



I. Quantum Chemistry

In his final year as an undergraduate at the Massachusetts Institute of Technology, Feynman
published with one of his teachers, Manuel S. Vallarta, a Letter to the Editor of the Physical
Review on cosmic rays [1]. He also completed a senior dissertation under John C. Slater
entitled “Forces and Stresses in Molecules” and published a shortened version, “Forces in
Molecules,” as an article in the Physical Review. The latter contained a result — a general
quantum-mechanical theorem — that has played an important role in theoretical chemistry
and condensed matter physics and is frequently cited as the Hellmann—Feynman theorem.!
According to Feynman’s abstract, “The force on a nucleus in an atomic system is shown to be
just the classical electrostatic force that would be exerted on this nucleus by other nuclei and
by the electrons’ charge distribution.” Quantum mechanics is used to calculate the charge
distribution as the absolute square of the Schrodinger wave function. The importance of the
forces on the atomic nuclei for molecular geometry, the theory of chemical binding, and for
crystal structure is evident.

Selected Paper
2] Forces in molecules, Phys. Rev. 56 (1939): 340-343.

1The German quantum chemist H. Hellmann published the theorem in a textbook, Einfiihring in die Quan-
tenchemie (1937, Franz Deuticke, Leipzig), but the reference was unknown to Feynman and Slater. For the
history of the H-F theorem see J.I. Musher, Am. J. Phys. 34 (1966): 267-268, and J.C. Slater, Solid State
and Molecular Theory (1975, Wiley, New York), pp. 193-199. For applications see B.M. Deb (ed.), The Force
Concept in Chemistry (1981, Van Nostrand Reinhold, New York).
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Forces in Molecules

R. P. FEYNMAN
Massachuseits Institute of Technology, Cambridge, Massachusetis

(Received June 22, 1939)

Formulas have been developed to calculate the forces in a molecular system directly, rather
than indirectly through the agency of energy. This permits an independent calculation of the
slope of the curves of energy vs. position of the nuclei, and may thus increase the accuracy, or
decrease the labor involved in the calculation of these curves. The force on a nucleus in an
atomic system is shown to be just the classical electrostatic force that would be exerted on this
nucleus by other nuclei and by the electrons’ charge distribution. Qualitative implications of

this are discussed.

ANY of the problems of molecular structure
are concerned essentially with forces. The
stiffiness of valence bonds, the distortions in
geometry due to the various repulsions and
attractions between atoms, the tendency of
valence bonds to occur at certain definite angles
with each other, are some examples of the kind
of problem in which the idea of force is para-
mount.

Usually these probléms have been considered
through the agency of energy, and its changes
with changing configuration of the molecule.
The reason for this indirect attack through
energy, rather than the more qualitatively illumi-
nating one, by considerations of force, is perhaps
twofold. First it is probably thought that force
is a quantity that is not easily described or calcu-
lated by wave mechanics, while energy is, and
second, the first molecular problem to be solved
is the analysis of band spectra, strictly a problem
of energy as such. It is the purpose of this paper
to show that forces are almost as easy to calculate
as energies are, and that the equations are quite
as easy to interpret. In fact, all forces on atomic
nuclei in a molecule can be considered as purely
classical attractions involving Coulomb’s law.
The electron cloud distribution is prevented
from collapsing by obeying Schrodinger’s equa-
tion. In these considerations the nuclei are
considered as mass points held fixed in position.

A usual method of calculating interatomic
forces runs somewhat as follows.

For a given, fixed configuration of the nuclei,
the energy of the entire system (electrons and
nuclei) is calculated. This is done by the variation
method or other perturbation schemes. This

entire process is repeated for a new nuclear
position, and the new value of energy calculated.
Proceeding in this way, a plot of energy us.
position is obtained. The force on a nucleus is
of course the slope of this curve.

The following method is one designed to
obtain the forces at a given configuration, when
only the configuration is known. It does not
require the calculations at neighboring configura-
tions. That is, it permits a calculation of the
slope of the energy curve as well as its value,
for any particular configuration. It is to be
emphasized that this allows a considerable saving
of labor of calculations. To obtain force under the
usual scheme the energy needs to be calculated
for two or more different and neighboring con-
figurations. Each point requires the calculation
of the wave functions for the entire system.
In this new method, only one configuration, the
one in question, need have its wave functions
computed in detail. Thus the labor is consider-
ably reduced. Because it permits one to get an
independent value of the slope of the energy
curve, the method might increase the accuracy
in the calculation of these curves, being especially
helpful in locating the normal separation, or
position of zero force.

In the following it is to be understood that the
nuclei of the atoms in the molecule, or other
atomic system, are to be held fixed in position,
as point charges, and the force required to be
applied to the nuclei to hold them is to be
calculated. This will lead to two possible defini-
tions of force in the nonsteady state, for then
the energy is not a definite quantity, and the
slope of the energy curve shares this indefinite-

340



FORCES IN MOLECULES

ness. It will be shown that these two possible
definitions are exactly equivalent in the steady-
state case, and, of course, no ambiguity should
arise there.

Let N be one of any number of parameters
which specify nuclear positions. For example,
)\ might be the x component of the position of
one of the nuclei. A force fi is to be associated
with N in such a way that faid\ measures the
virtual work done in displacing the nuclei
through d\. This will define the force only when
the molecule is in a steady state, of energy U,
for then we can say fi= —8U/o\. In the non-
steady-state case we have no sure guide to a
definition of force. For example, if U= S/ y*Hydy
be the average energy of the system of wave
function ¥ and Hamiltonian H, we might define

i =—a(U)/ox". 1)

Or again, we might take £, to be the average of
—90H/o\ or

fi= ~<%I;>M= -[ xlf*%?//dv- @)

We shall prove that under steady-state con-
ditions, both these definitions of force become
exactly equivalent, and equal to —dU/d\, the
slope of the energy curve. Since (2) is simpler
than (1) we can define force by (2) in general.
In particular, it gives a simple expression for the
slope of the energy curve.

Thus we shall prove, when Hy=Uy and

JW*dv=1 that,
f ¢*—¢dv

~ [vryas

Now

whence,
oY* 3
f \P*—ll/d‘v-i- f —Hydy+ f V¥ H—dv.
2N JA

Since H is a self-adjoint operator,

oy oy
f Y¥*H—dy = f —Hy*dv.
o 2N
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But Hy=Uy and Hy*= Uy* so that we can

write,
* v
f \l'**—slfdv-{- Ul —dv+U f —y*dy.
[E)N oA

These last two terms cancel each other since
their sum is,

d a
U— fgb*gbdv: U—(1)=0.
oA 2N
Whence

oU oH
—= f Y —pdy
N

in the steady state. This much is true, regardless
of the nature of H, (whether for spin, or nuclear
forces, etc.). In the special case of atomic systems
when H=T+7V where T is the kinetic energy
operator, and V the potential, since 9H/o\
=9V /3N we can write

aU av
A=h=——=— | ¥*Y—dv 3)
a B

The actual calculation of forces in a real
molecule by means of this theorem is not im-
practical. The JS¢*¢(aV/oN)dv is not too differ-
ent from Sy*¢Vdy, which must be calculated if
the energy is to be found at all in the variational
method. Although the theorem (3) is the most
practical for actual calculations, it can be
modified to get a clearer qualitative picture of
what it means. Suppose, for example, the system
for which ¢ is the wave function contains several
nuclei, and let the coordinates of one of these
nuclei, @, be X, Ve, Z=or X,* where p=1, 2, 3,
mean X, V, Z. If we take our A parameter to be
one of these coordinates, the resultant force on
the nucleus a in the u direction will be given
directly by

fo=— f WO V/6X,)du

from (3).

Now V is made up of three parts, the inter-
action of all nuclei with each other (V,g), of each
nucleus with an electron (Vj:), and of each
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electron with every other (V;;); or
V=Z Vaﬂ+z Vﬁc+z Vij-
a, B 8. i i

Suppose «x,* are the coordinates of electron 1,
and as before X, = those of nucleus « of charge g..

Then Vp;=gge/Rg;, where
3
Rpi?=2 (X, f—x.)2
p=1

So we see that

d Vp,‘ d Vgi d Vij

= —ég*—— and that =0.
90X, ax,t 9X,=

Then (3) leads to
fe=+ [wrT
9x,*

-/ flff’[f i W] T @

since 9V ,:/0x,* does not involve any electron
coordinate except those of electron 1. S2 /- - -dv
means the integral over the coordinates of all
electrons except those of electron 4. The last
term has been reduced since 6 V,5/9x,* does not
involve the electron coordinates, and is constant
as far as integration over these coordinates goes.
This term gives ordinary Coulomb electrostatic
repulsion between the nuclei and need not be
considered further. Now e /7 yy*dv is just the
charge density distribution p;(x) due to electron 7,
where e is the charge on one electron. The
electric field E,*(x%) at any point x* due to the
nucleus a is (1/€)3Va:i/0x,% so that (4) may be
written

dv—Z

aV‘aﬁ
fie= [ (@B @£,
i 80X,

The 3N space for N electrons has been reduced

to a 3 space. This can be done since E,*(x%)

depends only on x* and is the same function of x*

no matter which ¢+ we pick. This implies the
following conclusion:

The force on any nucleus (considered fixed) in
any system of nuclei and electrons is just the
classical electrostatic attraction exerted on the
nucleus in question by the other nuclei and by

FEYNMAN

the electron charge density distribution for all
electrons,

p(x) =3 pi(x).

It is possible to simplify this still further.
Suppose we construct an electric field vector F
such that

V-F=—4mp(x); VXF=0.

Now from the derivation of E,* we know that it
arises from the charge ¢g. on nucleus «, so that
V-E*=( except at the charge a where its integral
equals ¢.. Further,

[ZE T
Then
0 Vag
W= —-—f(V F)E,2dv—73
8 0x,%
1 O Vag
= —{——fFM(V -E)dyv—3
A7 8 Ox,*
= Q«EF#]“ $a+qa[ZEuB]“ z* (5)
8

the transformation of the integral being accom-
plished by integrating by parts. Or finally, the
force on a nucleus is the charge on that nucleus
times the electric field there due to all the
electrons, plus the fields from the other nuclei.
This field is calculated classically from the
charge distribution of each electron and from
the nuclei.

It now becomes quite clear why the strongest
and most important attractive forces arise when
there is a concentration of charge between two
nuclei. The nuclei on each side of the concen-
trated charge are each strongly attracted to it.
Thus they are, in effect, attracted toward each
other. In a H; molecule, for example, the anti-
symmetrical wave function, because it must be
zero exactly between the two H atoms, cannot
concentrate charge between them. The sym-
metrical solution, however, can easily permit
charge concentration between the nuclei, and
hence it is only the solution which is sym-
metrical that leads to strong attraction, and the
formation of a molecule, as is well known. It is
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clearly seen that concentrations of charge be-
tween atoms lead to strong attractive forces, and
hence, are properly called valence bonds.

Van der Waals’ forces can also be interpreted
as arising from charge distributions with higher
concentration between the nuclei. The Schrod-
inger perturbation theory for two interacting
atoms at a separation R, large compared to the
radii of the atoms, leads to the result that the
charge distribution of each is distorted from
central symmetry, a dipole moment of order
1/R" being induced in each atom. The negative

343

charge distribution of each atom has its center of
gravity moved slightly toward the other. It is
not the interaction of these dipoles which leads
to van der Waals’ force, but rather the attraction
of each nucleus for the distorted charge dis-
tribution of its own electrons that gives the
attractive 1/R7 force.

The author wishes to express his gratitude to
Professor J. C. Slater who, by his advice and
helpful suggestions, aided greatly in this work.
He would also like to thank Dr. W. C. Herring
for the latter’s excellent criticisms.



I1. Classical and Quantum Electrodynamics

While Feynman made many original and imaginative contributions to theoretical physics,
it may well be that his place in the history of science will be largely based on his approach
to renormalizing quantum electrodynamics (QED), and especially on the tools that he in-
vented to accomplish that goal, such as path integrals, the operator calculus, and the famous
Feynman diagrams. Eventually QED may be replaced by a finite theory, rather than the
present divergent, though renormalizable, one. (QED is already incorporated in the unified
electroweak theory, one of the two parts of the Standard Model.) Feynman himself never
regarded renormalized QED as complete, frequently pointing out its limitations and sug-
gesting that it was merely what we now call an “effective field theory.” But even if QED
proves to be transitory, the theoretical methods that Feynman developed are permanently
embedded in mathematical physics, and have been widely applied in areas far beyond their
original domain.

Of our nine selected papers that deal with electrodynamics, two are in the nature of
reviews, one being his 1961 report to the Solvay Conference [45], included for its lively
originality. The other is Feynman’s Nobel Lecture, which is placed first in this section on
electrodynamics for a special reason. That is not because the Prize itself has great scientific
significance. (He even thought of refusing it, had that been practical; its award to Feynman
honors the Prize as much as its recipient.) Rather, paper [73] occupies the leading position
here because it provides a far more valuable and eloquent commentary on this group of
papers than could be produced in any other way. It outlines the significant steps, including
the less successful ones, by which Feynman recognized and worked his way through the
problem situation, from classical to quantum electrodynamics, to find the solution, and it
tells about the physicists with whom he interacted. In its context as a Nobel Lecture it is a
surprisingly “human” story; at the least, its style would surprise us if it were told by anyone
other than Feynman.

The separation of the various papers into neat groups is rather arbitrary, and I have
chosen to place papers [7], [14], and [15], which also contain derivations of QED, in a separate
Section III which emphasizes the methodological innovations, because they have a wide range
of applications in other fields as well. This applies especially to [7], which describes the path
integral method.!

II.A Classical and Quantum Electrodynamics — The Space—Time View

Selected Paper
[73] The development of the space-time view of quantum electrodynamics. In: Les Priz
Nobel 1965. Stockholm, 1965: Imprimerie Royale P.A. Norstedt & Soner: 172-191.

!This is the subject of Feynman’s doctoral thesis, written at Princeton University, under the sponsorship of
John Wheeler. We would have included this dissertation, but were unable to get permission to do so.
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The development of the space-time view
of quantum electrodynamics

Nobel Lecture, December 11, 1965

We have a habit in writing articles published in scientific journals to make the
work as finished as possible, to cover all the tracks, to not worry about the
blind alleys or to describe how you had the wrong idea first, and so on. So
there isn’t any place to publish, in a dignified manner, what you actually did
in order to get to do the work, although, there has been in these days, some
interest in this kind of thing. Since winning the prize is a personal thing, 1
thought I could be excused in this particular situation, if I were to talk per-
sonally about my relationship to quantum electrodynamics, rather than to
discuss the subject itself in a refined and finished fashion. Furthermore, since
there are three people who have won the prize in physics, if they are all going
to be talking about quantum electrodynamics itself, one might become bored
with the subject. So, what I would like to tell you about today are the sequence
of events, really the sequence of ideas, which occurred, and by which I finally
came out the other end with an unsolved problem for which I ultimately
received a prize.

I realize that a truly scientific paper would be of greater value, but such a
paper I could publish in regular journals. So, I shall use this Nobel Lecture as
an opportunity to do something of less value, but which I cannot do elsewhere.
I ask your indulgence in another manner. I shall include details of anecdotes
which are of no value either scientifically, nor for understanding the develop-
ment of ideas. They are included only to make the lecture more entertaining.

I worked on this problem about eight years until the final publication in
1947. The beginning of the thing was at the Massachusetts Institute of Tech-
nology, when I was an undergraduate student reading about the known phys-
ics, learning slowly about all these things that people were worrying about,
and realizing ultimately that the fundamental problem of the day was that
the quantum theory of electricity and magnetism was not completely satis-
factory. This I gathered from books like those of Heitler and Dirac. I was in-
spired by the remarks in these books; not by the parts in which everything
was proved and demonstrated carefully and calculated, because I couldn’t
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understand those very well. At the young age what I could understand were
the remarks about the fact that this doesn’t make any sense, and the last sen-
tence of the book of Dirac I can still remember, « It seems that some essentially
new physical ideas are here needed. » So, I had this as a challenge and an in-
spiration. I also had a personal feeling, that since they didn’t get a satisfactory
answer to the problem I wanted to solve, I don’t have to pay a lot of attention
to what they did do.

I did gather from my readings, however, that two things were the source
of the difficulties with the quantum electrodynamical theories. The first was
an infinite energy of interaction of the electron with itself. And this difficulty
existed even in the classical theory. The other difficulty came from some in-
finites which had to do with the infinite numbers of degrees of freedom in the
field. As I understood it at the time( as nearly as I can remember) this was simply
the difficulty that if you quantized the harmonic oscillators of the field (say in a
box) each oscillator has a ground state energy of ( 1/2) fiw and there is an infinite
number of modes in a box of every increasing frequency , and therefore
there is an infinite energy in the box. I now realize that that wasn’t a complete-
ly correct statement of the central problem; it can be removed simply by
changing the zero from which energy is measured. At any rate, I believed
that the difficulty arose somehow from a combination of the electron acting
on itself and the infinite number of degrees of freedom of the field.

Well, it seemed to me quite evident that the idea that a particle acts on itself,
that the electrical force acts on the same particle that generates it, is not a
necessary one-it is a sort of a silly one, as a matter of fact. And, so I suggested
to myself, that electrons cannot act on themselves, they can only act on other
electrons. That means there is no field at all. You see, if all charges contribute
to making a single common field, and if that common field acts back on all
the charges, then each charge must act back on itself. Well, that was where the
mistake was, there was no field. It was just that when you shook one charge,
another would shake later. There was a direct interaction between charges,
albeit with a delay. The law of force connecting the motion of one charge
with another would just involve a delay. Shake this one, that one shakes later.
The sun atom shakes; my eye electron shakes eight minutes later, because of a
direct interaction across.

Now, this has the attractive feature that it solves both problems at once.
First, I can say immediately, I don’t let the electron act on itself, I just let this
act on that, hence, no self-energy! Secondly, there is not an infinite number
of degrees of freedom in the field. There is no field at all; or if you insist on
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thinking in terms of ideas like that of a field, this field is always completely
determined by the action of the particles which produce it. You shake this
particle, it shakes that one, but if you want to think in a field way, the field,
if it’s there, would be entirely determined by the matter which generates it,
and therefore, the field does not have any independent degrees of freedom and
the infinities from the degrees offreedom would then be removed. As a mat-
ter of fact, when we look out anywhere and see light, we can always « see »
some matter as the source of the light. We don’t just see light (except recently
some radio reception has been found with no apparent material source).

You see then that my general plan was to first solve the classical problem,
to get rid of the infinite self-energies in the classical theory, and to hope that
when I made a quantum theory of it, everything would just be fine.

That was the beginning, and the idea seemed so obvious to me and so ele-
gant that I fell deeply in love with it. And, like falling in love with a woman, it
is only possible if you do not know much about her, so you cannot see her
faults. The faults will become apparent later, but after the love is strong enough
to hold you to her. So, I was held to this theory, in spite of all difficulties, by
my youthful enthusiasm.

Then I went to graduate school and somewhere along the line I learned
what was wrong with the idea that an electron does not act on itself. When
you accelerate an electron it radiates energy and you have to do extra work
to account for that energy. The extra force against which this work is done is
called the force of radiation resistance. The origin of this extra force was iden-
tified in those days, following Lorentz, as the action of the electron itself The
first term of this action, of the electron on itself, gave a kind of inertia (not
quite relativistically satisfactory). But that inertia-like term was infinite for
a point-charge. Yet the next term in the sequence gave an energy loss rate,
which for a point-charge agrees exactly with the rate you get by calculating
how much energy is radiated. So, the force of radiation resistance, which is
absolutely necessary for the conservation of energy would disappear if I said
that a charge could not act on itself.

So, I learned in the interim when I went to graduate school the glaringly
obvious fault of my own theory. But, I was still in love with the original
theory, and was still thinking that with it lay the solution to the difficulties of
quantum electrodynamics. So, I continued to try on and off to save it some-
how. I must have some action develop on a given electron when I accelerate
it to account for radiation resistance. But, if I let electrons only act on other
electrons the only possible source for this action is another electron in the
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world. So, one day, when I was working for Professor Wheeler and could no
longer solve the problem that he had given me, I thought about this again and
I calculated the following. Suppose I have two charges-I shake the first
charge, which I think of as a source and this makes the second one shake, but
the second one shaking produces an effect back on the source. And so, I cal-
culated how much that effect back on the first charge was, hoping it might
add up the force of radiation resistance. It didn’t come out right, of course,
but I went to Professor Wheeler and told him my ideas. He said, -yes, but
the answer you get for the problem with the two charges that you just men-
tioned will, unfortunately, depend upon the charge and the mass of the second
charge and will vary inversely as the square of the distance R, between the
charges, while the force ofradiation resistance depends on none of these things.
1thought, surely, he had computed it himself, but now having become a pro-
fessor, I know that one can be wise enough to see immediately what some
graduate student takes several weeks to develop. He also pointed out some-
thing that also bothered me, that if we had a situation with many charges all
around the original source at roughly uniform density and if we added the
effect of all the surrounding charges the inverse R square would be compen-
sated by the R'in the volume element and we would get a result proportional
to the thickness of the layer, which would go to infinity. That is, one would
have an infinite total effect back at the source. And, finally he said to me, and
you forgot something else, when you accelerate the first charge, the second
acts later, and then the reaction back here at the source would be still later. In
other words, the action occurs at the wrong time. I suddenly realized what a
stupid fellow I am, for what I had described and calculated was just ordinary
reflected light, not radiation reaction.

But, as I was stupid, so was Professor Wheeler that much more clever. For
he then went on to give a lecture as though he had worked this all out before
and was completely prepared, but he had not, he worked it out as he went
along. First, he said, let us suppose that the return action by the charges in the
absorber reaches the source by advanced waves as well as by the ordinary re-
tarded waves of reflected light; so that the law ofinteraction acts backward in
time, as well as forward in time. I was enough of a physicist at that time not to
say, « Oh, no, how could that be? » For today all physicists know from study-
ing Einstein and Bohr, that sometimes an idea which looks completely para-
doxical at first, if analyzed to completion in all detail and in experimental
situations, may, in fact, not be paradoxical. So, it did not bother me any more
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than it bothered Professor Wheeler to use advance waves for the back reaction
-a solution of Maxwell’s equations, which previously had not been physically
used.

Professor Wheeler used advanced waves to get the reaction back at the right
time and then he suggested this : If there were lots of electrons in the absorber,
there would be an index of refraction n, so, the retarded waves coming from
the source would have their wave lengths slightly modified in going through
the absorber. Now, if we shall assume that the advanced waves come back
from the absorber without an index-why? I don’t know, let’s assume they
come back without an index-then, there will be a gradual shifting in phase
between the return and the original signal so that we would only have to
figure that the contributions act as if they come from only a finite thickness,
that of the first wave zone. (More specifically, up to that depth where the
phase in the medium is shifted appreciably from what it would be in vacuum,
a thickness proportional to 4 / ( n—i).) Now, the less the number of electrons
in here, the less each contributes, but the thicker will be the layer that effec-
tively contributes because with less electrons, the index differs less from 1. The
higher the charges of these electrons, the more each contribute, but the thinner
the effective layer, because the index would be higher. And when we estimat-
ed it, (calculated without being careful to keep the correct numerical factor)
sure enough, it came out that the action back at the source was completely
independent of the properties of the charges that were in the surrounding ab-
sorber. Further, it was of just the right character to represent radiation resis-
tance, but we were unable to see if it was just exactly the right size. He sent
me home with orders to figure out exactly how much advanced and how
much retarded wave we need to get the thing to come out numerically right,
and after that, figure out what happens to the advanced effects that you would
expect if you put a test charge here close to the source? For if all charges gen-
erate advanced, as well as retarded effects, why would that test not be affected
by the advanced waves from the source?

I found that you get the right answer if you use half-advanced and half-
retarded as the field generated by each charge. That is, one is to use the solution
of Maxwell’s equation which is symmetrical in time and that the reason we
got no advanced effects at a point close to the source in spite of the fact that
the source was producing an advanced field is this. Suppose the source s sur-
rounded by a spherical absorbing wall ten light seconds away, and that the
test charge is one second to the right of the source. Then the source is as much
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as eleven seconds away from some parts of the wall and only nine seconds
away from other parts. The source acting at time {= o induces motions in the
wall at time + 10. Advanced effects from this can act on the test charge as
early as eleven seconds earlier, or at {= - 1. This is just at the time that the
direct advanced waves from the source should reach the test charge, and it
turns out the two effects are exactly equal and opposite and cancel out! At
the later time + 1effects on the test charge from the source and from the walls
are again equal, but this time are of the same sign and add to convert the half-
retarded wave of the source to full retarded strength.

Thus, it became clear that there was the possibility that if we assume all
actions are via half-advanced and half-retarded solutions of Maxwell’s equa-
tions and assume that all sources are surrounded by material absorbing all the
the light which is emitted, then we could account for radiation resistance as
a direct action of the charges of the absorber acting back by advanced waves
on the source.

Many months were devoted to checking all these points. I worked to show
that everything is independent of the shape of the container, and so on, that
the laws are exactly right, and that the advanced effects really cancel in every
case. We always tried to increase the efficiency of our demonstrations, and to
see with more and more clarity why it works. I won’t bore you by going
through the details of this. Because of our using advanced waves, we also had
many apparent paradoxes, which we gradually reduced one by one, and saw
that there was in fact no logical difficulty with the theory. It was perfectly satis-
factory.

We also found that we could reformulate this thing in another way, and
that is by a principle of least action. Since my original plan was to describe
everything directly in terms of particle motions, it was my desire to represent
this new theory without saying anything about fields. It turned out that we
found a form for an action directly involving the motions of the charges only,
which upon variation would give the equations of motion of these charges.
The expression for this action A is

A=Em; f (X",;Xi,;)%da,-i-z S ee; f faI 2) X (w1) X (a5) dors s (1)
1#}
where
I = [ X'y (o) = Xi, ()] [X' (@) = XIla)]

where Xi, (a;) is the four-vector position of the i "particle as a function of
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some parameter aj, Xy («;) is dXix (a) [ da;. The first term is the integral of
proper time, the ordinary action of relativistic mechanics of free particles of
mass m;. (We sum in the usual way on the repeated index L.) The second term
represents the electrical interaction of the charges. It is summed over each pair
of charges (the factor 1/2 is to count each pair once, the term i=jis omitted
to avoid self- action) .The interaction is a double integral over a delta function
of the square of space- time interval I? between two points on the paths. Thus,

interaction occurs only when this interval vanishes, that is, along light cones.

The fact that the interaction is exactly one- half advanced and half- retarded
meant that we could write such a principle of least action, whereas interaction
via retarded waves alone cannot be written in such a way.

So, all of classical electrodynamics was contained in this very simple form.
It looked good, and therefore, it was undoubtedly true, at least to the beginner.
It automatically gave half- advanced and half-retarded effects and it was with-
out fields. By omitting the term in the sum when i = j, J omit self-interaction
and no longer have any infinite self-energy. This then was the hoped-for
solution to the problem of ridding classical electrodynamics of the infinities.

It turns out, of course, that you can reinstate fields if you wish to, but you
have to keep track of the field produced by each particle separately. This is
because to find the right field to act on a given particle, you must exclude the
field that it creates itself. A single universal field to which all contribute will
not do. This idea had been suggested earlier by Frenkel and so we called these
Frenkel fields. This theory which allowed only particles to act on each other
was equivalent to Frenkel’s fields using half- advanced and half-retarded solu-
tions.

There were several suggestions for interesting modifications of electro-
dynamics. We discussed lots of them, but I shall report on only one. It was to
replace this delta function in the interaction by another function, say, f ( I zgj),
which is not infinitely sharp. Instead of having the action occur only when the
interval between the two charges is exactly zero, we would replace the delta
function of I’by a narrow peaked thing. Let’s say that f(Z) is large only near
Z= o width of order a’. Interactions will now occur when T- R’is of order
a’roughly where T'is the time difference and Ris the separation of the charges.
This might look like it disagrees with experience, but if a is some small dis-
tance, like 10" cm, it says that the time delay Tin action is roughly \/ R2+ 42
or approximately,-if Ris much larger than a, T= R*4?[2R. This means
that the deviation of time T from the ideal theoretical time R of Maxwell, gets
smaller and smaller, the further the pieces are apart. Therefore, all theories
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involving in analyzing generators, motors, etc., in fact, all of the tests of
electrodynamics that were available in Maxwell’s time, would be adequately
satisfied if a were 10™ cm. If R is of the order of a centimeter this deviation
in T'is only 10™parts. So, it was possible, also, to change the theory in a
simple manner and to still agree with all observations of classical electrody-
namics. You have no clue of precisely what function to put in for f, but it was
an interesting possibility to keep in mind when developing quantum electro-
dynamics.

It also occurred to us that if we did that (replace & by f) we could not rein-
state the term 1 =j in the sum because this would now represent in a relativis-
tically invariant fashion a finite action of a charge on itself. In fact, it was pos-
sible to prove that if we did do such a thing, the main effect of the self-action
(for not too rapid accelerations) would be to produce a modification of the
mass. In fact, there need be no mass m, term, all the mechanical mass could
be electromagnetic self-action. So, if you would like, we could also have an-
other theory with a still simpler expression for the action A. In expression ()
only the second term is kept, the sum extended over all i and j, and some func-
tion f replaces 8. Such a simple form could represent all of classical electro-
dynamics, which aside from gravitation is essentially all of classical physics.

Although it may sound confusing, I am describing several different alterna-
tive theories at once. The important thing to note is that at this time we had
all these in mind as different possibilities. There were several possible solu-
tions of the difficulty of classical electrodynamics, any one of which might
serve as a good starting point to the solution of the difficulties of quantum
electrodynamics.

1would also like to emphasize that by this time I was becoming used to a
physical point of view different from the more customary point of view. In
the customary view, things are discussed as a function of time in very great
detail. For example, you have the field at this moment, a differential equation
gives you the field at the next moment and so on; a method, which I shall call
the Hamilton method, the time differential method. We have, instead (in ()
say) a thing that describes the character of the path throughout all of space
and time. The behavior of nature is determined by saying her whole space-
time path has a certain character. For an action like () the equations obtained
by variation (of Xi («;)) are no longer at all easy to get back into Hamiltonian
form. If you wish to use as variables only the coordinates of particles, then
you can talk about the property of the paths- but the path of one particle at a
given time is affected by the path of another at a different time. If you try to
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describe, therefore, things differentially, telling what the present conditions
of the particles are, and how these present conditions will affect the future-
you see, it is impossible with particles alone, because something the particle
did in the past is going to affect the future.

Therefore, you need a lot of bookkeeping variables to keep track of what
the particle did in the past. These are called field variables. You will, also,
have to tell what the field is at this present moment, if you are to be able to see
later what is going to happen. From the overall space- time view of the least
action principle, the field disappears as nothing but bookkeeping variables in-
sisted on by the Hamiltonian method.

As a by-product of this same view, I received a telephone call one day at
the graduate college at Princeton from Professor Wheeler, in which he said,
« Feynman, I know why all electrons have the same charge and the same mass »
« Why? » « Because, they are all the same electron! » And, then he explained
on the telephone, « suppose that the world lines which we were ordinarily
considering before in time and space-instead of only going up in time were a
tremendous knot, and then, when we cut through the knot, by the plane
corresponding to a fixed time, we would see many, many world lines and
that would represent many electrons, except for one thing. If in one section
this is an ordinary electron world line, in the section in which it reversed itself
and is coming back from the future we have the wrong sign to the proper
time - to the proper four velocities - and that’s equivalent to changing the
sign of the charge, and, therefore, that part of a path would act like a positron. »
« But, Professor », I said, « there aren’t as many positrons as electrons. » « Well,
maybe they are hidden in the protons or something », he said. I did not take
the idea that all the electrons were the same one from him as seriously as I
took the observation that positrons could simply be represented as electrons
going from the future to the past in a back section of their world lines. That, I
stole !

To summarize, when I was done with this, as a physicist I had gained two
things. One, I knew many different ways of formulating classical electro-
dynamics, with many different mathematical forms. I got to know how to
express the subject every which way. Second, I had a point ofview-the over-
all space- time point of view-and a disrespect for the Hamiltonian method
of describing physics.

I would like to interrupt here to make a remark. The fact that electrodynam-
ics can be written in so many ways-the differential equations of Maxwell,
various minimum principles with fields, minimum principles without fields,
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all different kinds of ways,was something I knew, but I have never understood.
It always seems odd to me that the fundamental laws of physics, when dis-
covered, can appear in so many different forms that are not apparently iden-
tical at first, but, with a little mathematical fiddling you can show the relation-
ship. An example of that is the Schrddinger equation and the Heisenberg
formulation of quantum mechanics. I don’t know why this is -it remains a
mystery, but it was something I learned from experience. There is always an-
other way to say the same thing that doesn’t look at all like the way you said it
before. I don’t know what the reason for this is. I think it is somehow a repre-
sentation of the simplicity of nature. A thing like the inverse square law is just
right to be represented by the solution of Poisson’s equation, which, there-
fore, is a very different way to say the same thing that doesn’t look at all like
the way you said it before. I don’t know what it means, that nature chooses
these curious forms, but maybe that is a way of defining simplicity. Perhaps a
thing is simple if you can describe it fully in several different ways without im-
mediately knowing that you are describing the same thing.

1was now convinced that since we had solved the problem of classical
electrodynamics (and completely in accordance with my program from M.
I.T., only direct interaction between particles, in a way that made fields un-
necessary) that everything was definitely going to be all right. I was convinced
that all I had to do was make a quantum theory analogous to the classical one
and everything would be solved.

So, the problem is only to make a quantum theory, which has as its classical
analog, this expression (). Now, there is no unique way to make a quantum
theory from classical mechanics, although all the textbooks make believe there
is. What they would tell you to do, was find the momentum variables and re-
place themby(&/i)(a/ax), but Icouldn’t find a momentum variable, as there
wasn’t any.

The character of quantum mechanics of the day was to write things in the
famous Hamiltonian way - in the form of a differential equation, which de-
scribed how the wave function changes from instant to instant, and in terms of
an operator, H. If the classical physics could be reduced to a Hamiltonian
form, everything was all right. Now, least action does not imply a Hamilto-
nian form if the action is a function of anything more than positions and veloc-
ities at the same moment. If the action is of the form of the integral of a func-
tion, (usually called the Lagrangian) of the velocities and positions at the same
time

S=[L(x, x)dt )
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then you can start with the Lagrangian and then create a Hamiltonian and
work out the quantum mechanics, more or lessuniquely. But this thing ()
involves the key variables, positions, at two different times and therefore, it
was not obvious what to do to make the quantum-mechanical analogue.

1tried - I would struggle in various ways. One of them was this; if I had
harmonic oscillators interacting with a delay in time, I could work out what
the normal modes were and guess that the quantum theory of the normal
modes was the same as for simple oscillators and kind of work my way back
in terms of the original variables. I succeeded in doing that, but I hoped then
to generalize to other than a harmonic oscillator, but I learned to my regret
something, which many people have learned. The harmonic oscillator is too
simple; very often you can work out what it should do in quantum theory
without getting much of a clue as to how to generalize your results to other
systems.

So that didn’t help me very much, but when I was struggling with this
problem, I went to a beer party in the Nassau Tavern in Princeton. There was
a gentleman, newly arrived from Europe (Herbert Jehle) who came and sat
next to me. Europeans are much more serious than we are in America because
they think that a good place to discuss intellectual matters is a beer party. So,
he sat by me and asked, « what are you doing » and so on, and I said, « I'm
drinking beer. » Then I realized that he wanted to know what work I was
doing and I told him I was struggling with this problem, and I simply turned
to him and said, ((listen, do you know any way of doing quantum mechanics,
starting withaction - where the action integral comes into the quantum me-
chanics? » « No », he said, « but Dirac has a paper in which the Lagrangian, at
least, comes into quantum mechanics. I will show it to you tomorrow. »

Next day we went to the Princeton Library, they have little rooms on the
side to discuss things, and he showed me this paper. What Dirac said was the
following : There is in quantum mechanics a very important quantity which
carries the wave function from one time to another, besides the differential
equation but equivalent to it, a kind of a kernal, which we might call K(x’, x),
which carries the wave function y (x) known at time ¢, to the wave function
y (x') at time, t +€. Dirac points out that this function K was analogous to the
quantity in classical mechanics that you would calculate if you took the ex-
ponential of i, multiplied by the Lagrangian L( %, x) imagining that these
two positions x,x " corresponded ¢ and t +€. In other words,

e L(X=X
K(x', x) is analogous to e'€ L(= X)[h
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Professor Jehle showed me this, I read it, he explained it to me, and I said,
« what does he mean, they are analogous; what does that mean, analogous?
What is the use of that? » He said, « you Americans ! You always want to find
a use for everything! » I said, that I thought that Dirac must mean that they
were equal. « No », he explained, « he doesn’t mean they are equal. » « Well »,
I said, « let’s see what happens if we make them equal. »

So I simply put them equal, taking the simplest example where the Lag-
rangian is [, Mx2—V(x) but soon found I had to put a constant of propor-
tionality A in, suitably adjusted. When I substituted Aei€L/% for K to get

(', t+e) = J‘A exp[%L(x’:x,x)]w(x, t) dx (3)

and just calculated things out by Taylor series expansion, out came the Schro-
dinger equation. So, I turned to Professor Jehle, not really understanding, and
said, « well, you see Professor Dirac meant that they were proportional. » Pro-
fessor Jehle’s eyes were bugging out-he had taken out a little notebook and
was rapidly copying it down from the blackboard, and said, « no, no,this is an
important discovery. You Americans are always trying to find out how some-
thing can be used. That’s a good way to discover things! » So, I thought I was
finding out what Dirac meant, but, as a matter of fact, had made the discovery
that what Dirac thought was analogous, was, in fact, equal. I had then, at least,
the connection between the Lagrangian and quantum mechanics, but still
with wave functions and infinitesimal times.

It must have been a day or so later when I was lying in bed thinking about
these things, that I imagined what would happen if I wanted to calculate the
wave function at a finite interval later.

1would put one of these factors e¢L in here, and that would give me the
wave functions the next moment, ¢+¢ and then I could substitute that back
into (3) to get another factor of eiL and give me the wave function the next
moment, t+ 2¢ and so on and so on. In that way I found myself thinking of a
large number of integrals, one after the other in sequence. In the integrand was
the product of the exponentials, which, of course, was the exponential of the
sum of terms like EL. Now, L is the Lagrangian and € is like the time interval
dt, so that if you took a sum of such terms, that’s exactly like an integral.
That’s like Riemann’s formula for the integral J Lde, you just take the value
at each point and add them together. We are to take the limit as € - o, of
course. Therefore, the connection between the wave function of one instant
and the wave function of another instant a finite time later could be obtained
by an infinite number of integrals, (because € goes to zero, of course) of ex-
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ponential (iS /%) where S is the action expression (2). At last, I had succeeded
in representing quantum mechanics directly in terms of the action S.

This led later on to the idea of the amplitude for a path; that for each pos-
sible way that the particle can go from one point to another in space-time,
there’s an amplitude. That amplitude is e to the i [% times the action for the
path. Amplitudes from various paths superpose by addition. This then is an-
other, a third way, of describing quantum mechanics, which looks quite dif-
ferent than that of Schrodinger or Heisenberg, but which is equivalent to
them.

Now immediately after making a few checks on this thing, what I wanted
to do, of course, was to substitute the action (1) for the other (2). The first
trouble was that I could not get the thing to work with the relativistic case of
spin one-half. However, although I could deal with the matter only non-
relativistically, I could deal with the light or the photon interactions perfectly
well by just putting the interaction terms of (I) into any action, replacing the
mass terms by the non-relativistic (Mx2/2)dt. When the action has a delay, as
it now had, and involved more than one time, I had to lose the idea of a wave
function. That is, I could no longer describe the program as; given the ampli-
tude for all positions at a certain time to compute the amplitude at another
time. However, that didn’t cause very much trouble. It just meant develop-
ing a new idea. Instead of wave functions we could talk about this; that if a
source of a certain kind emits a particle, and a detector is there to receive it,
we can give the amplitude that the source will emit and the detector receive.
We do this without specifying the exact instant that the source emits or the
exact instant that any detector receives, without trying to specify the state of
anything at any particular time in between, but by just finding the amplitude
for the complete experiment. And, then we could discuss how that amplitude
would change if you had a scattering sample in between, as you rotated and
changed angles, and so on, without really having any wave functions.

It was also possible to discover what the old concepts of energy and momen-
tum would mean with this generalized action. And, so I believed that I had a
quantum theory of classical electrodynamics-or rather of this new classical
electrodynamics described by action (1). I made a number of checks. If I took
the Frenkel field point of view, which you remember was more differential, I
could convert it directly to quantum mechanics in a more conventional way.
The only problem was how to specify in quantum mechanics the classical
boundary conditions to use only half-advanced and half-retarded solutions.
By some ingenuity in defining what that meant, I found that the quantum
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mechanics with Frenkel fields, plus a special boundary condition, gave me
back this action, ()in the new form of quantum mechanics with a delay.
So, various things indicated that there wasn’t any doubt I had everything
straightened out.

It was also easy to guess how to modify the electrodynamics, if anybody
ever wanted to modify it. I just changed the delta to an f, just as I would for
the classical case. So, it was very easy, a simple thing. To describe the old re-
tarded theory without explicit mention of fields I would have to write prob-
abilities, not just amplitudes. I would have to square my amplitudes and that
would involve double path integrals in which there are two S’s and so forth.
Yet, as I worked out many of these things and studied different forms and dif-
ferent boundary conditions. I got a kind of funny feeling that things weren’t
exactly right. I could not clearly identify the difficulty and in one of the short
periods during which I imagined I had laid it to rest, I published a thesis and
received my Ph.D.

During the war, I didn’t have time to work on these things very extensively,
but wandered about on buses and so forth, with little pieces of paper, and
struggled to work on it and discovered indeed that there was something
wrong, something terribly wrong. I found that if one generalized the action
from the nice Langrangian forms (2) to these forms () then the quantities
which I defined as energy, and so on, would be complex. The energy values of
stationary states wouldn’t be real and probabilities of events wouldn’t add
up to 100%. That is, if you took the probability that this would happen and
that would happen -everything you could think of would happen, it would
not add up to one.

Another problem on which I struggled very hard, was to represent rela-
tivistic electrons with this new quantum mechanics. I wanted to do a unique
and different way-and not just by copying the operators of Dirac into some
kind of an expression and using some kind of Dirac algebra instead of ordinary
complex numbers. I was very much encouraged by the fact that in one space
dimension, I did find a way of giving an amplitude to every path by limiting
myself to paths, which only went back and forth at the speed of light. The
amplitude was simple (is) to a power equal to the number ofvelocity reversals
where I have divided the time into steps € and I am allowed to reverse velocity
only at such a time. This gives (as € approaches zero) Dirac’s equation in two
dimensions-one dimension of space and one of time (A=M=c=y).

Dirac’s wave function has four components in four dimensions, but in this
case, it has only two components and this rule for the amplitude of a path
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automatically generates the need for two components. Because if this is the
formula for the amplitudes of path, it will not do you any good to know the
total amplitude of all paths, which come into a given point to find the am-
plitude to reach the next point. This is because for the next time, if it came in
from the right, there is no new factor i¢ if it goes out to the right, whereas, if it
came in from the left there was a new factor ie. So, to continue this same infor-
mation forward to the next moment, it was not sufficient information to know
the total amplitude to arrive, but you had to know the amplitude to arrive
from the right and the amplitude to arrive to the left, independently. If you did,
however, you could then compute both of those again independently and thus
you had to carry two amplitudes to form a differential equation (first order in
time).

And, so I dreamed that if I were clever, I would find a formula for the am-
plitude of a path that was beautiful and simple for three dimensions of space
and one of time, which would be equivalent to the Dirac equation, and for
which the four components, matrices, and all those other mathematical funny
things would come out as a simple consequence-I have never succeeded in
that either. But, I did want to mention some of the unsuccessful things on
which I spent almost as much effort, as on the things that did work.

To summarize the situation a few years after the way, I would say, I had
much experience with quantum electrodynamics, at least in the knowledge
of many different ways of formulating it, in terms of path integrals of actions
and in other forms. One of the important by-products, for example, of much
experience in these simple forms, was that it was easy to see how to combine
together what was in those days called the longitudinal and transverse fields,
and in general, to see clearly the relativistic invariance of the theory. Because
of the need to do things differentially there had been, in the standard quantum
electrodynamics, a complete split of the field into two parts, one of which
is called the longitudinal part and the other mediated by the photons, or
transverse waves. The longitudinal part was described by a Coulomb potential
acting instantaneously in the Schrdédinger equation, while the transverse part
had entirely different description in terms of quantization of the transverse
waves. This separation depended upon the relativistic tilt of your axes in space-
time. People moving at different velocities would separate the same field into
longitudinal and transverse fields in a different way. Furthermore, the entire
formulation ofquantum mechanics insisting, as it did, on the wave function at
a given time, was hard to analyze relativistically. Somebody else in a different
coordinate system would calculate the succession of events in terms of wave
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functions on differently cut slices of space- time, and with a different separa-
tion of longitudinal and transverse parts. The Hamiltonian theory did not
look relativistically invariant, although, of course, it was. One of the great
advantages of the overall point of view, was that you could see the relativistic
invartance right away-or as Schwinger would say- the covariance was mani-
fest. I had the advantage, therefore, of having a manifestedly covariant form
for quantum electrodynamics with suggestions for modifications and so on. I
had the disadvantage that if I took it too seriously-I mean, if I took it seriously
at all in this form,-1 got into trouble with these complex energies and the
failure of adding probabilities to one and so on. I was unsuccessfully struggling
with that.

Then Lamb did his experiment, measuring the separation of the 281 and
2P1 levels of hydrogen, finding it to be about 1000 megacycles of frequency
difference. Professor Bethe, with whom I was then associated at Cornell, is a
man who has this characteristic : If there’s a good experimental number you’ve
got to figure it out from theory. So, he forced the quantum electrodynamics
of the day to give him an answer to the separation of these two levels. He
pointed out that the self-energy of an electron itself is infinite, so that the
calculated energy of a bound electron should also come out infinite. But, when
you calculated the separation of the two energy levels in terms of the corrected
mass instead of the old mass, it would turn out, he thought, that the theory
would give convergent finite answers. He made an estimate of the splitting
that way and found out that it was still divergent, but he guessed that was
probably due to the fact that he used an unrelativistic theory of the matter.
Assuming it would be convergent if relativistically treated, he estimated he
would get about a thousand megacycles for the Lamb-shift, and thus, made
the most important discovery in the history of the theory of quantum electro-
dynamics. He worked this out on the train from Ithaca, New York to Schen-
ectady and telephoned me excitedly from Schenectady to tell me the result,
which I don’t remember fully appreciating at the time.

Returning to Cornell, he gave a lecture on the subject, which I attended.
He explained that it gets very confusing to figure out exactly which infinite
term corresponds to what in trying to make the correction for the infinite
change in mass. If there were any modifications whatever, he said, even
though not physically correct, (that is not necessarily the way nature actually
works) but any modé&cation whatever at high frequencies, which would
make this correction finite, then there would be no problem at all to figuring
out how to keep track of everything. You just calculate the finite mass correc-
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tion 4m to the electron mass m,, substitute the numerical values of m, + 4m for
m in the results for any other problem and all these ambiguities would be
resolved. If, in addition, this method were relativistically invariant, then we
would be absolutely sure how to do it without destroying relativistically in-
variant.

After the lecture, I went up to him and told him, « I can do that for you, I’ll
bring it in for you tomorrow. » I guess I knew every way to modify quantum
electrodynamics known to man, at the time. So, I went in next day, and ex-
plained what would correspond to the modification of the delta-function to f
and asked him to explain to me how you calculate the self-energy of an elec-
tron, for instance, so we can figure out if it’s finite.

I want you to see an interesting point. I did not take the advice of Professor
Jehle to find out how it was useful. I never used all that machinery which I
had cooked up to solve a single relativistic problem. I hadn’t even calculated
the self-energy of an electron up to that moment, and was studying the dif-
ficulties with the conservation of probability, and so on, without actually
doing anything, except discussing the general properties of the theory.

But now I went to Professor Bethe, who explained to me on the blackboard,
as we worked together, how to calculate the self-energy of an electron. Up to
that time when you did the integrals they had been logarithmically divergent.
1told him how to make the relativistically invariant modifications that I
thought would make everything all right. We set up the integral which then
diverged at the sixth power of the frequency instead of logarithmically!

So, I went back to my room and worried about this thing and went around
in circles trying to figure out what was wrong because I was sure physically
everything had to come out finite, I couldn’t understand how it came out
infinite. I became more and more interested and finally realized I had to learn
how to make a calculation. So, ultimately, I taught myself how to calculate
the self-energy of an electron working my patient way through the terrible
confusion of those days of negative energy states and holes and longitudinal
contributions and so on. When I finally found out how to do it and did it with
the modifications I wanted to suggest, it turned out that it was nicely conver-
gent and finite, just as I had expected. Professor Bethe and I have never been
able to discover what we did wrong on that blackboard two months before,
but apparently we just went off somewhere and we have never been able to
figure out where. It turned out, that what I had proposed, if we had carried it
out without making a mistake would have been all right and would have
given a finite correction. Anyway, it forced me to go back over all this and to



26

1965 RICHARD PFEYNMAN

convince myself physically that nothing can go wrong. At any rate, the cor-
rection to mass was now finite, proportional to In (mu /%) where a is the width
of that function f which was substituted for §. If you wanted an unmodified
electrodynamics, you would have to take a equal to zero, getting an infinite
mass correction. But, that wasn’t the point. Keeping a finite, I simply followed
the program outlined by Professor Bethe and showed how to calculate all the
various things, the scatterings of electrons from atoms without radiation, the
shifts of levels and so forth, calculating everything in terms of the experimen -
tal mass, and noting that the results as Bethe suggested, were not sensitive to a
in this form and even had a definite limit as a — o.

The rest of my work was simply to improve the techniques then available
for calculations, making diagrams to help analyze perturbation theory
quicker. Most of this was first worked out by guessing-you see, I didn’t have
the relativistic theory of matter. For example, it seemed to me obvious that
the velocities in non-relativistic formulas have to be replaced by Dirac’s
matrix o or in the more relativistic forms by the operators y.. I just took my
guesses from the forms that I had worked out using path integrals for non-
relativistic matter, but relativistic light. It was easy to develop rules of what
to substitute to get the relativistic case. I was very surprised to discover that
it was not known at that time, that every one of the formulas that had been
worked out so patiently by separating longitudinal and transverse waves could
be obtained from the formula for the transverse waves alone, if instead of
summing over only the two perpendicular polarization directions you would
sum over all four possible directions of polarization. It was so obvious from
the action () that I thought it was general knowledge and would do it all the
time. I would get into arguments with people, because I didn’t realize they
didn’t know that; but, it turned out that all their patient work with the longi-
tudinal waves was always equivalent to just extending the sum on the two
transverse directions of polarization over all four directions. This was one of
the amusing advantages of the method. In addition, I included diagrams for
the various terms of the perturbation series, improved notations to be used,
worked out easy ways to evaluate integrals, which occurred in these problems,
and so on, and made a kind of handbook on how to do quantum electrody-
namics.

But one step of importance that was physically new was involved with the
negative energy sea of Dirac, which caused me so much logical difficulty. I got
so confused that I remembered Wheeler’s old idea about the positron being,
maybe, the electron going backward in time. Therefore, in the time depen-
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dent perturbation theory that was usual for getting self-energy, I simply sup-
posed that for a while we could go backward in the time, and looked at what
terms 1 got by running the time variables backward. They were the same as
the terms that other people got when they did the problem a more complicat-
ed way, using holes in the sea, except, possibly, for some signs. These, I, at
first, determined empirically by inventing and trying some rules.

Thave tried to explain that all the improvements of relativistic theory were
at first more or less straightforward, semi-empirical shenanigans. Each time I
would discover something, however, I would go back and I would check it
so many ways, compare it to every problem that had been done previously
in electrodynamics (and later, in weak coupling meson theory) to see if it
would always agree, and so on, until I was absolutely convinced of the truth
of the various rules and regulations which I concocted to simplify all the work.

During this time, people had been developing meson theory, a subject I
had not studied in any detail. I became interested in the possible application
of my methods to perturbation calculations in meson theory. But, what was
meson theory? All I knew was that meson theory was something analogous
to electrodynamics, except that particles corresponding to the photon had a
mass. It was easy to guess the & function in (1), which was a solution of d’Alem-
bertian equals zero, was to be changed to the corresponding solution of d’A-
lembertian equals m'. Next, there were different kind of mesons-the one in
closest analogy to photons, coupled via y,y,, are called vector mesons- there
were also scalar mesons. Well, maybe that corresponds to putting unity in
place of the y,, I would here then speak of « pseudo vector coupling » and |
would guess what that probably was. I didn’t have the knowledge to under-
stand the way these were defined in the conventional papers because they
were expressed at that time in terms of creation and annihilation operators,
and so on, which, I had not successfully learned. I remember that when some-
one had started to teach me about creation and annihilation operators, that this
operator creates an electron, I said, « how do you create an electron? It dis-
agrees with the conservation of charge », and in that way, I blocked my mind
from learning a very practical scheme of calculation. Therefore, I had to find
as many opportunities as possible to test whether I guessed right as to what the
various theories were.

One day a dispute arose at a Physical Society meeting as to the correctness
of a calculation by Slotnick of the interaction of an electron with a neutron
using pseudo scalar theory with pseudo vector coupling and also, pseudo scalar
theory with pseudo scalar coupling. He had found that the answers were not
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the same, in fact, by one theory, the result was divergent, although convergent
with the other. Some people believed that the two theories must give the same
answer for the problem. This was a welcome opportunity to test my guesses
as to whether I really did understand what these two couplings were. So, I
went home, and during the evening I worked out the electron neutron scat-
tering for the pseudo scalar and pseudo vector coupling, saw they were not
equal and subtracted them, and worked out the difference in detail. The
next day at the meeting, I saw Slotnick and said, « Slotnick, I worked it out
last night, I wanted to see if I got the same answers you do. I got a different
answer for each coupling-but, I would like to check in detail with you be-
cause I want to make sure of my methods. » And, he said, « what do you mean
you worked it out last night, it took me six months ! » And, when wecompared
the answers he looked at mine and he asked, « what is that Q in there, that
variable Q? » (I had expressions like (tan -'Q) /Q etc.). I said, « that’s the mo-
mentum transferred by the electron, the electron deflected by different angles. »
« Oh », he said, « no, I only have the limiting value as Q approaches zero; the
forward scattering. » Well, it was easy enough to just substitute Q equals zero
in my form and I then got the same answers as he did. But, it took him six
months to do the case of zero momentum transfer, whereas, during one eve-
ning I had done the finite and arbitrary momentum transfer. That was a thrill-
ing moment for me, like receiving the Nobel Prize, because that convinced
me, at last, I did have some kind of method and technique and understood
how to do something that other people did not know how to do. That was my
moment of triumph in which I realized I really had succeeded in working out
something worthwhile.

At this stage, I was urged to publish this because everybody said it looks like
an easy way to make calculations, and wanted to know how to do it. I had to
publishit, missing two things; one was proof of every statement in a mathemat-
ically conventional sense. Often, even in a physicist’s sense, I did not have a
demonstration of how to get all of these rules and equations from conventio-
nal electrodynamics. But, I did know from experience, from fooling around,
that everything was, in fact, equivalent to the regular electrodynamics and
had partial proofs of many pieces, although, I never really sat down, like
Euclid did for the geometers of Greece, and made sure that you could get it
all from a single simple set of axioms. As a result, the work was criticized, I
don’t know whether favorably or unfavorably, and the « method » was called
the aintuitive method)). For those who do not realize it, however, 1 should
like to emphasize that there is a lot of work involved in using this <<intuitive
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method>> successfully. Because no simple clear proof of the formula or idea
presents itself, it is necessary to do an unusually great amount of checking and
rechecking for consistency and correctness in terms of what is known, by com-
paring to other analogous examples, limiting cases, etc. In the face of the lack
of direct mathematical demonstration, one must be careful and thorough to
make sure of the point, and one should make a perpetual attempt to demon-
strate as much of the formula as possible. Nevertheless, a very great deal more
truth can become known than can be proven.

It must be clearly understood that in all this work, I was representing the
conventional electrodynamics with retarded interaction, and not my half-
advanced and half-retarded theory corresponding to (). I merely use () to
guess at forms. And, one of the forms I guessed at corresponded to changing &
to a function f of width &’ so that I could calculate finite results for all of the
problems. This brings me to the second thing that was missing when I publish-
ed the paper, an unresolved difficulty. With § replaced by f the calculations
would give results which were not « unitary », that is, for which the sum of the
probabilities of all alternatives was not unity. The deviation from unity was
very small, in practice, if a was very small. In the limit that I took a very tiny,
it might not make any difference. And, so the process of the renormalization
could be made, you could calculate everything in terms of the experimental
mass and then take the limit and the apparent difficulty that the unitary is
violated temporarily seems to disappear. I was unable to demonstrate that, as
a matter of fact, it does.

It is lucky that I did not wait to straighten out that point, for as far as 1know,
nobody has yet been able to resolve this question. Experience with meson
theories with stronger couplings and with strongly coupled vector photons,
although not proving anything, convinces me that if the coupling were
stronger, or if you went to a higher order ( 137th order of perturbation theory
for electrodynamics), this difficulty would remain in the limit and there
would be real trouble. That is, I believe there is really no satisfactory quantum
electrodynamics, but I’'m not sure. And, I believe, that one of the reasons for
the slowness of present-day progress in understanding the strong interactions
is that there isn’t any relativistic theoretical model, from which you can really
calculate everything. Although, it is usually said, that the difficulty lies in the
fact that strong interactions are too hard to calculate, I believe, it is really be-
cause strong interactions in field theory have no solution, have no sense-
they’re either infinite, or, if you try to modify them, the modification destroys
the unitarity. I don’t think we have a completely satisfactory relativistic quan-
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turn- mechanical model, even one that doesn’t agree with nature, but, at least,
agrees with the logic that the sum of probability of all alternatives has to be
100%. Therefore, I think that the renormalization theory is simply a way to
sweep the difficulties of the divergences of electrodynamics under the rug. 1
am, of course, not sure of that.

This completes the story of the development of the space-time view of
quantum electrodynamics. I wonder if anything can be learned from it. I
doubt it. It is most striking that most of the ideas developed in the course of
this research were not ultimately used in the final result. For example, the
half-advanced and half-retarded potential was not finally used, the action
expression (1) was not used, the idea that charges do not act on themselves
was abandoned. The path-integral formulation of quantum mechanics was
useful for guessing at final expressions and at formulating the general theory
of electrodynamics in new ways-although, strictly it was not absolutely
necessary. The same goes for the idea of the positron being a backward
moving electron, it was very convenient, but not strictly necessary for the
theory because it is exactly equivalent to the negative energy sea point of
view.

We are struck by the very large number of different physical viewpoints and
widely different mathematical formulations that are all equivalent to one an-
other. The method used here, ofreasoning in physical terms, therefore, appears
to be extremely inefficient. On looking back over the work, I can only feel a
kind of regret for the enormous amount of physical reasoning and mathe-
matically re-expression which ends by merely re-expressing what was pre-
viously known, although in a form which is much more efficient for the cal-
culation of specific problems. Would it not have been much easier to simply
work entirely in the mathematical framework to elaborate a more efficient
expression? This would certainly seem to be the case, but it must be remarked
that although the problem actually solved was only such a reformulation, the
problem originally tackled was the (possibly still unsolved) problem of avoid-
ante of the inifinities of the usual theory. Therefore, a new theory was sought,
not just a modification of the old. Although the quest was unsuccessful, we
should look at the question of the value of physical ideas in developing a new
theory.

Many different physical ideas can describe the same physical reality. Thus,
classical electrodynamics can be described by a field view, or an action at a
distance view, etc. Originally, Maxwell filled space with idler wheels, and
Faraday with fields lines, but somehow the Maxwell equations themselves are
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pristine and independent of the elaboration of words attempting a physical
description. The only true physical description is that describing the experi-
mental meaning of the quantities in the equation-or better, the way the
equations are to be used in describing experimental observations. This being
the case perhaps the best way to proceed is to try to guess equations, and dis-
regard physical models or descriptions. For example, McCullough guessed
the correct equations for light propagation in a crystal long before his col-
leagues using elastic models could make head or tail of the phenomena, or
again, Dirac obtained his equation for the description of the electron by an
almost purely mathematical proposition. A simple physical view by which all
the contents of this equation can be seen is still lacking.

Therefore, I think equation guessing might be the best method to proceed
to obtain the laws for the part of physics which is presently unknown. Yet,
when I was much younger, I tried this equation guessing and I have seen
many students try this, but it is very easy to go off in wildly incorrect and im-
possible directions. I think the problem is not to find the best or most efficient
method to proceed to a discovery, but to find any method at all. Physical
reasoning does help some people to generate suggestions as to how the un-
known may be related to the known. Theories of the known, which are de-
scribed by different physical ideas may be equivalent in all their predictions
and are hence scientifically indistinguishable. However, they are not psycho-
logically identical when trying to move from that base into the unknown. For
different views suggest different kinds of modifications which might be made
and hence are not equivalent in the hypotheses one generates from them in
ones attempt to understand what is not yet understood. I, therefore, think
that a good theoretical physicist today might find it useful to have a wide range
of physical viewpoints and mathematical expressions of the same theory (for
example, of quantum electrodynamics) available to him. This may be asking
too much of one man. Then new students should as a class have this. If every
individual student follows the same current fashion in expressing and think-
ing about electrodynamics or field theory, then the variety of hypotheses
being generated to understand strong interactions, say, is limited. Perhaps
rightly so, for possibly the chance is high that the truth lies in the fashionable
direction. But, on the off-chance that it is in another direction-a direction
obvious from an unfashionable view of field theory-who will find it? Only
someone who has sacrificed himself by teaching himself quantum electro-
dynamics from a peculiar and unusual point of view; one that he may have to
invent for himself. 1say sacrificed himself because he most likely will get
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nothing from it, because the truth may lie in another direction, perhaps even
the fashionable one.

But, if my own experience is any guide, the sacrifice is really not great be-
cause if the peculiar viewpoint taken is truly experimentally equivalent to the
usual in the realm of the known there is always a range of applications and
problems in this realm for which the special viewpoint gives one a special
power and clarity of thought, which is valuable in itself. Furthermore, in the
search for new laws, you always have the psychological excitement of feeling
that possible nobody has yet thought of the crazy possibility you are looking
at right now.

So what happened to the old theory that I fell in love with as a youth?
Well, I would say it’s become an old lady, that has very little attractive left in
her and the young today will not have their hearts pound when they look at
her anymore. But, we can say the best we can for any old woman, that she
has been a very good mother and she has given birth to some very good chil-
dren. And, I thank the Swedish Academy of Sciences for complimenting one
of them. Thank you.
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I1.B Action-at-a-Distance Classical Electrodynamics

While still an undergraduate at MIT, Feynman became aware of the so-called divergence
problems of QED. That is, physical quantities which should have been calculable by the
theory, such as the self-mass of the electron (the effect of the action of the electron’s own
electromagnetic field on its mass), were predicted to have an absurd result: infinity. Feynman
knew that a similar result was predicted classically; namely, the energy contained in the
Coulomb field of a point charge is theoretically infinite. As he said in his Nobel Lecture, his
“general plan was to first solve the classical problem, to get rid of the infinite self-energies
and to hope that when I made a quantum theory of it, everything would just be fine.” The
idea which he embraced (“fell deeply in love with”) was to replace the field itself by “delayed
action-at-a-distance.” In this view the electron would act only on other charges, not on itself,
and the field would be only a useful invention for representing that delayed interaction. He
abandoned this idea after an accurate experimental value obtained for the Lamb shift in
hydrogen in the late 1940s showed the presence of an effect called “vacuum polarization,”
which could only be obtained by using the full field concept.!

Papers [4] and [10] are, respectively, Part 3 and Part 2 of a three-part paper projected
by John Archibald Wheeler and Richard Phillips Feynman. Part 1, never published (and
probably never written), was to have been a careful study of the classical limit of the quantum
theory of radiation. Paper [4] introduces the absorber theory, according to which half of the
electromagnetic field propagates before the electron emitting it accelerates (advanced) and
half as it accelerates (retarded). The advanced field is assumed to be absorbed in distant
matter, where it would reradiate and arrive at the accelerating electron at the right time
and in the right amount to produce the “radiation reaction” that is needed to reduce the
radiating electron’s kinetic energy by the amount of energy that it is radiates. There are
no observable “advanced effects.” That was the solution to the problem of lack of energy
conservation that would result (as Wheeler had pointed out to Feynman) if the electron’s
radiated field did not act back upon the electron. Edward Kerner has remarked that the
“‘complete absorption’ in the electromagnetic universe is a kind of electrodynamic Mach’s
principle accounting marvelously for the appearance of the Lorentz—Dirac force of radiation
damping, and for the appearance of retarded interactions on the local scene.”?

Paper [10], “Classical Electrodynamics in Terms of Direct Interparticle Interaction,” was
published in 1949 while Feynman was deeply involved in his work on quantum electrodynam-
ics. Like [4] it is a scholarly paper, published in the Reviews of Modern Physics. Remarking
on it in an interview, Feynman said, “That was written by Wheeler, and was done essentially
independently. We worked together.”® By this he meant that the contents were worked out
jointly with Wheeler, who did the actual writing. The paper continues the critique of clas-
sical electrodynamics begun in [4], based upon this idea: The field of a charge is determined
by its motion; its field is only sensed by its action on other charges, whose motions act back
upon the first charge. Thus it should be possible to eliminate the field and to discuss directly

In a letter to John Wheeler in 1951, Feynman wrote, “I wish to deny the correctness of the assumption that”
electrons act only on other electrons, citing two pieces of evidence, one being the Lamb shift. He concluded
the letter thus: “So I think we guessed wrong in 1941. Do you agree?” (Feynman to Wheeler, May 4, 1951).
2E.H. Kerner, ed., The Theory of Action-at-a-Distance in Relativistic Particle Dynamics. New York, 1972,
pp. viii-ix.

3Interview of Feynman by Charles Weiner, June 27, 1966, p. 39.
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how the motion of one charge affects the motion of another. This can be done by writing
the relativistic expression for the principle of least action, which determines the equations of
motion of the charges (Fokker’s action principle). The last requires the use of half-advanced
and half-retarded four-vector potentials, and this leads to a discussion on the “paradox of
advanced effects.”

Paper [8] is included in this section because it is a further step in Feynman’s plan to
modify classical electrodynamics as a forerunner to attacking the problems of QED. Again it
uses the action-at-a-distance approach, half-advanced and half-retarded interaction, and the
Fokker action principle, although Feynman points out that his modification of the classical
“pointlike” interaction could also be applied to the conventional electrodynamics. However,
the latter makes use of the Hamiltonian method that singles out the time as a preferred
variable, making it difficult to construct a relativistic theory, which is more symmetrical
in time and space. Indeed, using the Hamiltonian requires keeping track of an infinity of
variables on a plane of constant time in space-time (or on a spacelike surface). That would
be at least as complicated as the field concept that Feynman is trying to eliminate.

The solution invoked by H.A. Lorentz to the classical electron self-energy problem at
the turn of the century was to give the electron a finite size. In [8], Feynman introduces an
equivalent relativistic “cut-off” that spreads out the interaction, conventionally occurring
only on the light-cone (“pointlike” interaction), over a small timelike interval. This finite
interval can be chosen as small as one wishes, and it would in principle be possible to
determine it experimentally at high energy. The paper also discusses the least action solution
to the problem of an electron striking a barrier and penetrating it, either directly, or indirectly
by a process involving the production of a virtual positron electron pair. It introduces the
forerunner of the Feynman diagrams, containing an electron moving “backward in time” to
represent the positron!

Selected Papers

[4] With J.A. Wheeler. Interaction with the absorber as the mechanism of radiation, Rev.
Mod. Phys. 17 (1945): 157-181.

[10] With J.A. Wheeler. Classical electrodynamics in terms of direct interparticle action.
Rev. Mod. Phys. 21 (1949): 425-433.

[8] A relativistic cut-off for classical electrodynamics. Phys. Rev. 74 (1948): 939-946.
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Interaction with the Absorber as the Mechanism
of Radiationt”

JouN ARCHIBAED WHEELER** AND RICHARD PHILLIPS FryNMAN***
Palmer Physical Laboratory, Princeton Universily, Princeton, New Jersey

“We must, thercfore, be prepated to find that further advance into this region will require
a still more extensive renunciation of features which we are accustomed to demand of the

space time mode of description.”—Nicls Bohr!

PAST FAILURE OF ACTION AT A DISTANCE TO
ACCOUNT FOR THE MECHANISM OF RADIATION

T was the 19th of March in 1845 when Gauss
described the conception of an action at a
distance propagated with a finite velocity, the
natural generalization to electrodynamics of the
view of force so fruitfully applied by Newton and
his followers. In the century between then and
now what obstacle has discouraged the general
use of this conception in the study of naturc?
The difficulty has not been that of giving to
the idea of propagated action at a distance a

* A preliminary account of the considerations which
appear in this paper was presented by us at the Cambridge
meeting of the American Physical Society, February 21,
1941, Phys. Rev. 59, 683 (1941)

** On leave of absence from Princeton University.

*** Now a member of the faculty of Cornell University,
but on leave of absence from that institution.

t Introductory Note.—In commemoration of the sixticth
birthday of Niels Bohr it had been hoped to present a
critique of classical field theory which has been in prepara-
tion since before the war by the writer and his former
student, R. P. Feynman. The accompanying joint article,
representing the third part of the survey, is however the
only section now finished. The war has postponed comple-
tion of the other parts. As reference to them is made in
the present section, it may be useful to outline the plan of
the survey.

The motive of the analysis is to clear the present
quantum theory of interacting particles of thosc of its
difficulties which have a purely classical origin. The
method of approach is to define as closely as one can
within the bounds of classical theory the proper use of the
field concept in the description of nature. Division [ is
intended first to recall the possibility of idealizing to the
case of arbitrarily small quantum effects, a possibility
which is offered by the freedom of choice in the present
quantum theory for the dimensionless ratio (quantum of
angular momentum) (velocity of light)/(electronic charge)?;
then however to recognize the possible limitations placed
on this analysis by the relatively large value, 137, of the
ratio in question in nature; and finally to present a general
summary of the conclusions drawn from the more technical
parts of the survey. The plan of the second article is a
derivation and resumé of the theory of action at a distance
of Schwarzschild and Fokker, to prepare this theory as a
tool to analyze the field concept. From the correlation of
the two points of view, one comes to Frenkel's solution of
the problem of self-energy in the classical field theory and

suitable embodiment of clectromagnetic cqua-
tions. This problem, to be true, remained un-
solved to Gauss and his successors for three
quarters of the century. But the formulation
then developed by Schwarzschild and Fokker,
described and amplified in another article,?
demonstrated that the conception of Gauss is at
the same time mathematically seclf consistent,
in agreement with experience on static and
current electricity, and in complete harmony
with Maxwell's equations.

To find the real obstacle to acceptance of the
tool of Newton and Gauss for the analysis of
forces, we have to go bevond the bounds of
steady-state electromagnetism to the phenomena
of emission and propagation of cnergy. No
branch of science has done more than radiation
physics to favor the evolution of present concepts
of field or more to pose difficulties for the idea of
action at a distance. The difficulties have been
twofold—to obtain a satisfactory account of the
field generated by an accelerated charge at a

to new expressions for the energy of electromagnetic
interaction in the theory of action at a distance. The third
division, which is published herewith, is an analysis of the
mechanism of radiation believed to complete the last tic
between action at a distance and field theory and to
remove the obstacle which has so far prevented the use of
both points of view as complementary tools in the de-
scription of nature. It is the plan of a subsequent division
to discuss the problems which arise when the fields are
regarded as subordinate entities with no degrees of freedom
of their own. An infinite number of degrees of freedom arc
found to be attributed to the particles themselves by the
theory of propagated action at a distance. However, it
appears that the additional modes of motion are divergent
and have on this account to be excluded by a general
principle of selection. Acceptance of this principle leads
to the conclusion that the union of action at a distance
and field theory constitutes the natural and self-consistent
generalization of Newtonian mechanics to the four-
dimensional space of Lorentz and Einstein.—]. A. W.

! Niels Bohr, Atomic Theory and the Descripiion of Nature
(Cambridge University Press, Teddington, England, 1934).

2 Unpublished, see Introductory Note.
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remote point and to understand the source of
the force experienced by the charge itself as a
result of its motion:

(a) An accelerated charge generates a field given, ac-
cording to the formulation of Schwarzschild and Fokker,
by half the usual retarded solution of Maxwell’s equations,
plus half the advanced solution. From the presence of the
advanced field in the expression for the electric vector, it
follows that a distant test body will experience a premoni-
tory force well before the source itself has commenced to
move. To avoid a conclusion so opposed to experience
Ritz? and Tetrode* proposed to abandon the symmetry in
time of the elementary law of force. However, it was then
necessary to give up the possibility to derive the equations
of motion and all the electromagnetic forces consistently
from a single unified principle of least action like that of
Fokker. More important, the sacrifice made to alleviate
one difficulty of the theory of action at a distance did not
help to solve the other, the problem of the origin of the
force of radiative reaction.

(b) Experience indicates that an accelerated charge
suffers a force of damping which is simultaneous with the
moment of acceleration. However, the theory of action at
a distance predicts that an accelerated charge in otherwise
charge-free space will experience no electric force. To
exclude the acceleration and thus to avoid the issue does
not appear reasonable. Uncharged particles can be present
and can accelerate the charge via gravitational forces. It
seems just as difficult to explain the reactive force when
other charged particles are present. They will indeed be
set into motion and will act back on the source. However,
if these elementary interactions have the purely retarded
character assumed by Ritz, and also by Frenkel,® the
reaction will arrive at the accelerated particle too late and
will have the wrong magnitude® to produce the damping
phenomenon. On the other hand, interactions symmetrical
between past and future—the half-retarded, half-advanced
fields of the unified theory of action at a distance—have so
far appeared to be equally incapable of accounting for the
observed force of radiative reaction, with its definitely
irreversible character.

It is clear why the viewpoint of Newton and
Gauss has not been generally applied in recent
times; it has so far failed to give a satisfactory
account of the mechanism of radiation.

The failure of action at a distance cannot pass
unnoticed by field theory. The two points of
view, according to the thesis of the present
critique, are not independent, but mutually
complementary. Consequently field theory, too,
faces in the radiation problem a significant issue:

3W. Ritz, Ann. d. Chem. et d. Physique 13, 145 (1908).
4+ H. Tetrode, Zeits. f. Physik 10, 317 (1922).
§ J. Frenkel, Zeits. {. Physik 32, 518 (1925).
¢ J. L. Synge, Proc. Roy. Soc. London A177, 118 (1940).
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does this theory give an explanation for the
observed force of radiative reaction which can
be translated into the particle mechanics of
Schwarzschild and Fokker, or does it likewise
fail to provide a complete picture of the mecha-
nism of radiation?

In attacking the radiation problem our first
move, following the above reasoning, is to review
the status of the reaction force in existing classi-
cal field theory. No more intelligible clue is found
to the physical origin of the force in this theory
than in the theory of action at a distance.
Stopped on this approach, we take up a sug-
gestion made long ago by Tetrode that the act
of radiation should have some connection with
the presence of an absorber. We develop this
idea into the thesis that the force of radiative
reaction arises from the action on the source
owing to the half-advanced fields of the particles
of the absorber; or, more briefly, that radiation
is a matter as much of statistical mechanics as
of pure electrodynamics. We find that this thesis
leads to a quantitative solution of the radiation
problem. Finally we examine some of the impli-
cations of this thesis for the conception of
causality.

THE STATUS OF RADIATIVE REACTION IN
FIELD THEORY

A charged particle on being accelerated sends
out electromagnetic energy and itself loses
energy. This loss is interpreted as caused by a
force acting on the particle given in magnitude
and direction by the expression

2 (charge)? (time rate of change of acceleration),
3 (velocity of light)?

when the particle is moving slowly, and by a
more complicated expression when its speed is
appreciable relative to the velocity of light. The
existence of this force of radiative reaction is
well attested: (a) by the electrical potential
required to drive a wireless antenna; (b) by the
loss of energy experienced by a charged particle
which has been deflected, and therefore acceler-
ated, in its passage near an atomic nucleus; and
(c) by the cooling suffered by a glowing body.

The origin of the force of radiative reaction
has not been nearly so clear as its existence.
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Lorentz” considers the charged particle to have
a finite size and attributes the force in question
to the retarded action of one part of the particle
on another. His expression for the force appears
as a series in powers of the radius of the particle.
The first term in the series gives the expression
already mentioned. Otherwise, the derivation
leads to difficulties:

(a) All higher terms depend explicitly upon the structure
assumed for the entity. These dubious terms enter in a
more and more important way into the calculated law of
radiative reaction as the frequency of oscillation of the
particle is raised, and the period approaches the time
required for light to cross the system.

(b) Non-electric forces are required to hold together the
charge distribution, according to Poincaré,? for to neglect
such forces is to violate the relativistic relation between
mass and energy. A composite system of this kind would
possess an infinite number of internal degrees of freedom
of oscillation. No consistent model has been found for the
Lorentz electron in either classical or quantum mechanics.

Briefly, Lorentz attempts to propose a physical
mechanism behind the radiative reaction, but
arrives at a mathematically incomplete expres-
sion for this force.

Dirac,® in contrast, advances no explanation
for the origin of the radiative damping, but
supplies a well-defined and relativistically in-
variant prescription to calculate its magnitude:

Let the motion of the particle be given. Calculate the
field produced by the particle from Maxwell's equations,
with the boundary condition that at large distances from
the particle this field shall contain only outgoing waves.
In addition to the so-defined retarded field of the particle,
calculate its advanced field, the sole change being the
existence of only convergent waves at large distances.
Define half the difference between retarded and advanced
fields as the radiation field (half the quantity denoted as
radiation field by Dirac). This field is everywhere finite.
Evaluate it at the position of the particle and multiply by
the magnitude of the charge to obtain the force of radiative
reaction.

Dirac’s prescription is appealing. (a) It is well-defined.
(b) The calculated force reduces for slowly moving particles
to the simple expression which was given above and which
has been well-tested at non-relativistic velocities. (¢) The
calculation treats the elementary charge as being localized
at a mathematical point, a picture which is not only
physically reasonable but also translatable into quantum

"H. A. Lorentz (1892), republished in his Collected
Papers, Vol. 1I, pp. 281 and 343. See also his treatise
The Theory of Electrons (Leipzig, 1909), pp. 49 and 253.

8 H. Poincaré, Rend. Palermo 21, 165 (1906).

(1(;31;8).) A. M. Dirac, Proc. Roy. Soc. London A167, 148
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mechanics. (d) The elements of the prescription involve no
more than standard electromagnetic theory plus the as-
sumption that the radiation field, as above defined, is the
source of the force.

The physical origin of Dirac's radiation field is never-
theless not clear. (a) This field is defined for times before
as well as after the moment of acceleration of the particle.
(b) The field has no singularity at the position of the
particle and by Maxwell's equations must, therefore, be
attributed either to sources other than the charge itself
or to radiation coming in from an infinite distance.

We accept as reasonable Dirac's results. His
concept of radiation field, however, we cannot
adopt as an assumption subject to no further
analysis. To do so would be to add to field theory
a principle incapable of translation into the
language of action at a distance.

To carry the analysis further requires us to
find a new idea. We go back to a suggestion once
made by Tetrode.!?® He proposed to abandon the
conception of electromagnetic radiation as an
clementary process and to interpret it as a con-
sequence of an interaction between a source and
an absorber. In his words,

““The sun would not radiate if it were alone in space and
no other bodies could absorb its radiation. . . . If for
cxample I observed through my telescope yesterday eve-
ning that star which let us say is 100 light years away, then
not only did I know that the light which it allowed to
reach my eye was emitted 100 years ago, but also the star
or individual atoms of it knew already 100 years ago that I,
who then did not even exist, would view it yesterday
evening at such and such a time. . . . One might ac-
cordingly adopt the opinion that the amount of material
in the universe determines the rate of emission. Still this
is not necessarily so, for two competing absorption centers

10 H. Tetrode, Zeits. f. Physik 10, 317 (1922). When we
gave a preliminary account of the considerations which
appear in this paper (Cambridge meeting of the American
Physical Society, February 21, 1941, Phys. Rev. 59, 683
(1941)) we had not seen Tetrode's paper. We are indebted
to Professor Einstein for bringing to our attention the
ideas of Tetrode and also of Ritz, who is cited in this
article. An idea similar to that of Tetrode was subsequently
proposed by G. N. Lewis, Nat. Acad. Sci. Proc. 12, 22
(1926): I am going to make the . . . assumption that
an atom never emits light except to another atom, and to
claim that it is as absurd to think of light emitted by one
atom regardless of the existence of a receiving atom as it
would be to think of an atom absorbing light without the
existence of light to be absorbed. I propose to eliminate
the idea of mere emission of light and substitute the idea of
transmission, or a process of exchange of energy between
two definite atoms or molecules.” Lewis went nearly as far
as it is possible to go without explicitly recognizing the
importance of other absorbing matter in the system, a
point touched upon by Tetrode, and shown below to be
essential for the existence of the normal radiative mech-
anism.
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will not collaborate but will presumably interfere with
each other. If only the amount of matter is great enough
and is distributed to some extent in all directions, further
additions to it may well be without influence.”

Tetrode's idea that the absorber may be an essential
element in the mechanism of radiation has been neglected,
perhaps partly because it appears to conflict with custom-
ary notions of causality, and partly also because of his
mistaken belief that the new point of view could by itself
explain quantum phenomena. In this connection he as-
sumed that the interaction between charged particles
should be described by forces more complicated than those
given by electromagnetic theory. Finally, as Tetrode
remarks, “on the last pages we have let our conjectures
go rather far beyond what has mathematically been
proven.”

ABSORBER RESPONSE AS THE MECHANISM OF
RADIATIVE REACTION

We take up the proposal of Tetrode that
the absorber may be an essential clement in the
mechanism of radiation. Using the language of
the theory of action at a distance, we give the
idea the following definite formulation:

(1) An accelerated point charge in otherwise charge-free
space does not radiate electromagnetic energy.

(2) The fields which act on a given particle arise only
from other particles.

(3) These fields are represented by one-half the retarded
plus one-half the advanced Liénard-Wiechert solutions of
Maxwell's equations. This law of force is symmetric with
respect to past and future. In connection with this assump-
tion we may recall an inconclusive but illuminating dis-
cussion carried on by Ritz and Einstein in 1909, in which
“Ritz treats the limitation to retarded potentials as one of
the foundations of the second law of thermodynamics,
while Einstein believes that the irreversibility of radiation
depends exclusively on considerations of probability.”?
Tetrode, himself, like Ritz, was willing to assume ele-
mentary interactions which were not symmetric in time.
However, complcte reversibility is assumed here because
it is an essential element in a unified theory of action ata
distance. In proceeding on the basis of this symmetrical
law of interaction, we shall be testing not only Tetrode’s
idea of absorber reaction, but also Einstein’s view that the
one-sidedness of the force of radiative reaction is a
purely statistical phenomenon. This point leads to our
final assumption:

(4) Sufficiently many particles are present to absorb
completely the radiation given off by the source.

On the basis of these assumptions we shall
consider as the source of radiation an accelerated
charge located in the absorbing system. A dis-
turbance travels outward from the source. By it

' W, Ritz and A. Einstein, Physik. Zeits. 10, 323 (1909);

see also W. Ritz, Ann. d. Chemie et d. Physique 13, 145
(1908).
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each particle of the absorber is set in motion and
caused to generate a field, half-advanced and
half-retarded. The sum of the advanced effects
of all particles of the absorber, evaluated in the
neighborhood of the source, gives a field which
we find to have the following properties:

(1) Itis independent of the properties of the absorbing
medium.

(2) It is completely determined by the motion of the
source.

(3) It exerts on the source a force which is finite, is
simultaneous with the moment of acceleration, and is just
sufficient in magnitude and direction to take away from
the source the energy which later shows up in the sur-
rounding particles.

(4) It is equal in magnitude to one-half the retarded
field minus one-half the advanced field generated by the
accelerated charge. In other words, the absorber is the
physical origin of Dirac’s radiation field.

(5) This field combines with the half-retarded, half-
advanced field of the source to give for the total disturbance
the full retarded field which accords with experience.

It will be sufficient to establish these results in
order to have both in field theory and in the
theory of action at a distance a solution of the
problem of radiation, including an explanation
of the force of radiative damping.

We shall present four derivations of the reac-
tion of radiation on the source of successively
increasing generality. In the first we consider an
absorber in which the particles are far from one
another. We assume without proof that the
disturbance which passes through the medium
is the full retarded field of experience. In the
second derivation we examine the field of the
absorber in the neighborhood of the source and
find it just such as to compensate the advanced
field of the accelerated charge and to give a
retarded field of the previously assumed magni-
tude. In this case we have allowed the medium
to have arbitrary density. The third derivation
—in contrast to the first two, where the source
was taken to be at rest or moving only slowly—
considers the case of motion with arbitrary
velocity and leads to the same relativistic ex-
pression which Dirac has given for the force of
radiative reaction. All three treatments proceed
by adding up the fields owing to the individual
particles of the absorber. A fourth derivation
uses a much more general approach, assuming
only that the medium is a complete absorber.
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THE RADIATIVE REACTION: DERIVATION I

For a first analysis of the mechanism of
radiative reaction, we shall simplify as much as
possible the properties of the absorber:

(a) it is taken to be composed of free-chargarl particles;

(b) these corpuscles are at rest or are moving only
slowly with respect to the particle which we treat as the
source;

(c) the charged entities are well separated from one
another;

(d) the particles occupy space to distances sufficiently
great to bring about essentially complete absorption of
radiation from the source.

We begin by considering the reaction set up
between the source and a typical charge in the
absorber when the particle of the source receives
an acceleration ¥, by collision with a third
particle or otherwise. The source has a charge
+e¢ and, therefore, sends out an electromagnetic
disturbance. This effect traverscs the distance
7% to the particle of the absorber, reaching it at
a time (ry/c) seconds later than the instant of
acceleration. For the clectric field acting on the
absorber at this place and time, we adopt the
usual retarded solution of Maxwell’s equation,
in conformity with experience, but without any
attempt in this first derivation of the force of
radiative reaction to reconcile such an assump-
tion with the half-retarded, half-advanced field
of the theory of action at a distance. At the
distances in which we are interested, the retarded
field of the source reduces to the well-known
expression,

— (€N /ric?) sin (A, re), (1)

together with a term of electrostatic origin. This
second term falls off inversely as the square of
the distance and may, therefore, be neglected.
The electric vector lies in the plane defined by
the directions of ¥ and 7y, is perpendicular to 7y,
and is considered positive when its component
along the direction of U is positive.

The typical particle of the absorber has a
charge ¢, and mass m;. It will experience in the
electric field of the disturbance an acceleration,
Ak, equal to (ex/ms) times expression (1). Its
motion will generate a field which will be half-
advanced and half-retarded. The advanced part
of this field will exert on the source a force
simultaneous with the original acceleration. The
component of this reactive force along the
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direction of the acceleration will be
—e(ex i/ 2rec?) sin (N, 7i)
= (Wer/2c") (ex?/muri?) sin? (A, r).  (2)

From expression (2) for the reactive force due
to one particle of the absorber, we can evaluate
the total effect due to many particles, present to
the number N per unit of volume. The number
of particles in a spherical shell of thickness dry
will be 47xNri?dri. For the particles in this shell
the average value of the geomctrical factor
sin? (¥, ) will be (2/3). Consequently we obtain
for total force of reaction the integral of the
expression

(2Ae2/3c%) (2w New? /myc)dry. (3)

The force (3) gives an account of the phe-
nomenon of radiative reaction which is not in
accord with experience:

(1) The force acts on the source in phase with its
acceleration; or in other words, it is proportional to the
acceleration itself rather than to the time rate of change
of acceleration.

(2) The reaction depends upon the nature of the ab-
sorbing particles.

(3) The force appears at first sight to grow without
limit as the number of particles or the thickness of the
absorber is indefinitely increased.

Nevertheless, proper addition of the effects due
to all the particles of a complete absorber, with
due allowance for their phase relations, does
lead, as we shall see, to a reasonable expression
for the reaction on the source.

There exists a phase lag between outgoing
disturbance and returning reaction which we
have not taken into account. The advanced force
acting on the source due to the motion of a
typical particle of the absorber is an elementary
interaction between two charges, propagated
with the speed of light in vacuum. On the other
hand, the disturbance which travels outward
from the source and determines the motion of
the particle in question is made up not only of
the proper field of the originally accelerated
charge, but also of the secondary fields generated
in the material of the absorber. The elementary
interactions are of course propagated with the
speed of light; but the combined disturbance
travels, as is well known from the theory of the
refractive index, at a different speed,

¢/ (refractive index) =¢/n.
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In order to speak of the change in velocity of
the disturbance, or to treat the refractive index
of the absorber in a well-defined way, it will be
necessary to consider a single Fourier component
of the acceleration. The connection between
acceleraticn and reactive force being a linear
one, it will be legitimate to decompose the
acceleration into parts of this kind, and later
to recompose the corresponding Fourier compo-
nents of the radiative reaction. We shall, there-
fore, suppose for the moment that the primary
acceleration varies with time according to the
formula

A=W exp (—1wt), (4)

where w represents the circular frequency of the
motion. A disturbance of this frequency will
experience in a medium of low density a refrac-
tive index given by the familiar formula,

n=1— 27rNe;,2/mkw"’. (5)

Thus the radiative reaction which reaches the
source from a depth 7, in the absorber will lag
in phase behind the acceleration by the angle

w(ry/c—nri/c) = (2rNel/mycw). (6)

We apply this phase correction to the contribu-
tion (3) of absorber particles in the range 7; to
7x+dri, and sum over all depths in the medium
to obtain the total reactive force,

(2e2/3c3)?If (2% Ne2/mic)dry
0

Xexp (—ir2rNewt/micw).  (7)

This integral will converge at the upper limit
when we allow for the existence of a small but
finite coefficient of absorption in the medium.
Or in the language of physical optics, so familiar
from the writings of R. W. Wood, we can say
that we have to determine the combined effect
of a number of wave zones, alternately in and
out of phase with the acceleration. The resultant
force is 90° out of phase with the acceleration
and is equal in magnitude to the arithmetic
sum of the contributions from depths up to a
point where the phase lag is one radian:

(total reaction) = (2e2/3¢%)( — 1)
= (2e2/3¢%)(dU/dt). (8)
This result, derived by considering only a single
Fourier component of the acceleration, no longer
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contains explicit reference to the frequency of
that component. Consequently expression (8)
applies whatever is the dependence of acceler-
ation upon time, so long as the velocities of all
particles remain non-relativistic. In this respect
we have a quite general derivation of the law of
radiative reaction generally accepted as correct
for a slowly moving particle subjected to an
arbitrary acceleration.

We conclude that the force of radiative reac-
tion arises, not from the direct action of a
particle upon itself, but from the advanced
action upon this charge caused by the future
motion of the particles of the absorber.

RADIATIVE REACTION: DERIVATION II

In the above treatment we considered first the
retarded electromagnetic disturbance traveling
outward in the absorbing medium; second, the
motion of the particles of the medium due to this
disturbance; third, the advanced part of the
elementary fields produced by these motions;
fourth, the sum of these fields at the position of
the source. The same chain of reasoning will
allow us to sum the elementary advanced fields
of the particles of the absorbing medium at points
in the neighborhood of the source. We shall find
that this field is just sufficient, when added to
the half-advanced, half-retarded field of the
source itself, to give the usual full strength
purcly retarded field which one is accustomed to
attribute to a radiating source. Thus we shall
justify the assumption made in the first deriva-
tion as to the strength of the outgoing disturb-
ance. In order to make it clear that our reasoning
1s not circular, we shall represent the magnitude
of the disturbance by a multiple, (?), of the
usual full retarded field, and shall actually deduce
the value unity for this at present undetermined
factor.

We shall now evaluate the contribution of
particles in the absorber to the electric field
acting in the region roundabout the source. In
order to simplify the geometrical considerations
as much as possible, we shall visualize the source
as located at the center of a spherical cavity of
radius R in the medium. We shall take the
distance, 7, from the source to the point of
evaluation of the field to be small in comparison
with this radius. We shall however give up the
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assumption that the particles of the absorber are
necessarily free, or that they are far from one
another. To make this generalization in our
previous derivation, we shall express the acceler-
ation of the typical particle of the absorber for
a disturbance of circular frequency w in the form

(electric field of disturbance) - (e./mu) - p(w). (9)

Here p(w) is in general a complex function of w
which approaches unity only in the case of weak
binding or high frequencies. The factor p(w),
according to the theory of dispersion, determines
the complex refractive index, n—1k, of the
medium:

1— (n—1ik)?= (4r Nei*/mi®) p(w).  (10)

The advanced field produced by the absorber
at the distance from the source will be given in
amplitude and phase by the product of the
following factors:

A= exp (—ot),
the acceleration of the source, here assumed for
simplicity to be periodic, although this periodicity
will drop out of the final result.

— (e/rxc?) sin (Y, ),
the factor by which the acceleration must be multiplied
to obtain the strength of the full retarded electric field
in vacuum at a great distange,, rx, from an accelerated
particle of charge e.

@),
factor as yet undetermined, which allows for the
possibility that the disturbance which is propagated
outward from the particle, and which is in general
due only partly to the source itself, may differ in
strength from the usual full retarded ficld. For an
isolated charge in otherwise charge-free space this fac-
tor is equal to (3). In the present case of a complete
absorber we shall however later find for this factor the
value unity. The product of the factors so far gives
the strength of the electric field which would act on
an isolated particle at the distance r¢.

exp (iwri/c),
the phase of the disturbance which would act on such
an isolated particle.

2(14+n—1k)1,
factor by which the strength of the electric field of
the disturbance inside the medium is reduced by
reflection at the wall of the cavity, a factor taken
over from electromagnetic theory.

exp (tw(n—ik~1)(re—R)/c),
factor allowing for the change in phase and amplitude
of the disturbance produced by propagation to the
depth (rx—R) in the medium.

(ex/me)p(w)
factor relating acceleration of absorber particle to
electric field experienced by it.
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— (ex/2ric?) sin (¥, i),
factor to be multiplied by acceleration of absorber
particle to give the magnitude of the component of
the advanced electric field produced by the absorber
in the neighborhood of, and parallel to the acceleration
of, the source.

exp (—1twre/c),
factor allowing for the difference in phase between
(a) the advanced field of the absorber as evaluated
at the source itself and (b) the acceleration of the
typical absorber particle.

exp (twr cos (r, ri)/c),
correction to be applied to phase of absorber field at
the source itself in order to evaluate this field at the
distance, r, from the source. The product of the factors
so far gives in magnitude and phase the advanced
ficld at this point owing to a single particle of the
absorber.

]ka’dndﬂ,

number of absorber particles in the element of solid

angle dQ and in the interval of distance dry.

We evaluate the product of the listed factors
and sum over all particles of the absorber to
evaluate the total advanced field of the absorber
n the neighborhood of the source:

(?)(e/c®)Uq exp (—iwt)f exp (t{w/c)r cos (7, ri))
Xsin? (A, 7¢) (dQ/47)

fn(‘l"Nek’/ka)P(w) (1+n—ik)~dre
’ Xexp (iw(n—ik—1)(re—R)/9). (1)

The last integral is simplified by the relationship
(10) between refractive index and physical
properties of the medium to an expression

fw(w?/c)(l —n+1k)dry
" Xexp (iw(n—ik—1)(r—R) /&) = —iw, (12)

completely independent of the properties of the
absorber. Having thus summed over all particles
lying in a given direction, we sum over different
directions, using the relations

(dQ/47)=(1/2)d cos (r, ri)(de/27), (13)

where ¢ is the dihedral angle between the (r, %)
and (r, ) planes; and

f sin® (U, 7)(de/27)
—(2/3) f [1—Pa(cos (U, r)) Mo/ 2

=(2/3)[1—Ps(cos (A, 7))Ps(cos (r, ¥))]. (14)
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Also we note the integrals

1

(1/2) | exp (iu cos 8)d(cos 8) = Fo(u)

1 for small u

=u"1sin uz{ _ ' )
(e'* —e ) /24u for all «,

(15)
and
1

(1/2) } exp (3u cos 8)P(cos 8)d(cos 6) = Fq(u)
-1
={u1—3u"%) sin u+3u~% cos u
{ —u?/15 for small u

(e™ —e~™)/24u for large u.

~~

~ (16)
By use of these mathematical results, we find
that the advanced field of the absorber has in
the cavity an electric component parallel to the
acceleration of the source which is given in
magnitude and phase by the expression

(2)(2e/3c%) (—10Us) exp (—1iwt)
[Folwr/c)— Py(cos (A, 7)) Falwr/c)].  (17)

The radiation field so obtained reduces at the
source itself to the form

()(2e/3c%)(dN/dt), (18)

and at distances a number of wave-lengths from
the source goes over into the expression

— (2)(eAo/2rc?) exp (twr/c—iwt)
+ (?)(eo/2rc?) exp (—twr/c—iwt). (19)

In words, formula (19) states that the advanced
field of the absorber is equal in the neighborhood
of the accelerated particle to the still undeter-
mined factor (?), multiplied by the difference

total disturbance proper retarded field apparently diverging from source,
(diverging from ) = (ﬁeld of source )+ (actually composed of parts converging) .

source itself

We are now in a position to evaluate the unde-
termined factor, (?), in the expression we have
used in the above analysis for the force acting
on the typical particle of the absorber. We have
only to express all three terms of Eq. (20) in
units of the usual retarded solution of Maxwell's
equations, a solution which asymptotically for
large distances from the source gives for the
electric field parallel to the acceleration the
expression

— (eA/rc?) sin? (U, ). (21)
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between half the retarded field (first term) and
half the advanced field (second term) which one
calculates for the source itself.

1t is instructive to see how superposition of the
advanced fields of a large number of particles
can give the appearance of both retarded and
advanced fields due to the source itself. The
advanced field of a single charge of the absorber
can be symbolized as a sphere which is converging
towards the particle and which will collapse upon
it at just the moment when it is disturbed by
the source. But at the moment when the source
particle itself was accelerated, the sphere in
question had a substantial radius. One point on
it touched, or nearly touched, the source. The
shrinking sphere therefore appears to the source
as a nearly plane wave which passes over it
headed towards one of the particles of the
absorber. When we consider the effect of all the
absorbing charges, we-have to visualize an array
of approximately plane waves, all marching to-
wards the source and passing over it in step.
The resultant of these individual effects is a
spherical wave, the envelope of the many nearly
plane waves. The sphere converges, collapses on
the source, and then pours out again as a
divergent sphere. An observer in the neighbor-
hood will gain the impression that this divergent
wave originated from the source.

A test particle will be unable to make a
separation between the two retarded fields, one
properly owing to the source, the other really
owing to the advanced field of the absorber.
Thus we have for the disturbance diverging
from the source the relation

(20)

on individual absorber particles

To evaluate the third term in (20), we refer back
to Eq. (19). Thus we find the algebraic equation

y=1/2)+(2/2), (22)
of which the solution is
(1)=(1/2)+(1/2). (23)

From our derivation we find for the disturbance
diverging from an accelerated charge the full
retarded field required by experience.

Along the same lines we can find the strength
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of the advanced field converging upon the source before the moment of acceleratjon:

field of source
itself

converging on
source

(total disturbance) (proper advanced) field apparently convergent on source,
B + ( ) .

At distances of several wave-lengths from the
source, the two terms on the right possess simple
mathematical expressions. Measured in terms of
(21) as a unit of field strength, the right-hand
side of (24) has the value (1/2)—(1/2)=0. We
conclude that there is no net disturbance con-
verging upon the source prior to the time of
acceleration. The advanced field of the source is
completely compensated by the advanced field
of the absorber.

Our picture of the mechanism of radiation is
seen to be self-consistent. Any particle on being
accelerated generates a field which 1s half-
advanced and half-retarded. From the source a
disturbance travels outward into the surrounding
absorbing medium and sets into motion all the
constituent particles. They generate a field which
is equal to half the rctarded minus half the
advanced field of the source. In this field we have
the explanation of the radiation field assumed by
Dirac. The radiation field combines with the field
of the source itself to produce the usual retarded
effects which we expect from observation, and
such retarded effects only. The radiation field
also acts on the source itself to produce the force
of radiative reaction. What we have said of one
particle holds for every particle in a completely
absorbing medium. All advanced fields are con-
cealed by interference. Their effects show up
directly only in the force of radiative reaction.
Otherwise we appear to have a system of particles
acting on each other via purely retarded forces.

RADIATIVE REACTION: DERIVATION III

So far the source has been assumed to be at

actually composed of parts convergent
on individual absorber particles

(24)

rest, or in slow motion, at the time of accelera-
tion. The expression derived above for the force
of radiative reaction is thercfore limited in its
applicability. To obtain the corresponding law
of damping for a swift particle three possibilities
suggest themselves, each calling for a mathe-
matical technique quite different from that of
the other two. The first and simplest procedure
is to look at the particle from a frame of reference
moving with nearly its own speed, apply in this
frame the expression which we already have,
and then transform back to the laboratory frame
of reference. This application of the transforma-
tion of Lorentz is perfectly legitimate but not
especially instructive.

A second method to calculate the force of
reaction for a fast particle comes from Dirac.
He makes the assumption that the damping
arises from the action on the particle of a field
equal to half the difference between the particle’s
own retarded and advanced ficlds, a conception
which we have now interpreted in terms of the
radiative reaction of the absorber. As cach of the
two fields is individually singular at the location
of the charge, evaluation of the difference re-
quires one to apply a limiting process which
presents a certain mathematical difficulty, though
in principle perfectly straightforward.

In connection with the limiting process of
Dirac, it is interesting to refer back to the
calculation of radiative reaction made by Lorentz
on the model of an extended charge, every part
of which exerted a retarded effect upon ecvery
other part. The elementary retarded field can be
written in the form

retarded } | | [ retarded 41 advanced 4+ retarded Y | f advanced } |
field 1 field ? field *\  field ? field

Here the first term is singular and is related to
what Lorentz called the electromagnetic mass of
the particle. The second part, on the other hand,
is the only one asymmetrical in time and capable
of contributing to the force of radiative reaction.
In present terms, the procedure of Lorentz

amounts to an ingenious means to determine the
limiting value of Dirac’s radiation field at the
position of the source. Unfortunately the pro-
cedure is not convenient to apply to a rapidly
moving extended charge because of the relativ-
istic contraction of its spherical form.
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The third procedure to evaluate the law of
radiative damping for a swift particle is to calcu-
late directly the reaction of the absorber on the
source, along the lines of derivations 1 and I1.
This approach uses the expression for the field
of a radiating charge, not at small distances,
where it is singular, but at large distances, where
it has a simple asymptotic form. We shall explore
this type of derivation because of its direct
relation to the absorber theory of radiation.

We idealize the absorber as before as a sphere
of very large radius, 7, centered on the point
reached by the given particle at a chosen instant.
At the surface of the absorber, those constituents
of the ficld which drop away as 1/72 will have
become negligible in comparison with those which
fall off as 1/7. The typical particle on this surface
expericnces an electric field perpendicular to the
direction of ». The magnitude of this field was
represented in the case of a slowly moving source
by an expression of the form, — (e/rc*)(compo-
nent of acceleration perpendicular to r), and is
similarly representable in the present case by an
expression of the type, — (e/r)}(function of mo-
tion)e. Here the function in parenthesis, while
more complicated than before, still depends only
on the motion of the particle and the direction
to the point of action. The influence of this
disturbance causcs the particles of the absorber
to generate a field, the advanced part of which
at the position of the source claims our attention.
We consider the portion of this returned field
arising from particles of the absorber which
lic within an clement of solid angle d2. The elec-
tric component of this field is perpendicular to »
and had for a slowly moving source the magni-
tude (e/c*)(—tw/c)(component of acceleration
perpendicular to 7)(d2/47) when the acceleration
was a periodic function of time, and more gener-
ally was given by the derivative (e/c®)(d/cdt)
X (component of acceleration perpendicular to 7)
X (d/4w).

The relationship between returned ficld and
original disturbance is a property only of the
absorber and is independent of the state of
motion of the source. Consequently, for the case
of a particle moving at arbitrary velocity the
returned electric field is perpendicular to 7 and
equal in magnitude to

e(d/cdt)(function of motion)a(dQ/4r).

WHEELER AND R. P.

FEYNMAN

What we have said of the electric field applies
also to the magnetic field, because at great
distances from an accelerated particle the two
vectors have equal magnitudes and perpendicular
directions. Thus we conclude that the reaction
of the absorber on the source is described by a
field, F,.., which is directly related to the retarded
field, R,.., of the source at great distances, 7, by
the equation’?

Fon= —rf(aR,,m/ax“)(dQ//l-:r). (25)

The retarded field of the source particles, R,
in Eq. (25) is dcrived from the retarded po-
tentials

A,,.=2efa'"‘(a)6(xa,,xa“)da,

through the equation
Roun=1(04,/0x") — (3An/0x™).

Here the integration over the proper cotime, «,
goes only over that portion of the world line of
particle a from which a retarded disturbance can
reach the point of action, x™ The significant
value of « is connected with the coordinates x™
" 12 Here and below we use the following notation:

1= . . .
X, =0 the three space coordinates of a typical point

z;ii’ of evaluation of the field.
=2
x*=—x,, a quantity also having the dimensions of a

length, and given by the product of the
velocity of light and the time elapsed between
a certain zero hour and the moment of
observation.
a™, similar space-time coordinates of a typical point
on the world line of the ath particle.
Successive points along the world line are designated by
the values of a parameter, «, the proper cotime, which has
the dimensions of a length and is equal to the product of
the velocity of light and the proper time. The difference,
de, in proper cotime between two neighboring points has
the same sign as the difference de*, and is given in magni-
tude by the equation

(da)*=c*(time interval)?— (space interval)?= —da,da*.

Derivatives with respect to a are denoted by dots. In
comparing formulae given in this notation with those given
elsewhere in the literature, it will be noted that some
authoss go from contravariant to covariant representation
of a vetior by reversing the sign of its space components
and leaving its time component unaltered; also that dots
are often used to indicate differentiation with respect to
proper time, rather than proper cotime. In our notation
the derivatives @™ are dimensionless quantities which
satisfy the relation d,d* = —1. We use xa™ as an abbrevia-
tion for the vector, x™—a™. The usual scalar potential of
the electromagnetic field is represented by the component
A* of a four-vector, of which the other three parts, 41, 42,
A3, constitute the space components of the customary
vector potential. The typical component of the field is
given in the equation Fon=(94,/0x™)— (3Am/0x"), where
we have for the electric field E, = Fiy= — Fy, etc., and for
the magnetic field H; = Fpy= — Fy, etc.
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by the equation
xaxah =90,

(26)
The integration yields
A= —ed,/(d.xa").

In differentiating this expression with respect
to the coordinates of the point of observation,
we have to allow for the associated change in
the value of the proper cotime, given by the
differential of (26),

(dx,—d,da)(x*—a*) =0,
or

da= (xa,dx*)/(a.xa*). @2n

Thus the retarded field of a is found to be given
by the expression

Rpn=1e(0,20") " 2(GmXQpn— GnXCrm)
+e(14d,xar) (duxa*) 3 (— AmX@n+dnXan).

All terms in this expression fall off at large
distances inversely as the first power of the
separations xa, except for the terms arising from
the unity in the factor (1+4d,xae*), which we may
henceforth omit. For the same reason in differ-
entiating the field with respect to x%, we may
treat all differences xa™ as constant. Thus we
find in the limit of large distances

— rf (0Rmn/3x%)(d2/47)
= rf( —xa4/dxa*)(d/da) Ry (dQ/47)

=e f {3(Guxar) (duxat) (2l — X rd)

— (@, xa*) "3 XAl — X ol )
+ (dpxa*) (duxa*) = (xa mn — X ,G,n)
—3(duxa*)2(d,x0*) (XA mbp — XA o) |

X (r*dQ/4r).  (28)

As variables of integration it is convenient to
use a colatitude 8 and azimuthal angle ¢, taking
for polar axis the direction of the space compo-
nent, (a@', d%, a?®), of the four-vector, d”. With
this choice of variables the denominator of the
typical term in the preceding expression is a
power of the factor (d,xa*) =r(ds+a cos 8), where
a2—a?*=1. The absence of the azimuthal angle
from the denominator and the relatively simple
form of the numerator makes it easy to carry out
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the integration over ¢. The numerator of the
typical term then reduces to a polynomial in
cos 6. The integration over 6 therefore leads only
to algebraic functions of cos 6 to be evaluated at
the two limits cos 6 = &=1. The reduction of the
resulting expressions to simple form requires
rather long calculation. The final result for the
field of radiative reaction at the location of the
source is

Fon= —rf(aRm,,/ax“)(dQ/41r)

(29)
=(2¢/3) (dmilin—Gintin).

This expression for the field of the absorbing
particles agrees with that given by Dirac for
half the difference of retarded and advanced
ficlds due to the source itself, provided account
is taken of the difference between the present
notation and his.

If we define the force of radiative reaction
through its contribution to the product of the
mass of the particle by its acceleration, mc2d™,
then we have for this force the expression

eF nu* = (262/3)(Apid;, — lid,)d*.

(30)

In the case of a slowly moving particle the first
space component of this force is readily evaluated
by noting that (1) d., is of the order of the ratio
of the velocity of the corpuscle to the speed of
light and is therefore negligible; (2) the quantity
—d,d* has the value unity; and (3) the derivative
4. represents (1/¢%) times the time rate of
change of the given component of the accelera-
tion, . Consequently, the expression (30) re-
duces in the non-relativistic limit to the usual
formula, (2€2/3¢%)(dU/dt), for the damping force.

From the properties of the retarded field at
large distances from an accelerated particle in
motion at an arbitrary velocity, we have obtained
an expression for the force of radiative reaction
previously derived by Dirac on the assumption
that this force arises from half the difference of
the advanced and retarded fields of the particle
itself. It is, therefore, of interest to see that
this equivalence can be demonstrated without
going through the rather long calculations which
are required on either method of derivation
to obtain explicit expressions for the force of
radiative reaction. To bring out the relationship
between the two derivations, we go back to that
expression for the retarded field of the source
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which contains a delta function, and arrange the
evaluation of Eqg. (25) in such a way as always
to keep a delta function in evidence. Thus we
write the retarded field in the form

R,.= Zef [ —dn(9/9x™) +d,(9/3x™) J8(xa,xa*)de.

In order to postpone the differentiation of the
delta function, we adopt an expedient to trans-
form the variable of differentiation. We consider
in addition to the actual world line of the source,
a™(a), a displaced world line, a particle moving
along which reaches at the proper cotime, «, the
point a™(e) =a™(a)+ D™, where the D™ are four
numbers independent of a. We note that the
derivative with respect to x™ of any function of
the differences x*—a* is equal to the negative of
the derivative of the same function with respect
to D”. Consequently we may write the expres-
sion for the retarded field in the form

Rpn=2e f [dm(8/9D™) —da(3/0D™)]

X &(xa*xd,)de, (31)

where the result is to be evaluated in the limit
when the displacements D™ go to zero.

We now insert expression (31) for the retarded
field into the integral for the field returned by
the absorber,

Fonzr f (9Rwn/0D%)(d0/41),

and encounter the integral

Fn=2r(0/0D%) f f [in(8/0D") —dn(3/0D™) ]
X 8(xd,xa*)da(dQ/4r).

To bring out the meaning of this integral, we
note that we want the radiative reaction on the
source at a definite point, a™=a"(a*), along its
world line; that this point is at the center of a
sphere of radius 7; and that advanced disturb-
ances from the particles on the inner surface of
this sphere contribute to the force at this point
only if they start at a cotime, x!, equal to
r+a‘*(a*). Consequently, x* has this fixed value
as the integration over the surface of the sphere
is carried out. Also during this integration we
keep fixed the variable a and consequently hold
constant @=d(a). Under these circumstances it
is convenient to adopt for variable of integration
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the angle 6 between the space directions a@ and
ax:

(ax)?=(ad)*+ (ax)*—2(ad)(ax) cos 6.

Then we have
f&(dxydx“) (dQ/4n) = (1/2) 16(dx,ldoc")d(cos )

(8z) =(azx)+(ad) = _
= 5(ax,.ax*)
(

dr) ={(az) —(aa)

X d[ (ax)*— (a@)? — (ax)*]/4(ad)(ax)
=f6(dx,,dx“)d(dxﬁx“)/‘]f(ad)n

In this last expression the range of integration
includes the point, dx.ax*, for which the delta
function gives a contribution, only if there are
some points on the surface of the sphere which
can be reached simultaneously by two retarded
waves which start out with a™(e*) and d@™*(a) as
centers. This condition will be satisfied if and
only if @(a) lies between the forward and back-
ward light cones drawn with a(e*) as origin.
Thus we have

Frn=6(3/3D%) f do[dn(8/0D") — d2(8/0D™)]

{ 1/2(ea) when da,da*>0
0 when da,da* <0)

The differentiation with respect to D* of the
discontinuous function in the last pair of brackets
gives a function which has the character of a
delta function except for a change in sign at one
of the singularities. Specifically, writing

8(da,G0%) =84+6_,

where 8, is different from zero only when a
retarded disturbance from d(«) can reach the
point a(a*), and §_ is different from zero only
when an advanced disturbance from d(a) can
reach ¢he point a(a*), we have

1/2(aa) when da,da*>0
= 6+ —o_.

(a/apd)[

0 when da,da* <0

Then the field due to the absorber takes the form

Fon=e f [in(3/3D") — 4n(3/0D™) (54— 6_)da

—e f [4,(3/3a™) — im(3/3a7) J(3,— )da.  (32)
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In other words, the reactive field at the point
am=a"(a*) of the actual path is equal to half the
retarded minus half the advanced field due to an
equal charge moving on a world line of identical
shape, all points of which are displaced by the
amount Dw=, this field evaluated in the Ilimit
Dm—0. This result establishes the connection
between two different methods of evaluating the
force of radiative reaction, one based on the
properties of the retarded field of the source at
great distances, the other containing half the
difference of retarded and advanced fields at the
location of the source itself.

THE RADIATIVE REACTION: DERIVATION IV

From the preceding applications of the ab-
sorber theory of radiation, it has become clear
that such properties of the absorber as refractive
index and density have no bearing on the magni-
tude of the force of radiative reaction. The only
essential point is that the medium should be a
complete absorber. We therefore expect that
there should somehow be a means to take this
point into account in a very general way.

In physical terms, complete absorption implies
that a test charge placed anywhere outside the
absorbing medium will experience nodisturbance.

. . (k) (k)
In mathematical terms, using Fr. and Faqv to
denote the retarded and advanced fields due to

the kth particle, we have

T3P+ 3P%) =0 (outside the absorber). (33)

From the fact that this sum vanishes outside the.

absorber everywhere and at all times, it follows
that each of the two sums also vanishes outside
the absorber:

T For=0 (outside) (34)

and

Tk Fae=0 (outside). (35)

Thus, the one sum, if it does not vanish, repre-
sents at large distances an outgoing wave, and
the other represents a converging wave; but
complete destructive interference between two
such waves is impossible. Hence, if their sum
vanishes, so does each field individually. From
this conclusion it follows that the difference of
the fields vanishes outside the absorber at all
times:

(%)

(3 Fa—3Fe) =0 (outside).  (36)
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The field (36), in contrast to the fields (33)-
(35), has no singularities within the absorber;
it is a solution of Maxwell's equations for free
space. Vanishing outside the absorber at all
times, it must therefore forever be zero inside.
The special property of a completely absorbing
medium is expressed by the equation

@
> k(Fret— Faav) =0 (everywhere). (37)

The consequences of Eq. (37) for the force on
a typical particle are easily deduced. On the ath
charge the entire field acting is given, according
to the theory of action at a distance, by the sum

¥ (3FratiFaay).

ka

(38)

This expression can be broken down into three
parts:

(k) (@ (@ ) *)
z Fret+(%Fret_%Fndv)_ z (%Fret—'%Fndv)- (39)
k#a all &
Of these terms the third has just been shown to
vanish for a complete absorber. The second gives
rise to the phenomenon of radiative damping.
In the case of non-relativistic velocitics we have
the result
1 @ o N
ta(3Eret— 3 Enav) = (2€.%/3¢%) (dUa/dt);  (40)
and in the case of swift particles we have for the
force on the ath charge
(a) (a) .
eﬂ(%FﬂG mt_%an ndv)aa'
This expression reduces, according to Dirac, to
the form

(2¢,%/3) (@nlia — d74.4)4°,

(41)

in agreement with the reaction of the absorber
as calculated in the preceding derivation. With
this reactive term and the first term of (39), we
arrive at the equation of motion of the typical
particle in a completely absorbing medium

" (k) .
Malp = €4 E Frux retd”
k#a

+(2€.%/3) (@nlia—Gnda)a®.  (42)

In arriving at this equation we have shown that
the half-advanced, half-retarded fields of the
theory of action at a distance lead to a satis-
factory account of the mechanism of radiative



48

170 J. A. WHEELER
reaction and to a description of the action of one
particle on another in which no evidence of the
advanced fields is apparent. We find in the case
of an absorbing universe a complete equivalence
between the theory of Schwarzschild and Fokker
on the one hand and the usual formalism of
clectrodynamics on the other. This is what was
to be proved.

THE IRREVERSIBILITY OF RADIATION

An oscillating charge surrounded by an ab-
sorbing medium loses energy. Why does radiation
have this irreversible character even in a formu-
lation of clectrodynamics which is from the
beginning symmetrical with respect to the inter-
change of past and future?

It might at first sight appear that the irre-
versibility i1s connected with the property of
complete absorption. This is not the case. The
expression (37) of the condition of absorption is
perfectly symmetrical between advanced and
retarded ficlds. We have only to reverse the roles
of these two fields in the derivation following
(37) in order to arrive at an equation of motion
for the typical particle just as legitimate as
(42), and in complete harmony with that
equation:

i (k) .
Malp =€y Z Fnu adv@“
ka

- (2302/3)(dnd.a"d;nda)da- (43)

In this equation, however, the force of radiative
reaction appears with a sign just opposite to its
usual one. Evidently the explanation of the one-
sidedness of radiation is not purely a matter of
electrodynamics.

We have to conclude with Einstein!! that the
irreversibility of the emission process is a phenom-
enon of statistical mechanics connected with the
asymmetry of the initial conditions with respect
to time. In our example the particles of the
absorber were either at rest or in random motion
before the time at which the impulse was given
to the sourct. It follows that in the equation of

. k)
motion (42) the sum, Y F'(.a rot, Of the retarded

fields of the adsorber Ik)::ticles had no particular
effect on the acceleration of the source. Con-
sequently the normal term of radiative damping
dominates the picture. In the reverse formulation
(43) of the equation of motion, the sum of the
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advanced fields of the absorber particles is not
at all negligible, for they are put into motion by
the source at just the right time to contribute to

(k) . . .
the sum Y Fhaaav- This contribution, apart

from thek:;ttural random effects of the changes
of the absorber, has twice the magnitude of the
usual damping term. The negative reactive force
of (43) is therefore cancelled out, and a force of
the expected sign and magnitude remains.

That 1t is solely the nature of the initial
conditions which governs the direction of the
radiation process can be seen by imagining a
reversal of the direction of time in the preceding
example. We have then a solution of the equa-
tions of motion just as consistent as the original
solution. However, our interpretation of the
solution is different. As the result of chaotic
motion going on in the absorber, we see each
one of the particles receiving at the proper
moment just the right impulse to generate a
disturbance which converges upon the source at
the precise instant when it is accelerated. The
source receives energy and the particles of the
absorber are left with diminished velocity. No
clectrodynamic objection can be raised against
this solution of the equations of motion. Small
a priort probability of the given initial conditions
provides our only basis on which to exclude such
phenomena.

A comparison of radiation with heat conduc-
tion is illuminating. Both processes convert
ordered into disordered motion although every
elementary interaction involved is microscopi-
cally reversible.

Consider for the moment the question of the
irreversibility of heat conduction, later to be put
into relation with the problem of the one-sided-
ness of radiation. A portion of matter observed
at the present moment to be warmer than its
surgoundings will cool off in the future with a
probability overwhelmingly greater than the
chance for it to grow hotter. About the past of
the same portion of matter Boltzmann’s H-
thcorem however also predicts an enormously
greater likelihood that the body warmed up to
its present state rather than cooled down to it.
In other words, we are asked to understand the
present temperature of the body as the result of
a simple statistical fluctuation in the distribution
of energy through the entire system. This de-
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TaBLE 1. Decomposition of the symmetric fields of the
theory of action at a distance into the fields of the retarded
field theory.

Total field acting on ath particle
in theory of action at a distance;

(k)
here decomposed into:

=z *) ;)
ka3 Frer + 4 4dy)

(1) Retarded fields of usual )
formulation of clectrody- 2 Feet
namics. kya

(2) A field completely deter-
mined by the motion of the
particle itself ; denoted as the
“radiation field"” by Dirac;
accounts for the normal force
of radiative reaction.

(a} (@)
[%Fret_ %Fadv]mn
= (264/3)(Andn—Tmd )

(3) A residual field, with * *
singularities at none of the 2 (AFaav—1Frer)
particles, but completely de- sl particles = Fine

termined by the motion of
the particles; identified by
us with Dirac’'s “inrident
lield.”

duction is based on the premise that the system
was isolated before observation. However, com-
mon experience tells us that the given portion of
matter probably acquired its abnormal tempera-
ture, not via an internal statistical fluctuation,
but because it had earlicer not been isolated from
the outside.

For the radiative analogy of this example of
heat conduction, conceive a charged particle
bound to a position of cquilibrium by a quasi-
clastic force. Furthermore suppose its energy at
the moment of observation is large in comparison
with the agitation of the surrounding absorber
particles. There is then an overwhelming proba-
bility that the oscillator will lose energy to the
absorber at a rate in close accord with the law of
radiative damping. What can be said of the
particle prior to the moment of acceleration? In
an ideal absorbing system completely free of
special disturbances, there is an equally over-
whelming chance that the energy of the charge
was then increasing at a rate given approximately
by the inverse of the law of radiative damping.
In this case as in heat conduction the abnormally
high energy of the object is to be interpreted as
the result of a statistical fluctuation. However,
that the sun at some past age acquired its energy
by such a fluctuation no one now would seriously
propose. Obviously the universe is a special
system with respect to the origin of which
probability considerations cannot freely be
applied.

in

We conclude that radiation and radiative
damping come under the head, not of pure
clectrodynamics, but of statistical mechanics.
Thé conventional expression for the force of
radiative reaction, like those for frictional re-
sistance and viscous drag, represents a statistical
average only. Application of this concept is not
required in such an instance as the case of
complete thermodynamical equilibrium, where
the relative fluctuations of the actual forces
about the conventional values are substantial.
The concept of radiative damping is of real
value only when we deal with the conversion of
organized into disorganized encrgy, as in wireless
transmission or light production.

COMPLETE AND INCOMPLETE ABSORPTION

In the picture of radiation which we have
built on the foundation of Tetrode’s suggestion,
the absorber plays a role of hitherto unsuspected
importance. On this account we should investi-
gate not only how much the mechanism depends
upon the completeness of the interception, but
also the question what should be said of the
absorption in the case of the actual universe.

In discussing the case of incomplete intercep-
tion, we require a convenient mcans to take into
account the initial conditions which so clearly
control the irreversibility of the force of radiative
reaction. For this reason we shall break down
the half-retarded, half-advanced ficlds of the
theory of action at a distance into three parts as
shown in Table I. With this decomposition of
the ficld, we arrive at a description of the
behavior of a system of particles which is entirely
equivalent to the theory of action at a distance
but which in the equation of motion,

Ml =ta S Fon w4 (26,2/3)

k=a

X (d,,‘ii.a _d;na-rx)da-’—eaFma incdas (44)

conceals from view the existence of the advanced
part of the fields of Schwarzschild and Fokker.
We shall find it convenient to use for the field
decomposition of Table I and the dynamical
Eq. (44) the term “retarded field formulation of
electrodynamics.”’

The field which enters the third term in the
equation of motion (44) vanished in the case of
a completely absorbing system. Its appearance
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in the present case has led us to give it the name
of “incident field,” which Dirac applied to a
quantity having an identical role in the equation
of motion. However, on the origin of this field
we go beyond Dirac’s treatment in giving a
prescription for its unique determination in terms
of the movements of all the particles of the
system. This prescription reveals that the field
in question contains the advanced effects of the
theory of action at a distance.

Some properties of the incident field may be
noted before use is made of this concept in the
analysis of special problems. The quantity Fi,.
has a singularity at the site of none of the charged
particles. Consequently it satisfies Maxwell’s
equations for free space. Although completely
determined by the motion of the charges, it thus
has the character of a disturbance produced by
sources at infinity. Now we already have in

the retarded field, ¥ pnnic]es)Fl(’:Z) a quantity
whose behavior at all distances is likewise
uniquely fixed by the motions of all the charges.
Consequently we can expect to be able to deduce
the incident field everywhere from a knowledge
of the retarded field at large distances from the
system of particles. Thus, in the determination
of the incident fields we can, if we wish, avoid
explicit reference to the movements of the
charges, and base our considerations on the
asymptotic behavior of their retarded fields
alone. This point will be clearer after a considera-
tion of a few examples, and can then be formu-
lated in a general mathematical form as a by-
product of an investigation primarily aimed at
examining the problem of complete and incom-
plete absorption.

The simplest example will be the idealized
casc of a single-charged particle, alone in other-
wise charge-free space, which is accelerated either
by the gravitational attraction of a passing mass
or by some other non-electromagnetic force. For
the three electromagnetic forces of the equation
of motion (44) we then have the following
accounting: (1) There are no other particles, so
the retarded field of the first term vanishes.
(2) The second term is different from zero and
represents the conventional force of radiative
reaction. (3) The incident field of the third term
is in the present case equal to half the advanced
field minus half the advanced field owing to the
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particle itself. If we imagine the acceleration of
the charge to be limited to a short stretch of
time, then the incident field represents a dis-
turbance which, long before the moment in
question, was converging upon the particle from
great distances. It focuses upon the particle at
the period of acceleration and subsequently ap-
pears as a wave diverging from the charge. This
disturbance, apparently produced by sources at
infinity, exerts on the particle a force which is
just sufficient in magnitude and in sign to cancel
the normal force of radiative reaction. The de-
scription just given is the rather involved trans-
lation into the language of the retarded field
theory of the conclusion immediately apparent
from the theory of action at a distance with its
half-advanced, half-retarded fields; an isolated
charge neither experiences a force of radiative
reaction nor radiates away electromagnetic
energy.

The incident field of the preceding problem
could have been determined equally well without
knowledge of the motion of the particle itself, by
reference to the retarded field, Fr., of the charge
at large distances. The latter quantity represents
an electromagnetic disturbance which was negli-
gible before the moment of acceleration, and
which considerably later than that instant had
the character of a diverging spherical wave. We
can find a solution, S, of Maxwell’s equations
for free space, the diverging wave in the asymp-
totic expansion for which has exactly the same
behavior as the field —%Fre. By this condition
the solution in question is furthermore uniquely
determined. On this account it must be identical
with another field which also satisfies Maxwell’s
equations for free space and has for its diverging
wave at large distances the same form as — 4 Frey;
namely, the incident field, Fine=12%Faiv— 3 Fret.
Consequently we may write Fi,,=S, where S is
the solution of Maxwell’s equations defined as
above. From this means of arriving at the value
of the incident field we conclude that the incident
field is that solution of the wave equation for
free space which, when added to the known
retarded field, Frq, will reduce by one-half the
strength of the diverging wave in the asymptotic
representation of Fre.

As next idealized example of incomplete ab-
sorption we consider a source at the center of a
blackbody with two opposed openings out into
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Fi1G. 1. Advanced effects in two exaniples of an
incompletely absorbing system.

charge-free space (Fig. 1). In those directions
not shielded by the absorber an incident field—
to use the language of the retarded field theory
—will enter, converge on the radiating particle,
diverge and go out to infinity, as in the preceding
example. This time, however, the wave incident
from one side covers but the amount £ of the
whole solid angle of 47. Consequently at the
instant when it is focused upon the source, it
reduces the force of radiative reaction only
fractionally below the conventional value of this
force. The fraction in question is equal in the
case of a pair of small opposed openings and a
slowly moving source to the product of the
following factors:

Q/4r,

the fraction of the whole solid angle spanned by one

hole.
2

factor allowing for the existence of the two openings.
3sin? (%, 1),
factor allowing for the orientation of the holes relative
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to the direction of acceleration. Here (¥, r) is the
angle between the vectorial acceleration of the source
and the vector from this particle to one opening. The
given expression for the polarization factor assumes
that the quantities d¥/d¢ and ¥ are parallel, and has
to be replaced by a more complicaied term when this
parallelism does not exist.

When the source is moving at the time of acceler-
ation with a speed comparable to that of light,
then the angular distribution of the radiation is
represented by an expression more complicated
than sin? (¥, r) but the general principle is the
same.

In the present case of an absorber complete
except for two inversion-symmetric openings to
charge-free space we conclude that there is a
continuous transition, as the size of the apertures
is increased, from the full conventional force of
radiative reaction on a central source, to the
case of no radiative reaction at all. Furthermore,
we note that a test charge placed in one of the
two openings will receive a disturbance some
time before as well as some time after the
moment when the source itself is given its
acceleration. Generally we may say that the
explicit appearance of advanced effects is un-
avoidable in the case of a system which is an
incomplete absorber. However, in neither of the
examples so far examined do advanced fields of
the source produce explicit advanced effects on
any other particle than a test charge: in the first
example, because there is no other charged
particle; and in the second case, because the
incident field is restricted to a region of space
where there are no particles to be disturbed,
except a possible test particle.

ADVANCED EFFECTS ASSOCIATED WITH
INCOMPLETE ABSORPTION

Recognizable advanced effects appear for the
first time in a third example, a source at the
center of a cavity completely absorbing except
for a single passage to charge-frec space. (See
Fig. 1.) For simplicity we consider the source to
be a slowly moving particle. Also we shall denote
as “‘antipassage’’ that portion of the absorber
which is marked out by the inversion, with
respect to the source, of the passage itself. Apart
from the fields which come from and go to the
passage and antipassage, we have the usual
solution of the problem of a completely absorbing
system. In the language of the retarded formu-
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lation of field theory, we can say that there is in
all other directions no incident field, and that
in those directions the absorber experiences only
a normal full strength retarded field as a result
of the acceleration of the source. In the language
of the theory of action at a distance the result
is the same. The source gives out a half-advanced,
half-retarded field, the advanced part of which
in the direction of the normal portions of the
absorber is cancelled by a portion of the advanced
fields generated in the absorber itself. The re-
maining portion of this advanced field combines
with the half-strength retarded field of the source
to give the full retarded disturbance demanded
by experience. The advanced field of the absorber
at the location of the source itself produces a
force of radiative reaction which is below the
conventional amount in proportion only to the
small solid angle which we have so far left out
of consideration. So far the results are quite as
expected.

We have now to consider the effect on the
antipassage of what, in the theory of action at a
distance, is the half-advanced field of the source.
If the passage itself were filled with absorbent,
this material would have generated a field, the
advanced part of which would have compensated
the cffect we are now considering. As it is, we
visualize two possible solutions of the problem
of motion. In the first, the uncompensated half-
advanced field of the source sets into motion
ahead of time the particles on the inner face of
the antipassage. In the second solution, this
advanced field is compensated by a mechanism
yet to be explained, and the particles in question
are not disturbed before the moment of accelera-
tion of the source.

In the first solution, not illustrated in Fig. 1,
the particles on the inner face of the antipassage
spontaneously accelerate at a moment sufficiently
early so that their retarded fields reach the source
at just the moment when it is radiating. The
retarded field of the charges of the antipassage,
evaluated in the cavity, has in the present
solution the following properties: (1) It vanishes
except in the directions of the passage and anti-
passage. (2) In those directions it has a value
completely determined by the movement of the
source. (3) It combines with the Schwarzschild-
Fokker field of the source to cancel its outgoing
component travelling in the direction of the
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passage and to build up its advanced component
on the side of the antipassage to a full strength
advanced wave. The combined advanced wave
has a magnitude exactly sufficient to account for
the disturbance of particles of the antipassage
ahead of time. (4) The field of these particles at
the location of the source acts in the opposite
sense from the conventional force of radiative
reaction. The magnitude of that force is reduced
by a fraction which, apart from a polarization
factor, is equal to twice the solid angle subtended
by the passage, divided by 4.

The particles of the antipassage, in addition
to the anticipatory movements already discussed,
undergo, after the moment of acceleration of the
source, a disturbance similar to that experienced
by the charges which neighbor them on the inner
face of the cavity. In this way they are caused
to generate fields, the advanced part of which
(1) combines with the half-retarded field of the
source in the given direction to produce a full
retarded disturbance that accounts for the mo-
tions in question and (2) cancels the advanced
field of the source in the direction of the passage.
Thus neither advanced nor retarded disturbance
emerges from this passage to be detected by an
external test charge.

The seclf-consistent solution which we have
just described in terms of the symmetrical theory
of action at a distance is easily summarized in
the language of the retarded field theory. The
sources of radiation are the central particle and
the charges on the inner face of the antipassage.
Each is considered to experience the conventional
force of radiative reaction and to produce only
retarded fields. The fields from the disturbed
charges on the inner face of the cavity focus on
the central charge at the moment of its accelera-
tion, thus (1) partially compensating the con-
ventional force of radiative reaction and (2)
cancelling that part of its retarded field which
is travelling in the direction of the passage. No
retarded field gets outside the system. The inci-
dent field, determinable as we have seen before
from the asymptotic behavior of the retarded
field, consequently vanishes. Thus in the given
illustration the equation of motion of each
particle contains only the retarded fields of all
the other particles, plus the full conventional
force of radiative damping, a conclusion con-
sistent with the solution which we have just



53

ABSORBER THEORY OF RADIATION

given. To complete the picture, we have to
express in terms of these equations of motion,
the explanation of the early motion of the
particles on the inner face of the antipassage.
This movement we attribute to the influence of
the retarded fields coming from other portions
of the wall of the cavity, and reinforcing at just
this particular region of the surface. The same
type of reasoning can be followed back step by
step in the past, along a course which is very
like the reversal in time of the mechanism by
which a burst of radiative energy dissipates
itself. Granted that the existence of incomplete
absorption requires, in our example, the explicit
occurrence of advanced effects, we have in the
given solution one reasonable picture how these
advanced effects may build up until the time of
disturbance of the source and may then be
followed by a succession of retarded effects of
magnitudes diminishing as absorption and re-
flection at the inner walls of the cavity have
their effects.

In this third example an equally consistent
solution of the problem of advanced effects may
be briefly outlined (Fig. 1). The fields are in this
case such that a test chatge placed within the
cavity experiences only the full retarded field of
experience. The particles on the wall of the
cavity are set into motion only after the time
when the source was struck and caused to
radiate. These particles, by the now familiar
mechanism of absorber response, generate fields,
the advanced parts of which in the cavity
cancel the advanced field of the source and bring
its retarded field up to full strength. In particular,
the advanced field of the source in the direction
of the passage is compensated, so that an external
test charge on that side of the absorber will
experience no advanced disturbance. It will,
however, on our picture undergo a full strength
retarded disturbance. How the half-retarded
disturbance of the source in this direction is built
up to full strength, and how the half-advanced
field in the direction of the antipassage is can-
celled, is a question still to be cleared up. For
explanation we cannot (1) call upon the advanced
fields of the absorber in the direction of the
passage, for there is no matter in this direction.
Nor can we (2) call upon retarded fields of
particles on the inner face of the antipassage for
our purpose—although they lie in just the right
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direction thus to produce the field in question—
because they have been assumed not to have
been set in motion prior to the time of accelera-
tion of the source. To account for the directional
field of so far unknown origin in the cavity, we
are by (1) restricted to an explanation in terms
of a retarded wave from some source yet to be
found, lying in the direction of the antipassage
and by (2) this source cannot consist of the
particles on the inner face of that portion of the
absorber. Consequently we must interpret the
field in question as owing to particles set in
motion ahead of time on the outer face of the
antipassage. This conclusion, like many of the
considerations to which we are led in the study
of incompletely absorbing systems, appears para-
doxical. Nevertheless it leads to a self-consistent
solution of our problem. In the first place, the
half-retarded field of the surface particles com-
pensates within the antipassage as well as within
the cavity the half-advanced field of the source.
There is, therefore, no question of the propaga-
tion of any disturbance through the thickness of
the absorber. Secondly, the half-advanced field
of the surface particles appears from the point
of view of an external test particle to be a wave
front of limited cross section which comes from
outer space and which would converge upon the
source if the antipassage did not block its path.
This half-advanced field in the region exterior to
the absorber adds to the half-advanced field
from the central source to give a full strength
disturbance convergent upon the surface particles
in question. Thus an account is given for the
force and for the acceleration which they experi-
ence ahead of the time of acceleration of the
source within the cavity. The energy which is
absorbed at the outer surface is later paid out by
the source. That accelerated particle experiences
the full conventional force of radiative reaction.

The solution just given is readily translated
into the language of the retarded formulation of
field theory, where the force on each particle is
attributed to three sources: the conventional
force of damping, the retarded fields of all other
particles and an incident field. The incident field
has the appearance of a disturbance convergent
from outer space upon the external face of the
antipassage. By it the particles are accelerated
and caused to generate a full strength retarded
field which at greater depths within the medium
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cancels the incident field, a phenomenon which
is the normal mechanism of absorption. Thus
there is within the cavity no disturbance con-
vergent upon the source, and consequently only
the usual retarded effects are observed, part of
which also is propagated out through the passage
into charge-free space.

In the retarded formulation of field theory,
there is no apparent reason for a correlation
between the surface absorption and the radiation
process within the cavity. The requirement for
a connection between the two comes into evi-
dence only in the condition which must be
satisfied by the incident field, and which has been
discussed above. That there must be such a field
follows from the existence of a full strength
retarded field, R, diverging outward from the
source through the passage in the absorber.
Therefore, denote the strength of the incident
field in this region of space and at this instant of
time by nR, where n is a factor now to be found.
Being also divergent from the source, but free of
singularities there, the incident field must in this
neighborhood and in the given cone of directions
be a multiple of the radiation field of the source.
On being followed backwards in time to moments
previous to the acceleration of the particle, it
must, therefore, have in the direction of the
antipassage the magnitude —nd, where 4 de-
notes the advanced solution of Maxwell's equa-
tion for the accelerated source. Thus the field
incident from great distances upon the particles
on the outer surface of the antipassage must have
the magnitude —nA4. These particles generate a
retarded field which within the absorber compen-
sates the incident field and therefore has the
magnitude +nA. This field, followed onward in
the direction of the original source, where it
naturally has no singularity, at first converges
and then diverges to give the appearance of a
retarded wave from the source itself. In this
neighborhood the retarded field of the surface
particles behaves much as does the radiation
field of the source. Consequently the strength of
the field in question, evaluated in the direction
of the passage, is —nR. Thus the sum of the
retarded fields of all the particles of the system,
evaluated outside the passage way, is R (from
the source) —nR (from the surface particles).
To determine the strength of the incident field,
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we now apply the condition that the divergent
term, R, in its asymptotic representation must
have a strength equal to —% times that of the
divergent wave owing to the retarded fields of
all the particles of the medium:

nR=—3(R—nR). (45)

The solution of this implicit equation gives for
the magnitude of the incident wave in the direc-
tion of the passage nR= —R, and consequently
for the strength of the incident wave converging
upon the other side of the system +A. Thus we
check the properties of this second solution of
our problem as obtained previously by using
the language of half-advanced, half-retarded
fields, with no reference to the concept of
incident field.

Between the two self-consistent solutions of
this third example of an incomplete absorber we
make no attempt to choose. We have to accept
the fact that the dynamical system in question
possesses a number of degrees of freedom which
is in direct proportion to the number of particles
present. Once 1t is granted that advanced effects
of some kind must be connected with the acceler-
ation of the source, it does not follow uniquely
upon which particles these advanced effects must
act. The selection is a matter of initial conditions,
not of equations of motion. The two solutions so
far described are only two relatively simple
samples from an infinite number of possible
solutions, distinguished from one another by the
requirements put upon the initial state of the
particles of the absorber. It is only in the case
of a completely absorbing system that there is
the possibility to find a set of initial conditions
which is relatively well determined by statistical
considerations.

Self-consistency being the only requirement
which has to be met by a solution of the problem
of an incomplete absorber, and this requirement
in the retarded ficld formulation being largely
contained in a condition to be satisfied by the
incident field, it may be of interest to have our
so far informal statement of this relation put
into mathematical terms. The condition in ques-
tion furnishes a connection between the incident
field, here abbreviated as I, and the sum, R, of
the retarded fields of all the particles.
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To derive the desired relation, we note that
the present formulation of electromagnetic
theory expresses the incident field as half the
difference between the advanced and retarded
fields owing to all the particles. Thus the ad-
vanced field of the system is given by the
expression R+21. From (1) a knowledge of this
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advanced field everywhere in space and (2) a
knowledge of the values taken on the points, £,
of a surface surrounding the system by an arbi-
trary solution, S, of Maxwell's equations for the
same charge distribution, we can derive the
values of this arbitrary solution at all other
points in space, x, from the relation

S(x)=(R(x)+21(x))+(2w)—l‘fffdgﬂdgwg'(aasmgl—saa/agl)li‘:Jr~~-+~-

In Eq. (46) the symbol § stands for the delta
function, 8(x*—&4-x,—£,). The integral is to be
taken only over the immediate neighborhood of
those points on the surface from which an ad-
vanced wave can reach the point x1, x?, x3 at the
time x* In the first integrand we have the dif-
ference between the values of a certain quantity
calculated for the largest and smallest values of
&' consistent with given values of £, £, £4; and
similarly for the other three integrals. We shall
write Eq. (46) symbolically in the form

S=(R+2I)+Agdv. [S]. (47)

We now apply this general relation to the
special half-advanced, half-retarded solution of
Maxwell’s equations for the system of charges,
S=R+1I. In this way we arrive at an implicit
equation by means of which to derive the inci-
dent field from the retarded field:

0=I+Adv. [R+T]. (48)

This relation is the generalization of Eq. (45)
from which we determined the strength of the
incident field in the third example above. With
this generalization we cnd our study of the
behavior of idealized systems with incomplete
absorption and come to the wider question what
we should say about the absorbing properties of
the system with which we have to deal in nature.

There would be no problem in interpreting

2 The analogue of Eq. (46), for determination of the
arbitrary solution from a knowledge of the retarded
solution, has been given in a rather different form by W.

_R. Morgans, Phil. Mag. 9, 148 (1930). The present form
is most easily derived by use of the relation

(9/08")(0/0k,)0(x" — & %y — &,)
= —4wd(x' — )8 (x? — £)5(x" — )8 (x* — £4),
and application of Green’s theorem in four dimensions.
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the universe as a completely absorbing system
if 1t were an indefinitely extended Euclidean
space. The existence of the eclectron-positron
field gives an mechanism by which, even in a
vacuum, radiation of some frequencies can
undergo absorption processes, and light of all
wave-lengths can be scattered. These processes
are sufficient ultimately to degrade all the
radiation given out by an accelerated charge.

The universe is however now gencrally re-
garded as a closed space, in harmpny with the
illuminating theory put forward by Einstein. In
this space present observations suggest that the
absorption of radiation is far from complete even
at the greatest depths so far plumbed, of the
order of one-tenth the calculated radius of the
universe. If this conclusion is correct, then a
complete electrodynamic description of the
mechanism of radiation would require us to take
into account not only the curvature of space but
also the phenomena sammarized under the term
“expanding universe.” At the present time we
know too little about these matters to carry out
such a complete description. Moreover, there is
yet no compelling reason to attempt this de-
scription. We know of course that electro-
dynamics remains, in other respects as well, to
be tied to gravitational phenomena. But we
recognize that in this sense our present theory
of electrodynamics, like the theories in all other
parts of science, is an idealization.

So long as we limit ourselves to the idcalization
based on the concept of a Euclidean space, we
have to consider the question of complete and
incomplete absorption on a purely empirical
basis. In this connection we will obtain a satis-
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factory account of experience, as we have seen,
on the assumption that the universe behaves as
a completely absorbing system.

PRE-ACCELERATION

Is there in the case of a completely absorbing
universe any consequence of the act of radiation
which is so apparently paradoxical as the obvi-
ously advanced effects encountered in the in-
stance of an incompletely absorbing system? If
so, what words can we reasonably use to assimi-
late such a phenomenon into our experience?

Any advanced effects to appear in the case of
a completely absorbing system must be deducible
from the conventional force of radiative reaction,
for the only other electrodynamical effects ap-
pearing in this case in the equation of motion
(42) of the typical particle are the retarded fields
of all other particles. That the damping term
does lead to an advanced effect follows from an
interesting example alrcady considered by Dirac.?
A source sends a sharp pulse of radiation towards
a particle of charge e and mass m. At the instant
of arrival the speed of the particle would be
expected abruptly to increase if the force of
damping were proportional to the first derivative
of the displacement. Actually the radiative re-
sistance is proportional to the third derivative
of the displacement, and the nature of the solu-
tion of the equation of motion is changed. The
particle commences to move before the time of
arrival of the pulse; and €2/mc?® seconds ahead of
time it attains a velocity comparable with its
final speed.

As a suitable way to speak of this most inter-
esting phenomenon of pre-acceleration brought
to light by him, Dirac suggests saying that “it is
possible for a signal to be transmitted faster
than light through the interior of an electron.
The finite size of the electron now reappears in
a new sense, the interior of the electron being a
region of failure, not of the field equations of
electromagnetic theory, but of some of the ele-
mentary properties of space-time.” This choice
of language is perhaps suitable in certain respects
to describe the pre-acceleration of the single
charge in the example considered by Dirac. It
may also be of value in other special instances.
However, the given mode of speaking suggests
in the case of a medium of closely packed charges
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the possibility of transmission of signals with a
speed greater than that of light over microscopic
distances, a conclusion which appears to be
denied by a direct investigation of the point.
Also the idea that the properties of space time
fail in a region of the order of e?/mc? around a
charge appear to have possibilities of suggesting
misleading conclusions sufficiently great to call
for a later search for a more suitable means of
expression.

We shall now attempt to test the idea sug-
gested by the term ‘‘speed greater than that of
light” that the phenomenon of pre-acceleration
might be cumulative when charges are spaced at
a distance from one another comparable to the
quantity e*/mc?. The method of analysis will be
very nearly that followed by Sommerfeld!* and
Brillouin'® in their classic resolution of the ques-
tion how it can be that the speed of propagation
of a disturbance in a dispersive medium never
exceeds the velocity of light even when the phase
velocity for certain frequencies is far above this
upper limit. The only significant mathematical
difference between the two cases is the change of
the damping force from proportionality to the
first power of the frequency to proportionality
to the third power.

The first step in the procedure of Sommerfeld
and Brillouin is to determine the refractive index
of the medium, 7, as a function of frequency.
The charges of the material are assumed normally
to be at rest. Consequently the magnetic per-
meability is unity. According to the standard
result of electromagnetic theory the square of
the refractive index is in this case equal to the
dielectric constant:

(electric field in a thin slot

\ cut normal to the field)

B (electric field in a thin cavity
cut parallel to the field)

=(E+4xP)/E=1+(47P/E).

(49)

Here P ~represents the polarization of the
medium:

P = (number of charges per unit volume)-
(charge of each)-
(displacement from equilibrium).

u A, Sommerfeld, Ann. d. Physik 44, 177 (1914).
1 1, Brillouin, Ann. d. Physik 44, 203 (1914).

(50)
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For the force which determines the displacement
of the charges in a homogeneous isotropic
medium it is reasonable, according to Lorentz
and Lorenz, to take the result valid for a cavity
of spherical form,

(force) = (charge per particle) (E+ (47 P/3)). (51)

The displacement itself is related to the force by
the equation of motion,

(force) = m(displacement)
+ (a constant) - (displacement)

—(2¢*/3c%)(displacément). (52)

Here we have visualized in the second term of
the right side the possibility that the particles
are bound to equilibrium positions by elastic
forces. Without such forces we should be led by
Earnshaw’s theorem to expect that the medium
would form a dynamically unstable system. We
now follow Lorentz and Lorenz in selecting a
function of refractive index which is casy to
evaluate as a function of frequency:

3(n*—1)/(n*+2)=4xP/[E+ (47P/3)]
3 4w (particle density)(charge)*(displacement)

m(disp) + (const) (dispe~(2¢2/3c%) (disp) (33)
We consider a monochromatic disturbance of
circular frequency (3mc?/2e*)w, and express the
clapsed time as (2¢*/3mc*)r, where both 7 and w
are dimensionless quantities. We assume that
the displacement of the typical particle varies
with time as exp (—iwr). Also we express the
number of particles per unit volume in the form
(N/37)(3mc?/2e%)%, where N is also a magnitude
without dimensions. Then from (53) we obtain
the refractive index as a function of frequency in
the form:

n(@)=[14+2N/ (0 —wt—iw®) . (54)
Here we have introduced the abbreviation
we? = (2€*/3mc?)*(constant/m) — (2N/3), (55)

where wy is a measure of the externit to which the
assumed quasi-elastic force over-compensates the
otherwise inherent electrical instability of the
system.

The propagation through a vacuum of an
electrical disturbance of circular frequency
(3mc?/26%)w is conveniently described by an elec-
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trical field of the form
exp (lwé~1twr), (56)

when we use the quantity (2e2/3mc?) ¢ as a meas-
ure of distance in the direction of propagation,
We suppose this disturbance to be incident on a
medium occupying the infinite half-space from
£=0 to £=-+ . Then the transversc eclectric
field of the monochromatic wave will be repre-
sented in the medium by the expression

2(n+1)"' exp (fonk—1iwr). (57

As a measure of the disturbance in the medium
we shall take the displacement of the typical

particle or, what is up to a constant the same
thing, the polarization:

P=(n*—1)E/4r,

=(27) Y (n—1) exp (fwnt—iwr). (38)

We are interested in following the progress
through the medium, not of a monochromatic
wave, but of an initially well defined pulse. We
shall idealize the incoming electric field as a
delta function, §(¥ —7), with the property §(x) =0
when

+0
120, f s(wydu=1.

We recall the representation of the delta function
as a superposition of monochromatic waves:

6(5_‘7)=(2W)~1f ) exp (twE—twr)dw. (39)

This expression will represent the clectric field
in the vacuum. In the medium the clectric
polarization will accordingly be given as a func-
tion of position and time by the integral

Pe=0n | () —1)

Xexp (twné—iwr)dw, (60)

where the refractive index is obtained as a
function of frequency from (54).

Of the mathematical details of cvaluating the
polarization of the medium from Eq. (60) it is
enough to say that it is convenient to displace
the path of integration in the complex plane, and
to apply the familiar saddle point method of
approximation. This procedure is sufficiently
accurate for our purpose when we accept the
following reasonable conditions:
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(1) We consider a medium of macroscopic dimensions.
With the quantity (2¢?/3mc?) equal to 1.88X 1078 cm, it
follows that the values of the quantities ¢ and 7 are of the
order of magnitude of 10713,

(2) The number, N, of particles per volume element
3w (2e2/3mc?)? is of the order of, or greater than, unity.

(3) At the depth, £(2¢%/3mc?), in the medium, the dis-
turbance, if propagated with the speed of light in vacuum,
would arrive at that time, 7(2¢2/3me3), for which r=¢; or
more briefly, we shall say that the value of the “light-
instant,” 7, at the depth £ is given by the equation r=¢.
We limit our interest to the disturbance at times ahead of
the light-instant by an amount which, expressed in the
dimensionless measure, £—r, is small in comparison with
£~10%, although this difference may otherwise range all
the way from a value very small in comparison with unity
to a value as great as several orders of magnitude of 10.

(4) The dimensionless measure of natural frequency of
oscillation of the system, we, in order of magnitude is not
large in comparison with unity.

Under these conditions we obtain an approximate
representation of the polarization of the medium
in the form

4P (xN/OP[(1/2NE) — (=) + -],

for values of (¢—+7) in a range of order 1/(N§)?
on either side of the light-instant; and

4m*P= (4n N /3EN[(E—7)/2NED
exp [—(3/4)(2NE/ ¢ —7)}(¢—~7)]
cos [(n/3)+(31/4)2N¢/E—7)¥E—-7)], (62)

for values of £—r7 between the rough limits
1/(N¢§)} on the little side and some small fraction
of the quantity N§ on the big side.

We obtain from expressions (61) and (62) the
following picture of the displacement of the
charges of the medium at the depth £(2¢?/3mc?)
before and at the light-instant:

(61)

(1) The typical particle receives a displacement before
the light-instant, thus justifying the use of the descriptive
term ‘‘pre-acceleration” even in the case of a medium
containing many particles.

(2) The displacement of the typical particle, instead of
increasing with time according to the simple exponential
law, exp (r—¢), derived by Dirac for an isolated particle,
is here before the light-instant an oscillatory function of
time of much more rapidly increasing amplitude.

(3) The last full oscillation before the light-instant is in
the negative sense, that is, opposite to the direction of the
field in the original pulse. This oscillation is completed
only slightly before the light-instant, so at that time the
displacement of the typical particle is positive but small
in comparison with its magnitude in the last few preceding
vibrations. However, the velocity of the particle at a time
about equal to the light-instant has reached the maximum
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value so far experienced. The condition of approximately
zero displacement and high velocity has a certain corre-
spondence with the result which would be expected at the
time of arrival of the disturbance in the absence of the
phenomenon of pre-acceleration.

(4) The characteristic time of pre-acceleration may
reasonably be taken to be measured by the interval
between the last two nodes of the oscillation, a quantity
which has the order of magnitude (N£)7#(2¢2/3me?), a very
small fraction of the so-called classical radius of the
charged particle. Another estimate for the time of pri-
acceleration of the same order of magnitude is obtained
by studying the exponentially increasing envelope of the
oscillatory motion described by Eq. (60).

From the tentative conception that the classical
radius of a charged particle defines a region
within which disturbances are propagated with
a speed faster than the velocity of light, it would
have appeared reasonable to expect in a very
dense medium a macroscopic velocity of propa-
gation significantly greater than the normal
limiting value. If this were the case, the interval
of pre-acceleration, §—r, would have increased in
proportion to the depth, £, and would have been
appreciable in comparison with £ In contrast,
we have now found that the characteristic time
of pre-acceleration not only decreases slowly with
depth in a dense medium, but also is an exceed-
ingly small fraction of the value obtained by
Dirac for the case of a single particle. We con-
clude that it is misleading to attribute the phe-
nomenon of pre-acceleration to an abnormal
velocity of light or to a failure of the usual
conceptions of space-time in the immediate
neighborhood of a charged particle. We are
therefore obliged to look to other terms for a
suitable way to describe the phenomenon.

PRE-ACCELERATION AS WITNESS TO THE
INTERACTION OF PAST AND FUTURE

Pre-acceleration and the force of radiative re-
action which calls it forth are both departures
from that view of nature for which one once
hoped, imwhich the movement of a particle at a
given instant would be completely determined
by the motions of all other particles at earlier
moments. All thought was excluded of a de-
pendence of the force experienced by the particle
upon the future behavior of either that charge
itself or any other charges. The past was con-
sidered to be completely independent of the
future. This idealization is no longer valid when
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we have a particle commencing to move in
anticipation of the retarded fields which have yet
to reach it from surrounding charges. Still less is
it a good approximation to the truth in the case
of an incompletely absorbing system, where we
have in addition to the normal damping force an
incident field seen above to depend explicitly
upon the advanced fields of the individual
particles, and where we encounter advanced
effects even more striking than preacceleration.

The mechanism by which the future affects
the past is illuminated by considering a system of
three or more charges in the light of the half-
advanced, half-retarded fields of the theory of
action at a distance. The retarded field produced
by the acceleration of a affects b; the advanced
field of b sets ¢ in motion; and ¢ generates a
field, the advanced part of which affects a before
the moment of its acceleration. By an extension
of this line of reasoning it is apparent that the
past and future of all particles are tied together
by a maze of interconnections. The happenings
in neither division of time can be considered to
be independent of those in the other. Neverthe-
less, in a system containing particles sufficient
in number to provide effective absorption, an
interference takes place between these forces.
All the advanced effects are cancelled out except
those which are comprised in the conventional
force of radiative reaction; and these are limited
in their influence to a time of the order of
magnitude of the quantity (e*/mc?). Therefore,
to the extent that the force of radiative reaction
can be neglected, we have in the case of a
completely absorbing system the possibility to
make a cut between past and future; but the
cleanness of this cut is limited to times of the
order of e?/mc® or greater. Those phenomena
which take place in times shorter than this figure
require us to recognize the complete interde-
pendence of past and future in nature, an inter-
dependence due to an elementary law of inter-
action between particles which is perfectly
symmetrical between advanced and retarded
fields.

SUMMARY

Use of action at a distance with field theory as
equivalent and complementary tools for the

181

description of nature has so far been prevented
by inability of the first point of view fully to
account for the mechanism of radiation. Eluci-
dation of this process in both thcories comes
from a 23-yecar old suggestion of Tetrode, that
the absorber may be an essential element of the
act of emission. A quantitative formulation of
this idea is given here on the basis of the following
postulates: (1) An accelerated charge in other-
wise charge-free space does not radiate energy.
(2) The fields which act on a given particle arise
only from other particles. (3) These ficlds are
represented by one-half the retarded plus one-
half the advanced Lienard-Wiechert solutions
of Maxwell's equations.

In a system containing particles sufficient in
number ultimately to absorb all radiation, the
absorber reacts upon an accelerated charge with
a field, the advanced part of which, evaluated
in the neighborhood of the source on the basis of
these postulates, is found to have the following
properties: (1) It is independent of the properties
of the absorbing medium. (2) It is completely
determined by the motion of the source. (3) It
exerts on the source a force which is finite, is
simultaneous with the moment of acceleration,
and is just sufficient in magnitude and direction
to take away from the source the cnergy which
the act of radiation imparts to the surrounding
particles. (4) It is equal in magnitude to one-half
the retarded field minus one-half the advanced
field of the accelerated charge itself, just the
field postulated by Dirac as the source of the
force of radiative reaction. (5) This ficld compen-
sates the half-advanced field of the source and
combines with its half-retarded field to produce
the full retarded disturbance which is required by
experience. Radiation is concluded to be a phe-
nomenon as much of statistical mechanics as of
pure electrodynamics. A complete correspondence
is established between action at a distance and
the usual formulation of field theory in the case
of a completely absorbing system. In such a
system the phenomenon of pre-acceleration ap-
pears as the sole evidence of the advanced effects
of the theory of action at a distance. Other
advanced effects appear in the case of an incom-
pletely absorbing system and are also discussed.
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. . . the energy tensor can be regarded only as a provisional means of representing matter.

In reality, matter consists of electrically charged particles. . .

INTRODUCTION AND SUMMARY

ANY of our present hopes to understand the

behavior of matter and energy rely upon the
notion of field. Consequently it may be appropriate to
re-examine critically the origin and use of this century-
old concept. This idea developed in the study of classical
electromagnetism at a time when it was considered
appropriate to treat electric charge as a continuous
substance. It is not obvious that general acceptance in
the early 1800’s of the principle of the atomicity of
electric charge would have led to the field concept in
its present form. Is it after all essential in classical field
theory to require that a particle act upon itself? Of
quantum theories of fields and their possibilities we
hardly know enough to demand on quantum grounds
that such a direct self-interaction should exist. Quantum
theory defines those possibilities of measurement which
are consistent with the principle of complementarity,
but the measuring devices themselves after all neces-
sarily make use of classical concepts to specify the quan-
tity measured.* For this reason it is appropriate to begin
a re-analysis of the field concept by returning to classical
electrodynamics. We therefore propose here to go back
to the great basic problem of classical physics—the
motion of a system of charged particles under the
influence of electromagnetic forces—and to inquire
what description of the interactions and motions is
possible which is at the same time (1) well defined
(2) economical in postulates and (3) in agreement with
experience.

We conclude that these requirements are satisfied by
the theory of action at a distance of Schwarzschild,®
Tetrode,® and Fokker.” In this description of nature no
direct use is made of the notion of field. Each particle
moves in compliance with the principle of stationary

1 Part IT of a critique of classical field theory of which another
part here referred to as III appeared in Rev. Mod. Phys. 17, 157
(1945). For related discussion see also R. P. Feynman, Phys. Rev.
74, 1430 (1948).

2 Now at Cornell University, Ithaca, N. Y.

3 A. Einstein, The Meaning of Relativity (Princeton University
Press, Princeton, New Jersey, 1945), second edition, p. 82.

4See in this connection Niels Bohr, Afomic Theory and the
Description of Nature (Cambridge University Press, 1934) and
chapter by Bohr in Einstein, of the Living Philosophers Seriss
(Northwestern University, scheduled for 1949).

8 K. Schwarzschild, Gottinger Nachrichten, 128, 132 (1903).

8 H. Tetrode, Zeits. f. Physik 10, 317 (1922).

7 A. D. Fokker, Zeits. f. Physik 58, 386 (1929); Physica 9, 33
(1929) and 12, 145 (1932).

action,?

J= —Zmacf(-—da“da“)i—i— > (eqes/c)

a<b
Xff&(abuab“)(daydb”)=extremum. (1)

All of mechanics and electrodynamics is contained in
this single variational principle.

However unfamiliar this direct interparticle treat-
ment compared to the electrodynamics of Maxwell and
Lorentz, it deals with the same problems, talks about
the same charges, considers the interaction of the same
current elements, obtains the same capacities, predicts
the same inductances and yields the same physical
conclusions. Consequently action at a distance must
have a close connection with field theory. But never
does it consider the action of a charge on itself. The
theory of direct interparticle action is equivalent, not

8 Here the letters a, b.-- denote the respective particles.
Particle @ has in c.g.s. units a mass of ms grams, a charge of ¢,
franklins (e.s.u.), and has at a given instant the coordinates

al=aqay

a*=a, { the three space coordinates, measured in cm.

a*=a;

a*=—a4, a quantity which has also the dimensions of a length,
and which represents the product of the time coordi-
nate by the velocity of light, ¢ (ct=‘cotime”).

(Note: In comparing formulas here with those in the literature,
note that not all authors use the same convention about signs of
covariant and contravariant components.)

The expression ab™ is an abbreviation for the vector, g™—bm,
Greek indices indicate places where a summation is understood
to be carried out over the four values of a given label. The argu-
ment ab,ab* of the delta-function thus vanishes when and only
when the locations of the two particles in space-time can be
connected by a light ray. Here the delta-function &(x) is the
usual symbolic operator defined by the conditions 8(x)=0 when
2540 and /2 ,t8(x)dx= 1. In the evaluation of the action, J, from
(1), the world lines of the several particles are considered to be
known for all time; i.e., the coordinates ¢™ are taken to be given
functions of a single parameter, a, which increases monotonically
along the world line of the first particle; Likewise for b, ¢, etc.
An arbitrary assumed motion of tge particles is not in general in
accord with the variation principle: a small change of the first
order, 8a™(a), 8b™(b), - - - in the world lines of the particles (this
change here being limited for simplicity to any finite interval of
time, and the length of this time interval later being increased
without limit) produces in general a non-zero variation of the
first order, 8/, in J itself. Only if all such first order variations
away from the originally assumed motion produce no first order
change in J is that originally assumed motion considered to
satisfy the variational principle. It is such motions which are in
this article concluded to be in agreement with experience.

425
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to the usual field theory, but to a modified or adjunct
field theory, in which

(1) the motion of a given particle is determined by the sum of
the fields produced by—or adjunct to—every particle other than
the given particle.

(2) the field adjunct to a given particle is uniquely determined
by the motion of that particle, and is given by half the retarded
plus half the advanced solution of the field equations of Maxwell
for the point charge in question.

This description of nature differs from that given by
the usual field theory in three respects:

(1) There is no such concept as “the” field, an independent
entity with degrees of freedom of its own.

(2) There is no action of an elementary charge upon itself and
consequently no problem of an infinity in the energy of the
electromagnetic field.

(3) The symmetry between past and future in the prescription
for the fields is not a mere logical possibility, as in the usual
theory, but a postulational requirement.

There is no circumstance of classical electrodynamics
which compels us to accept the three excluded features
of the usual field theory. Indeed, as regards the question
of the action of a particle upon itself, there never was
a consistent theory, but only the hope of a theory. It
is therefore appropriate now and hereafter to formulate
classical electrodynamics in terms of the adjunct field
theory or the theory of direct interparticle action. The
agreement of these two descriptions of nature with each
other and with experience assures us that we arrive in
this way at the natural and self-consistent generalization
of Newtonian mechanics to the four-dimensional space of
Lorentz and Einstein.

It is easy to see why no unified presentation of
classical electrodynamics along these lines has yet been
given, though the elements for such a description are
all present in isolated form in the literature. The
development of electromagnetic theory came before the
era of relativity. Most minds were not prepared for the
requirement that interactions should be propagated
with a certain characteristic speed, still less for the
possibility of both advanced and retarded interactions.
Newtonian instantaneous action at a distance with its
century and a half of successes seemed the natural

MOVING PELLET
DUE AT 559 PM

(8AM and 6PM) u?m)

F16. 1. The paradox of advanced effects. Does the pellet strike
X at 6 p.m.? If so, the advanced field from 4 sets B in motion at
1 p.m,, and B moves 4 at 8 a.m. Thereby the shutter 7S is set
in motion and the path of the pellet is blocked, so it cannot
strike X at 6 p.m. If it does not strike X at 6 p.m., then its path
is not blocked at 5.59 p.m. via this chain of actions, and therefore
the pellet ought to strike X.
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framework about which to construct a description of
electromagnetism. Attempt after attempt failed.® And
unfortunately uncompleted was the work of Gauss,
who wrote to Weber on the 19th of March, 1845: “I
would doubtless have published my researches long
since were it not that at the time I gave them up I had
failed to find what I regarded as the keystone, Nil actum
reputans si quid superesset agendum: namely, the deriva-
tion of the additional forces—to be added to the
interaction of electrical charges at rest, when they
are both in motion—from an action which is propagated
not instantaneously but in time as is the case with
light.” These failures and the final success via the
apparently quite different concept of field were taken
by physicists generally as convincing arguments against
electromagnetic action at a distance.

Field theory taught gradually and over seven decades
difficult lessons about constancy of light velocity, about
relativity of space and time, about advanced and
retarded forces, and in the end made possible by this
circuitous route the theory of direct interparticle
interaction which Gauss had hoped to achieve in one
leap. On this route and historically important was
Liénard" and Wiechert’s® derivation from the equations
of Maxwell of an expression for the elementary field
generated by a point charge in an arbitrary state of
motion. With this expression as starting point Schwarzs-
child arrived at a law of force between two point charges
which made no reference to field quantities. Developed
without benefit of the concept of relativity, and
expressed in the inconvenient notation of the prerela-
tivistic period, his equations of motion made no appeal
to the physicists of the time. After the advent of
relativity Schwarzschild’s results were rederived inde-
pendently by Tetrode and Fokker. These results are
most conveniently summarized in Fokker’s principle
of stationary action of Eq. (1).

To investigate the consistency of the Schwarzschild-
Tetrode-Fokker theory of direct interparticle inter-
action and its relation to field theory, we have first to

9 For a stimulating and instructive if not always objective
account of early researches on field theory and action at a distance
see A. O’Rahilly, Electromagnetics (Longmans, Green and Com-
pany, New York (1938)). See also J. J. Thomson, Report of the
British Assn. for the Adv. of Science for 1885, p. 97; J. C. Maxwell,
Electricity and Magnelism (Oxford University Press, London,
1892), third edition, Chapter 23); R. Reif and A. Sommerfeld,
Encyclopidie der Math, Wiss. 5, Part 2, Section 12 (1902). A
recent very brief account has been given by H. J. Groenewold,
report on Puntladingen en stralingsveld, Ned. Nat. Ver., Amster-
dam (May 1947). M. Schonberg regards field and direct action
not as two equivalent representations of the same force, but as
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examine in the next section the paradox of advanced
interactions. In the following section is recalled the
derivation of the equations of motion from the variation
principle. Next these equations of motion are shown to
satisfy the principle of action and reaction as generalized
to the non-instantaneous forces of a relativistic theory
of action at a distance. In a subsequent section the
corresponding formulation of the laws of conservation
of energy and momentum is given. Finally the con-
nection is established between these conservation laws
and the field-theoretic description of a stress-energy
tensor defined throughout space and time.

THE PARADOX OF ADVANCED ACTIONS

The greatest conceptual difficulty presented by the
theory of direct interparticle interaction is the circum-
stance that it associates with the retarded action of a
on b, for example, an advanced action of b on a. A
description employing retarded forces alone would
violate the law of action and reaction or, in mathe-
matical terms, could not be derived from a single
principle of stationary action.

Advanced actions appear to conflict both with
experience and with elementary notions of causality.
Experience refers not to the simple case of two charges,
however, but to a universe containing a very large
number of particles. In the limiting case of a universe
in which all electromagnetic disturbances are vltimately
absorbed it may be shown! that the advanced fields
combine in such a way as to make it appear—except for
the phenomenon of radiative reaction—that each
particle generates only the usual and well-verified
retarded field. It is only necessary to make the natural
postulate that we live in such a completely absorbing
universe to escape the apparent contradiction between
advanced potentials and observation.

In a universe consisting of a limited number of
charged particles advanced effects occur explicitly. It
is no objection if the character of physics under such
idealized conditions conflicts with our experience. It is
only required that the description should be logically
self-consistent. In particular in analyzing the behavior
of an idealized universe containing only a few particles
we cannot introduce the human element as we know it
into the systems under study. To do so would be to
assume tacitly the possibility of a clean cut separation
between the effects of past and future. This possibility
is denied in a description of nature in which both
advanced and retarded effects occur explicitly.

The apparent conflict with causality begins with the
thought: If the present motion of ¢ is affected by the
future motion of b, then the observation of a attributes
a certain inevitability to the motion of 4. Is not this
conclusion in direct conflict with our recognized ability
to influence the future motion of 5?

All essential elements of the general paradox appear
in the following idealized example: Charged particles a
and b are located in otherwise charge-free space at a

427

distance of 5 light-hours. A clockwork mechanism is
set to accelerate a at 6 p.m. Thereby b will be affected,
not only at 11 p.m. via retarded effects, but also at
1 p.m. via advanced forces. This afternoon motion will
cause a to suffer a premonitory movement at 8 a.m.
Seeing this motion in the morning, we conclude the
clockwork will go off in the evening. We return to the
scene a few seconds before 6 p.m. and block the
clockwork from acting on a. But then why did ¢ move
in the morning?

To formulate the paradox acceptably, we have to
eliminate human intervention. We therefore introduce

SPEED OF SHUTTER DURING DAY AS FUNCTION
OF IMPULSE A RECEIVED AT 8 AM A HENCE
AS DEPENDENT ON POSITION OF SHUTTER AT 559 PM

DISPLACEMENT
OF SHUTTER
AT 559 PM

SHUTTER
CLOSED
e ATESIM.
SHUTTER OPEN
AT 559 PM
DISPLACEMENT OF SHUTTER
PROPORTIONAL TO ITS SPEED
URING DAY

SPEED COF MOVING SHUTTER OURING DAY

Fic. 2. Analysis and resolution of the paradox of advanced
effects. The action of the shutter on the pellet—the interaction
of past and future—is continuous (dashed line in diagram) and
the curves of action and reaction cross. See text for physical
description of solution.

a mechanism which saves charge a from a blow at
6 p.m. only if this particle performs the expected
movement at 8 a.m. (Fig. 1). Our dilemma now is this:
Is ¢ hit in the evening or is it not? If it is, then it
suffered a premonitory displacement at 8 a.m. which
cut off the blow, so a is nof struck at 6 p.m.! If it is
not bumped at 6 p.m. there is no morning movement
to cut off the blow and so in the evening a is jolted!

To resolve, we divide the problem into two parts:
effect of past of ¢ upon its future, and of future upon
past. The two corresponding curves in Fig. 2 do not
cross. We have no solution, because the action of the
shutter on the pellet, of the future on the past, has been
assumed discontinuous in character.

The paradox, and the case it presents against ad-
vanced potentials, evidently depends on the postulate
that discontinuous forces can exist in nature. From a
physical point of view we are led to make just the
contrary assumption, that the influence of the future
upon the past depends in a continuous manner upon
the future configuration.

Our general assumption about continuity is explicitly
verified in the present case. The action of shutter on
pellet is not discontinuous. The pellet will strike the
point S a glancing blow if the shutter lies only part way
across its path (dashed curve in Fig. 2).

Of the problem of influence of future upon past, and
past upon future, we now have in Fig. 2 a self-consistent
solution: Charge ¢ by late afternoon has moved a
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very slight distance athwart the path of the pellet.
Thus one second before 6 p.m. it receives a glancing
blow in the counter-clockwise sense and at 6 p.m.
a stronger acceleration in the clockwise direction. The
accelerations received by a at these two moments
are by electromagnetic interaction transmitted in re-
duced measure to b at 1 p.m. and back from b in yet
greater attenuation to a. Thus this particle receives
one second before 8 a.m. a certain counter-clockwise
impulse and at 8 a.m. an opposite impulse. The net
rotational momentum imparted to the lever is clock-
wise. It carries the point S in the course of 10 hours
the necessary distance across the path of the pellet.
The chain of action and reaction is completed. The
paradox is resolved.

Generalizing, we conclude advanced and retarded
interactions give a description of nature logically as
acceptable and physically as completely deterministic
as the Newtonian scheme of mechanics. In both forms
of dynamics the distinction between cause and effect is
pointless. With deterministic equations to describe the
event, one can say: the stone hits the ground because
it was dropped from a height; equally well: the stone
fell from a height because it was going to hit the ground.

The distinction between Newtonian and relativistic
mechanics is one of detail—instantaneous interactions
versus forces unconfined to a single plane in space time.
The interrelations between the world lines are more
complicated than those of Newtonian mechanics, but
just as definite. There a well-defined division of past
and present was possible; here these divisions of time
are inextricably mixed.

EQUATIONS OF MOTION

Advanced and retarded forces being accepted on
equal footing in the description of nature, we now
reproduce the derivation from Fokker’s action principle
of equations of motion which contain them both. Let
the world line of a typical particle a be altered from
a™(a) to a™(a)+8a™(a). Let the abbreviation be intro-
duced,

A, B () =, f 5(cbxb4) b (b) 2)

(vector potential of particle & at point x). Also denote
by ¢™'(a) the derivative da™(a)/da. Then the change
in action produced by the alteration of the world line
of ¢ is

5T =muc f (e, (309 /(= a0 ) da

+82 (ea/c)

b#a

A,®(a)a (a)da,

or, by partial integration, and dropping terms at the
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limits where the variations §a™ vanish,
8] = fdaz ba™(a){ —mac(d/da) an’/(—a,'a”' )]

+(ea/c) L [(94,®/00™) — (94n®/da*) Ja*'}.

b#a

©)

The condition that 8J be zero to the first order for
arbitrary 8a™ is the vanishing of the curly bracket in
(3) for all four values of m, whence result the four
components of the equation of motion for particle a.
Instead of expressing the motion in terms of the arbi-
trary parameter @, introduce a new parameter, a=a(a),
the “proper cotime,” defined in terms of ¢ up to an
unimportant additive constant by the equation de/da
=(—ga,/a’’)} and denote by dots derivatives with
respect to the proper cotime. Introduce also the
abbreviation

Fonn®(x) =04 ,®(x)/3x™— 34,®(x)/0x» 4)

(field at point x due to 5).!* Then the four-vector
equation of motion takes a form,

MeClm=¢4 2 Fmp®(a)d?, )
ba

identical with that of Lorentz, with the following
exceptions: self-actions are explicitly excluded; no fields
act except those adjunct to the other particles; each
such adjunct field is uniquely determined by the
prescription of Egs. (2) and (4).

Now we come to the well known proof that each
adjunct field satisfies Maxwell’s equations when for
charge and current are introduced the appropriate
expressions for the given particles. We employ Dirac’s
identity**

(8%/8x,0x%)8(xb,xb*) = — 4w (x1— by) 6(x2— b2)
X 8(xx3—b3)8(xs—bs), (6)

multiply both sides by dbn(8)= bn(8)dB, integrate with
respect to B from —@ to 4+, and conclude that
A, (x) satisfies the equation

(0%/0x,02#) A ® (x) = — 47 jm® (x). @)
Here

-+
j,,,"’)(x)=ebf 8(x1—b1)8(x2—b2)
- X 3(x3— b3)6(s—be)bm(B)dB  (8)

is an abbreviation for the density-current four-vector
at point x due to particle b, an obviously singular
quantity, obeying certain evident conservation rela-

13 The electric field E; is Fi4= = F4; and the magnetic field H:
is Fa3=—F3,: the vector potential A is A=A, and the scalar
potential is 44=— A4,. Likewise in Eq. (8) j*=—j. represents the
charge density in franklins (e.s.u.)jcm3 and ji=j, gives (1/¢)
times (x-component of the charge flux in franklins/cm? sec.).

4 P, A. M. Dirac, Proc. Roy. Soc. London. A167, 148 (1938).
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tions. The vector potential (2), in addition to satisfying
the inhomogeneous wave equation (6), has a four-
dimensional divergence which vanishes:

4o
(0/0x,) A4, (x)=¢ f &' (xb,xb*)2xbsb,dB

—_C0

=2e,6(xbxb*)| =0.

—

9

We differentiate this zero divergence with respect to «™
and subtract from it (7), obtaining the field equations

OFp,® (x)/92u= 4T fm, (10)

equjvalent to the usual relations divE=4wrp and curlH
=E/c+4nJ./C. The other pair of Maxwell’s equa-
tions follow identically from the definition (4) of the
F’s in terms of the A’s.

The fields (2) are distinguished from all other solu-
tions of Maxwell’s equations by being half the sum of
the advanced and retarded Liénard-Wiechert potentials
of particle &:

/

dbm/ ag
A ® (%) =ebf_______
d(xb,xb*)/dB

=(1/2)Ra®(x)+ (1/2)Sn®(x).

8(xb,xb*)d(xb,xb?)

(11)
Here, for example, R represents the retarded potential
Rm®)(x) = e,bm/ brba,, (12)

evaluated at that point on the world line of & which
intersects the light cone drawn from the point of
observation into the past:

xbxbs=0; x> b4 (13)
and S similarly represents the advanced potential.

By way of illustration of these results in familiar
cases consider first the case of a point charge, b, at rest
at the origin. Then retarded and advanced fields are
identical, all components of the four-potential vanish
except the last, b*=d(cotime)/d(proper cotime)=1,
bxy=by—x4=x*—b*=elapsed cotime=distance to point
of observation=r, and the scalar potential has the
familiar value ¢;/7. Next, in the case of a slowly moving
point charge, it similarly follows that A™=es(b™/27)ret
+e5(b™/2r)aav. If this point charge is at the same
time being accelerdted, then the derived electric field
has at large distances the value E=—ey(b,/27)ce
—ep(by/27)aay, where b, is the component of the three-
vector b perpendicular to the line ». This result refers
only to the field of the particle in question. In the
idealized case of a universe containing charged particles
sufficient in number to absorb all electromagnetic
disturbances, the advanced fields of the particles of the
absorber will combine with the given field to produce
the full retarded field of experience, —es(b,/7)res, as
shown in III. As a final example consider a fixed linear
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conductor past any point of which flow per second i/e
particles of charge e. The interval of cotime between
the kth and the (k+1)st particle is ce/z. The coordi-
nates of the kth particle are

Er(y)=s"(y) (m=1,2,3)
kA(y)=s*(y)+kee/i (k=—o0, -

where s™(y) is the parametric representation of the
curve of the wire. The four-potential at a point of
observation an appreciable distance from the wire is
obtained by summing over all the particles or equiva-
lently, because of the close spacing of the charges, by
integrating over %:

5 =1,0,1,.--) (14)

Am(x)=e f f 507 (4) — (ct— 54(y) — kce/i)?]
Xak(ds™(v)/dv)dvy

ifds’"‘('y)/cr(y) for m=1,2,3

i efdk/r

Here r(v) is the magnitude of the vector x(y), ¥(v), z(v)
which runs from the point vy of the curve to the point
of observation. The scalar potential of Eq. (15) will
normally be compensated wholly or in part by contri-
butions from opposite charges at rest and need not be
considered here. From the vector potential follows an
expression for the magnetic field

(15)

for m=4.

H=curld= if(ds)(r)/cr*, (16)

identical with that due to Ampere.

To go further in deriving well known results would be
pointless. Adequate textbooks exist. They treat well
defined problems of electromagnetism, where there is
no compelling reason to consider a particle to act on
itself. Thus all their analyses are immediately trans-
latable into terms of the present modified or adjunct
field theory. However, this point of view is mathemati-
cally identical with that of action at a distance. Conse-
quently the theory of direct interparticle action, far
from attempting to replace field theory, joins with field
theory to provide the science of electromagnetism with
additional techniques of mathematical analysis and to
facilitate deeper physical insight. The rest of this
article may illustrate how the two points of view join
hands to elucidate in four-dimensional mechanics the
principle of action and reaction and the laws of conser-
vation of momentum and energy.

ACTION AND REACTION

Laws of conservation of angular momentum, energy
and linear momentum are well known to exist in any
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theory for which the equations of motion are derivable
from an action principle which is invariant with respect
to rotation, translation, or displacement of the time
coordinate.’® Thus Fokker'® has derived an energy-
momentum conservation principle for an idealized
situation in which there are only two particles, of which
a acts on b via purely retarded forces. The present
treatment is the natural generalization of Fokker’s
analysis to the case of a theory which is symmetric
between every pair of particles and which is based on
the action principle (1). It will be sufficient to prove
the conservation law for a single pair of particles in
order to see the corresponding result for a system of
particles.

For the typical particle a let the four-vector of energy
and comomentum be denoted by

G'=G,\three space components of

mev(1—v2/ 62)'*={GQ=G2} the kinetic comomentum
G*=Gs3) (velocity of light times

kinetic momentum: ex-

pressible in energy units).

mc*(1—*/¢)F=G*= —G,, kinetic energy plus rest-
mass energy.

Then the change in kinetic comomentum and energy
in the interval of proper cotime, de, on account of the
action of particle b follows directly from the equations
of motion (5) and the expressions (4) and (2) for the
force coefficients:

G () = m.tinda= e.eda*
xl(a/aam) f b,— (8/8a¥) f B,,.la(ab,ab')dﬁ. a7

We carry out the differentiations with respect to the
coordinates ¢ and add to the result the following zero
quantity

40
eatsdinm f (d/dB)5(abyab?)dB, (18)

thus finding for the impulse

Beetoo
dGn@(a)=2e.e; f &' (ab,ab”)

Jo
X (abmda*db, — dbndarab,— damdbrab,). (19)

In this expression the integrand is changed in sign but
unaltered in value by an interchange of the roles of
particles ¢ and b.

To the result just obtained we give the following
obvious interpretation:

(1) The right hand side of (19), after removal of the integral
sign, represents in terms of the symbolic delta-function the

13 E. Noether, Géttinger Nachrichten, Math. Phys. Klasse. 235
(1918) : E. Bessel-Hagen, Math. Ann. 84, 258 (1921).
¢ A, D. Fokker, Zeits. f. Physik 58, 386 (1929).
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transfer of impulse or energy to ¢ during the stretch of cotime
da from effects which originate at b in the cotime interval dg.

(2) There is no energy or impulse transfer except when the
stretch dB8 of the world line of b is intersected by either the forward
or backward light cone drawn from a: i.e.,  acts on ¢ through
both retarded and advanced forces.

(3) The impulse communicated to @ over the portion du of its
world line via retarded forces, for example, from the stretch d8
of the world line of b is equal in magnitude and opposite in sign
to the impulse transfer from ¢ to & via advanced forces over the
same world line intervals (equality of action and reaction).

The relativistic generalization of the Newtonian
principle of action and reaction as just stated is obvi-
ously not identical with the non-relativistic formulation.
In no Lorentz frame of reference are action and reaction
simultaneous. For the instant at which ¢ experiences a
force from b there is not one corresponding time at
which b gets a back reaction, but two instants.'” Thus
for a given point on the world line of ¢ we can make
two statements about the transfer of energy (or
impulse) from b. Each statement refers to a single one
of the two parts of the total transfer. It is evidently
reasonable that the law of action and reaction should
have this Jacob’s ladder character in 4-dimensional
space-time.

ENERGY AND MOMENTUM OF INTERACTION

Considering two isolated particles ¢ and &, we
immediately conclude from the law of action and
reaction as just stated the constancy in time of the
total energy and comomentum four-vector

Gm(a, B) = maCQdm(a)_*'mbCzi)m(ﬁ)

+2e.,eb{— f_w fﬂ 4 f ) f_: ]a’(ab,ab")

20
(@bnda*db,— dbnda*ab,— da,db*ab,) = (constant)m. (20)
In the case of more particles we have a corresponding
expression with a kinetic term for each individual
particle and an interaction term for each pair of charges.
Thus G. becomes a function of as many parameters
a, B, v, -+ as there are particles. To prove constancy
with respect to a given parameter, such as «, we have
only to differentiate (20) and insert for m.c?édn(e) the
quotient dGn,®(a)/de obtained from (19).

Evidently we have in (20) what may be called a
many-time formulation of the conservation laws, de-
rived of course from the equations of motion, but from
which conversely the equations of motion are derivable
with equal ease.

The interpretation of the double integral in (20) as
an interaction energy is obvious in the case of two
stationary charges separated by a distance R. Thus
by integration we find for G* the familiar result mqc?
+myc2+eq5/R.

171, Page, Am. J. Phys. 13, 141 (1945), has reviewed the com-

plications which come from comparing action and reaction at the
same time.
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In the case of individual moving charges it is some-
times convenient to add to the idea of kinetic co-
momentum and energy G.‘® the notion of potential
comomentum and energy

UnW=¢,2° An®(a(a)), (21)
ba
and total comomentum and energy,
P, @=G, @+ U,®, (22)

In terms of these expressions, the four-vector of energy
and comomentum of the whole system takes the form

Gula, B, -+ )= Pu@(a)+ 3 2eqs

a<b

X{ ‘f; mj::—[_: f; m}&'(ab,ab')ab,,.da"db“. (23)

The summation of the potential energies so to speak
counts twice the interaction between each pair of
particles. The double integrals in (23) correct for this
overcount.

From either Eq. (20) or Eq. (23) for the energy of
the system it is clear (see Fig. 3) that the electromag-
netic energy of a finite number of particles is definable
from a knowledge of only a finite stretch of their world
lines. It is also evident that particles which come
together in otherwise charge free space, interact, and
then separate in a regular way, will in the end experi-
ence no net loss of energy to outer space. Both features
of the four-vector G, are reasonable in the mathe-
matical description of a physically closed system.

RELATION OF INTERACTION ENERGY TO
FIELD ENERGY

In field theory it is customary to attempt to define
throughout space a symmetrical stress energy tensor'®
Tmn(x) with the following properties:

(1) The divergence 9T,/0x, vanishes at every place where
there is no particle.

(2) At thelocation of a typical charge a this divergence becomes
singular in such a way that its integral over a small volume
element containing the charge gives the value of the electro-
magnetic force acting on that charge:

—dy f f f (8T mp/32,) A2 d22d %3 = Mgy

neighborhood
of a

(29

when the integration extends over a region of constant time which
contains a. When the integration proceeds over an arbitrary
space-like region or “surface,” g, such that no pair of points in

18 Typical components are

Ty, force in positive x-direction across unit area in yx plane
exerted upon medium on negative side of plane by medium
on positive side (equal in the Maxwell theory to (8x)~!
x(sz_Hvz—sz'i'E:z—Ey’_Etz))‘

T, velocity of light times energy flux in x direction per cm? of
yz plane and per sec. (Maxwell value (4x)"W(E,H.—E,H,)).

T, negative of the energy density (usual expression — (8r)71
X (E2+H%).
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DISPLACEMENT

Fic. 3. Interactions considered in formulating the law of
conservation of momentum and energy. Note that the stretches
of world line from qadv t0 aret and from Badv to Bret completely
determine the value of the energy-momentum four vector Gn(a, 8).
It is also natural to specify these two world-line segments as
initial conditions in dealing with the two-particle problem.

the surface can be connected by a light ray, then the corresponding
statement is

macin -ty [ [ [ (0T ms/0)ds*=0.

neighborhood
of a

Here, if the surface is defined by a parametric representation in
terms of three quantities %, v, w, then

dat=[0(x, 42, x%)/8(u, v, w) Jdudvdw

with corresponding expressions for the other three components
of do™,

(3) For every space-like surface o there is defined a four-vector of
energy and comomenium

Cr(0)=Za Mactim(@)+ [ [ [ Trado®, 26)

which is conserved in the sense that its value is completely
independent of the choice of o. Thus consider a change d¢ in the
surface o—i.e., an alteration from x™(%, v, w) to x™--8x™(u, v, w)
—and the associated alterations de, d8, --- in the points where
the respective world lines intersect this surface. Then the change
in G, is expressible via the theorem of Gauss in terms of an
integral over the volume, w, comprised between the two surfaces:

5Gm=Za macindat [ [ [ [@Twatowade.  @D)

But the integrand vanishes everywhere except in the immediate
neighborhood of the typical particle, ¢, and there—writing
dw=da,do*, and using (25)—we conclude that the contribution
from the integral just cancels out the first term in 6Gn.

(25)

Is there any choice of the tensor 7w, in the adjunct
field theory which will yield for the energy-comomentum
vector Gn(o) of (26) a value identical with the corre-
sponding vector Gn(a, 8--+) of the theory of direct
interparticle action? The appropriate tensor may be
constructed when one recalls that the field of a given
particle is to produce changes only in the motions of
the other particles, and that the principle of action and
reaction connects the retarded effects exerted for
example by ¢ on b via the retarded field (1/2)R,,®
with the advanced effects exerted by b on ¢ via the
advanced field (1/2)S.®:

Tmn(x) = z (R@® (x) & S® (x))m,..

a=h

(28)
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Here R and S denote the retarded and advanced
Liénard-Wiechert fields, so that Fn,®@=(1/2)Rnm.*
+(1/2)S,..®. For a convenient abbreviation we have
adopted the notation

(R & S)mn= (Rm#snn+Sm“Run‘{"%gmnRMSw)/g"r (29)

with gna=0 for m=n and gi1=go=gun=1=—gu.
That the tensor T, of (28) does lead to the energy-
comomentum four-vector (20) of the theory of action
at a distance is proven in the appendix. Here we shall
only establish that the stress energy tensor satisfies the
conditions (1) and (2) (and hence (3)). Thus, we

TasLE 1. Correspondence of principal alternative expressions
for interaction energy in adjoint field theory and in theory of
direct interparticle interaction.

Canonical form Frenkel form

Basic type of field

: { Those partial fields which Total (time-symmetric)
coupling envisaged

are reciprocally responsi-  field adjunct to each
ble for equality of action of the coupled particles
and reaction

Typical term in R & S® Fta) & F®)
stress-energy tensor
Expression for inter- Eq. (20) Eq. (20) plus expres-

action energy: sion (40)

Depends upon: Shape of the two
world lines from
t= -~ to +»

Finite stretch of the
two world lines

evaluate the divergence of the typical term in the
tensor of Eq. (28), finding

0T/ 0%, = 3 {(S®*1/167)(ORm,®/dx"

a b
+ R, /3x™+ Ry /dx)
+ (Sn®*?/87) (AR (¥ /dx,)
-+similar term with S® and

R®@ interchanged}. (30)

Here the first three cyclically related terms cancel, as
seen for example from the antisymmetrical representa-
tion of the fields via potentials; and the divergence of
R gives the same charge and current distribution (8)
which appeared in the time-symmetric case. Using
this circumstance, and combining terms, we have

0T me/0%e= 3 Fp,® (x) ()
b#a

=3 F,,,‘.(")(x)eafé(x‘—a’)é(xz—aﬁ)

bxa
X (23— a?)8(x*— at)d#*(a)da
=Za:f5(x‘—al)6(x"’—a2)6(x3—a’)
X §(xt—a)myctimda, (31)

in complete satisfaction of requirements (1) and (2).
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As alternative choice for the stress energy tensor
which also has the properties (1), (2) and (3) is that
proposed by Frenkel,® who was among the first to
stress the notion of fields as always adjunct to specific
particles:

Tnn*(@)= 2 (F@(x) & FO(2))mn.

a#b

(32)

Thus the difference between Frenkel’s tensor and the
canonical tensor (28) is a quantity

Tn*—Ta= 5 GR@—353) & BR®—1S®) (33)
a#b

which has everywhere a zero divergence.

The possibility of more than one expression for the
stress-energy tensor with the same divergence is well
known in the usual single-field formulation of electro-
dynamics,® and is not surprising here. However, the
expressions for field energy also turn out to differ
(Table I).

The energy-comomentum four-vector Gn defined by
(26) and (28), and the alternative four-vector G.*
defined by (26) and (32), are both ordinarily finite for
a system of point charges. In illustration, note that
near a typical particle ¢ the corresponding field varies
as 1/7%, the field of any other particle 4 is finite, the
volume element is proportional to 4w7%dr and the
integral of (26) converges, yielding for example in the
interaction energy e.e/7. for two stationary point
charges separated by the distance rs,. The density of
field energy, while finite, is not positive definite, even
for two particles of the same charge. Also the flow of
energy and momentum may have finite values at a
point in space where the total field, F{(®4F®4-...,
actually vanishes. This result, unexpected from the
point of view of the usual field theory, nevertheless
presents no logical difficulties.

ENERGY OF RADIATION

The canonical and the Frenkel tensors, which give
the same interaction energy in the case of two charges
which are at rest, give different results for the case of a

TasLE II. Energy flux at distance » from accelerated charge for
adjunct field theory in completely absorbing universe.

Time of observation

relative to moment Form of stress-energy tensor

of acceleration Canonical Frenkel Maxwell
r/c seconds earlier no flux ~F/8x towards no flux
the source
r/c seconds later E?/4x outward E?/8x» outward Et/4x outward
at other times no flux no flux no flux

18 T, Frenkel, Zeits. f. Physik 32, 518 (1925). See also J. L.
Synge, Trans. Roy. Soc. Canada 34, 1 (1940) and Proc. Roy. Soc.
London A177, 118 (1940) as well as the discussion of Synge’s
treatment in ITI.

2 See in particular M. H. L. Pryce, Proc. Roy. Soc. London.
A168, 398 (1938).
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single accelerated particle in a completely absorbing
universe. There we have in the neighborhood of the
radiating source F@®=(1/2)R®4(1/2)S® and F®
+F4 ... =(sum of advanced fields of absorber parti-
cles)?=(1/2)R®—(1/2)S@, For the parts of these
fields which are proportional to the acceleration of the
charge, and which vary at large distance as 1/7, we
have for R‘® and S respectively a zero value except
for an instant r/c seconds after or before the moment
of acceleration. The corresponding energy flux (Table
II) satisfies in both the Frenkel and the canonical
formulations the law of conservation of energy, but
agrees only in the canonical case with customary ideas
of energy localization. From the standpoint of pure
electrodynamics it is not possible to choose between
the two tensors. The difference is of course significant
for the general theory of relativity, where energy has
associated with it a gravitational mass. So far we have
not attempted to discriminate between the two possi-
bilities by way of this higher standard.

CONCLUSION

We conclude that the theory of direct interparticle
action, and the equivalent adjunct field theory, provide
a physically reasonable and experimentally satisfactory
account of the classical mechanical behavior of a system
of point charges in electromagnetic interaction with one
another, free of the ambiguities associated with the
idea of a particle acting upon itself.

APPENDIX

To compute the integral of the field energy which appears in
(26), we express each field as a superposition of elementary fields
from each infinitesimal range of path da, and the tensor Ta or
Tn* as the superposition of parts due to stretches da of the world
line of @ and dB of b. We use the notation Ttdad8, Ffda to indicate
each such elementary contribution to T, F, etc. Thus the four-
potential Rldw arises from a charge which appears for an instant
at a(a) and disappears at a(a-+da).

The lack of conservation of the charge which generates the
elementary potential causes the four-divergence of ®f to equal a
non-zero scalar, 7,

¥ 4
AR 1 /ax, “=(a/ax,.)2ead,‘{a(ax(;ax) ﬁgi 2422:}

§’(ax,ax’) for x¢>at
=r@(x, a)=4e.,d,,xa“{ 0 ) for z* <a"}' (34)

whose integral however satisfies the conservation condition
Jot®r@(x, a)da=0. This circumstance permits some latitude in
the definition of the elementary field in terms of the potential.
It will prove useful to adopt the definition

Run@t=0®R @ /3xm— R @ /ox"— (9 /2) gmn. (35)
The elementary field is not antisymmetrical in the indices m and
n, but the normal field Rma® =/ Rna@da changes sign of course
on this interchange of labels.

The elementary component of the stress-energy tensor is not
symmetric in its two indices, but its divergence is found by direct

% See part III for fuller discussion,

433

SPACE LIKE SURFACE
CONSIDERED IN
EVALUATION OF
FIELD ENERGY

REGION \CONSIDERED
iN 4-FOUD INTEGRAL

F1c. 4. Contribution to canonical expression for field energy
which arises from coupling of retarded field of ¢ and advanced

field of 5.

algebra to have the simple value
(8/0x,) (R@T & SOT), = (1/87)(— PR, 9T /3x79x,)
K (Sn®1P — (5©/2)8,P)+ (1/87)(— 325, DT /9x,0x%)
X (Ra@TP— (79 /2)5,°),
where the typical field d’Alembertian has the value

— 'R /327924
=4red(xt—al)8(x?—a?)d(x*—a®)8(xt—at)dm. (37)

We integrate (36) over a four-dimensional region of the form
shown in Fig. 4. Of the terms on the right the second vanishes
throughout this region, and the first gives

(6a/2)(Smp®T(2) ~ (gmp/2)s®(a)) 6*
=(e2/2)(88,®1/3a™— 38,1 /30" — £,,,38, 01 /3a,)d?
= Zeaeb(abmd“By - Em*abpd”_" dma'b‘t&‘) 5'(ab,ab’) (38)

when b4>a* and zero otherwise. The four-integral on the left
hand side may be expressed via the theorem of the Gauss in the

form
_fff(Rw)T & S(b)T)mpdv’.

Here the integral, which goes over the whole of the three-dimen-
sional region or ‘“‘surface’ in the figure, contributes only over the
upper region because of the vanishing elsewhere of at least one
of the fields in question. The elementary contributions just
computed we now sum over the world line of ¢ from —« to a
and over the world line of 4 from 8 to «, where @ and 8 determine
the points where the world lines of ¢ and b intersect the space-like
surface o. We have then only to erase the daggers in (39). The
converse expression, with R® & 5@, we obtain by interchanging
the roles of 4 and a in (38) and in the limits of integration. In
this way follows at once the identity of expression (20) for the
energy in the theory of direct interparticle interaction and the
canonical expression (26-28) of the adjunct field theory.

When instead the Frenkel expression (32) is used for the
stress-energy tensor, then there results an increment in the
energy-comomentum four-vector given by the expression

(36)

39

Gn*(at, 8)—Gm(a, B) =tats, f: f _:n(ab,,.d“l';,,

; s i &'(ab,al’) for
~bnabyd = dnab, b ){— 8 (abyat?) for
at<b

..—_-Caﬂb‘f.f +o for b‘>a‘{ab’“

—3§ for
a covariant which is independent of « and 8 and which has an
interesting relation to the two world lines in question.

i bt
)

da,db*, (40)
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Ordinarily it is assumed that interaction between charges occurs along light cones, that is,
only where the four-dimensional interval s2=#2—7? is exactly zero. We discuss the modifications
produced if, as in the theory of F. Bopp, substantial interaction is assumed to occur over a
narrow range of s? around zero. This has no practical effect on the interaction of charges which
are distant from one another by several electron radii. The action of a charge on itself is finite
and behaves as electromagnetic mass for accelerations which are not excessive. There also
results a classical representation of the phenomena of pair production in sufficiently strong

fields.

UANTUM electrodynamics is built from a
classical counterpart that already contains
many difficulties which remain upon quantiza-
tion. It has been hoped that if a classical electro-
dynamics could be devised which would not
contain the difficulty of infinite self-energy, and
this theory could be quantized, then the problem
of a self-consistent quantum electrodynamics
would be solved. For this reason many successful
attempts have been made to produce such a
classical theory. The field equations can be
made non-linear,! the fields produced by or
acting on an electron can be redefined,*? or one
may resort to some averaging of the fields over
space or time.* These theories have, however,
met with considerable difficulties when an at-
tempt has been made to quantize them. In this
paper a consistent classical theory is described
which the author believes can be quantized.
Some preliminary results of the quantization of
this theory will be discussed in a future paper.
Some of the physical ideas of the classical form
I M. Born and L. Infeld, Proc. Roy. Soc. London Al44,
425 (1935).
2P. A, M. Dirac, Proc. Roy. Soc. London A167, 148
(1938). An excellent discussion of these matters is given
by C. J. Eliezer, Rev. Mod. Phys. 19, 147 (1947).
3J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys.
17, 157 (1945).
¢ There are many theories of this nature. The author’s
theory is essentially that of F. Bopp, Ann d. Physik 42,
573 (1942). R. Peierls and H. McManus have developed
a theory in which the electron is pictured as a rigid dis-
tribution of charge in both space and time. The theory can
be shown to be exactly equivalent to the present one, at
least for a class of f functions. Their physical ideas may
offer advantages over the present one in which the function
f is not so directly interpretable. I thank Dr. McManus
for a copy of his thesis. For a summary of another theory
of this type see B, Podolsky and P. Schwed, Rev. Mod.

Phys. 20, 40 (1948). A somewhat different type is that of
N. Rosen, Phys. Rev. 72, 298 (1947).

of the theory are sufficiently interesting in them-
selves to warrant their discussion first in a
separate paper.

The potential at a point in space at a given
time depends on the charge at a distance » from
the point at a time previous by ¢{=r (taking the
speed of light as unity). Speaking relativistically,
interaction occurs between events whose four-
dimensional interval, s, defined by s?=—2,
vanishes. There results, however, an infinite
action of a point electron on itself. The present
theory modifies this idea by assuming that
substantial interaction exists as long as the
interval s is time-like and less than some small
length, a, of order of the electron radius. When ¢
is large since A(s?) = 2¢- Af this means a spread in
the time of arrival of a signal of amount of
order a?/2t. For charges separated by many
electron radii there is, therefore, essentially no
effect of the modification. For the action of an
electron on itself, however, there is a considerable
modification. The result is to reduce the infinite
self-energy to a finite value. For accelerations
which are not extreme, the action of an electron
on itself appears simply as an electromagnetic
mass. If desired in the classical theory, all the
mass of an electron may be represented as electro-
magnetic. (In the quantum theory this cannot
be done in a reasonable way as the electromag-
netic mass comes out quite small under reason-
able assumptions for @.) We have, therefore, a
consistent classical theory which does not dis-
agree with classical experience.

In the remainder of the paper we formulate
this idea mathematically, and draw one or two
simple consequences. We then discuss a curious

939
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feature of this theory. It can give a classical
representation of the phenomena of pair pro-
duction in sufficiently strong fields. This is of
interest because the physical ideas may possibly
be carried over to give a clearer understanding
of the hole theory of positrons.

The main result which is to be carried over to
quantum problems is this: In any process in
which there is no permanent emission of quanta
one must assume the field quanta to have a
“density” g(k4,K) in frequency, and wave num-
ber space. This replaces the usual assumption
that the frequency k4 equals the magnitude of
the wave number, K, and that the density in
wave numbers K, is uniform (corresponding to
gk K)=08(k2—K?*). The properties g(k4K)
ought to have are discussed more fully below.

MATHEMATICAL FORMULATION

It is most convenient (but not necessary) to
formulate these ideas in the language of action
at a distance.* Hence a brief summary of that
point of view is given here. We start with
Fokker's action principle that the action

S=3 maf(da,.da,,)*

+§'e.,eb f f d(sw)da,db, (1)

is an extremum. Here a, represents, for u=1 to
4, the three space coordinates and the time
coordinate of a particle a of mass m,, charge e,.
We shall later consider them as functions of a
parameter «, say. The b, are corresponding
quantities for a particle b, etc. The symbol
XY, Means x4ys—x1y1—x2¥e—x3y3 and sqop?=(a,
—b,)(a,—b,). The § is Dirac’s delta function.
The integrals are taken over the trajectories
of the particles. The 3’ means the sum over
all pairs @, b with ab. We consider varying
the path a,(a) of particle a. Defining
A00) =a [ s(sat)ib, @
where x stands for x,, a point in space time,
we can write (1) as

S=3 m,.f (dada)+3 3 e.,fA,‘“) (a)da,.

e bxa
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The result of seeking an extremum of this is to
lead in the well-known way to the equations of

motion,
d sday  da,
( ) =€ Z Fyv(b) (a)v

Ma—
dr \d7, drgbs=a

3)

where we can call F,,®®(x) the field at x caused
by particle b. It is given by

Fuy®(x) =04,? (x)/dx,—A4,®(x)/0%,.

We have written dr,=(de,da,)? for the proper
time along the path of a.

Since [ 126(s.2) =4wd(x1—01)8(xs—b2)8(x3—03)
X 8(xs—bs), where [ ]*=(8/9x,)(6/3x,), Eq. (2)
gives

024,®(x) = 41rebf5(x1 —b1)8(xa—b2)

X 8(x3—b3)d(xa—ba)dby, (4)

which is 47 times the current four-vector of a
point charge e,. Thus F,,®(x) satisfies Maxwell’s
equations. But the special solution (2) is not the
usual retarded solution but is rather half the
retarded plus half the advanced solution of
Lienard and Wiechert? (since §(f2—7%)=(1/2r)
X (8(t+7)+8(t—7).) Thus we may write (dots
representing derivatives with respect to 7,4, and
the fields being calculated at the point x,=a,),

madiv:eadu Z (%F(b)pv ret+%F(b)uv adv)' (5)

bxa

This can be compared to the usual theory which
just uses retarded effects by writing it in the form

Z F(b)uv ret+’%‘ Z [F<b)p» adv

bxa all b

- F(b)pv ret]" %{:F(a)”v adv F(a)»» ret] y

Moly = €qly,

(6)

as in the paper® by Wheeler and Feynman. As in
that paper the first term is the retarded field of
other charges, the second term vanishes in a
world where all emitted light is eventually ab-

5 This use of advanced and retarded potentials is really
unnecessary for an understanding of the modifications of
electrodynamics which is the main point of the paper. It
results from the aurhor’s desire to start with a principle
of least action, for it is in this form that the transition to
quantum theory can be made.
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sorbed,® and the third term, depending only on
the motion of a, is the force of radiative damping.
Thus (1) is equivalent to (6) and thus satis-
factorily describes the known laws of classical
electrodynamics. There is no self-energy.

According to the above, a particle does not
act upon itself, as the term with a=b in the
sum . a€e€sf -+ in the action has been
omitted. (Radiation resistance is pictured as
in indirect effect of source on absorber and
absorber on source.) The field of each particle
must be kept separate in order to exclude, when
asking for the force on a particle, the field of
the particle itself.

There is no need to do so, but it is an interest-
ing question to try to reinstate the idea of a
universal field. This requires that a particle be
allowed to act on itself and the term a=5 in-
cluded in the action sum. This leads immediately
to an infinite self force. This difficulty can be
eliminated if the 8(sq?) is replaced, as Bopp* has
suggested, by some other function f(s.;?) of the
invariant sq2, which behaves like §(sqs?) for large
dimensions but differs for small. (We shall dis-
cuss the properties of this function later, but as
an example to keep in mind, consider f(s?)
=(1/2a%)exp(— |s|/a) for s2>0, and f(s?) =0 for
52<0 with ¢ of order of the electron radius
e2/mc?.)

We study the consequences of replacing (1)
by the law that S is extremum if

S=3 m, f (da,.da,)?
+3 2 2. €t f f f(swDdaudb,.  (7)
a b
The term with a=56 may be written

et [ [1(steardosdan,

where a and @’ are two points on the world-line

(8)

® That the second term vanishes in these circumstances
may be seen as follows. If a source radiates for a time, at
a very long time afterwards the total retarded field van-
ishes, for all the light is absorbed. But also the total ad-
vanced field vanishes at this time (for charges are no
longer accelerating and the advanced field exists only at
times previous to their motion). Hence, the difference
vanishes everywhere at this time and, since it is a solution
of Maxwell's homogeneous equations, at all times.
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of a. The variation problem clearly leads to

Mo, = eadﬂ[ T Fu®(a)+F.,@ (a)], (9)

ba
where
F,®(x) =04, (x)/dx,—34,®(x)/dx, (10)

and the bar over the field quantities indicate
that they are calculated from the f function
rather than the & function. That is,

A0 =0 f F(s.2)db,. (11)

This theory differs from the usual in two re-
spects: A. Thereis an extra force &, = e.d,F,,® (a)
on particle a depending only on the motion of a.
This we shall study in a moment and show that
it represents inertia. B. The fields of other
particles are given by the curl of a potential but
the potential (11) no longer solves the Maxwell
equations (4). However, since f(s?) is close to
8(s?) this means that except for particles very
close together nothing is changed very much.
Thus f(##—?) is large only when t=r is nearly
satisfied, but for large ¢ near +r, say, f(£2—r?)
>f(2t(t—r)) so that the function which has
width a? in its argument s? has width a?/2¢ in
t—r. Thus for increasing distances from the
source the potentials satisfy Maxwell's equations
ever more accurately.
The analog of Eq. (6) becomes

madv=eadu Z <F>(b)m ret
byta

+% Z EF(b)w ndv"F(b)uv ret]

all ®

_%EF(G)M adv ™ F<a)uv re'e]_l—F(a)“v]’ (12)

where we define (F)et=F~43Fret—3Foay. Thus
only the & part, so to speak, of the ﬁelds becomes
retarded. It would not do to replace F by F
throughout in (6) for then we could not deduce
that the second term is zero at the source be-
cause it was zero at infinity for it would not
then be a solution of Maxwell’s equation in
empty space. The damping term is unaltered. It
plus the self-force can be written (F}®,, . (see
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footnote ), so in practice one can write simply

mady=endu Z <F)(b)pv ret-
all b

The effect of the modification in the theory
using retarded fields is therefore to change,
slightly, the field of one particle on another when
they are very close, and to add a self-force ,.

We now turn to a study of the self-force k,.
This can be calculated directly from the for-
mulae (10), (11) but a simpler way is from the
action term (8). This term in the action can be
re-expressed approximately if we assume that
the accelerations are not too great. Only values
of ¢’ near a are important. Let us define a
parameter along the path and say a corresponds
to the value « of this parameter, @’ to the value
o' =a+e Assuming @’ not to vary too rapidly
with ¢ we can approximate sqo2=(a,—a,")
X{a,—a,) by é(da,/da)(da,/da) =e(d1./da)?.
Likewise da,dae,’ 1is to sufficient accuracy
(da,/da)(da,/da)dade. Thus the self-action term
is approximately ZXelf [f(e(dro/da)?) (drs/da)?
Xdede. Then calling 9 =¢(dr,/da) we can write
this as

paf(dra/da)da=paf(da,,da,‘)%, (13)
where we have set
na=%ea2f f(r®)dn. (14)

That is, the self-action term to this approxima-
tion represents pure electrodynamic mass. The
term readily combines with m, fdr, for the
mass is correctly invariant. We can go further
and assume that originally m, i1s zero and all
mass of electrons is electrodynamic, but for
protons this would then not be so.

The function f(s?) is to be normalized such that

[ iy =1. (15)
The condition (14) says the range in 7 of f(7?) is
of order ¢*/u, or if u is the electron mass, of order
of the electron radius. The function f(s?) is
chosen so that it is symmetrical near past and
future light cones since any asymmetry drops
out in the form (7) of the action. Other than
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these conditions, there are strictly no further
conditions on f(s?). It is convenient to assume
f(s?) to be zero if s? is negative (space-like). It
is also very desirable to have f(s?) fall rapidly
away from the light cone, rather than oscillate
indefinitely, and to have f(s?) finite everywhere.

By taking the Fourier transform of (11), one
can represent the field as a superposition of the
effects of harmonic oscillators in the usual way.
However, the oscillators corresponding to waves
of wave number ki, ks, ks need not have a fre-
quency k. equal to the magnitude of the wave
number. Instead we can take the density of the
oscillators to be k4 times, g(k.k.)dkidkdk;dk,
where ¢ is defined for positive k4 only, and is

glkuky) = (1/4x?) S f(s%y) cos(k,,(x,‘—y,.))
X dx18x:dx3dxs.

It is a function of the invariant k,k, only. The
ordinary case, f(s?) =8(s?) corresponds to g(k.k,)
= §(kuk.). The condition that f(s?) be finite on
the light conc implies that g(k,.k,) can be written
in the form

x©

g(k,b,) = f [o(kuk,) — (kuku—N) IGOAN.  (16)

Here G()\) is normalized such that Jo*G(A)d\ =1,
in view of (15). It is otherwise arbitrary, as
f(s?) 1s. The X values for which g must exist
must be large, going up to order u/e.

If G 1s chosen as 6(A—X\o) the resulting f(s?)
is (for s220) the Bessel function, XoJ1(Aos)/s.
For large ¢, if s=(22—r"}, this does not die off
fast with #—r, but oscillates with phase varying
as A(t2—r?)%. That is, it oscillates with frequency
No(1—2%/12)% at a time corresponding to arrival
of signals with velocity /¢ and thus in quantum
mechanics would represent arrival of radiated
“particles” of mass %Xy. The free emission of
such ‘“‘particles’” is removed in classical theory
by interference among the various values of A
if a smooth distribution, G(A), of A is used. This
is required if f is to represent say a function
decaying rather than oscillating (see appendix).

It appears that the quantum mechanical re-
sult is simply this: For processes without per-
manent radiation the oscillator density g is to
replace 6(k,k,). The negative sign in (16) proves
embarrassing (see appendix) if quanta of mass
Ao can be freely radiated so a wide distribution
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in A corresponding to a monatonic f(s*) is
preferable. As an example, for f(s?)=(1/2a?)
Xexp(—|s|/a) ind G(\) = (3a®\) (1 4-a2\2)—%2,
The electrostatic potential at a distance r
from a stationary charge, is according to (11),

Adr)=e f Fe—r)de. a7
For large 7, in view of (15) this is readily seen
to be e/r. At the origin r =0 however, it is finite
being eS_2f(#)dt or 2u/e. This has a simple
interpretation if all mass is electromagnetic.
The energy released in bringing a positron and
electron charge together and so canceling out all
external fields is just 2u, the rest mass these
particles have in virtue of their fields. Or put
otherwise, the rest mass particles have is simply
the work done in separating them against their
mutual attraction after they are created. No
energy is needed to create a pair of particles at
the same place. (These ideas do not have direct
quantum counterparts since in quantum theory
all mass does not appear to be electromagnetic
self energy, at least in the same simple way.)
There may be a maximum field of attraction
between two like charges at some separation
since, for some functions f the force arising from
(17) vanishes at the origin, and of course again
at infinity.

There remains to discuss a curious point about
the solutions of the least action principle (7)
with the mechanical mass term m, absent. First
let us study the simple problem of an ordinary
single particle of mass u in a potential 44 (caused
by other charges) which depends only on one
coordinate x. Call the time £, and use this for
the parameter a. The action is

S=uf(1 —a‘ﬁ)’dt—}—efAdt. (18)
Now suppose the potential A4 is zero outside a
small band in x say |x| <b/2 (potential barrier)
and that it is large positive, and constant within
the region. Consider, in Fig. 1, the paths from a
point 1 to a point 2 which make .S a local maxi-
mum. A typical solution is the solid line which
is kinked out of the straight line so as to increase
the time integral of A, This represents a par-
ticle moving from 1 rapidly toward the barrier,

FOR ELECTRODYNAMICS 943

Ag=0

Ag#0

F1c. 1. If two points 1, 2 are separated by a high po-
tential barrier, there are two paths which make action an
extremum. One (solid line) represents passage of a fast
electron. The other (dotted line) has a section reversed in
time and is interpreted as the effective penetration of the
barrier by a slow electron by means of a pair production
at Q and annihilation at P, section PQ representing the
motion of the positron.

entering the region of high potential, losing
energy and thus going slower in this region. The
high velocity is regained on passing out of the
region to 2. Slow particles cannot penetrate
the barrier.

But there may be another local maximum.
Consider the path 1PQ2. In the interval PQ the
proper time integral must be taken positively
as can be verified from a study of the derivation
of (13). Now moving the point P upward by At
might be expected to increase the action by over
2uAt because the length of P1 and PQ are both
increased. On the other hand, the integral /At
1s now negative and if A, exceeds 2u such a
curve may be a local maximum. Thus for 4,
greater than 2u there is a new way that slow
particles can penetrate the barrier. This is a
classical analog of the Klein Paradox.

How would such a path appear to someone
whose future gradually becomes past through a
moving present? He would first see a single
particle at 1, then at Q two new particles would
suddenly appear, one moving into the potential
to the left, the other out to the right. Later at
P the one moving to the left combines with the
original particle at 1 and they both disappear,
leaving the right moving member of the original
pair to arrive at 2. We therefore have a classical
description of pair production and annihilation.
The particle whose trajectory has its proper
time opposed in sign to the true time ¢ (section
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PQ) would behave as a particle of opposite
sign, for changing the sign of db, in (7) is equiva-
lent to changing the sign of e;. This idea that
positrons might be electrons with the proper
time reversed was suggested to me by Professor
J. A. Wheeler in 1941.

The field at x= 45b/2 is infinite. If it is finite
the action (18) does not show such a local
maximum, the sharp corner at P becoming a
cusp which can go indefinitely into the future.
On the other hand, if the correct self-force from
(7) is used instead of the approximation (13), a
path reversal again becomes a possibility. It
is only necessary that the field exceed a critical
value, namely, that maximum value of attraction
of two unlike particles mentioned above. This
field represents a potential of 2u in a distance of
the order of an electron radius and must be as
great as this to get the pair of newly created
particles apart over the potential barrier of their
mutual attraction. (The actual field required to
produce pairs in quantum mechanics 1s 137
times weaker. One might ascribe this to a quan-
tum mechanical penetration of the potential
barrier over a Compton wave-length.)

There are many interesting problems pre-
sented by these ideas. For example, will pairs
be produced ad infintium by the field, or only
to that extent that we can guarantee that the
positrons will be annihilated by electrons in
the future? Again, in a weak field can a large
number of pairs be created which separate
slightly in the field (which is insufficient to tear
the two apart) and thus produce a large polariza-
tion of that field? It is hoped that an application
of these ideas to a study of positron hole theory
will appear in a future paper.

I should like to thank Professor J. A. Wheeler
for inoculating me with many ideas without
which this work would not have been done.

APPENDIX

The difficulties in a theory such as the one
presented here have been discussed by many
authors. A very brief discussion of them will be
given in this appendix.

The first point is that the action .S defined in
(1) or (7) is infinite and meaningless because of
the infinite extent of the integrals along the path
of the particles. The principle of extreme action
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which we mean to apply can be more rigorously
defined as follows. Consider any given variation
in paths éa, such that éa,—0 as a—==. Then
define 85 as the limit of the quantity &S calcu-
lated from (7) with this path variation, the limit
being taken as the range of integration passes to
infinity. Then the law of motion shall be 65S=0
for all variations which satisfy éa,—0 as a—>== © .
The equations of motion (9) are then conse-
quences of the action principle, of course, but
not all solutions of these equations satisfy the
principle of least action as defined here. There
are certain runaway solutions of the equations
of motion, such as those discussed by Dirac? in
the case of Eq. (6), in which the kinetic energy
and momentum of a particle increase exponen-
tially with time. These are excluded for they
do not satisfy the principle of least action.

Bopp* has studied in great detail the conse-
quences of equations of motion. However, he
assumes that the function f acts only at retarded
times. He finds that the radiation resistance of
an oscillator decreases below the normal value
with increasing frequency of the oscillator. How-
ever, if an oscillator is enclosed in a large, light
tight box the fields at the walls of the box are
effectively unchanged by the use of f rather than
3. (We are assuming that f decays and does not
oscillate. Below, we discuss the situation if f
oscillates.) Hence the energy absorbed by the
walls will not, apparently, decrease with the
increase in oscillator frequency and the radiation
resistance will not keep up with it. In the modifi-
cation described in this paper, in such a box,
only the é-part of fis to be retarded. The radia-
tion resistance has its normal value at all fre-
quencies, and the energy lost will all be found
eventually in the walls of the box.

The conservation of quantities like energy
(and momentum) can be demonstrated directly
if a theory starts from a principle of least action,
the form of which action is invariant under a
change of origin of the time (and space). For the
action (7) consider the quantity

&= {"1adv+ea > Ey“’)(a)}

a &t apleao)

| [ 2ebr o, (19)

—a Y Ap
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where f'(x) =df(x)/dx. The points ay, 8,. - . are an
arbitrary set of points, one chosen on the world-
line of each particle. In virtue of the equations
of motion (9) the derivative of g, with respect to
any of the ao's is zero. This is a generalization
of the usual conservation of energy. Ordinarily,
we would choose all the «p such that all as(ay)
are equal, and find g, is independent of this
common value of as. The energy is seen to
consist of a self-energy, an energy caused by the
presence of the potential on each particle, and
(since this last would count each interaction
twice) a further correction to interaction energy.
This is described as a line integral over the paths
of the particles, but since one point is in the
future and the other in the past, the actual
range of integration does not extend beyond the
time during which b could interact with @ at ap
and that @ could interact with b at 8. This is
the way in which energy which is usually spoken
of as being in the field is represented in a theory
of action at a distance between particles. Since
it is an integral only over a limited range, the
energy of motion of the particles is conserved in
the long run. (It is easy to generalize (19) to the
case that paths may reverse themselves in time.)

We now consider the situation in which the
function f oscillates rather than decays. If, as
was discussed by Bopp* and others (e.g.,
B. Podolsky and P. Schwed?), f is replaced by a
Bessel function XeJ1(Nes)/s, the theory corre-
sponds as we have seen to that of interaction
through ordinary ‘‘quanta’ minus those corre-
sponding to a mass #\. The f function does not
appear as a pure §-function at large distances,
but another component appears if the frequency
of the source exceeds \o. Thus, a source at high
frequency w emits waves of two wave-lengths,
light of wave number K =w and ‘““N\p-quanta’ of
wave number K = (w?—\¢?)}. Again Bopp's equa-
tions (using retarded potentials only) show that
the radiative resistance force on a dipole oscil-
lator of amplitude x, frequency w, is constant at
2e2352/ 3% for w <o and falls off as w exceeds A,
as (2e%?/3) [ — (w4 3N e?) (w? —A2)¥], remain-
ing positive, however, for all frequencies. The
decrease at higher frequencies must correspond
to a negative contribution to radiation resistance
accompanying the emission of ‘“Ag-quanta.”” That
is, the A¢-quanta behave as though they had
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negative energy. That this is so and that it
results in fundamental difficulties may be seen
from a few examples. If through interference the
rate of emission of “Np-quanta’” can be enhanced
relative to the rate for the ordinary light quanta,
a net negative radiation resistance will result.
For example, a set of two vertical dipoles oscil-
Jlating in phase (at frequency w=2Xy/3}), sepa-
rated horizontally by one-half the wave-length
of light, and one-fourth the wave-length of the
Mo-quanta of the same frequency, shows a nega-
tive net radiation resistance. It would oscillate
with ever-increasing amplitude, the large emis-
sion of negative energy Ao-quanta supplying the
increase in energy of the oscillators and the
energy of the light quanta emitted. Again a beam
of Ap-quanta passing through a medium con-
taining damped (energy-absorbing) oscillators
increases in amplitude. The wave of A¢-quanta
scattered by the oscillators in the forward dircc-
tion which ordinarily interferes destructively
with the incident wave, in this case has a re-
versed sign and enhances the incident wave.
(The light scattered forward has the incorrect
wave-length to make an appreciable effect by
interference.) A beam of \j-quanta can be sepa-
rated from light of the same frequency by having
the radiation from a source of a given frequency
impinge on a diffraction grating of scattering
centers. The Aj-quanta and light quanta will
then be scattered in different directions as they
have different wave-lengths.

What results if instead of using only retarded
waves for Aj-quanta, we start from the least
action principle and analyze the situation of a
source enclosed in a box? Then the derivation of
Eq. (12) is still incomplete as (F), still contains
both advanced and retarded components (of
Mo-quanta) at large distances. We could now split
off the advanced parts for Ai-quanta just as we
did for light. The resulting equation is just
that used by Bopp, namely all retarded inter-
actions but negative contribution of A,-quanta
to radiation resistance, and therefore leads this
time to conservation of energy but to diverging
solutions. Such diverging solutions are, as indi-
cated above, excluded by the least action prin-
ciple so this form of the equation is not con-
venient. Non-divergent motions do exist. To see
this it is better to split off the retarded part of
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the Ap-quanta. What results is that light goes
by retarded waves, Ap-quanta by advanced
waves,” and the radiation resistance of both
contribute positively. Thus an accelerating
charge will emit light, but it is predestined that
negative energy Ap-quanta were coming toward
it to be absorbed, still further increasing the
radiation resistance. This avoids the divergent
solutions only to predict observable advanced
effects.

For these reasons it is better to restrict one-

7 This may be understood in that, as indicated above,
the energy-absorbing walls of the box absorb retarded
light waves, but cannot be presumed to absorb retarded
Mo-quanta. Instead, in fact, they spontaneously emit such
waves (warming up in the process) and non-divergent
solutions result only if they emit just exactly the Ao-
quanta which can later be absorbed by the accelerating
charge at the center.

McINTEER, ALDRICH, AND NIER

self to the case of a decaying f-function (dis-
tribution of A) for which a consistent theory
can be made. Then the modifications of classical
electrodynamics will only appear at very small
distances from a charge. On the other hand,
these distances are well within the Compton
wave-length so that modifications caused by
quantum mechanics would in any case appear
before the ones here discussed. There is, there-
fore, little reason to believe that the ideas used
here to solve the divergences of classical electro-
dynamics will prove fruitful for quantum elec-
trodynamics. Nevertheless, the corresponding
modifications were attempted with quantum
electrodynamics and appear to solve some of
the divergence difficulties of that theory. This
will be discussed in a future paper.
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II.C Quantum FElectrodynamics

Because Feynman’s unconventional approach to QED did not use quantum field theory, he
found it difficult to convince his peers of its validity. When he outlined his views to them
at a small elite gathering, the Pocono Conference of March 30-April 1, 1948, as he later
recalled, his lecture was “a hopeless presentation.” He was treated as an alien: “I had too
much stuff. My machines came from too far away.”! He thus thought that it would be best
first to describe his important physical results, and to show how they could be obtained by
more standard methods. In this way he hoped to motivate his colleagues to make the effort
to follow his more powerful new methods, which he would present later.

In this section we group the papers containing physical results in QED, some already
published by others, but some obtained correctly for the first time. The papers that detail
Feynman’s new mathematical tools and derivations will be given in Part III below.

Feynman began this acclimatization process by publishing paper [9], which includes a
quantum-mechanical version of the relativistic high-frequency cutoff that he had introduced
for classical electrodynamics in paper [8]. This method, an example of what would later
be called “regularization,” made the divergent integrals of QED finite — except for the so-
called vacuum polarization integrals, which would require a stronger form of regularization.?
Using the “old-fashioned” perturbation theory of Dirac, Feynman showed that his cutoff
procedure led to the same results for the electromagnetic shift of energy levels of hydrogen
(Lamb shift) and the radiative corrections to potential scattering as had been published
earlier by others, including Bethe, Schwinger, and Weisskopf. However, Feynman’s results
avoided the subtraction of infinite integrals, using only finite ones that he showed were very
insensitive to the value chosen for the cutoff.

Paper [12] treats the “motion of electrons and positrons in given external potentials.” It
introduces the overall space-time view, emphasizing the solutions of the Dirac relativistic
electron equation in the integral form, the Green’s function or “propagator,” which is the
probability amplitude for the electron to pass from one point in space-time to another.
The allowed paths can propagate forward or backward in time, the time-backward paths
being interpreted as positrons.> Thus here are introduced the famous trademark “Feynman
diagrams.” In an appendix, Feynman derives his formulation from the (misnamed) “second
quantization” theory of the Dirac electron—positron field.

Paper [13], submitted a month later than paper [12], appeared in the same issue of the
Physical Review. A continuation of the first paper, it uses the same notation and diagrams,
but now it attacks the general problem of QED, involving, besides the external potentials and
photons, also the fields of the charged particles themselves, involving both real and virtual
photons. This paper constitutes a textbook of Feynman’s powerful methods for solving real
problems in QED, and describes his propagators and their formulation in momentum space.
He discusses the electron self-energy problem, the convergence of processes with virtual
quanta, the radiationless scattering problem, and the Lamb shift. His footnote (numbered
13 — appropriately, as he remarked) on the history of the calculation of the relativistic Lamb

1FPeynman interview with S.S. Schweber, 1984. See Schweber’s QED, p. 436.

2W. Pauli and F. Villars, “On the invariant regularization in relativistic quantum theory,” Rev. Mod. Phys.
21, 434 (1949).

3This provocative notion is a major technical advance, but it has engendered as much (mostly meaningless)
speculation about its “meaning” among the uninformed as has Einstein’s “relativity.”
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shift apologizes for delays caused by the disagreement of his slightly wrong result of early
1948 with other (correct) calculations. He also calculates the vacuum- polarization part of
the Lamb shift, using a regularization method that he credits to Pauli and Bethe (the Pauli—
Villars paper had not yet appeared). In footnote 18 he writes: “It would be very interesting
to calculate the Lamb shift accurately enough to be sure the 20 megacycles expected from
vacuum polarization are actually present.” This shows that he had not yet fully accepted
the need for a quantum field theory, as opposed to delayed action-at-a-distance!

Paper [18] is a calculation of the radiation corrections to the Klein—Nishina formula for
Compton scattering. Even when making full use of the Feynman calculational tricks, it
was a long and tedious calculation. However, the scattering of a photon by an electron
can be regarded as the fundamental interaction described by QED, and unlike the other
processes mentioned (Lamb shift, electron anomalous magnetic moment), it is not a single
quantity but a complete differential cross-section, and it does not make use of an approximate
nonrelativistic potential, like the radiationless scattering and the Lamb shift. Thus it is an
especially appropriate testing ground for QED, as well as being an important observable
effect at higher electron energies, which would be employed to analyze experiments in the
decades that followed.

As stated in the introduction, paper [45] is a review of QED as of 1961, included here for
its originality and stimulating language. Feynman concludes it by referring to his “long-held
strong prejudice that [QED)] must fail significantly (other than being simply incomplete) at
around 1 GeV virtual energy.”? Furthermore, he wrote, “I still hold this belief, and do not
subscribe to the philosophy of renormalization.”

Selected Papers

[9] Relativistic cut-off for quantum electrodynamics. Phys. Rev. 74 (1948): 1430-1438.
[12] The theory of positrons. Phys. Rev. 76 (1949): 749-759.

[13] Space-time approach to quantum electrodynamics. Phys. Rev. 76: 769-789.

(18] With Laurie M. Brown. Radiative corrections to Compton scattering. Phys. Rev. 85
(1952): 231-244.

[45] The present status of quantum electrodynamics. Eztrait des rapports et discussions,
Solvay, Institut International de Physique (1961).

“Reference {45], p. 89.
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A relativistic cut-off of high frequency quanta, similar to that suggested by Bopp, is shown
to produce a finite invariant self-energy for a free electron. The electromagnetic line shift for a
bound electron comes out as given by Bethe and Weisskopf’s wave packet prescription. The
scattering of an electron in a potential, without radiation, is discussed. The cross section
remains finite. The problem of polarization of the vacuum is not solved. Otherwise, the results
will in general agree essentially with those calculated by the prescription of Schwinger. An
alternative cut-off procedure analogous to one proposed by Wataghin, which eliminates high
frequency intermediate states, is shown to do the same things but to offer to solve vacuum

polarization problems as well.

T HE main problems of quantum electro-
dynamics have been essentially solved by
the observations of Bethe! and of Weisskopf? that
the divergent terms in the line shift problem can
be thought to be contained in a renormalization
of the mass of a free electron. That this principle
applies as well to other problems was demon-
strated by Lewis?® in analyzing the radiationless
scattering of an electron in a potential. Am-
biguities which remained in the subtraction
procedures are removed by Schwinger.>* He
formulated, in a general way, which terms are to
be identified in a future correct theory with rest
mass, and hence should be omitted from a cal-
culation which does not renormalize the mass.
These results are remarkable because they solve
the problem without the addition of any new
fundamental lengths or dimensions.

The solution given by Schwinger does, how-
ever, assume that in some future theory the
divergent self-energy terms will be finite. There-
fore, it is of interest to point out that there is a
model, a modification of ordinary electrody-
namics, for which all quantities automatically do
come out finite. With this model the ideas of
Bethe, Oppenheimer, and Lewis and Schwinger
can be directly confirmed.

The model results from the quantization of a
classical theory described in a previous paper.®

( ;ES) A. Bethe, Phys. Rev. 72, 339 (1947); 73, 1271A
1 .
( ;Jg.)Schwinger and V. Weisskopf, Phys. Rev. 73, 1272A
1948).
3H. W. Lewis, Phys. Rev. 73, 173 (1948).
4+ J. Schwinger, Phys. Rev. 73, 415A (1948).
8 R. P. Feynman, Phys. Rev. 74, 939 (1948).

In this paper we describe only the results for
processes in which only virtual quanta are
emitted and absorbed. The problems of per-
manent emission and the position of positron
theory must be more completely studied. It is
hoped that a complete physical theory may be
published in the near future. Lacking such a
complete pictufe,the present paper may be looked
upon merely as presenting an arbitrary rule to
cut off at high frequencies in a relativistically
invariant manner, the otherwise divergent in-
tegrals appearing in quantum field theories. For
electrodynamics the rule is to consider the
(positive) frequency w and wave number k of the
field oscillators as independent and to integrate
them over the density function g(w?—k?)dwdk
where

gt~k = f [5(u?—E?)

~ (e —k2=A)JG(N)dN. (1)

Here 8(x) is Dirac’s delta function and G()) is
some smooth function such that Ji*G(A\)dr=1
and for which the mean values of N which are
important are of order of the frequency 137
mc?/k, or higher. Ordinary quantum electro-
dynamics replaces the function g(w?*—£?) by
(w2 —k?). According to (1), the density g is not
everywhere positive.® Therefore, the model is
essentially that due to Bopp.®

The model therefore cont.ins an arbitrary
function and the numerical results depend on the

8 F. Bopp, Ann. d. Physik 42, 573 (1942).

1430
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form of G(A). However, the only term that
depends seriously (logarithmically) on the cut-off
frequency is the self-energy, which can be used
to renormalize the electron mass. After this is
done, the remaining terms are nearly independent
of the function G(\).

We shall illustrate these points by studying
the particular examples of self-energy and radi-
ationless scattering. We shall then discuss an
alternative cut-off procedure in which the density
of electron states is cut off rather than that of
the quanta. This promises to solve problems of
vacuum polarization which are not touched by
the former procedure.

SELF-ENERGY

The transverse self-energy of a free electron, of
mechanical mass u, in state of momentum P,
energy Eo= (u2+P¢?)? is given to the first order
in ¢ by the second-order perturbation theory,
using the one-electron theory of Dirac, by

’ dk ag a;
AE=——— ¥ __[ (0] i) (F| ] 0)
4m T J kY E~Ectk
(O] ailf) (fla:|0)
(2)
- —E;—E\t+k

Here the intermediate state f arises from the
initial state through emission of a quantum of
momentum k and of energy k= |k| (the velocity
of light is taken as unity, as is Planck’s constant).
Thus in the intermediate state the electron has
momentum P;=Py—k and an energy of mag-
nitude E;= + (u*+ P;?)! but which may be either
plus or minus in sign. The sums indicate the sum
over all such intermediate states (actually just
two) for each sign of the energy. The terms for
positive and negative energy have been separated
and the sums are written Y., and Y _ for these
two cases. The (f|a;|0) are the matrix elements
of Dirac’s a-matrices, the sum on ¢ being over
the two directions of polarization of the quanta.
We shall henceforth write the integral dk/k over
k space by its equivalent 2/ dwdkd(w?—k?), the
integral being over all positive », and all wave
numbers k. We shall also write « for k2 in the
energy denominators as we shall later wish to
distinguish the energy of a quantum and the
magnitude of the momentum change that its
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recoil represents. We may further simplify the
expression by the use of the well-known pro-
jection operators:

AF=(E;+H))/2E;=(Es+ea -P;+8u)/2E,.

According to the theory of holes, the last
term, the transition to negative energy states, is
to be left out; such transitions are prevented
because the negative levels are already occupied.
On the other hand, in the vasuum, electrons in
state of energy — E; could make virtual transi-
tions to positive energy state E,. This is now
prevented by the presence of an electron in the
state E,, so that, relative to the vacuum, the
transverse self-energy is

e?
AE=——3 fdwdké(w2—~k2)
27? i

Oa,- +0[.’0 Oa.- _0150
{(IAII)_([AJI) 3)

Ei—E¢tw E+Eotow

The treatment of the longitudinal self-energy
is usually different, for the longitudinal oscil-
lators are first eliminated from the Hamiltonian,
their effect being the term e?/rqo where 740 is the
meaningless distance of the electron from itself.
These terms must be expressed as integrals over
oscillators and combined with (3) before the
change suggested by (1) is to be performed. An
additional point of confusion is that the longi-
tudinal elimination assumes the intermediate
states to form a complete set as they do in (2),
but the situation in (3) is not so clear. For-
tunately, all these points may be most easily
circumvented by simply not eliminating the
longitudinal oscillators from the field Hamil-
tonian at all. One need simply to specify that the
sum on ¢ in (3) now be interpreted to mean the
sum over each of three perpendicular space
directions minus a term for the time direction. We
may write ».;oaAa;=a-Aa—A, which is a
relativistic combination since as=1. One does
not need to be concerned about the gauge con-
dition in a problem in which all quanta are
virtual, for the quanta are created by a charge
which is conserved. This solution automatically
insures the gauge condition just as the Lienard
Wiechert classical solution of the Maxwell
equations will automatically satisfy the gauge
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condition if the charge which produces the
potential is conserved.

With this convention for 3°; Eq. (3) repre-
sents the total self-energy. It is easily calculated.
The numerator of first term may be written as
1/2E; times (0| ai(H;+Ef)a;|0) where H; is
o P,+Bu. Now since X.; aai=+2, 3¢ a;fa;=
—48, and ¥ ; a;aa; = —2¢, this becomes

~2(0| — Es+2Bu+e-P;|0).

The diagonal elements of 8 and « for the state
0 are u/E, and Py/E,, respectively.

The change in energy AE, can, since the
momentum is given, be represented as a change
Ap in rest mass of the electron. In virtue of the
general relation E?=p?+ P?, the relation between
these quantities is pAu= E¢AE,. Thus we find,
treating the sum of negative energies in a similar
manner,

e? 2ut—EoEs4-Py- Py
E{(Ej—Eo+w)
2u*+ EoEr+Po-Py
}. @

E/(Ef—}*Eo-l" w)

App=

fdwdka(w2~ k?) {

27

The integral diverges logarithmically and Ay,
defined here is meaningless. If the §(w?—£k?) is
replaced by g(w?—k?) defined in (1), the result is
finite and invariant (i.e., does not depend on the
momentum P, of the electron).

How this comes about may be seen by cal-
culating the integral in (4) for

gle? ~ k) = (e — k%) — 6(w? — K2 —N2)

and reserving an integration on A until later. The
integral (4) will converge with this g(w?—%2), but
it is convenient to divide it for purposes of cal-
culation into the difference of two diverging ones.

This i1s legitimate providing the divergent
integrals are first both computed over the same
finite region of k space, the difference taken, and
then the region allowed to pass to infinity.
Therefore, we shall define Auy by (4), in which
we choose the region arbitrarily to be first over
all (positive) w and then over a sphere in k space
of very large radius K. Likewise Ay, is defined as
expression (4) with &(w?—k?2—A?%) replacing
8(w?—£k?), and the integration taken over the
same region,

RICHARD P.
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The true self-mass is therefore
Ap= f [Lim(Apo—Am)IGNEN.  (5)
0 Koo

We may now calculate these integrals, starting
with Apy. Since Py-Pr=Py- (Po—k)=FE2—pu?
"‘Pok and E/2=E02+k2—2P0'Pf, the Po'Pf
term in the numerator of the first term may be
eliminated, the numerator becoming

%(Ef2+E02 _k2) _EoEf+p2 = u2+%(w2_k2)
+3(E;— Eo—w)(Ey— Eo+w).

Thus the first term in Au) becomes
W3k

f — (w2 — k2 — A dwdk
E/(Ei—Ey+w)

41 f 5(e? — b=\ dwdk(Ey— Eo—w) /Ey.  (6)

Adding the corresponding second term which
differs from the first only in the sign of E,, and
performing the integral on  (which requires
simply division by 2w), we find

1
(Ef+w)2 —Eq?

Eit+wdk 1 pdk 1 pdk
IR
Ef w 2 w 2 E;
where w=(k2+2A?%)? and the integration is to be
taken over a sphere of radius K in k space. The
first and, obviously, the second integrals turn
out to be invariant; the third is not, but its
contribution will cancel out on taking Aue—Aua
as it does not depend on A.” The result of the
integrations?® is, dropping terms of order 1/K and

(27 e utin= (2 3N?) f

7 Pais has suggested that one subtract from Apo the
—Apu, that one gets not from electrodynamics but from
the scalar f field (for which B8---8 replaces Z; a;- - ).
Proceeding in this way the integrals f'dk/Es do not appear
with the same coefficient. Therefore, although this pro-
cedure leads to a finite rest mass it is not invariant in the
sense here, that the limits of k space integration can be
taken to be independent of the momentum of the electron.
A. Pais, Kon. Ned. Akad. v. Wet. Verh. D1, 19, 1 (1947).

8 The first integral may be performed in the following
manner: First integrate over the directions in k space at
constant magnitude k. Only E, depends on the direction of
k and one may therefore replace the solid angle integral
by one on E;. The limits of E; are E,.=(u?+(Po+k)D)}
and E_= (u2+ (Po—k)?)* but both terms may be considered
together as one if the integral on k& be extended from — X
to K instead of 0 to K. To integrate this on k, substitute
the variable x=FE,+w—E, and (the algebra is long)
integrate by parts to reduce it to elementary integrals,
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smaller:
(/e pbu= (L2 + N[N+ u2 X (1, 1) ]
+3[K2 =2 (In(2K/N) —3)]
—3[K?—§Po*—p*(In(2K /u) — 1) ],

where

Na=No—[N/ (M=) ]In(A/w),  (7a)

with No=In(2K/u) —1, and the quantity Xa(u, u)
is finite as K— o, It is given by setting o=y in
the complicated expression

2p0" Xn (i, po) = ((N?— p® — po®)* — 4u’pe®)?

N p? — o+ (N = p® — o®)* — dppo?)

Xl1n
2\
AT M
+(>\2—N2+M02— ) In—4 2. (7b)
2,2 A

Thus Xo(g, ) =1/2p® and for A large compared

to u, Xa(u, u) =1/42% Hence

A2 A ou

.ln_+_.
uo 2

3u
(m/e?) (Apo—Aur) =—-
2 2 _,LL?

— (W2 EN) X (u, 1), (8)

which is independent of X (in the limit K— ).
If the important values of N are much greater
than u, we find approximately (to terms of order
(u/N)?)

Ap=p(e?/m)[§ In(No/w)+ 3], )

where

Inho= f IMAG(\)dA.
0

Judging from the classical case we would have
expected to take Ao of order 137u, for then all
mass would be electromagnetic. But Ay here is
too small for this to represent a real possibility.
The experimental electron mass m is of course
p+Au.

The value of A would have to be of phe-
nomenal size (~e!37u) before Au can represent a
sizeable fraction of the experimental mass. How-
ever, to go to the limit of the conventional elec-
trodynamics, Ao should be taken as infinite.
Then the self-energy diverges logarithmically in
the manner found by Weisskopf.®

V. Weisskopf, Phys. Rev. 56, 72 (1939).
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The emission and subsequent absorption of a
quantum acts similarly to the effect of a change
in mass not only on the diagonal matrix element
which we have just calculated, but on non-
diagonal elements as well. Consider that the
state appearing on the left of all the matrices in
(3) were arbitrary, say x. Then the numerator of
the first term can be expressed, as we have seen,
by (—=1/E;) (x| — E;+2Bu~+a-P;|0). The second
term can be expressed similarly. The two terms
can be combined so that the whole expression in
brackets in (3) can be written

| G =B Bot (Brt0)28ut e Po— o 1| 0)
E/((Es+w)?—Ee?) '

(10)
This expression may be multiplied by
S(wt—k2—22)

and integrated with respect to « and over a
sphere of radius K in k space. We make use of the
following integrals which can be directly verified :

f 1 E;+
(Ertw)?—Ed  Ef

(w0 — B —\?)dawdk
= Na+ po® Xa (1, o),
1
f ————————§(w? ~ k2~ AN dwdk/T
(Ef+w)2“Eo2
= 3N+ 3 (w4 pe® = X)X (s, o,
f k E+
(Estw)?—Es E;
=3P 3+ Nt (N2 po® — ) X (e, o) ],

The integrals have been calculated under the
assumption that E¢?=us?+ Pq% In our application
we should take wo=u. The quantities N\ and
Xa(u, wo) are given by (7a), (7b). (The extra
parameter po is helpful in obtaining other
integrals, useful in the radiationless scattering
problem, by differentiations with respect to the
various parameters under the integral sign.)

The result of integration (10) with the density
0(w? —k?) — 6(w?— k2 —)\?) is therefore

(e¥/m) (x| —Eo(3(No—Ny)+1— (u2— D X))
+ (2Bu~+ - Po) (No— Nx+ 5 —p?X))
~3a-Po(No— Ny —\2X3) |0).

(11)

w
(w2 —k*—\)dwdk /7
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Now the energy of state 0 is E, so that
a-Py=Hy—Bu is equivalent to E¢— By, since it
operates on state 0 (no implication about state x
is involved). Making this replacement, all the
terms in E, are seen to cancel and the result is
simply

(x]8]0) - (Apo—Apy), (12)

where Aug—Au) is given in (8). On integrating
over G(\)d\ then we find (x|B8Ap|0). But this is
just the perturbation element which would result
from a change of mass by Au in the Dirac
equation.

We may use this result to show that the level
shift for an electron in a bound state given in the
present theory will be essentially that given by
Weisskopf and Bethe according to their so-called
wave-packet method. The change in energy of
our electron in a bound state may be calculated
in a straightforward manner according to the
present formulation. One would simply start
with Eq. (2) but with the wave functions and
energies for states 0 and f being appropriate for
the potential by which the electron is bound.
Then one would integrate over g(w?—#k?) rather
than §(w?—%?) and obtain a definite finite result.
The result would show a fairly large change in E,
depending logarithmically on A.

A good part of this change could be accounted
for as simply due to the change in E, that would
occur if the mass of the electron were altered
from u to m=u+Au. We can define the true
term shift, then, as the complete change in Ej,
less Au(dE,/du), the change due to using p
instead of m in computing the energy with
radiation absent. But dE,/du is by perturbation
theory the expected value (¥o*|8|¥0) of 8 for the
state Y, in question. From the result (12), how-
ever, this is also equivalent to computing the
self-energy of a wave packet ¢, assuming the
electron as free. But Bethe! and Weisskopf?
compute their term shift by just this prescription:
the total effect less the self-energy of the free
packet. The only difference here is that we would
compute the term shift integral on g(w?—£k?)
rather than §(w®—&?). But since the integral con-
verges either way, the difference between the
two results is very small, being of order of
(42/Xo?) times smaller than the result.

FEYNMAN

RADIATIONLESS SCATTERING

We can study the radiationless scattering
problem in a similar manner. This problem is the
correction to the scattering by a first-order
potential due to the possibility of emission and
absorption of a virtual quantum. For example,
this emission and absorption can occur at any
time previous to the scattering. (It would, in this
case, be nearly equivalent to a change in mass
in the wave function of the electron arriving at
the scatterer.) There will be a large change in
cross section, which would be expected as the
result of a change in mass of the electron plus a
smaller change caused essentially by emissions
previous to and absorptions subsequent to the
scattering. As in the case of the self-energy in a
field and, in fact, in all such problems, we will
really be interested in those effects of radiation
over and above that resulting from the change in
mass. It is, therefore, simpler to compute the
difference between the desired quantity calcu-
lated with no radiation and electrons of mass m,
and the same quantity computed with the pos-
sibility of a virtual quantum emission and ab-
sorption with an electron of mass u. This dif-
ference, which we shall call the radiative cor-
rection, can be looked upon as the result of per-
turbation due to the addition to the Hamiltonian
of both the radiative interaction terms and a
term —pBAu. The latter term can, as we have
shown, be represented by the integral over oscil-

lators of
) w

when acting on a free electron state of positive
energy Ey and momentum P,. When acting on a
state of negative energy — E,, the term can be
shown in a similar manner to be the expression
(13) with the sign of E; changed in the de-
nominator.

Terms like these are just the ones that
Schwinger* thought should be omitted from the
Hamiltonian if one wishes to get meaningful
results, so that the present model agrees with
Schwinger’s prescription.

When this proces is applied to the scattering
problem to obtain the radiative correction to
the matrix elements, we are left with several

a,’Af+C!,‘ a;‘Af_a,‘

- t <E;-—Eo+a:—_E/+En+w
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residual terms. First, the emissions and absorp-
tions previous to scattering are not exactly
equivalent to a change in mass. If the emission
occurs too close (in time) to the scattering, the
absorption must occur in a restricted time, rather
than at leisure as for a free electron forming BAg.
The correction to the matrix element (in the
theory of holes) for this is proportional to

(2| VA‘taidstau 1)
(Ertw—E))*

=

b3

1 (2 ! VA1+a,-A,r‘a.'| 1)
T (EftwtE)r

(14)

We assume the potential V' (vector or scalar)
depending on position like ef'R and time like
e~ i@t induces transitions from a state 1 of mo-
mentum P, energy E;, to the state 2 of momen-
tum Py=P;+q, energy E,=E,+Q=(u*+ P2k
The operator V is just 1 for scalar potential, «,
for vector potential in x direction, etc. The term
(14) represents only that contribution due to a
quantum of momentum k, frequency w. We
expect later to integrate over w and k, times
g(w?—k%). We. put P;=P,—k, E,=(u+PHt
This term can also be regarded as due to the
second-order normalization correction in the
ordinary perturbation theory on the incoming
wave function. There is a corresponding cor-
rection for the final wave function resulting from
virtual quanta emitted and absorbed after the
scattering: (P,=Py—k, E,= (u2+P,2)}).

(2 [ a;Ag+0£,‘Az+ V! 1)
(Egtw—E,)’

4%
i

(2| aidg~aiAaT V| 1)
(EotwtE)?

NES> (15)

All the effects of BAu are now included. The
remaining terms are those for which the potential
scattering occurs between the emission and ab-
sorption. They may be worked out as by
Dancoff!® (except that we include the longitudinal

©S. M. Dancoff, Phys. Rev. 55, 959 (1939).
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waves by summing ¢ from 1 to 4). They are
(2] aib gt VA rai|1)
i (Ertw—E)(Etw—E,)
(2] by~ VA/ai| 1)
i (ErtotE)(EjtwtEs)

and
(2 I aiAg+ VAj—a{I 1)
i (Egtw—Es)(ErtwtE)

2w
[+ ]
E/+E0_E2+E1
(2 [ ad,~ VA/+ai| 1)

i (Ertow—E)(E;+wtEs)

2w
X[1+ ] (17)
E;+E,+E,—E,

Although each separate term diverges, the sum
of (14), (15), (16), (17) will lead to an integral
convergent for large k even if integrated in the
conventional manner on §(w?—42?). This is the
result of Lewis. Integration on g(w?—4?%) will
make each term converge for large k, but will
then only make correction to the sum of order
(u/7)? smaller. These we shall neglect.

The integrals do, however, diverge logarithmi-
cally at the lower limit of small momentum
transfer. This infra-red catastrophe has been
completely cleared up by Bloch and Nordsieck."
They show that for very long wave-length quanta
the amplitude for emission and reabsorption of
more than one quantum is not negligible. In-
clusion of these higher order terms, which is
necessary only in the non-relativistic region,
solves the problem. To keep the results given
here in a simple form, we can imagine the inte-
grals to be performed down to some minimum
momentum Eni,, small compared to u. What is
effectively the same thing but which is easier
(because relativistic invariance is maintained)
for practical purposes, is to imagine that the
quanta have a very small rest mass Amin. Thus
we integrate the density

0(w? — k2 — Amin?)dwdk
11 F, Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).
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and assume Apin<<u. The two methods are
equivalent if one replaces In\pin by In(2kmin) —1

The integrals may be expanded in powers of
q and Q, say up to the second.!? The constant
term vanishes on integration. The integrals
appearing may all be expressed in terms of
various parametric derivatives of the integrals
already given in (11). The result may be ex-
pressed in terms of a general potential in a very
simple way. A term linear in q, such as propor-
tional to ¢, say, is equivalent to taking the
matrix element (2|g; exp(zq-R)|1) directly be-
tween the two states 2, 1. But this is also equiva-
lent to the matrix element of —4(9/dx) exp(<q- R).
Thus if the potential varied in any other manner
in space, one sees by superposition that the
matrix element is the same as that of —29V/dx.
Thus the terms up to second order can be repre-
sented by matrix elements of first and second
space and time derivatives of the potential. That
is, the radiative correction to the scattering in
any potential is equivalent to the first order in ¢?
and in the potential, to the scattering produced
by a perturbation AH to the Dirac Hamiltonian.
The perturbation up to terms of first and second
derivatives of the vector potential A and the
scalar potential ¢ is calculated in this manner
to be

e? he
AH = ——(8(¢-B) —iBa-E)
2rhel  2uc
2h%
(. aD2A)(l )} (18)
3 2¢2

The first term, where B=V XA and E=—-Vygp
—(1/¢)dA/dt, has the same effect as an alteration
in the electron magnetic moment® by a fraction
e?/2xhc. This effect was first discovered by
Schwinger.4

LINE SHIFT

The perturbation to H given here is useful not
only for scattering problems but also for the
line-shift problem. The actual motion of an
electron in a binding potential can be visualized

2 The integrals have also been worked out, by other
methods, for arbitrarily large q and Q. These will appear in
a future publication.

23? W. Pauli, Handbuch der Physik (1933), Vol. 24/1, p.
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as simply a continued sequence of scatterings in
this potential. For each scattering we can cal-
culate the effect of virtual quanta in the way
outlined above. However, it is possible, if the
potential is strong, that fwo scatterings occur
between the emission and reabsorption of the
quantum, in which case the above formula for AH
is incorrect. In hydrogen the potential over most
of the atom is sufficiently weak that this does not
occur with effective probability. The very long
wave-length quanta do have a tendency to exist
in the virtual state for long periods, but they
have been eliminated by the cut-off \,i, at low
frequencies.

In hydrogen, then, the line shift due to quanta
above minimum wave number Eni, is the ex-
pected value, for the state in question, of

e? { hei 2h%e
27he

2(Vzw)

uc 5
X (ln +—) I, (19)
2hkmin 8

where p=¢/r, r being the distance to the preton,
and we have used the relation

ln)\min = ln(2kmin) —1

AH=

——Ba- V<p+
2uc

The first term insures that the fine structure
separation correction will be that expected from
the change in the electron’s magnetic moment.
The second may be combined with Bethe’s non-
relativistic calculation for quanta below &Zmin.'*

APPLICATION TO OTHER PROCESSES

The important problem of verifying that the
self-energy will not diverge in higher-order ap-
proximations has not been carried to completion.
It appears unlikely that trouble will arise here.
If that is true the model probably gives sensible
answers to all problems of quantum electro-
dynamics other than those involving Uehling
polarization effects, discussed below. It has been
found to give finite self-mass if we have, instead
of a vector field, a scalar field or a pseudoscalar
field, coupled to the electron in the simplest way
possible without gradient operators. lf the field

1 Using Eq. (18), Professor Bethe finds 1050 megacycles
for the separation between 2ps3» and 251, in hydrogen.
(Solvay Report.)
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quanta have mass M, g(w?*—%?) is replaced by
g(w?—k2— M?), and the values of X\ of importance
are chosen to be large compared to M.

The results for electrodynamics, then, after
mass renormalization, depend only slightly on
the form of G(\) and the size of Xo. Since N may
be taken to be extremely large without spoiling
the smallness of Ay, there would appear to be
good reason to drop the dependence on A
altogether. Thus the G(\) appears only as a
complicated scaffold which is removed after the
calculation is done.

On the other hand, electrodynamics probably
does break down somewhere and it is interesting
to keep the terms in X for various phenomena to
see if one might be selected which is particularly
sensitive to A. This phenomena would then be a
promising one to study experimentally. The
Mgller interaction between two electrons is
modified by the present theory. There is, of
course, the radiative correction, but in addition
to that there is simply a change due to the change
in the density function for the quanta which can
be exchanged. The Mdller interaction ordinarily
is proportional to 1/¢% where g is the magnitude
of the momentum transferred from one electron
to the other in the center of gravity system. The
modification is only that this factor is changed to
Joe(1/@2—1/(g*+N))G(A)dr. This represents a
decrease in cross section for hard collisions. If A
is of order 137 uc?, we would need electrons in
the center of gravity system of roughly 30 Mev
to find a strong effect. This corresponds, however,
to bombardment of stationary electrons by elec-
trons of 33 Bev.1s

It is interesting to note that the Mgller inter-
action can be viewed as simply a correction to
self-energy due to the exclusion principle. The
self-energy of two electrons, 1 and 2, is not the
sum of the self-energy of each, for one of the
virtual states that 2 could ordinarily enter by
emission of a quantum is now occupied by 1. The
difference between the self-energy of two elec-
trons and the sum of the self-energy of each

158 A more promising way to obtain processes with high
momentum transfer would be wide-angle scattering of
electrons from nuclei. But here deviations from expecta-
tions might be associated with uncertainties in the nuclear
charge distributions rather than electrodynamics. Very
wide angle pair production is a phenomena which does
occur for high energy incident y-rays with large momentum
transfer in a region not too close to the nucleus.
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separately comes out to be just their interaction
energy.

VACUUM POLARIZATION. ALTERNATIVE
CUT-OFF PROCEDURES

In the above calculation, terms of the type
discussed by Uehling!® have been omitted. These
terms represent processes involving a pair pro-
duction followed by annihilation of the same
pair. For example, a pair produced by the poten-
tial may annihilate again emitting a quantum.
This quantum is then absorbed by the electron
in state 1 transferring it to state 2. These terms
are infinite and are not made convergent by the
present scheme. There is some point, neverthe-
less, to solving problems at first without taking
them into account. This is because their net
effect is only to alter the effective potential in
which the electron finds itself, for it may be
scattered either directly or by the quantum
produced by the Uehling terms. That is, if this
problem of polarization of the vacuum is solved
it will mean, if there is any effect, simply that
the potential 4, ¢ appearing in the Dirac equa-
tion and (to high order) in such terms as (18)
should be replaced by new ‘polarized” poten-
tials 47, ¢'.

These polarization terms can be characterized
in a relativistically invariant manner. All the
terms which have been calculated above contain
matrix elements of operators between states in a
sequence such as 1 to f, f to g, g to 2. The omitted
polarization terms contain transitions like f to g,
g to f, 1 to 2. For higher order processes the
polarization terms are those which do not contain
a continued sequence of transitions from the
initial to the final state.

The polarization terms are not affected in any
helpful way by the changes in the density of
quanta. It is likely that this problem will have
its answer in a changed physical viewpoint.
However, there is a simple alternative procedure
to produce finite self-energies which also makes
convergent the integrals appearing in Serber’s!
treatment of the polarization problem. (Since,
however, this treatment of Serber already pre-
supposes a partial subtraction procedure of
Heisenberg and Dirac, the situation is not so
clear here as in the self-energy problem.)

18 E. A. Uehling, Phys. Rev. 48, 55 (1935).
17 R, Serber, Phys. Rev. 48, 49 (1935).
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From the point of view of coordinate space,
the reason that the electronic self-energy diverges
appears to be this. A virtual light quantum
emitted at one point spreads out as §(#*—r?) from
the origin. The wave packet of the electron
spreading out after the emission of the quantum
has, as a consequence of Dirac’s equation, a
similar discontinuous value along the light cone.
It is the continued coincidence of these singu-
larities which makes the matrix element for the
subsequent absorption of the quantum infinite.
The method outlined above of changing §(w?—%?)
to g(w?*—k?) has the effect of changing §(2—7?%)
to f(#—7?) where f(s?) is everywhere finite and
goes to zero rapidly for |s?| > 1/ The quanta
have been moved away from the electrons so that
overlap on the light cone is reduced.

An obvious alternative procedure is to move
the electron wave function away from the quanta.
This is easily done in a very similar manner. We
assume the density of electron states of energy E,
momentum P to be g(E?~—P?*—y?) rather than
8(E?*—P?—yu%).38 The quanta are conventional,
w=Ek, density dk/k. The self-energy integrals (2)
can, of course, be expressed as an integral over
the intermediate state momentum P, rather than
k. Replacing dP;/E; by g(E2—~Pp2—ut)dEdP;,
we find

62
8E( =~ [o(E/ = Pp=)aEdP,
k.3

E; {(OIO:;A;""O:."O) (Ofa.‘Aj_a."O)
i | Er+k—E, Ei+k+E,

k
18 This is seen to be essentially the method proposed
by Wataghin. G. Wataghin, Zeits. f. Physik 88, 92 (1934).
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where k= |P;—Py|, Eo=u*+Ps)t The pro-
jection operators are unchanged since it is only
the density of states which we wish to alter. They
are still Ap¥=(E,;+a -P;38u)/2E;. The result
of this calculation is to verify that AE,’ is finite,
(depending logarithmically on \y). The other
problems can be analyzed in the same way.

In the problem of polarization of the vacuum,
the wave functions of both electron and positron
ordinarily spread with a singularity on the light
core. The matrix element for their subsequent
annihilation is therefore infinite. With the modi-
fication here described these wave functions are
made less singular and their overlap integral is
finite. The polarization integrals in Serber's
article!” may now be integrated to yield finite
results.

Other than terms which might be removed by
a small renormalization of charge (depending
logarithmically on \), the net effect in (17)
would be to change the — (%) in the last\term of
(17) to —(3)—(%). However, the real existence
of such polarization corrections is, in the author'’s
view, uncertain. These matters will be discussed
in much more detail in future publications. Also
reserved for future publication is a more com-
plete physical theory from which the results
reported here may be directly deduced. It yields
much more powerful techniques for setting up
problems and performing the required integra-
tions.

The author would like to express his gratitude
to Mr. P. V. C. Hough for assistance in the
calculations and to Professor H. A. Bethe and
Dr. F. Dyson and many others for useful dis-
cussions,
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The problem of the behavior of positrons and electrons in given
external potentials, neglecting their mutual interaction, is analyzed
by replacing the theory of holes by a reinterpretation of the solu-
tions of the Dirac equation. It is possible to write down a complete
solution of the problem in terms of boundary conditions on the
wave function, and this solution contains automatically all the
possibilities of virtual (and real) pair formation and annihilation
together with the ordinary scattering processes, including the
correct relative signs of the various terms.

In this solution, the “negative energy states’ appear in a form
which may be pictured (as by Stiickelberg) in space-time as waves
traveling away from the external potential backwards in time.
Experimentally, such a wave corresponds to a positron approach-
ing the potential and annihilating the electron. A particle moving
forward in time (electron) in a potential may be scattered forward
in time (ordinary scattering) or backward (pair annthilation).
When moving backward (positron) it may be scattered backward

in time (positron scattering) or forward (pair production). For
such a particle the amplitude for transition from an initial to a
final state is analyzed to any order in the potential by considering
it to undergo a sequence of such scatterings.

The amplitude for a process involving many such particles is
the product of the transition amplitudes for each particle. The
exclusion principle requires that antisymmetric combinations of
amplitudes be chosen for those complete processes which differ
only by exchange of particles. It seems that a consistent interpre-
tation is only possible if the exciusion principle is adopted. The
exclusion principle need not be taken into account in intermediate
states. Vacuum problems do not arise for charges which do not
interact with one another, but these are analyzed nevertheless in
anticipation of application to quantum electrodynamics.

The results are also expressed in momentum-energy variables,
Equivalence to the second quantization theory of holes is proved
in an appendix.

1. INTRODUCTION

HIS is the first of a set of papers dealing with the
solution of problems in quantum electrodynamics.
The main principle is to deal directly with the solutions
to the Hamiltonian differential equations rather than
with these equations themselves. Here we treat simply
the motion of electrons and positrons in given external
potentials. In a second paper we consider the interactions
of these particles, that is, quantum electrodynamics.

The problem of charges in a fixed potential is usually
treated by the method of second quantization of the
electron field, using the ideas of the theory of holes.
Instead we show that by a suitable choice and inter-
pretation of the solutions of Dirac’s equation the prob-
lem may be equally well treated in a manner which is
fundamentally no more complicated than Schrddinger’s
method of dealing with one or more particles. The vari-
ous creation and annihilation operators in the conven-
tional electron field view are required because the
number of particles is not conserved, i.e., pairs may be
created or destroyed. On the other hand charge is
conserved which suggests that if we follow the charge,
not the particle, the results can be simplified.

In the approximation of classical relativistic theory
the creation of an electron pair (electron A4, positron B)
might be represented by the start of two world lines
from the point of creation, 1. The world lines of the
positron will then continue until it annihilates another
electron, C, at a world point 2. Between the times #;
and #; there are then three world lines, before and after
only one. However, the world lines of C, B, and 4
together form one continuous line albeit the “positron
part” B of this continuous line is directed backwards
in time. Following the charge rather than the particles
corresponds to considering this continuous world line

as a whole rather than breaking it up into its pieces.
It is as though a bombardier flying low over a road
suddenly sees three roads and it is only when two of
them come together and disappear again that he realizes
that he has simply passed over a long switchback in a
single road.

This over-all space-time point of view leads to con-
siderable simplification in many problems. One can take
into account at the same time processes which ordi-
narily would have to be considered separately. For
example, when considering the scattering of an electron
by a potential one automatically takes into account the
effects of virtual pair productions. The same equation,
Dirac’s, which describes the deflection of the world line
of an electron in a field, can also describe the deflection
(and in just as simple a manner! when it is large enough
to reverse the time-sense of the world line, and thereby
correspond to pair annihilation. Quantum mechanically
the direction of the world lines is replaced by the
direction of propagation of waves.

This view is quite different from that of the Hamil-
tonian method which considers the future as developing
continuously from out of the past. Here we imagine the
entire space-time history laid out, and that we just
become aware of increasing portions of it successively.
In a scattering problem this over-all view of the com-
plete scattering process is similar to the S-matrix view-
point of Heisenberg. The temporal order of events dur-
ing the scattering, which is analyzed in such detail by
the Hamiltonian differential equation, is irrelevant. The
relation of these viewpoints will be discussed much more
fully in the introduction to the second paper, in which
the more complicated interactions are analyzed.

The development stemmed from the idea that in non-
relativistic quantum mechanics the amplitude for a
given process can be considered as the sum of an ampli-
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tude for each space-time path available.! In view of the
fact that in classical physics positrons could be viewed
as electrons proceeding along world lines toward the
past (reference 7) the attempt was made to remove, in
the relativistic case, the restriction that the paths must
proceed always in one direction in time. It was dis-
covered that the results could be even more easily
understood from a more familiar physical viewpoint,
that of scattered waves. This viewpoint is the one used
in this paper. After the equations were worked out
physically the proof of the equivalence to the second
quantization theory was found.?

First we discuss the relation of the Hamiltonian
differential equation to its solution, using for an example
the Schriodinger equation. Next we deal in an analogous
way with the Dirac equation and show how the solu-
tions may be interpreted to apply to positrons. The
interpretation seems not to be consistent unless the
electrons obey the exclusion principle, (Charges obeying
the Klein-Gordon equations can be described in an
analogous manner, but here consistency apparently
requires Bose statistics.)® A representation in momen-
tum and energy variables which is useful for the calcu-
lation of matrix elements is described. A proof of the
equivalence of the method to the theory of holes in
second quantization is given in the Appendix.

2. GREEN’S FUNCTION TREATMENT OF
SCHRODINGER’S EQUATION

We begin by a brief discussion of the relation of the
non-relativistic wave equation to its solution. The ideas
will then be extended to relativistic particles, satisfying
Dirac’s equation, and finally in the succeeding paper to
interacting relativistic particles, that is, quantum
electrodynamics.

The Schrédinger equation

i0y/d1=Hy, 1

describes the change in the wave function ¢ in an
infinitesimal time A¢ as due to the operation of an
operator exp(—¢HA¢). One can ask also, if ¥{(x,, /) is
the wave function at x; at time f;, what is the wave
function at time #;>? It can always be written as

Y(xs, tz)-—-fK(xz, ta; X1, bW (xy, b)d%%1, (2)

where K is a Green’s function for the linear Eq. (1).
(We have limited ourselves to a single particle of co-
ordinate x, but the equations are obviously of greater
generality.) If H is a constant operator having eigen-
values E,, eigenfunctions ¢, so that ¥(x, #,) can be ex-
panded as 2, Cuda(x), then Y (x, &) = exp(—iEa(l2—41))
XCada(x). Since Cn= S b *(x1)¥(X1, £1)d’K1, one finds

1R. P. Feynmaun, Rev. Mod. Phys. 20, 367 (1948).

*The equivalence of the entire procedure (including photon
interactions) with the work of Schwinger and Tomonaga has been
demonstrated by F. J. Dyson, Phys. Rev. 75, 486 (1949).

3 These are special examples of the general relation of spin and
statistics deduced by W. Pauli, Phys. Rev. 58, 716 (1940).
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(where we write 1 for xi, &; and 2 for x;, ) in this case
K2, )= ¢a(x2)a*(x1) exp(—iEn(ta—11)), (3)

for 3> ;. We shall find it convenient for £, </, to define
K(2,1)=0 (Eq. (2) is then not valid for f,<¢,). It is
then readily shown that in general K can be defined by
that solution of

(18/dt:—Hy)K (2, 1)=18(2, 1), 4)
which is zero for $;<{,, where §(2, 1) =8{;—£1)8(x2—x,)
X &(yz—31)8(22—21) and the subscript 2 on H; means
that the operator acts on the variables of 2 of K(2, 1).
When H is not constant, (2) and (4) are valid but X .is
less easy to evaluate than (3).

We can call X(2,1) the total amplitude for arrival
at Xy, {3 starting from xy, ¢,. (It results from adding an
amplitude, expiS, for each space time path between these
points, where S is the action along the path.!) The
transition amplitude for finding a particle in state
x (X2, I2) at time Zz, if at 4 it was in Y(xy, 1), is

fx*(Z)K(Z’ 1)5(/(1)d3x1d“x2. (S)

A quantum mechanical system is described equally well
by specifying the function K, or by specifying the
Hamiltonian A from which it results. For some purposes
the specification in terms of K is easier to use and
visualize. We desire eventually to discuss quantum
electrodynamics from this point of view.

To gain a greater familiarity with the K function and
the point of view it suggests, we consider a simple
perturbation problem. Imagine we have a particle in
a weak potential U(x, ), a function of position and
time. We wish to calculate K(2, 1) if U differs from
zero only for ¢ between {, and ;. We shall expand X in
increasing powers of U:

K(2, 1)=Ko(2, D+ KD (2, D)+ K®(2, 1)+---. (6)
To zero order in U, K is that for a free particle, Ko(2, 1).4
To study the first order correction K¥(2, 1), first con-
sider the case that U differs from zero only for the
infinitesimal time interval Af; between some time /;
and {3+ Al {{ <t3<ty). Then if (1) is the wave function
at xi, /1, the wave function at x;, /3 is

V)= f Ko3, Dy(l)dx, ™

since from /; to ¢3 the particle is free. For the short
interval A¢; we solve (1) as

Y(X, s+ Als) = exp(— iHALW(X, 1a)
= (1—iH oAl — iU ALYY(X, 13),

*For a non-relativistic free particle, where ¢.=exp(ip-x),
E,=p%/2m, (3) gives, as is well known

K2, 1)= [ expll = Gip-xi=ip- ) =ig*(la= 1) 2 J°p(2)
= (2xim Mt~ 1)) exp(him (xa— x)*(t2— 1))
for 1> 1, and Kn=0 fOl' <,
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where we put H=H,+U, H, being the Hamiltonian
of a free particle. Thus ¥(x,/+Af;) differs from
what it would be if the potential were zero (namely
(1—iH.At)¥(X, 3)) by the extra piece

Ay = —1iU(xs, ta) - (X3, t3)Als, 8

which we shall call the amplitude scattered by the
potential. The wave function at 2 is given by

Y(xa, ko) =fKo(xa, L35 X3, b3+ Alg)Y(Xs, Lo+ Atg)dXs,

since after {34 At the particle is again free. Therefore
the change in the wave function at 2 brought about by
the potential is (substitute (7) into (8) and (8) into
the equation for yi(xs, f2)):

Ap(2)=—i f Kol2, ) UG)K(3, DY(1)dxd it

In the case that the potential exists for an extended
time, it may be looked upon as a sum of effects from
each interval Af; so that the total effect is obtained by
integrating over {; as well as X3, From the definition (2)
of K then, we find

K02, 1) =~ f Ko(2, UGB, Vdrsy,  (9)

where the integral can now be extended over all space
and time, dry=d*k;dl;. Automatically there will be no
contribution if £; is outside the range ¢, to ¢, because of
our definition, Ko(2, 1) =0 for i,<4.

We can understand the result (6), (9) this way. We
can imagine that a particle travels as a free particle
from point to point, but is scattered by the potential U.
Thus the total amplitude for arrival at 2 from 1 can
be considered as the sum of the amplitudes for various
alternative routes. It may go directly from 1 to 2
(amplitude Ky(2, 1), giving the zero order term in (6)).
Or (see Fig. 1(a)) it may go from 1 to 3 (amplitude
K(3, 1)), get scattered there by the potential (scatter-
ing amplitude —:U(3) per unit volume and time) and
then go from 3 to 2 (amplitude Ko(2, 3)). This may
occur for any point 3 so that summing over these
alternatives gives (9).

Again, it may be scattered twice by the potential
(Fig. 1(b)). It goes from 1 to 3 (Ko(3, 1)), gets scattered
there (—iU/(3)) then proceeds to some other point, 4,
in space time (amplitude K,(4, 3)) is scattered again
(—1iU(4)) and then proceeds to 2 (Ko(2, 4)). Summing
over all possible places and times for 3, 4 find that the
second order contribution to the total amplitude
K®(2,1) is

ir [ [Kaz, 9U@K, 9
X U(3)Ko(3, Vdrydrs. (10)
This can be readily verified directly from (1) just as (9)
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Fi16. 1. The Schrédinger (and Dirac) equation can be visualized
as describing the fact that plane waves are scattered successively
by a potential. Figure 1 (a) illustrates the situation in first order.
K2, 3) is the amplitude for a free particle starting at point 3
to arrive at 2. The shaded region indicates the presence of the
potential A which scatters at 3 with amplitude —iA4(3) per
cmisec. (Eq. (9)). In (b) is illustrated the second order process
(Eq. (10)), the waves scattered at 3 are scattered again at 4. How-
ever, in Dirac one-electron theory Ko(4, 3) would represent elec-
trons both of positive and of negative energies proceeding from
3 to 4. This is remedied by choosing a different scattering kernel
K.(4, 3), Fig. 2.

was. One can in this way obviously write down any of
the terms of the expansion (6).®

3. TREATMENT OF THE DIRAC EQUATION

We shall now extend the method of the last section
to apply to the Dirac equation. All that would seem
to be necessary in the previous equations is to consider
H as the Dirac Hamiltonian, y as a symbol with four
indices (for each particle). Then K, can still be defined
by (3) or (4) and is now a 4-4 matrix which operating
on the initial wave function, gives the final wave func-
tion. In (10), U(3) can be generalized to 44(3)—a-A(3)
where A4, A are the scalar and vector potential (times e,
the electron charge) and « are Dirac matrices.

To discuss this we shall define a convenient rela-
tivistic notation. We represent four-vectors like x, { by
a symbol x,, where u=1, 2, 3, 4 and x,=1 is real. Thus
the vector and scalar potential (times ¢) A, A is 4,.
The four matrices Ba, 8 can be considered as transform-
ing as a four vector v, (our v, differs from Pauli’s by a
factor £ for =1, 2, 3). We use the summation conven-
tion a,b,=abs— a1b1— asbo—asds=a-b. In particular if
a, is any four vector (but not a matrix) we write
a=a,vy, so that a is a matrix associated with a vector
(a will often be used in place of a, as a symbol for the
vector). The v, satisfy v.v.4 v,v,= 28,, where d4=+1,
811=022=08a33= — 1, and the other §,, are zero. As a
consequence of our summation convention 6,.¢,=a,
and 8,,=4. Note that ab+ba=2a-b and that a’=a,a,
=g-@ is a pure number. The symbol d/dx, will mean
/9t for u=4, and —9/93x, —3/3y, —9/9z for u=1,
2, 3. Call V=1v,8/dx,=B3/d!+ Ba- V. We shall imagine

§ We are simply solving by successive approximations an integral
equation (deducible directly from (1) with H=Ho+U and (4)
with H=H,),

(2= —t'fKo(Z, 3)U(3)¢(3)d7,+f1{°(2, Dy (l)dxs,

where the first integral extends over all space and all tim
greater than the ¢ appearing in the second term, and %>
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FiG. 2. The Dirac equation permits another solution X.(2, 1)
if one considers that waves scattered by the potential can proceed
backwards in time as in Fig. 2 (a). This is interpreted in the second
order processes (b), (c), by noting that there is now the possi-
bility (c) of virtual pair production at 4, the positron going to 3
to be annihilated. This can be pictured as similar to ordinary
scattering (b) except that the electron is scattered backwards in
time from 3 to 4. The waves scattered from 3 to 2’ in (a) represent
the possibility of a positron arriving at 3 from 2" and annihilating
the electron f);om 1. This view is proved equivalent to hole theory:
electrons traveling backwards in time are recognized as positrons.

hereafter, purely for relativistic convenience, that ¢,*

in (3) is replaced by its adjoint ¢.=¢.*8.

Thus the Dirac equation for a particle, mass m, in an

external field A=A4,v, is
(i7-mv=4y, (an

and Eq. (4) determining the propagation of a free
particle becomes

(iVa—m)K (2, 1)=1i58(2, 1), (12)
the index 2 on V; indicating differentiation with respect
to the coordinates 2, which are represented as 2 in
K,(2,1) and 8(2, 1).

The function K, (2, 1) is defined in the absence of a
field. If a potential 4 is acting a similar function, say
K.™®(2,1) can be defined. It differs from K,(2, 1) by a
first order correction given by the analogue of (9)
namely

K, m(2,1)= ~ifK+(2, 3NABYKL(3, V)drs, (13)

representing the amplitude to go from 1 to 3 as a free
particle, get scattered there by the potential (now the
matrix A(3) instead of U(3)) and continue to 2 as free.
The second order correction, analogous to (10) is

K@, 1)=—ffK+(2, 4)A4)
XK, (4, 3)AR)K+(3, 1)dridrs, (14)
and so on. In general K, satisfies
(1V,— A(2)—-m) K, (2, 1)=18(2, 1), (15)

and the successive terms (13), (14) are the power series
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expansion of the integral equation

K92, 1)=K(2, 1)
—i f K2, HA@K D3, Ddrs, (16)

which it also satisfies.

We would now expect to choose, for the special solu-
tion of (12), K=K, where K¢(2, 1) vanishes for {,<f
and for #>1; is given by (3) where ¢, and E, are the
eigenfunctions and energy values of a particle satis-
fying Dirac’s equation, and ¢.* is replaced by én.

The formulas arising from this choice, however, suffer
from the drawback that they apply to the one electron
theory of Dirac rather than to the hole theory of the
positron. For example, consider as in Fig. 1(a) an
electron after being scattered by a potential in a small
region 3 of space time. The one electron theory says
(as does (3) with K, = K) that the scattered amplitude
at another point 2 will proceed toward positive times
with both positive and negative energies, that is with
both positive and negative rates of change of phase. No
wave is scattered to times previous to the time of
scattering. These are just the properties of Ko(2, 3).

On the other hand, according to the positron theory
negative energy states are not available to the electron
after the scattering. Therefore the choice K =K, is
unsatisfactory. But there are other solutions of (12).
We shall choose the solution defining K,.(2, 1) so that
K. (2, 1) for t3> 4 is the sum of (3) over posilive energy
slates only. Now this new solution must satisfy (12) for
all times in order that the representation be complete.
It must therefore differ from the old solution K, by a
solution of the homogeneous Dirac equation. It is clear
from the definition that the difference K,— K, is the
sum of (3) over all negative energy states, as long as
s>, But this difference must be a solution of the
homogeneous Dirac equation for all times and must
therefore be represented by the same sum over negative
energy states also for {,<¢;. Since Ko=0 in this case,
it follows that our new kernel, K.(2, 1), for t:<t, is the
negative of the sum (3) over negative energy stales. That is,

Ky(2, 1) =2 pos £, #2(2)0a(1)
Xexp(—iEq(ta— 1)) for

=~ NEG E, $2(2)$x(1)
Xexp(—iE.(l2—~14)) for 1<t

2>t
2> an

With this choice of K, our equations such as (13) and
(14) will now give results equivalent to those of the
positron hole theory.

That (14), for example, is the correct second order
expression for finding at 2 an electron originally at 1
according to the positron theory may be seen as follows
(Fig. 2). Assume as a special example that £,>; and
that the potential vanishes except in interval f,—{; so
that ¢, and ¢; both lie between ¢, and #.

First suppose {s>f; (Fig. 2(b)). Then (since /3>1,)
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the electron assumed originally in a positive energy
state propagates in that state (by K4(3, 1)) to position
3 where it gets scattered (4(3)). It then proceeds to ¢,
which it must do as a positive energy electron. This is
correctly described by (14) for K, (4, 3) contains only
positive energy components in its expansion, as &> /.
After being scattered at 4 it then proceeds on to 2,
again necessarily in a positive energy state, as £2> (4.

In positron theory there is an additional contribution
due to the possibility of virtual pair production (Fig.
2(c)). A pair could be created by the potential A(4)
at 4, the electron of which is that found later at 2. The
positron (or rather, the hole) proceeds to 3 where it
annihilates the electron which has arrived there from 1.

This alternative is already included in (14) as con-
tributions for which /¢ </3, and its study will lead us to
an interpretation of Ki(4,3) for £ <{;. The factor
K.(2,4) describes the electron (after the pair produc-
tion at 4) proceeding from 4 to 2. Likewise K.(3,1)
represents the electron proceeding from 1 to 3. K, (4, 3)
must therefore represent the propagation of the positron
or hole from 4 to 3. That it does so is clear. The fact
that in hole theory the hole proceeds in the manner of
and electron of negative energy is reflected in the fact
that A (4,3) for 1,<(; is (minus) the sum of only
negative energy components. In hole theory the real
energy of these intermediate states is, of course,
positive. This is true here too, since in the phases
exp(—iE.(14—13)) defining K1 (4, 3) in (17), E. is nega-
tive but so is {4—3. That is, the contributions vary with
l3 as exp(~—1| E.| (ls—{4)) as they would if the energy
of the intermediate state were | E.|. The fact that the
entire sum is taken as negative in computing K,.(4, 3)
is reflected in the fact that in hole theory the amplitude
has its sign reversed in accordance with the Pauli
principle and the fact that the electron arriving at 2
has been exchanged with one in the sea.® To this, and
to higher orders, all processes involving virtual pairs
are correctly described in this way.

The expressions such as (14) can still be described as
a passage of the electron from 1 to 3 (K(3, 1)), scatter-
ing at 3 by A(3), proceeding to 4 (K. (4, 3)), scattering
again, A(4), arriving finally at 2. The scatterings may,
however, be toward both future and past times, an
electron propagating backwards in time being recog-
nized as a positron.

This therefore suggests Lhat negative energy com-
ponents created by scattering in a potential be con-
sidered as waves propagating from the scattering point
toward the past, and that such waves represent the
propagation of a positron annihilating the electron in
the potential.’

¢ It has often been noted that the one-electron theory apparently
gives the same matrix elements for this process as does hole theory.
The problem is one of interpretation, especially in a way that will
also give correct results for other processes, e.g., sel{-energy.

"The idea that positrons can be represented as electrons with
proper {'me reversed relative to true time has been discussed by
the author and others, particularly by Stiickelberg. E. C. C.
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With this interpretation real pair production is also
described correctly (see Fig. 3). For example in (13) if
6 <t3<!: the equation gives the amplitude that if at
time ¢; one electron is present at 1, then at time /; just
one electron will be present (having been scattered at 3)
and it will be at 2. On the other hand if {» is less than ¢,
for example, if ty=1,<t;, the same expression gives the
amplitude that a pair, electron at 1, positron at 2 will
annihilate at 3, and subsequently no particles will be
present. Likewise if £, and /; exceed {3 we have (minus)
the amplitude for finding a single pair, electron at 2,
positron at 1 created by A(3) from a vacuum. If
41> 15> ts, (13) describes the scattering of a positron.
All these amplitudes are relative to the amplitude that
a vacuum will remain a vacuum, which is taken as
unity. (This will be discussed more fully later.)

The analogue of (2) can be easily worked out.? It is,

¢(2)=fK+L2, DN (DT, (18)

where d*V, is the volume element of the closed 3-
dimensional surface of a region of space time containing

FiG. 3. Several different processes can be described by the same
formula depending on the time relations of the variables £, ¢
Thus P,|K,(4(2,1)|2 is the probability that: (a) An electron at
1 will be scattered at 2 (and no other pairs form in vacuum).
(b) Electron at 1 and positron at 2 annthilate leaving nothing.
(c) A single pair at 1 and 2 is created from vacuum. (d) A positron
at 2 is scattered to 1. (K;¢4(2,1) is the sum of the effects of
scattering in the potential to all orders. P, is a normalizing
constant.)

Stiickelberg, Helv, Phys. Acta 15, 23 (1942); R. P. Feynman,
Phys. Rev. 74, 939 (1948). The fact that classically the action
(proper time) increases continuously as one follows a trajectory
is reflected in quantum mechanics in the fact that the phase, which
is | Ea| }ta— ], always increases as the particle proceeds from-one
scattering point to the next.

¢ By multiplying (12) on the right by (—iv,—~m) and noting
that v,8(2, 1)=—9,5(2, 1) show that K.(2,1) also satisfies
K,(2, 1)(—~iV—~m)=148(2, 1), where the V, operates on variable
1in K,(2, 1) but is written after that function to keep the correct
order of the y matrices. Multiply this equation by ¥(1) and Eq.
(11) (with A=0, calling the variables 1) by K,(2, 1), subtract
and integrate over a region of space-time. The integral on the left-
hand side can be transformed to an integral over the surface of
the region. The right-hand side is ¢(2) if the point 2 lies within
the region, and is zero otherwise. (What happens when the 3-
surface contains a light line and hence has no unique normal need
not concern us as these points can be made to occur so far away
from 2 that their contribution vanishes.)
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point 2, and N(1) is N.(1)vy, where N,(1) is the inward
drawn unit normal to the surface at the point 1. That
is, the wave function ¥(2) (in this case for a free par-
ticle) is determined at any point inside a four-dimen-
sional region if its values on the surface of that region
are specified.

To interpret this, consider the case that the 3-surface
consists essentially of all space at some time say /=0
previous to ¢, and of all space at the time T>t,. The
cylinder connecting these to complete the closure of the
surface may be very distant from X» so that it gives no
appreciable contribution (as K(2, 1) decreases expo-
nentially in space-like directions). Hence, if v4= 8, since
the inward drawn normals N will be 8 and —3,

@)= f K2, DBy (),
- f Ko, 1)8p(1)dxy,  (19)

where #;=0, f;y=T. Only positive energy (electron)
components in (1) contribute to the first integral and
only negative energy (positron) components of ¥(1’) to
the second. That is, the amplitude for finding a charge
at 2 is determined both by the amplitude for finding
an electron previous to the measurement and by the
amplitude for finding a positron after the measurement.
This might be interpreted as meaning that even in a
problem involving but one charge the amplitude for
finding the charge at 2 is not determined when the only
thing known in the amplitude for finding an electron
(or a positron) at an earlier time. There may have been
no electron present initially but a pair was created in
the measurement (or also by other external fields). The
amplitude for this contingency is specified by the
amplitude for finding a positron in the future.

We can also obtain expressions for transition ampli-
tudes, like (5). For example if at /=0 we have an elec-
tron present in a state with (positive energy) wave
function f(x), what is the amplitude for finding it at
t=T with the (positive energy) wave function g(x)?
The amplitude for finding the electron anywhere after
t=0 is given by (19) with ¥(1) replaced by f(x), the
second integral vanishing. Hence, the transition ele-
ment to find it in state g(x) is, in analogy to (3), just
(la=T, t,=0)

fooasr,@ vfexan, @)

since g*=¢8.

If a potential acts somewhere in the interval between
0and T, K, is replaced by K., Thus the first order
effect on the transition amplitude is, from (13),

—i f G(x)BK (2, DAB)K,L(3, 1)Bf(x)dxd™xs.  (21)

Expressions such as this can be simplified and the
3-surface integrals, which are inconvenient for rela-
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tivistic calculations, can be removed as follows. Instead
of defining a state by the wave function f(x), which it
has at a given time {;=0, we define the state by the
function f(1) of four variables xi, ¢, which is a solution
of the free particle equation for all ¢, and is f(x,) for
/1=0. The final state is likewise defined by a function
g(2) over-all space-time. Then our surface integrals can
be performed since S K,(3, 1)Bf(x:)d*x;=f(3) and
S §(x2)Bd%:.K (2, 3) = g(3). There results

=i [ 1040 /in, @
the integral now being over-all space-time. The transi-
tion amplitude to second order (from (14)) is

- f f IDAQKL 2, DAQ)[()drdrs,  (23)

for the particle arriving at 1 with amplitude f(1) is
scattered (A(1)), progresses to 2, (K,(2,1)), and is
scattered again (A(2)), and we then ask for the ampli-
tude that it is in state g(2). If g(2) is a negative energy
state we are solving a problem of annihilation of elec-
tron in f(1), positron in g(2), etc.

We have been emphasizing scattering problems, but
obviously the motion in a fixed potential V, say in a
hydrogen atom, can also be dealt with. If it is first
viewed as a scattering problem we can ask for the
amplitude, ¢.(1), that an electron with original free
wave function was scattered % times in the potential V
either forward or backward in time to arrive at 1. Then
the amplitude after one more scattering is

ben(2)=—i f K 2, UV Oeu(Ddr. (24)

An equation for the total amplitude

Y(1)=5 ou(1)
k=0

for arriving at 1 either directly or after any number of
scatterings is obtained by summing (24) over all & from
Oto o}

%(2)=¢o(2)-—if[{r(2, DV(Hy(1)dr. (25)

Viewed as a steady state problem we may wish, for
example, to find that initial condition ¢, (or better just
the ¥) which leads to a periodic motion of ¢. This is
most practically done, of course, by solving the Dirac
equation,
@EV—m)yp(1)=V()y(1), , (26)
deduced from (25) by operating on both sides by iV.—m,
thereby eliminating the ¢o, and using (12). This illus-
trates the relation between the points of view.
For many problems the total potential A+ V may be
split conveniently into a fixed one, ¥V, and another, 4,
considered as a perturbation. If K.’ is defined as in
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(16) with V for A, expressions such as (23) are valid
and useful with K, replaced by K+ and the functions
(1), g(2) replaced by solutions for all space and time
of the Dirac Eq. (26) in the potential V (rather than
free particle wave functions).

4, PROBLEMS INVOLVING SEVERAL CHARGES

We wish next to consider the case that there are two
(or more) distinct charges (in addition to pairs they may
produce in virtual states). In a succeeding paper we
discuss the interaction between such charges. Here we
assume that they do not interact. In this case each
particle behaves independently of the other. We can
expect that if we have two particles ¢ and b, the ampli-
tude that particle a goes from x; at 4, to x; at £; while
b goes from X, at {, to X4 at /4 is the product

K(3) 4) 1) 2)=K+ﬂ(3; 1)K+b(4’, 2)

The symbols g, b simply indicate that the matrices
appearing in the K apply to the Dirac four component
spinors corresponding to particle @ or b respectively (the
wave function now having 16 indices). In a potential
K,. and K, become K. .Y and K, where K,V
is defined and calculated as for a single particle. They
commute. Hereafter the a, b can be omitted; the space
time variable appearing in the kernels suffice to define
on what they operate.

The particles are identical however and satisfy the
exclusion principle. The principle requires only that one
calculate K(3,4;1,2)—K(4,3;1,2) to get the net
amplitude for arrival of charges at 3, 4. (It is normalized
assuming that when an integral is performed over points
3 and 4, for example, since the electrons represented are
identical, one divides by 2.) This expression is correct
for positrons also (Fig. 4). For example the amplitude
that an electron and a positron found initially at x; and
Xy (say Iy=1,) are later found at x; and x. (with
{y=13>{;) is given by the same expression

K3, 1)K, A4, 2)— K, @4, DK, D@3, 2). (27)

The first term represents the amplitude that the electron
proceeds from 1 to 3 and the positron from 4 to 2 (Fig.
4(c)), while the second term represents the interfering
amplitude that the pair at 1, 4 annihilate and what is
found at 3, 2 is a pair newly created in the potential.
The generalization to several particles is clear. There is
an additional factor K. for each particle, and anti-
symmetric combinations are always taken.

No account need be taken of the exclusion principle
in intermediate states. As an example consider again
expression (14) for 12>/, and suppose £4<{; so that the
situation represented (IFig. 2(c)) is that a pair is made
at 4 with the electron proceeding to 2, and the positron
to 3 where it annihilates the electron arriving from 1.
It may he ohjected that if it happens that the clectron
created at 4 is in the same slate as the one coming from
1, then the process cannot occur hecause of the exclusion
principle and we should not have included it in our
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F16. 4. Some problems involving two distinct charges (in addi-
tion to virtual pairs they may produce): Py} K, (3, DK, V{4, 2)
— K, (4, DK, 93, 2)]% is the probahility that: (a) Electrons
at 1 and 2 are scattered to 3,4 (and no pairs are formed). (b)
Starting with an electron at 1 a single pair is formed, positron at 2,
electrons at 3, 4. (c) A pair at 1, 4 is found at 3, 2, etc. The exclu-
sion principle requires that the amplitudes for processes involving
exchange of two electrons e subtracted.

term (14). We shall see, however, that considering the
exclusion principle also requires another change which
reinstates the quantity.

For we are computing amplitudes relative to the
amplitude that a vacuum at £; will still be a vacuum at
t;. We are interested in the alteration in this amplitude
due to the presence of an electron at 1. Now one process
that can be visualized as occurring in the vacuum is the
creation of a pair at 4 followed by a re-annihilation of
the same pair at 3 (a process which we shall call a closed
loop path). But if a real electron is present in a certain
state 1, those pairs for which the electron was created
in state 1 in the vacuum must now be excluded. We
must therefore subtract from our relative amplitude the
term corresponding to this process. But this just rein-
states the quantity which it was argued should not
have been included in (14), the necessary minus sign
coming automatically from the definition of K,. It is
obviously simpler to disregard the exclusion principle
completely in the intermediate states.

All the amplitudes are relative and their squares give
the relative probabilities of the various phenomena.
Absolute probabilities result if one multiplies each of
the probabilities by P,, the true probability that if one
has no particles present initially there will be none
finallv. This quantity P. can be calculated by normal-
izing the relative probabilities such that the sum of the
probabilities of all mutually exclusive alternatives is
unity. (For example if one starts with a vacvum one can
calculate the relative probability that there remains a
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vacuum (unity), or one pair is created, or two pairs, etc.
The sum is P,.) Put in this form the theory is com-
plete and there are no divergence problems. Real proc-
esses are completely independent of what goes on in
the vacuum.

When we come, in the succeeding paper, to deal with
interactions between charges, however, the situation is
not so simple. There is the possibility that virtual elec-
trons in the vacuum may interact electromagnetically
with the real electrons. For that reason processes occur-
ing in the vacuum are analyzed in the next section, in
which an independent method of obtaining P, is
discussed.

S. VACUUM PROBLEMS

An alternative way of obtaining absolute amplitudes
is to multiply all amplitudes by C,, the vacuum to
vacuum amplitude, that is, the absolute amplitude that
there be no particles both initially and finally. We can
assume C,=1 if no potential is present during the
interval, and otherwise we compute it as follows. It
differs from unity because, for example, a pair could be
created which eventually annihilates itself again. Such
a path would appear as a closed loop on a space-time
diagram. The sum of the amplitudes resulting from all
such single closed loops we call L. To a first approxima-
tion L is

1
D= o
o=~ [ [sirx.e, 040
X K (1, 2)A(2))dridrs.

For a pair could be created say at I, the electron and
positron could both go on to 2 and there annihilate.
The spur, Sp, is taken since one has to sum over all
possible spins for the pair. The factor % arises from the
fact that the same loop could be considered as starting
at either potential, and the minus sign results since the
interactors are each —iA. The next order term would be®

o=+/3 [ [ [sx.e vam
XK (1,3)A(3)K (3, 2)A(2) Jdr\drodTs,

(28)

etc. The sum of all such terms gives L.

¢ This term actually vanishes as can be seen as follows. In any
spur the sign of all ¥ matrices may be reversed. Reversing the
sign of ¥ in K,(2, 1) changes it to the transpose of K,(1,2) so
that the order of all factors and variables is reversed. Since the
integral is taken over all 7y, 74, and 7 this has no effect and we are
left with (— 1)® fromn changing the sign of A. Thus the spur equals
its negative. Loops with an odd number of potential interactors
give zero. Physically this is because for each loop the electron can
go around one way or in the opposite direction and we must add
these amplitudes. But reversing the motion of an electron makes
it behave like a positive charge thus changing the sign of each

otential interaction, so that the sum is zero if the number of
interactions is odd. This theorem is due to W. H. Furry, Phys.
Rev. 51, 125 (1937).

10 A closed expression for L in terms of K, is hard to obtain
because of the factor (1/n) in the nth term. However, the per-
turbation in L, AL due to a small change in potential A4, is easy
to express. The (1/#) is canceled by the fact that A4 can appear
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In addition to these single loops we have the possi-
bility that two independent pairs may be created and
each pair may annihilate itself again, That is, there may
be formed in the vacuum two closed loops, and the
contribution in amplitude from this alternative is just
the product of the contribution from each of the loops
considered singly. The total contribution from all such
pairs of loops (it is still consistent to disregard the
exclusion principle for these virtual states) is L?/2 for
in L? we count every pair of loops twice. The total
vacuum-vacuum amplitude is then

Co=1t—L+L¥/2~L/6+---=exp(—L), (30)

the successive terms representing the amplitude from
zero, one, two, etc., loops. The fact that the contribu-
tion to C, of single loops is — L is a consequence of the
Pauli principle. For example, consider a situation in
which two pairs of particles are created. Then these
pairs later destroy themselves so that we have two
loops. The electrons could, at a given time, be inter-
changed forming a kind of figure eight which is a single
loop. The fact that the interchange must change the
sign of the contribution requires that the terms in C,
appear with alternate signs. (The exclusion principle is
also responsible in a similar way for the fact that the
amplitude for a pair creation is — K rather than +K,.)
Symmetrical statistics would lead to

Co=14+L+L?/2=exp(+L).

The quantity L has an infinite imaginary part (from
L® higher orders are finite). We will discuss this in
connection with vacuum polarization in the succeeding
paper. This has no effect on the normalization constant
for the probability that a vacuum remain vacuum is
given by

P,=|C,|*=exp(—2-real part of L),

from (30). This value agrees with the one calculated
directly by renormalizing probabilities. The real part
of L appears to be positive as a consequence of the Dirac
equation and properties of K, so that P, is less than
one. Bose statistics gives Cy=exp(+L) and conse-
quently a value of P, greater than unity which appears
meaningless if the quantities are interpreted as we have
done here. Our choice of K} apparently requires the
exclusion principle.

Charges obeying the Klein-Gordon equation can be
equally well treated by the methods which are dis-
cussed here for the Dirac electrons. How this is done is
discussed in more detail in the succeeding paper. The
real part of L comes out negative for this equation so
that in this case Bose statistics appear to be required
for consistency.?

in any of the n potentials. The result after summing aver n by
(13), (14) and using (16) is

AL=—i f SPLIK (1, =K, (3, D)AA() dr.  (29)

The term K,(1, 1) actually integrates to zero,
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6. ENERGY-MOMENTUM REPRESENTATION

The practical evaluation of the matrix elements in
some problems is often simplified by working with
momentum and energy variables rather than space and
time. This is because the function K (2, 1) is fairly
complicated but we shall find that its Fourier transform
is very simple, namely (i/4#x%)(p—m)™! that is

K.(2, 1)=(i/4m?) f (p—m)— exp(—ip-xa)dp, (31)

where p %= p-Xos— P 21= PuXoy— Pu¥1u, D= puYu, and
d‘p means (2w)~%dpidp.dpadps, the integral over all p.
That this is true can be seen immediately from (12),
for the representation of the operator iV—m in energy
(#4) and momentum (p,,, ;) space is p—m and the trans-
form of 8(2,1) is a constant. The reciprocal matrix
(p—m)~' can be interpreted as (p+m)(p*—m*)~! for
P—~mt=(p—m)(p+m) is a pure number not involving
v matrices. Hence if one wishes one can write

K2, )=i(iVot+m)I,(2, 1),
where

1,2, )= (21r)—2f(p2—m2)—’ exp(—ip-xa)d'p, (32)

is not a matrix operator but a function satisfying
C14(2, D—m1,(2, 1)=68(2, 1), (33)

where —[ 1= (V3)2=(8/0x2,)(8/0x2,).

The integrals (31) and (32) are not yet completely
defined for there are poles in the integrand when
P—m*=0. We can define how these poles are to be
evaluated by the rule that m is considered (o have an
infinitesimal negative imaginary parf. That is m, is re-
placed by m—3i8 and the limit taken as 5—0 from above.
This can be seen by imagining that we calculate K, by
integrating on p, first. If we call E=+(m*+p?
+ 2>+ pi)? then the integrals involve p, essentially as
S exp(—ipi(ta—14;))dpi(psd— E)~ which has poles at
p«=-+E and p,= — E. The replacement of m by m—is
means that E has a small negative imaginary part; the
first pole is below, the second above the real axis. Now
if 13—4,>0 the contour can be completed around the
semicircle below the real axis thus giving a residue from
the py=+E pole, or —(Q2E)'exp(—iE(ly~#)). If
13— <0 the upper semicircie must be used, and
?4+=—E at the pole, so that the function varies in each
case as required by the other definition (17).

Other solutions of (12) result from other prescrip-
tions. For example if p¢ in the factor (p?—m?)~! is con-
sidered to have a positive imaginary part K, becomes
replaced by K., the Dirac one-electron kernel, zero for
12<t;. Explicitly the function is" (X, t=1x3,)

Lo(x, 8) = — (4m)726(s?)+ (m/8ws) H, (ms), (34)
where s=-+ (2—x3)} for £>x? and s= —i(x?—2)} for

WIx, 8) is (2)7(Du(x, t)—iD(x, 1)) where D, and D are the
functions defined by W. Pauli, Rev. Mod. Phys. 13, 203 (1941).
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£<x, H\® is the Hankel function and 8(s?) is the
Dirac delta function of s%. It behaves asymptotically
as exp(—ims), decaying exponentially in space-like
directions.!?

By means of such transforms the matrix elements
like (22), (23) are easily worked out. A free particle
wave function for an electron of momentum p, is
1y exp(—ipy-x) where u, is a constant spinor satisfying
the Dirac equation pu,=mu; so that p’=m? The
matrix element (22) for going from a state p;, %, to a
state of momentum p,, spinor u,, is —4r%(d.a(g)u,)
where we have imagined A expanded in a Fourier
integral

A= f a(q) exp(—igx)d'g,

and we select the component of momentum g= p,—~ p;.
The second order term (23) is the matrix element
between %, and #, of

—4n3 f (@(pe— pi— @) (rF-q—m)-a(g)d'q, (35)

since the electron of momentum p, may pick up g from
the potential a(g), propagate with momentum p,+¢
(factor (p14g—m)~1) until it is scattered again by the
potential, a(ps— p1—¢), picking up the remaining mo-
mentum, p,— p1—¢, fo bring the total to p,. Since all
values of g are possible, one integrates over g.

These same matrices apply directly to positron prob-
lems, for if the time component of, say, p, is negative
the state represents a positron of four-momentum — p;,
and we are describing pair production if p; is an elec-
tron, i.e., has positive time component, etc.

The probability of an event whose matrix element is
(#:Mw,) is proportional to the absolute square. This
may also be written (#,Muy)(@:Mu,), where M is M
with the operators written in opposite order and explicit
appearance of 7 changed to —i(M is § times the complex
conjugate transpose of 8M). For many problems we are
not concerned about the spin of the final state. Then we
can sum the probability over the two 1. corresponding
to the two spin directions. This is not a complete set be-
cause P, has another eigenvalue, —m. To permit sum-
ming over all states we can insert the projection operator
(2m)~Y(ps+m) and so obtain (2m) (@M (pod-m)Mu,)
for the probability of transition from pi, ui, to p, with
arbitrary spin. If the incident state is unpolarized we
can sum on its spins too, and obtain

@2m)=2SpL(p1+m) M (po+m)M ] (36)

for (twice) the probability that an electron of arbitrary
spin with momentum p; will make transition to p,. The
expressions are all valid for positrons when p’s with

12 If the —16 is kept with m here too the function 7 approaches
zero for infinite positive and negative times. This may be usefu!
in general analyses in avoiding complications from infinitely
remote surfaces.
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negative energies are inserted, and the situation inter-
preted in accordance with the timing relations discussed
above. (We have used functions normalized to (du)=1
instead of the conventional (@fu)=(#*x)=1. On our
scale (#Bu)=energy/m so the probabilities must be
corrected by the appropriate factors.)

The author has many people to thank for fruitful
conversations about this subject, particularly H. A.
Bethe and F. J. Dyson.

APPENDIX
a. Deduction from Second Quantization

In this section we shall show the equivalence of this theory with
the hole theory of the positron.? According to the theory of second
quantization of the electron field in a given potential,'® the state
of this field at any time is represented by a wave function x
satisfying

1dx/dt=Hx,
where H=_f¥*(x)(a (—~i¥~A)+ A+ mB)¥(x)d*x and ¥(x) is
an operator annihilating an electron at position x, while ¥*(x) is
the corresponding creation operator. We contemplate a situation
in which at =0 we have present some electrons in states repre-
sented by ordinary spinor functions fi(x), fa(x), --- assumed
orthogonal, and some positrons. These are described as holes in
the negative energy sea, the electrons which would normally fill the

holes having wave functions pi(x), pa(x), - --. We ask, at time T
what is the amplitude that we find electrons in states gi(x),
g2(x), - -+ and holes at ¢,(x), g2(x), - - -. If the initial and final state

vectors representing this situation are x; and x; respectively, we
wish to calculate the matrix element

R=(x1‘ exn(— J;THdl)x-)= (xs*Sxi).

We assume that the potential 4 differs from zerc only for times
between O and T so that a vacuum can be defined at these times.
If xo represents the vacuum state (that is, all negative energy
states filled, all positive energies empty), the amplitude for having
a vacuum at time 7', if we had one at (=0, is

Co=(x0"Sx0), (38)

writing § for exp(—i oTHdf). Our problem is to evaluate R and

show that it is a simple factor times C,, and that the factor involves

the K,V functions in the way discussed in the previous sections.
To do this we first express x; in terms of xo. The operator

o= [ U @exdn,

creates an electron with wave function ¢{x). Likewise &= f¢*(x)
X W(x)d3x annihilates one with wave function ¢(x). Hence state
xi 18 xi=F(*Fy* - - P1P»- - - xo while the final state is G,*G,*- - -
X QiQ2- - - xo where Fi, Gy, P;, Qi are operators defined like @, in
(39), but with f,, g, pi, ¢. replacing ¢; for the initial state would
result from the vacuum if we created the electrons in fi, f3, - - -
and annihilated those in p), po, ---. Hence we must find
R={(xo* - Q2*Q* - -GG\ SF*Fy*- - - P\Py--xo).  (40)
To simplify this we shall have to use commutation relations be-
tween a $* operator and S. To this end consider exp(—: /o' Hdt' )d*
Xexp(+i/o'Hdl') and expand this quantity in terms of ¥*(x),
giving S ¥*(x)(x, t)d*x, (which defines ¢(x, #)). Now multiply
this equation by exp(+iJo*HdY')- - -exp(—ifo!Hdt') and find

S weman= v, nex, ax, (n
where we have defined ¥(x,?) by W(x,!)=exp(+i/o'Hdl')¥(x)

(37)

(39)

B See, for example, G. Wentzel, Einfuhrung in die Quanten-
lheag'c der Wellenfelder (Franz Deuticke, Leipzig, 1943), Chap-
ter V.
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Xexp(—ifotHdt'). As is well known W(x, f) satisfies the Dirac
equation, (differentiate ¥(x, ¢) with respect to ¢ and use commuta-
tion relations of H and ¥)

AW (x, 1)/8t=(a (—iY—A)+ A+mB)¥(x, t). 42)

Consequently ¢(x, £) must also satisfy the Dirac equation (differ-
entiate (41) with respect to ¢, use (42) and integrate by parts).

That is, if ¢(x, 7) is that solution of the Dirac equation at time
T which is ¢(x) at =0, and if we define &* = S W*(x)¢(x)d*x and
¢*= [T (x)$p(x, T)d*x then &'*=5*S!, or

So* =S, (43)

The principle on which the proof will be based can now be
illustrated by a simple example. Suppose we have just one electron
initially and finally and ask for

r=(x*GSF*xo). (44)
We might try putting 7* through the operator S using (43),

SF*=F’*S, where f' in F'*= f¥*(x)f’(x)d* is the wave function
at T arising from f(x) at 0. Then

f=(xn’GF"Sxo)=fg'(X)f'(X)d’X‘Cw-(xa‘F”GSxo), (45)

where the second expression has been obtained by use of the defi-
nition (38) of C, and the general commutation relation

GF*+F*G= [ (0%,

which is a consequence of the properties of ¥(x) (the others are
FG= —GF and F*G*= —G*F*). Now xo*F'* in the last term in
(45) is the complex conjugate of F'xo. Thus if f* contained only
positive energy components, F'xo would vanish and we would have
reduced r to a factor times C,. But F’, as worked out here, does
contain negative energy components created in the potential A
and the method must be slightly modified.

Before putting F* through the operator we shall add to it
another operator F''* arising from a function f”’(x) containing only
negative energy components and so chosen that the resulting f’
has only positive ones. That is we want

S(Fpors*+Fueg'*) = Foor'*S, (46)

where the “pos” and “neg’’ serve as reminders of the sign of the
energy components contained in the operators. This we can now
use in the form

SFpon® = Fpos*S—SFneg ™. (47)

In our one electron problem this substitution replaces r by two
terms
r=(x0*GF pos*Sx0) = (X0*GSFnag'* x0).

The first of these reduces to

"_‘fg*(x)fnon'(x)d’X'C.-,

as above, for Fpes' xo is now zero, while the second is zero since the
creation operator Fae,’* gives zero when acting on the vacuum
state as all negative energies are full. This is the central idea of
the demonstration.

The problem presented by (46) is this: Given a function fpoe(x)
at time 0. to find the amount, faeg”’, of negative energy component
which must be added in order that the solution of Dirac’s equa-
tion at time T will have only positive energy components, fpos’.
This is a boundary value problem for which the kernel K,(4) is
designed. We know the positive energy components initially, fpos,
and the negative ones finally (zero). The positive ones finally are
therefore (using (19))

fror' )= [ K0, DBfpentx)d®ms, 48)
where £,=T, {;=0. Similarly, the negative ones initially are
Joos " x)= [KLOQ, DBfourx)dx1— fooalxs), (49

where ¢, approaches zero from above, and #h= 0. The fpoa(x2) is
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subtracted to keep in faes''(x2) only those waves which return
from the potential and not those arriving directly at ¢ from the
K.(2,1) part of K.4}(2, 1), as {»—0. We could also have written

foed" (0= [ TRLOQ, D~ Ko(2, ) polxi)dxs. (50)

Therefore the one-electron problem, r= fg*(x)fpo,' (x)d%-C.,
gives by (48)

r= C»fg"(x;)Kﬁ“(Z, 1)Bf(x))d*x1d%xs,

as expected in accordance with the reasoning of the previous sec-
tions (i.e., (20) with K, replacing A',).

The proof is readily extended to the more general expression R,
(40), which can be analyzed by induction. First one replaces #,*
by a relation such as (47) obtaining two Lerms
R=(xo* - Q2*Q* - - \GuGiF 150/ *SF* - - - P P2+ -+ x0)

~(xo* - Qa*Qh* - GuGi1SF e F2* - - - PiPy + - x0).
In the first term the order of F1,..,"* and G, is then interchanged,
producing an additional term J g *(X) fipos'(X)d3x times an expres-
sion with one less electron in initial and final state. Next it is
exchanged with G; producing an addition — Jfg:*(x) fipes' (x)d*
times a similar term, etc. Finally on reaching the Q,* with which
it anticommutes it can be simply moved over to juxtaposition
with xo* where it gives zero. The second term is similarly handled
by moving Fiaeg’™ through anti commuting #.*, etc., until it
reaches P;. Then it is exchanged with P to produce an addi-
tional simpler term with a factor F/p*(x)f1nes” (X)d?x or
F S0 (x2) K (2, 1)811{x1)d*x,d*x; from (49), with £,=1,=0 (the
extra fi(x2) in (49) gives zero as it is orthogonal to py(x2)}). This
describes in the expected manner the annihilation of the pair,
electron fi, positron py. The Fo.''* is moved in this way succes-
sively through the P’s until it gives zero when acting on xo. Thus
R is reduced, with the expected factors (and with alternating signs
as required by the exclusion principle), to simpler terms containing
two less operators which may in turn be further reduced by using
Fi* in a similar manner, etc. After all the F* are used the Q*'s
can be reduced in a similar manner. They are moved through the
S in the opposite direction in such a manner as to produce a purely
negative energy operator at time 0, using relations analogous to
(46) to (49). After all this is done we are left simply with the ex-
pected factor times C, (assuming the net charge is the same in
initial and final state.)

In this way we have written the solution to the general problem
of the motion of electrons in given potentials. The factor C, is
obtained by normalization. However for photon fields it is desir-
able to have an explicit form for C. in terms of the potentials.
This is given by (30) and (29) and it is readily demonstrated that
this also is correct according to second quantization.

b. Analysis of the Vacuum Problem

We shall calculate C. from second quantization by induction
considering a series of problems each containing a potential dis-
tribution more nearly like the one we wish. Suppose we know
for a problem like the one we want and having the same potentials
for time ¢ between some # and T, but having potential zero for
times from O to #. Call this C. (), the corresponding Hamiltonian
Ht, and the sum of contributions for all single loops, L(fs). Then
for to=T we have zero potential at all times, no pairs can be
produced, L(T)=0 and C.(T')=1. For {=0 we have the com-
plete problem, so that C,(0) is what is defined as Cyv in (38).
Generally we have,

Colte) = ( @ exp(__'. jo’ [Iladl)xo)
(el e

since Ho is identical to the constant vacuum Hamiltonian Hp for
#<{y and xo is an eigenfunction of Hr with an eigenvalue (energy
of vacuum) which we can take as zero.
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The value of C.(fo— Ato) arises from the Hamiltonian Huo— ato
which differs from Ht just by having an extra potential during
the short interval Af. Hence, to first order in Alo, we have

Cullo—Alg)= ( xo* exp( —i j: v o He —Azgdl) xo)
0~ alg

=(x0* cxp(—i‘ /:: 11/041)[1 —iat f¥*(x)
X (—a-Ax, to)+ Ay(x, lo))‘l’(XJd’X] Xu);

we therefore obtain for the derivative of C, the expression
»
—dC. =—i{x* —i
C.(lo)/dte z(x., exp( I\/:U Ilzodl)

XJ“#"(X)BA(X,lo)\l'(X)d“xxu)' (51)

which will be reduced to a simple factor times C.(fs) by methods
analogous to those used in reducing R. The operator ¥ can be
imagined to be split into two pieces ¥poe and Yy, operating on
positive and negative energy states respectively. The ¥p05 0N X0
gives zero so we are left with two terms in the current density,
Voo BAY neg 200 Woeg*BAV e, The latter ¥oe* 84 e is just
the expectation value of B4 taken over all negative energy states
(minus WoegBAWneg* which gives zero acting on xo). This is the
effect of the vacuum expectation current of the electrons in the
sea which we should have subtracted from our original Hamil-
tonian in the customary way.

The remaining term Wyos*BAWaeq, Or its equivalent ¥ pq,*8AV
can be considered as ¥*(x}os(x) where fpoa(x) is written for the
positive energy component of the operator BAW¥(x). Now this
operator, ¥*(X)fpos(x), or more precisely just the ¥*(x} part of it,
can he pushed through the exp(—i/i;"Hd!) in a manner exactly
analogous to (47) when fis a function. (An alternative derivation
results from the consideration that the operator Ww(x,!) which
satisfies the Dirac equation also satisfics the linear integral equa-
tions which are equivalent to it.) That is, (51) can be written
by (48), (50),

—dC\(to)/dte= -—i(xo‘ffw(x,)xw(z, 1)

xexpl(~ [T Hat) A ¥ (x0dxdx1x0)

+£(xu’ exp(—i j,: Hdl) [ [ xolkae,
~ K42, DIAD¥ () xixe),

where in the first term =T, and in the second t;—f=1¢;. The
(A) in K refers to that part of the potential 4 after £. The
first term vanishes for it involves (from the K,.‘4}(2, 1)) only
positive energy components of ¥*, which give zero operating into
xo*. In the second term only negative components of W*(xu)
appear. If, then ¥*(x,) is interchanged in order with ¥(x,) it will
give zero operating on xo, and only the term,

~dCo(to)/dlo=+i | SpL(K, (1, 1)

=K. (1, 1) A1) %, Cullo),  (52)

will remain, from the usual commutation relation of ¥* and ¥.

The factor of Cu(fs) in (52) times — Al is, according to (29)
(reference 10}, just L(fo— &to) — L() since this difference arises
from the extra potential AA=4 during the short time interval
Al Hence —dCu(to)/dto= + (dL({o)/dt) Cu(to) so that integration
from to=T" to ;=0 establishes (30).

Starting from the theory of the electromagnetic field in second
quantization, a deduction of the equations for quantum electro-
dynamics which appear in the succeeding paper may be worked
out using very similar principles. The Pauli-Weisskopf theory of
the Klein-Gordon equation can apparently be analyzed in essen-
tially the same way as that used here for Dirac electrons,
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In this paper two things are done. (1) It is shown that a con-
siderable simplification can be attained in writing down matrix
elements for complex processes in electrodynamics. Further, a
physical point of view is available which permits them to he
written down directly for any specific problem. Being simply a
restatement of conventional electrodynamics, however, the matrix
clements diverge for complex processes. (2) Electrodynamics is
modified by altering the interaction of electrons at short distances,
All matrix elements are now finite, with the exception of those
relating to problems of vacuum polarization. The latter are
evaluated in a manner suggested by Pauli and Bethe, which gives
finite results for these matrices also. The only effects sensitive to
the modification are changes in mass and charge of the electrons.
Such changes could not be directly observed. Phenomena directiy
observable, are insensitive to the details of the modification used
(except at extreme energies). For such phenomena, a limit can
be taken as the range of the modification goes to zero. The results
then agree with those of Schwinger. A complete, unambiguous,

and presumably consistent, method is therefore available for the
calculation of all processes involving electrons and photons.

The simplification in writing the expressions results from an
emphasis on the over-all space-time view resulting from a study
of the solution of the equations of electrodynamics. The relation
of this to the more conventional Hamiltonian point of view is
discussed. It would be very difficult to make the modification
which is proposed if one insisted on having the equations in
Hamiltonian form,

The methods apply as well to charges obeying the Klein-Gordon
equation, and to the various meson theories of nuclear forces.
Tiustrative examples are given. Although a modification like that
used in electrodynamics can make all matrices finite for all of the
meson theories, for some of the theories it is no longer true that
all directly observable phenomena are insensitive to the details of
the modification used.

The actual evaluation of integrals appearing in the mafrix
elements may be facilitated, in the simpler cases, by methods
described in the appendix.

THIS paper should be considered as a direct con-
tinuation of a preceding one! (I) in which the
motion of electrons, neglecting interaction, was ana-
lyzed, by dealing directly with the solution of the
Hamiltonian differential equations. Here the same tech-
nique is applied to include interactions and in that way
to express in simple terms the solution of problems in
quantum electrodynamics.

For most practical calculations in quantum electro-
dynamics the solution is ordinarily expressed in terms
of a matrix element. The matrix is worked out as an
expansion in powers of €?/Ac, the successive terms cor-
responding to the inclusion of an increasing number of
virtual quanta. It appears that a considerable simplifi-
cation can be achieved in writing down these matrix
elements for complex processes. Furthermore, each term
in the expansion can be written down and understood
directly from a physical point of view, similar to the
space-time view in I. It is the purpose of this paper to
describe how this may be done. We shall also discuss
methods of handling the divergent integrals which
appear in these matrix elements.

The simplification in the formulae results mainly from
the fact that previous methods unnecessarily separated
into individual terms processes that were closely related
physically. For example, in the exchange of a quantum
between two electrons there were two terms depending
on which electron emitted and which absorbed the
quantum. Yet, in the virtual states considered, timing
relations are not significant. Olny the order of operators
in the matrix must be maintained. We have seen (I},
that in addition, processes in which virtual pairs are
produced can be combined with others in which only

I R. P. Feynman, Phys. Rev. 76, 749 (1949), hereafter called I.

positive energy electrons are involved. Further, the
effects of longitudinal and transverse waves can be
combined together. The separations previously made
were on an unrelativistic basis (reflected in the circum-
stance that apparently momentum but not energy is
conserved in intermediate states). When the terms are
combined and simplified, the relativistic invariance of
the result is self-evident.

We begin by discussing the solution in space and time
of the Schrédinger equation for particles interacting
instantaneously, The results are immediately general-
izable to delayed interactions of relativistic electrons
and we represent in that way the laws of quantum
electrodynamics. We can then see how the matrix ele-
ment for any process can be written down directly. In
particular, the self-energy expression is written down.

So far, nothing has been done other than a restate-
ment of conventional electrodynamics in other terms.
Therefore, the self-energy diverges. A moedification? in
interaction between charges is next made, and it is
shown that the self-energy is made convergent and
corresponds to a correction to the electron mass. After
the mass correction is made, other real processes are
finite and insensitive to the “width” of the cut-off in
the interaction.?

Unfortunately, the modification proposed is not com-
pletely satisfactory theoretically (it leads to some diffi-
culties of conservation of energy). It does, however,
seem consistent and satisfactory to define the matrix

2 For a discussion of this modification in classical physics see
R. P. Feynman, Phys. Rev. 74 939 (1948), hereafter referred
to as A. :

* A brief summary of the methods and results will be found in
R. P. Feynman, Phys. Rev. 74, 1430 (1948), hereafter referred
to as B.
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element for all real processes as the limit of that com-
puted here as the cut-off width goes to zero. A similar
technique suggested by Pauli and by Bethe can be
applied to problems of vacuum polarization (resulting
in a renormalization of charge) but again a strict
physical basis for the rules of convergence is not known.

After mass and charge renormalization, the limit of
zero cut-off width can be taken for all real processes.
The results are then equivalent to those of Schwinger*
who does not make explicit use of the convergence fac-
tors. The method of Schwinger is to identify the terms
corresponding to corrections in mass and charge and,
previous to their evaluation, to remove them from the
expressions for real processes. This has the advantage
of showing that the results can be strictly independent
of particular cut-off methods. On the other hand, many
of the properties of the integrals are analyzed using
formal properties of invariant propagation functions.
But one of the properties is that the integrals are infinite
and it is not clear to what extent this invalidates the
demonstrations. A practical advantage of the present
method is that ambiguities can be more easily resolved;
simply by direct calculation of the otherwise divergent
integrals. Nevertheless, it is not at all clear that the
convergence factors do not upset the physical con-
sistency of the theory. Although in the limit the two
methods agree, neither method appears to be thoroughly
satisfactory theoretically. Nevertheless, it does appear
that we now have available a complete and definite
method for the calculation of physical processes to any
order in quantum electrodynamics.

Since we can write down the solution to any physical
problem, we have a complete theory which could stand
by itself. It will be theoretically incomplete, however,
in two respects. First, although each term of increasing
order in e*/hic can be written down it would be desirable
to see some way of expressing things in finite form to
all orders in ¢*/%c at once. Second, although it will be
physically evident that the results obtained are equiva-
lent to those obtained by conventional electrodynamics
the mathematical proof of this is not included. Both of
these limitations will be removed in a subsequent paper
(see also Dyson?).

Briefly the genesis of this theory was this. The con-
ventional electrodynamics was expressed in the La-
grangian form of quantum mechanics described in the
Reviews of Modern Physics.® The motion of the field
oscillators could be integrated out (as described in Sec-
tion 13 of that paper), the result being an expression of
the delayed interaction of the particles. Next the modi-
fication of the delta-function interaction could be made
directly from the analogy to the classical case.® This

*]. Schwinger, Phys. Rev. 74, 1439 (1948), Phys. Rev. 7§, 651
(1949). A proof of this equivalence is given by F. J. Dyson, Phys.
Rev. 75, 486 (1949).

8 R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948). The applica-
tion to electrodynamics is described in detail by H. J. Groenewold,
Koninklijke Nederlandsche Akademia van Weteschappen. Pro-
ceedings Vol. LII, 3 (226) 1949.
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was still not complete because the Lagrangian method
had been worked out in detail only for particles obeying
the non-relativistic Schrédinger equation. It was then
modified in accordance with the requirements of the
Dirac equation and the phenomenon of pair creation.
This was made easier by the reinterpretation of the
theory of holes (I). Finally for practical calculations the
expressions were developed in a power serics in ¢2/he. It
was apparent that each term in the series had a simple
physical interpretation. Since the result was easier to
understand than the derivation, it was thought best to
publish the results first in this paper. Considerable time
has been spent to make these first two papers as com-
plete and as physically plausible as possible without
relying on the Lagrangian method, because it is not
generally familiar. It is realized that such a description
cannot carry the conviction of truth which would ac-
company the derivation. On the other hand, in the
interest of keeping simple things simple the derivation
will appear in a separate paper.

The possible application of these methods to the
various meson theories is discussed briefly. The formu-
las corresponding to a charge particle of zero spin
moving in accordance with the Klein Gordon equation
are also given. In an Appendix a method is given for
calculating the integrals appearing in the matrix ele-
ments for the simpler processes.

The point of view which is taken here of the inter-
action of charges differs from the more usual point of
view of field theory. Furthermore, the familiar Hamil-
tonian form of quantum mechanics must be compared
to the over-all space-time view used here. The first
section is, therefore, devoted to a discussion of the
relations of these viewpoints.

1. COMPARISON WITH THE HAMILTONIAN
METHOD

Electrodynamics can be looked upon in two equiva-
lent and complementary ways. One is as the description
of the behavior of a field (Maxwell’s equations). The
other is as a description of a direct interaction at a
distance (albeit delayed in time) between charges (the
solutions of Lienard and Wiechert). From the latter
point of view light is considered as an interaction of the
charges in the source with those in the absorber. This is
an impractical point of view because many kinds of
sources produce the same kind of effects. The field point
of view separates these aspects into two simpler prob-
lems, production of light, and absorption of light. On
the other hand, the field point of view is less practical
when dealing with close collisions of particles (or their
action on themselves). For here the source and absorber
are not readily distinguishable, there is an intimate
exchange of quanta. The fields are so closely determined
by the motions of the particles that it is just as well not
to separate the question into two problems but to con-
sider the process as a direct interaction. Roughly, the
field point of view is most practical for problems involv-
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ing real quanta, while the interaction view is best for
the discussion of the virtual quanta involved. We shall
emphasize the interaction viewpoint in this paper, first
because it is less familiar and therefore requires more
discussion, and second because the important aspect in
the problems with which we shall deal is the effect of
virtual quanta.

The Hamiltonian method is not well adapted to
represent the direct action at a distance between charges
because that action is delayed. The Hamiltonian method
represents the future as developing out of the present.
If the values of a complete set of quantities are known
now, their values can be computed at the next instant
in time. If particles interact through a delayed inter-
action, however, one cannot predict the future by
simply knowing the present motion of the particles.
One would also have to know what the motions of the
particles were in the past in view of the interaction this
may have on the future motions. This is done in the
Hamiltonian electrodynamics, of course, by requiring
that one specify besides the present motion of the
particles, the values of a host of new variables (the
coordinates of the field oscillators) to keep track of that
aspect of the past motions of the particles which de-
termines their future behavior. The use of the Hamil-
tonian forces one to choose the field viewpoint rather
than the interaction viewpoint.

In many problems, for example, the close collisions
of particles, we are not interested in the precise tem-
poral sequence of events. It is not of interest to be able
to say how the situation would look at each instant of
time during a collision and how it progresses from in-
stant to instant. Such ideas are only useful for events
taking a long time and for which we can readily obtain
information during the intervening period. For collisions
it is much easier to treat the process as a whole.® The
Mgiller interaction matrix for the the collision of two elec-
trons is not essentially more complicated than the non-
relativistic Rutherford formula, yet the mathematical
machinery used to obtain the former from quantum
electrodynamics is vastly more complicated than
Schrédinger’s equation with the ¢%/r12 interaction
needed to obtain the latter. The difference is only that
in the latter the action is instantaneous so that the
Hamiltonian method requires no extra variables, while
in the former relativistic case it is delayed and the
Hamiltonian method is very cumbersome.

We shall be discussing the solutions of equations
rather than the time differential equations from which
they come. We shall discover that the solutions, because
of the over-all space-time view that they permit, are as
easy to understand when interactions are delayed as
when they are instantaneous.

As a further point, relativistic invariance will be self-
evident. The Hamiltonian form of the equations de-
velops the future from the instantaneous present. But

b ¢ This is the viewpoint of the theory of the S matrix of Heisen-
erg.
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for different observers in relative motion the instan-
taneous present is different, and corresponds to a
different 3-dimensional cut of space-time. Thus the
temporal analyses of different observers is different and
their Hamiltonian equations are developing the process
in different ways. These differences are irrelevant, how-
ever, for the solution is the same in any space time
frame. By forsaking the Hamiltonian method, the
wedding of relativity and quantum mechanics can be
accomplished most naturally.

We illustrate these points in the next section by
studying the solution of Schrédinger’s equation for non-
relativistic particles interacting by an instantaneous
Coulomb potential (Eq. 2). When the solution is maodi-
fied to include the effects of delay in the interaction
and the relativistic properties of the electrons we obtain
an expression of the laws of quantum electrodynamics

(Eq. 4).
2. THE INTERACTION BETWEEN CHARGES

We study by the same methods as in I, the interaction
of two particles using the same notation as I. We start
by considering the non-relativistic case described by the
Schrédinger equation (I, Eq. 1). The wave function at
a given time is a function ¥(Xq, X, f) of the coordinates
Xq and x, of each particle. Thus call K(x,, Xs, [; Xa', X', ')
the amplitude that particle a at xo’ at time ¢ will get
to X, at { while particle b at x,’ at ¢’ gets to x, at £, If the
particles are free and do not interact this is

K (Xa, X, 1 X', X6, ') = Koa(Xa, ; Xa', ') Kou(Xs, £; X', 1)

where Ko, is the Ko function for particle a considered
as free. In this case we can obviously define a quantity
like K, but for which the time ¢ need not be the same
for particles @ and b (likewise for ¢'); e.g.,

Ko(3,4;1,2)=Ko.(3, 1) Kos(4, 2) (1)

can be thought of as the amplitude that particle a goes
from x, at /; to X3 at #; and that particle b goes from x;
at {2 to Xy at /4.

When the particles do interact, one can only define
the quantity K(3,4; 1, 2) precisely if the interaction
vanishes between {; and {; and also between {; and /4.
In a real physical system such is not the case. There is
such an enormous advantage, however, to the concept
that we shall continue to use it, imagining that we can
neglect the effect of interactions between {; and ¢, and
between {3 and ¢,. For practical problems this means
choosing such long time intervals —/, and {—1; that
the extra interactions near the end points have small
relative effects. As an example, in a scattering problem
it may well be that the particles are so well separated
initially and finally that the interaction at these times
is negligible. Again energy values can be defined by the
average rate of change of phase over such long time
intervals that errors initially and finally can be neg-
lected. Inasmuch as any physical problem can be defined
in terms of scattering processes we do not lose much in
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Fic. 1. The fundamental intcraction Eq. (4). Exchange of one
gquantum between two electrons,

a general theoretical sense by this approximation. If it
is not made it is not easy to study interacting particles
relativistically, for there is nothing significant in choos-
ing fy=1; if XX, as absolute simultaneity of events
at a distance cannot be defined invariantly. Tt is essen-
tially to avoid this approximation that the complicated
structure of the older quantum electrodynamics has
been built up. We wish to describe electrodynamics as
a delayed interaction between particles. If we can make
the approximation of assuming a meaning to K(3,4; 1, 2)
the results of this interaction can be expressed very
simply.

To see how this may be done, imagine first that the
interaction is simply that given by a Coulomb potential
¢*/r where 7 is the distance between the particles. If this
be turned on only for a very short time Afy at time fq,
the first order correction to K(3, 4; 1, 2) can be worked
out exactly as was Eq. (9) of I by an obvious general-
ization to two particles:

KW, 4;1 ,2)=—1’ﬁj fl\'ga(B, SN, Grec!
X K 0a(5, 1) K on(6, 2)dx5d X6 Mo,

where f5={g={,. If now the potential were on at all
times (so that strictly K is not defined unless {,=1/; and
t1=12), the first-order effect is obtained by integrating
on f;, which we can write as an integral over both /;
and /s if we include a delta-function 6(/s—{;) to insure
contribution only when f5=1{s. Hence, the first-order
effect of interaction is (calling f5—fs=15):

K03, 4,1, 2)= —i¢ f f Koa(3, 5)Kan(4, 6)rss™

X 6(ts6) Ko (5, 1) Kou(6, 2)drsdrs, (2)

where d7=d*xd!.

We know, however, in classical electrodynamics, that
the Coulomb potential does not act instantaneously,
but is delayed by a time rs, taking the speed of light
as unity. This suggests simply replacing rs67'6(f56) in
(2) by something like r;67'6(lse—756) to represent the
delay in the effect of 6 on a.
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This turns out to be not quite right,” for when this
interaction is represented by photons they must be of
only positive energy, while the Fourier transform of
6(l56—756) contains frequencies of hoth signs. 1t should
instead be replaced by &8, (fs6—~756) where

s (mwi)!
6.(x) =f e fr=lm e = 3(0) F (i) (3)

=0 v — e

This is to be averaged with 7,678, (—/56—74) which
arises when /;<fs and corresponds to a emitting the
quantum which & receives. Since

(2 B (=) F 6. (—t=r)) =8, (F—1%),

this means 7y7'8(46) s replaced by 8.(ss°) where
s = s’ —756” is the square of the relativistically in-
variant interval betwecen points 3 and 6. Since in
classical electrodynamics there is also an interaction
through the vector potential, the complete interaction
(see A, Eq. (1)) should be (1 —(vs-v)}d,(5;6%), or in the
relativistic case,

(1= g+ 01)8,.(8567) = BuBuY apvuuds (8567

Hence we have for electrons obeying the Dirac equation,
KOG, 41,2 = =it [ [ Koal 9K, 007071

X 84 (557 ) K 1 a(S, 1IK (6, Ddrsdrs, (4

where va, and v, are the Dirac matrices applying to
the spinor corresponding to particles ¢ and b, respec-
tively (the factor 8,8, being ahsorbed in the definition,
1 Eq. (17), of K,).

This is our fundamental equation for electrodynamics.
It describes the effect of exchange of one quantum
(therefore first order in ¢?) belween two electrons. It
will serve as a prototype enabling us to write down the
corresponding quantities involving the exchange of two
or more quanta between two electrons or the interaction
of an electron with itself. It is a consequence of con-
ventional electrodynamics. Relativistic invariance is
clear. Since one sums over u it contains the cffects of
both longitudinal and transverse waves in a relati-
vistically symmetrical way,

We shall now interpret Eq. (4) in a manner which
will permit us to write down the higher order terms. It
can be understood (see Iig. 1) as saying that the ampli-
tude for “a” to go from 1 to 3 and 4" to go from 2 to 4
is altered to first order because they can exchange a

quantum. Thus, “a” can go to 5 (amplitude K(5, 1))

7Tt, and a like term Jar the effect of a on b, leads to a theory
which, in the classical limit, exhibits interaction through half-
advanced and half-retarded potentials. Classically, this is equi-
valent to purely retarded cffects within a closed hox from which
no light escapes (e.g., see A, or J. A. Wheeler and R. P, Feynman,
Rev. Mod. Phys. 17, 157 (1945)). Analogous theorems exist in
quantum mechanics but it would lead us too far astray to discuss
them now.
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emit a quantum (longitudinal, transverse, or scalar
va.) and then proceed to 3 (K,(3,5)). Meantime “4”
goes to 6 (K(6,2)), absorbs the quantum (v,,) and
proceeds to 4 (K. (4, 6)). The quantum meanwhile pro-
ceeds from 5 to 6, which it does with amplitude &, (ss6%).
We must sum over all the possible quantum polariza-
tions p and positions and times of emission 5, and of
absorption 6. Actually if #,>/¢ it would be better to
say that “a” absorbs and “b” emits but no attention
need be paid to these matters, as all such alternatives
are automatically contained in (4).

The correct terms of higher order in € or involving
larger numbers of electrons (interacting with themselves
or in pairs) can be written down by the same kind of
reasoning. They will be illustrated by examples as we
proceed. In a succeeding paper they will all be deduced
from conventional quantum electrodynamics.

Calculation, from (1), of the transition element be-
tween positive energy free electron states gives the
Moller scattering of two electrons, when account is
taken of the Pauli principle.

The exclusion principle for interacting charges is
handled in exactly the same way as for non-interacting
charges (I). Yor example, for two charges it requires
only that one calculate K(3,4; 1,2)—K(4,3; 1,2) to
get the net amplitude for arrival of charges at 3 and 4.
1t is disregarded in intermediate states. The inter-
ference effects for scattering of electrons by positrons
discussed by Bhabha will be seen to result directly in
this formulation. The formulas are interpreted to apply
to positrons in the manner discussed in L.

As our primary concern will be for processes in which
the quanta are virtual we shall not include here the
detailed analysis of processes involving real quanta in
initial or final state, and shall content ourselves by only
stating the rules applying to them® The result of the
analysis is, as expected, that they can be included by
the same line of reasoning as is used in discussing the
virtual processes, provided the quantities are normalized
in the usual manner to represent single quanta. For
example, the amplitude that an electron in going from 1
to 2 absorbs a quantum whose vector potential, suitably
normalized, is ¢, exp(—ik-x)=C.(x) is just the expres-
sion (I, Eq. (13)) for scattering in a potential with
A (3) replaced by € (3). Each quantum interacts only

_* Although in the expressions stemming from (4) the quanta are
virtual, this is not actually a theorelical limitation. One way to
deduce the correct rules for real quanta from (4) is to note that
in a closed system all quanta can be considered as virtual (ie.,
they have a known source and are eventually absorbed) so that
in such a system the present description is complete and equiva-
lent to the conventional one. In particular, the relation of the
Einstein A and B coefficients can be deduced. A more practical
direct deduction of the expressions for real quanta will be given
in the subsequent paper. It might be noted that (4) can be re-
written as describing the action on a, K®(3, 1)=i fK,(3,5)
X A(5)K+(S, 1)d7s of the potential A,(5)=¢*"S K, (4, 6)3.(ss6?)vu
XK ,(6, 2)dry arising from Maxwell’s equations — (14 ,=4rj,
from a “current” 7,(6) = e?K (4, 6)v.K (6, 2) produced by par-
ticle b in going from 2 to 4. This is virtue of the fact that &,

satisfies
~ Db, (sa?) =4#3(2, 1). (5)
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once (either in emission or in absorption), terms like
(I, Eq. (14)) occur only when there is more than one
quantum involved. The Bose statistics of the quanta
can, in all cases, be disregarded in intermediate states.
The only cffect of the statistics is to change the weight
of initial or final states. If there are among quanta, in
the initial state, some # which are identical then the
weight of the state is (1/#!) of what it would be if these
quanta were considered as different (similarly for the
final state).

3. THE SELF-ENERGY PROBLEM

Having a term representing the mutual interaction
of a pair of charges, we must include similar terms to
represent the interaction of a charge with itself. For
under some circumstances what appears to be two dis-
tinct electrons may, according to I, be viewed also as
a single electron (namely in case one electron was
created in a pair with a positron destined to annihilate
the other electron). Thus to the interaction between
such electrons must correspond the possibility of the
action of an electron on itself.®

This interaction is the heart of the self energy prob-
Jem. Consider to first order in ¢? the action of an electron
on itself in an otherwise force free region. The amplitude
K(2,1) for a single particle to get from 1 to 2 differs
from K.(2, 1) to first order in ¢® by a term

K9, 1)=—iét f f Ko (2, D7.K. (4, 3),
XK+(3, 1)dTudT451 (5432). (6)

It arises because the electron instead of going from 1
directly to 2, may go (Fig. 2) first to 3, (K+(3, 1)), emit
a quantum (v,), proceed to 4, (K;(4, 3)), absorb it
(v,), and finally arrive at 2 (K,(2,4)). The quantum
must go from 3 to 4 (8,(sas?)).

This is related to the self-energy of a free electron in
the following manner. Suppose initially, time ¢;, we have
an electron in state f(1) which we imagine to be a posi-
tive energy solution of Dirac’s equation for a free par-
ticle. After a long time f,—{, the perturbation will alter

F1c. 2. Interaction of an elec-
tron with itself, Eq. (6).

® These considerations make it appear unlikely that the con-
tention of J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys.
17, 157 (1945), that electrons do not act on themselves, will be a
successful concept in quantum electrodynamics.
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the wave function, which can then be looked upon as
a superposition of free particle solutions (actually it
only contains f). The amplitude that g(2) is contained
is calculated as in (I, Eq. (21)). The diagonal element
(g=f) is therefore

f f FQ)BRM(2, DBJ(1d*1d%ka. )

The time interval 7={,—{; (and the spatial volume V
over which one integrates) must be taken very large,
for the expressions are only approximate (analogous to
the situation for two interacting charges).” This is
because, for example, we are dealing incorrectly with
quanta emitted just before ¢; which would normally be
reabsorbed at times after fo.

If K(2,1) from (6) is actually substituted into (7)
the surface integrals can be performed as was done in
obtaining I, Fq. (22) resulting in

_ie f f F@) 7K (4, 37,3V (su)drsdrs, (8)

Putting for f(1) the plane wave 1 exp(—1p-x1) where
$u is the energy (p«) and momentum of the electron
(p*=m?), and = is a constant 4-index symbol, (8)
becomes

—ie’ff(ﬁwK+(4, 3yt

Xexp(ip: (vi—a))d.(syDdradry,

the integrals extending over the volume V and time
interval 7. Since K,.(4, 3) depends only on the difference
of the coordinates of 4 and 3, w,, the integral on 4
gives a result (except near the surfaces of the region)
independent of 3. When integrated on 3, therefore, the
result is of order VT. The effect is proportional to V,
for the wave functions have been normalized to unit

S

MOMENTUM g-!_, MOMENTUM &k,
FACTOR (p-k-m)_ FACTOR k=2
INTERACTION ’;;‘
MOMENTUM p

F16. 3. Interaction of an electron with itself.
Momentum space, Eq. (11)
10 This is discussed in reference S in which it is pointed out that
the concept of a wave function loses accuracy if there are delayed
self-actions,
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volume. If normalized to volume V, the result would
simply be proportional to 7. This is expected, for if the
effect were equivalent to a change in energy AE, the
amplitude for arrival in f at 4 is altered by a factor
exp(—7AE(ls— 1)), or to first order by the difference
—i(AE)T. Hence, we have

AE=C?f(ﬂv,‘K, (4, 3)v,ut) exp(ip-x43)8,(suyP)dry,  (9)

integrated over all space-time dr,. This expression will
be simplified presently. In interpreting (9) we have
tacitly assumed that the wave functions are normalized
so that (a*u)= (ya)=1. The equation may therefore
be made independent of the normalization by writing
the left side as (AEY(ay ), or since (ityu) = (E/m) (1)
and mAm= EAE, as Am(itu) where Am is an equivalent
change in mass of the electron. In this form invariance
is ohvious.

One can likewise obtain an expression for the energy
shift for an electron in a hydrogen atom. Simply replace
K, in (8), by K, the exact kernel for an electron in
the potential, V=g3¢*/r, of the atom, and f by a wave
function (of space and time) for an atomic state. In
general the AE which results is not real. The imaginary
part is negative and in exp(—iAET) produces an ex-
ponentially decreasing amplitade with time. This is
because we are asking for the amplitude that an atom
initially with no photon in the field, will still appear
after time T with no photon. If the atom is in a state
which can radiate, this amplitude must decay with
time. The imaginary part of AE when calculated does
indeed give the correct rate of radiation from atomic
states. Tt is zero for the ground state and for a free
electron.

In the non-relativistic region the expression for AE
can be worked out as has been done by Bethe.! In the
relativistic region (points 4 and 3 as close together as a
Compton wave-length) the K" which should appear
in (8) can be replaced to fArst order in V by K, plus
K."(2,1) given in I, Eq. (13). The problem is then
very similar to the radiationless scattering problem
discussed below.

4. EXPRESSION IN MOMENTUM AND
ENERGY SPACE
The evaluation of (9), as well as all the other more
complicated expressions arising in these problems, is
very much simplified by working in the momentum and
energy variables, rather than space and time. For this
we shall need the Fourier Transform of 8,(s2:?) which is

— 8y (sa2) = 7 f exp(—ik-xo) k%, (10)

which can be obtained from (3) and (5) or from I,

Eq. (32) noting that 7,(2, 1) for m?=0 is 8,(s2°) from

WH. A. Bethe, Phys. Rev. 72, 339 (1947).
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Fro. 4. Radintive enrrection to scattering, momentum space.

I, Eq. (34). The k2 means (k-£)~' or more precisely
the limit as 6—0 of (k-k+41i8)~!. Further d*k means
(2m)*dkydkdkydk,. If we imagine that quanta are par-
ticles of zero mass, then we can make the general rule
that all poles are to be resolved by considering the
masses of the particles and quanta to have infinitesimal
negative imaginary parts.

Using these results we see that the self-energy (9) is
the matrix element between @ and « of the matrix

@/ni) [valp=k=mydan, )

where we have used the expression (I, Eq. (31)) for the
Fourier transform of K. This form for the self-energy
is easier to work with than is (9).

The equation can be understood by imagining (Fig. 3)
that the electron of momentum p emits (v,) a quantum
of momentum k, and makes its way now with mo-
mentum p— k& to the next event (factor (p—k—m)™*)
which is to absorb the quantum (another #,). The
amplitude of propagation of quanta is k™2 (There is a
factor ¢*/mi for each virtual quantum). One integrates
over all quanta. The reason an electron of momentum p
propagates as 1/(p—m) is that this operator is the re-
ciprocal of the Dirac equation operator, and we are
simply solving this equation. Likewise light goes as
1/k%, for this is the reciprocal D’Alembertian operator
of the wave equation of light. The first vy, represents
the current which generates the vector potential, while
the second is the velocity operator by which this poten-
tial is multiplied in the Dirac equation when an external
field acts on an electron.

Using the same line of reasoning, other problems may
be set up directly in momentum space. For example,
consider the scattering in a potential A=Ay, varying
in space and time as @ exp(—ig¢-x). An electron initially
in state of momentum pi=py,y, will be deflected to
state p. where p.=pi+¢q. The zero-order answer Is
simply the matrix element of @ between states 1 and 2.
We next ask for the first order (in ¢*) radiative correc-
tion due to virtual radiation of one quantum. There are
several ways this can happen. First for the case illus-
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Fic. 5. Compton scattering, Eq. (15).

trated in Fig. 4(a), find the matrix:

(e’/ri)fy,‘(pg—k—m)”'a(pl—k—m)“'y,.k‘zd‘k. (12)

For in this case, first? a quantum of momentum % is
emitted (vy,), the electron then having momentum
p1— k and hence propagating with factor (p,— k—m)~L
Next it is scattered by the potential (matrix a) receiving
additional momentum ¢, propagating on then (factor
(p—k—m)™") with the new momentum until the quan-
tum is reabsorbed (v,). The quantum propagates from
emission to absorption (k%) and we integrate over all
quanta (d*k), and sum on polarization u. When this is
integrated on k4, the result can be shown to be exactly
equal to the expressions (16) and (17} given in B for
the same process, the various terms coming from resi-
dues of the poles of the integrand (12).

Or again if the quantum is both emitted and re-
absorbed before the scattering takes place one finds
(Fig. 4(b))

(&/xi) f a(pr— )y, (pr— k—m) Iy, k2, (13)

or if both emission and absorption occur after the
scattering, (Fig. 4(c))

(@/50) [ 3u(pr= k=) iy, (pamm)lakh. (1)

These terms are discussed in detail below.

We have now achieved our simplification of the form
of writing matrix elements arising from virtual proc-
esses. Processes in which a number of real quanta is
given initially and finally offer no problem (assuming
correct normalization). For example, consider the
Compton effect (Fig. 5(a)) in which an electron in state
Py absorbs a quantum of momentum ¢, polarization
vector €1, so that its interaction 1s e;,y.=e;, and emits
a second quantum of momentum —g,, polarization e;
to arrive in final state of momentum p,. The matrix for

2 First, next, c¢tc., here refer not to the order in true time but to
the succession of events along the trajectory of the electron. That

is, more precisely, to the order of appearance of the matrices in
the expressions.
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this process is ex(p1+ g —m) 'ey. The total matrix for
the Compton effect is, then,

ex(p1+q—m)"lerte(pit ga—m) ey, (15)

the second term arising because the emission of e, may
also precede the absorption of e; (Fig. 5(b)). One takes
matrix elements of this between initial and final electron
states (p1+g:=p;—¢g>), to obtain the Klein Nishina
formula. Pair annihilation with emission of two quanta,
etc., are given by the same matrix, positron states being
those with negative time component of p. Whether
quanta are absorbed or emitted depends on whether the
time component of ¢ is positive or negative.

5. THE CONVERGENCE OF PROCESSES WITH
VIRTUAL QUANTA

These expressions are, as has been indicated, no more
than a re-expression of conventional quantum electro-
dynamics. As a consequence, many of them are mean-
ingless. For example, the seli-encrgy expression (9) or
(11) gives an infinite result when evaluated. The infinity
arises, apparently, from the coincidence of the §-function
singularities in K, (4, 3) and 6,(5y5%). Only at this point
is it necessary to make a real departure from conven-
tional electrodynamics, a departure other than simply
rewriting expressions in a simpler form.

We desire to make a modification of quantum electro-
dynamics analogous to the modification of classical
electrodynamics described in a previous article, A.
There the 8(s1»*) appearing in the action of interaction
was replaced by f(515*) where f(x) is a function of small
width and great height.

The obvious corresponding modification in the quan-
tum theory is to replace the §.(s*) appearing the
quantum mechanical interaction by a new function
f+(s?). We can postulate that if the Fourier trans-
form of the classical f(s12?) is the integral over all & of
F(k?) exp(—ik-x12)d'k, then the TFourier transform of
J+(s?) 1s the same integral taken over only positive {re-
quencies kq for #,> and over only negative ones for
1,<{y in analogy to the relation of 8,(s*) to 8(s*). The
function f(s*)=f(x-x) can be written* as

( ) )--( ) : ( S. (kd X l)
flx-x 2 s h&of ik 24
X cos(K-x)dkd*Kg(k- k),

where g(k-k) is k41 times the density of oscillators and
may be expressed for positive k¢ as (A, Eq. (16))

g(k) = f " k) — 8= N)CN,

where Jo*G(N)dA=1 and G involves values of \ large
compared to m. This simply means that the amplitude

* This relation is given incorrectly in A, equation just pre-
ceding 16.
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for propagation of quanta of momentum k is
I (k)= w“fw (k72— (R*—X)=1H)G(A)dA,
0
rather than &2, That is, writing F.(k*) = — 7~ k°C(kY),
— f+(s12Y) = r—‘f exp{—ik-xp)R2C(RYE (106)

Every integral over an intermediate quantum which
previously involved a factor d'k/k? is now supplied with
a convergence factor C(k°) where

0

C'(k9)=f — N (RE=N)TIG(N )N, (17)

0

The poles are defined by replacing k* by k*+16 in the
limit 6—0. That is A* may be assumed to have an infini-
tesimal negalive imaginary part.

The function f,(s5*) may still have a discontinuity
in value on the light cone. This is of no influence for the
Dirac electron. For a particle satisfying the Klein
Gordon equation, however, the interaction involves
gradients of the potential which reinstates the & func-
tion if f has discontinuities. The condition that fis to
have no discontinuity in value on the light cone implies
kC(k*) approaches zero as k* approaches infinity. In
terms of G(\) the condition is

0

f NG\ =0. (18)
I

This condition will also he used in discussing the con-
vergence of vacuum polarization integrals.
The expression for the self-energy matrix is now

(@/mi) f yulp— k= m) Iy, kR, (19)

which, since C(&*) falls off at least as rapidly as 1/k%,
converges. For practical purposes we shall suppose
hereafter that C(k) is simply —AY/(kK*—\) implying
that some average (with weight G(A\)d\) over values of
A may be taken afterwards. Since in all processes the
quantum momentum will be contained in at least one
extra factor of the form (p—Ek-—m)~' representing
propagation of an electron while that guantum is in
the field, we can expect all such integrals with their
convergence factors to converge and that the result of
all such processes will now be finite and deiinite (ex-
cepting the processes with closed loops, discussed below,
in which the diverging integrals are over the momenta
of the electrons rather than the quanta).

The integral of (19) with C (&%) = — N (k?— N\*)"Unoting
that p*=m?, AX>>m and dropping terms of order m/\,
is (see Appendix A)

(e/2m)[4m(In(A/m)+3) — pln(\/m)+3/4)].  (20)
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When applied to a state of an electron of momentum p
satisfying pu=mu, it gives for the change in mass (as
in B, Eqg. (9))

Am=m(e*/27)(3 In(A\/m)+3). (21)

6. RADIATIVE CORRECTIONS TO SCATTERING

We can now complete the discussion of the radiative
corrections to scattering. In the integrals we include the
convergence factor C(X*), so that they converge for
large k. Integral (12) is also not convergent because of
the well-known infra-red catastrophy. For this reason
we calculate (as discussed in B) the value of the integral
assuming the photons to have a small mass Anin&@m<KA.
The integral (12) becomes

(@/i) f vy (pam kmm)ta(pr— k)L

Ky u(B=Nnin?) RC (RE—

Amin?')y

which when integrated (see Appendix B) gives {(¢*/2w)

times
m
[2 (ln ~1 ) (
)\mm tan26
4
et |
tan2f 0

1 28
+-—(ga—aq)-
4m sin26

) +6 tand

[

o tunada]a

+ra, (22)

where (%)= 2m sinf and we have assumed the matrix to
operate between states of momentum p; and p.=p1+¢q
and have neglected terms of order Apia/m, m/X\, and
¢*/A%. Here the only dependence on the convergence
factor is in the term ra, where

=In(N\/m)+9/4—2 In(m/\nin). (23)

As we shall see in 2 moment, the other terms (13),
(14) give contributions which just cancel the ra term.
The remaining terms give for small g,

1¢* m 3
<e2/4w>(—<qa aq>+—a(ln4—~——)), 2
)‘min 8

which shows the change in magnetic moment and the
Lamb shift as interpreted in more detail in B.??

¥ That the result given in B in Eq. (19) was in error was re-
Eeatedly pointed out to the author, in private communication,
V. F. Weisskopf and J. B. French, as their calculation, com-
pleted simultancously with the author’s early in 1948, gave a
different result. French has finally shown that although the ex-
pression for the radiationless scattering B, Eq. (18) or (24) above
Is correct, it was incorrectly joined onto Bethe’s non-relativistic
result. He shows that the relation In2%max— 1 =InAmia used by the
author should have been In2kuux—5/6=InAyia. This results in
adding a term —(1/6) to the logarithm in B, Eq. (19) so that the
result now agrees with that of J. B. French and V. F. Weisskopf,

We must now study the remaining terms (13) and
(14). The integral on k in (13) can be performed (after
multiplication by C(&?)) since it involves nothing but
the integral (19) for the self-energy and the result is
allowed to operate on the initial state u), (so that
piur=mu,). Hence the factor following a(p—m)~! wilt
be just Am. But, if one now tries to expand 1/(p,—m)
=(prt+m)/(p?~m?) one obtains an infinite result,
since pr*=m? This is, however, just what is expected
physically. For the quantum can be emitted and ab-
sorbed at any time previous to the scattering. Such a
process has the effect of a change in mass of the electron
in the state 1. It therefore changes the energy by AE
and the amplitude to first order in AE by —iAE-{ where
t is the time it is acting, which is infinite. That is, the
major effect of this term would be canceled by the effect
of change of mass Am.

The situation can be analyzed in the following
manner. We suppose that the electron approaching the
scattering potential @ has not been free for an infinite
time, but at some time far past suffered a scattering by
a potential b. If we limit our discussion to the effects
of Am and of the virtual radiation of one quantum be-
tween two such scatterings each of the effects will be
finite, though large, and their difference is determinate.
The propagation from b to a is represented by a matrix

—m)"'b, (25)

in which one is to integrate possibly over p’ (depending
on details of the situation). (If the time is long between
b and a, the energy is very nearly determined so that
p'"* is very nearly m?.)

We shall compare the effect on the matrix (25) of the
virtual quanta and of the change of mass Am. The effect
of a virtual quantum is

(E?/ri)fa(p/ — )y (p — h—m)t

Xvu(p' ~m) bk~ d%RC(K?), (20)
while that of a change of mass can be written
a(p’—m)y~Am(p'—m)~'b, (€X))]

and we are interested in the difference (26)-(27). A
simple and direct method of making this comparison is
just to evaluate the integral on &k in (26) and subtract
from the result the expression (27) where Am is given
in (21). The remainder can be expressed as a multiple
—r(p") of the unperturbed amplitude (23);

—r(p)a(p'~m)b. (28)

This has the same result (to this order) as replacing
the potentials @ and b in (25) by (1—%r(p"?))a and

Phys. Rev. 75, 1240 (1949) and N. H. Kroll and W. E. Lamb,
Phys. Rev. 75, "388 (1949). The author feels unhappily resp0n51ble
for the very considerable delay in the publication of French’s
result occasioned by this error. This footnote is appropriately
numbered.



108

778 R. P.

(1—3r(p'))b. In the limit, then, as p?—m® the net
effect on the suxttering is —3ira where 7, the limit of
r(p?) as p>—m? (assuming the integrals have an infra-
red cut-off), turns out to be just equal to that given in
(23). An equal term — 3ra arises from virtual transitions
after the scattering (14) so that the entire ra term in
(22) is canceled.

The reason that 7 is just the value of (12) when ¢*=0
can also be seen without a direct calculation as follows:
Let us call p the vector of length m in the direction of
P’ so that i p2=m(1+¢€)? we have p’'=(14+€)p and we
take € as very small, being of order 7! where T is the
time between the scatterings b and a. Since (p'—m)™!
=(p'+m)/(p?—m*)= (p+m)/2m?%, the quantity (25)
is of order ¢ or 7. We shall compute corrections to it
only to its own order (¢7!) in the limit e—0. The term
(27) can be written approximately!t as

(&/i) f a(p/ = m) v, (p— k=)
Xy (p' —m) ' bk-2d*k((k?),

using the expression (19) for Am. The net of the two
effects is therefore approximately'

- (02/’:ri)fa(p’— m) "y (p—~k—m)lep(p— k—m)!
Xy (B — m) -1 bR EC(RE),

a term now of order 1/e (since (p'—m)~'=(p+4-m)
X (2m2)!) and therefore the one desired in the limit.
Comparison to (28) gives for 7 the expression

(P1+7"/2m)f7u(171‘k—”1)_1@17”—')(1’1—’1—7”)_]

Xy, kW RC(RY).  (29)

The integral can be immediately evaluated, since it
is the same as the integral (12), but with ¢=0, for a
replaced by p,/m. The result is therefore r-(pi/m)
which when acting on the state u, is just r, as pyuy =mu,.
For the same reason the term (py+m)/2m in (29) is
effectively 1 and we are left with —r of {23).1¢

In more complex problems starting with a free elec-

¥ The expression is not exact because the substitution of Am
by the integral in (19) is valid only if p operates on a state such
that p can be replaced by m. The error, however, is of order

—m) 1 (p—m)(Pp'—m)tb  which s a((l+e)p+m (p—m)

X( L4e)p+m)p(2e+e)2m4 But since p2=m?, we have p(p—m)
=—m@-m)=(p—m)p so the net result is approximately
a(p—m)b/4m? and is not of order 1/e but smaller, so that its effect
drops out in the limit,

* We have used, to first order, the general expansion (valid for
any operators A, li)

(A+B) = A== 4B+ A1 B BAI— ...

with A=p—k—~m and B=p'—p=¢p to expand the diffcrence of
@' —k—m)"tand (p—k—m)"L

! The renormalization terms appearing B, Eqs. (14), (15) when
translated dircctly into the present notation do not give twice
(29) but give this expression with the central pyn™ factor replaced
by my/E, where E\= py, for u=4. When integrated it therefore
gives ra((pr+m)/2m)(myi/E) or ra—ra(myi/E\)(pi—m)/2m.
(Since 1yt vip1=2E,) which gives just ra, since pry=mu,.
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tron the same type of term arises from the effects of a
virtual emission and absorption both previous to the
other processes. They, therefore, simply lead to the
same factor 7 so that the expression (23) may he used
directly and these renormalization integrals need not
be computed afresh for each problem.

In this problem of the radiative corrections to scatter-
ing the net result is insensitive to the cut-off. This
means, of course, that by a simpie rearrangement of
terms previous to the integration we could have avoided
the use of the convergence factors completely (see for
example Lewis'"). The problem was solved in the
manner here in order to illustrate how the usc of such
convergence factors, even when they are actually un-
necessary, may facilitate analysis somewhat by remav-
ing the effort and ambiguities that may be involved in
trying to rearrange the otherwise divergent terms.

The replacement of &, by f, given in (16), (17) is
not determined by the analogy with the classical prob-
lem. In the classical limit only the real part of 8, (ie.,
just §) is easy to interpret. But by what should the
imaginary part, 1/(wis?), of 8, be replaced? The choice
we have made here (in defining, as we have, the location
of the poles of (17)) is arbitrary and almost certainly
incorrect. If the radiation resistance is calculated for
an atom, as the imaginary part of (8), the result de-
pends slightly on the function f,. On the other hand the
light radiated at very large distances from a source is
independent of f,. The total energy absorbed by distant
absorbers will not check with the energy loss of the
source. We are in a situation analogous to that in the
classical theory if the entire f function is made to
contain only retarded contributions (see A, Appendix).
One desires instead the analogue of (F)... of A. This
problem is being studied.

One can say therefore, that this attempt to find a
consistent modification of quantum electrodynamics is
incomplete (see also the question of closed loops, below).
For it could turn out that any correct form of f, which
will guarantee energy conservation may at the same
time not be able to make the self-encrgy integral finite.
The desire to make the methods of simplifying the
calculation of quantum electrodynamic processes more
widely available has prompted this publication before
an analysis of the correct form for f; is complete. One
might try to take the position that, since the energy
discrepancies discussed vanish in the limit A—, the
correct physics might be considered to be that obtained
by letting A= after mass renormalization. I have no
proof of the mathematical consistency of this procedure,
but the presumption is very strong that it is satisfac-
tory. (It is also strong that a satisfactory form for f,
can be found.)

7. THE PROBLEM OF VACUUM POLARIZATION
In the analysis of the radiative corrections to scatter-
ing one type of term was not considered. The potential

17 H, W. Lewis, Phys. Rev. 73, 173 (1948).
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which we can assume to vary as a, exp(—1g-x) creates
a pair of electrons (see Fig. 6), momenta p,, — p,. This
pair then reannihilates, emitting a quantum g=p,— p,,
which quantum scatters the original electron from state
1 to state 2. The matrix element for this process (and
the others which can be obtained by rearranging the
order in time of the various events) is

= (@/xi)ary,) [ PPt g=m

><'7v(pa— m)—l'Yu]quﬂq—lzC(q?)Uw (30)

This is because the potential produces the pair with
amplitude proportional to a,v,, the electrons of mo-
menta pa and —(p.+¢q) proceed from there to annihi-
late, producing a quantum (factor ,) which propagates
(factor g?C(g") over to the other electron, by which
it is absorbed (matrix element of v, between states 1
and 2 of the original electron (iZyy,1)). All momenta p,
and spin states of the virtual electron are admitted,
which means the spur and the integral on d*p, are
calculated.

One can imagine that the closed loop path of the
positron-electron produces a current

31

which is the source of the quanta which act on the
second electron. The quantity

drj,=J,.a,,

Ju= —(c‘/wi)fSp[:(p-'}-q—m)“

X%(P"‘m)_”h]d"l’:

is then characteristic for this problem of polarization
of the vacuum.

One sees at once that J,, diverges badly. The modifi-
cation of § to f alters the amplitude with which the
current j, will affect the scattered electron, but it can
do nothing to prevent the divergence of the integral (32)
and of its effects.

One way to avoid such difficulties is apparent. From
one point of view we are considering all routes by which
a given electron can get from one region of space-time
to another, i.e., from the source of electrons to the
apparatus which measures them. From this point of
view the closed loop path leading to (32) is unnatural.
It might be assumed that the only paths of meaning are
those which start from the source and work their way
in a continuous path (possibly containing many time
reversals) to the detector. Closed loops would be ex-
cluded. We have already found that this may be done
for electrons moving in a fixed potential.

Such a suggestion must meet several questions, how-
ever. The closed loops are a consequence of the usual
hole theory in electrodynamics. Among other things,
they are required to keep probability conserved. The
probability that no pair is produced by a potential is

(32)
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F16. 6. Vacuum polarization ef-
fect on scattering, Eq. (30).

not unity and its deviation from unity arises from the
imaginary part of J,,. Again, with closed loops ex-
cluded, a pair of electrons once created cannot annihi-
late one another again, the scattering of light by light
would be zero, etc. Although we are not experimentally
sure of these phenomena, this does seem to indicate
that the closed loops are necessary. To be sure, it is
always possible that these matters of probability con-
servation, etc., will work themselves out as simply in
the case of interacting particles as for those in a fixed
potential. Lacking such a demonstration the presump-
tion is that the difficulties of vacuum polarization are
not so easily circumvented.’®

An alternative procedure discussed in B is to assume
that the function K,(2, 1) used above is incorrect and
is to be replaced by a modified function K’ having no
singularity on the light cone. The effect of this is to
provide a convergence factor C(p*—m?) for every inte-
gral over electron momenta.”® This will multiply the
integrand of (32) by C(p*—m*)C((p+¢q)*—m?), since the
integral was originally 3(pa— ps+¢q)d*p.d'ps and both
p. and p, get convergence factors. The integral now
converges but the result is unsatisfactory.®

One expects the current (31) to be conserved, that is
¢,J.=0 or ¢,J,=0. Also one expects no current if a,
is a gradient, or a,=g¢, times a constant. This leads to
the condition J,,q,=0 which is equivalent to ¢,J,,=0
since J,, is symmetrical. But when the expression (32)
is integrated with such convergence factors it does not
satisfy this condition. By altering the kernel from K to
another, K’, which does not satisfy the Dirac equation
we have lost the gauge invariance, its consequent cur-
rent conservation and the general consistency of the
theory.

One can see this best by calculating J,.¢, directly
from (32). The expression within the spur becomes
(p+q—m)"'g(p—m)'y, which can be written as the
difference of two terms: (p—m) 'y, — (p+gq—m)lv,.
Each of these terms would give the same result if the
integration d‘p were without a convergence factor, for

181t would be very interesting to calculate the Lamb shift
accurately enough to be sure that the 20 megacycles expected
from vacuum polarization are actually present.

19 This technique also makes self-energy and radiationless scat-
tering integrals finite even without the modification of 8, to f, for
the radiation (and the consequent convergence factor C(X*) for
the quanta). See B.

20 Added to the terms given below (33) there is a term
1N~ 2124 3¢ 3, for C(B?) = —A2(k2—22)~1, which is not gauge
invariant. (In addition the charge renormalization has —7/6 added
to the logarithm.)
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the first can be converted into the second by a shift of
the origin of p, namely p’= p+4¢. This does not result
in cancelation in (32) however, for the convergence
factor is altered by the substitution.

A method of making (32) convergent without spoiling
the gauge invariance has been found by Bethe and by
Pauli. The convergence factor for light can be looked
upon as the result of superposition of the effects of
quanta of various masses (some contributing nega-
tively). Likewise if we take the factor C(p2—m?)
=—=N(P'—m*—N)"' so that (P—mw)'\C(P*—m?)
= (p*—m?) " — (PP—m?— N2)~! we are taking the differ-
ence of the result for electrons of mass m and mass
(N+m*)t. But we have taken this difference for cach
propagation between interactions with photons. They
suggest instead that once created with a certain mass
the electron should continue to propagate with this
mass through all the potential interactions until it
closes its loop. That is if the quantity (32), integrated
over some finite range of p, is called J,,(m?*) and the
corresponding quantity over the same range of p, but
with m replaced by (m?+ A2} is J,.,(m*+ 7)) we should
calculate

o= f [ )= T (24 N)IGONAN,  (32')
0

the function G(\) satisfying Ji*G(\)dA=1 and
Jo*G(M)NdA=0. Then in the expression for J,,% the
range of p integration can be extended to infinity as the
integral now converges. The result of the integration
using this method is the integral on dX\ over G(A) of
(see Appendix C)

e 1 A
Tt = = —(qugs = 8,19") ( ~3z
T 3wt

4m*4-2¢° U] 1
=) oo
3q° tané 9

with g*= 4m? sin®4.

The gauge invariance is clear, since ¢.(¢u¢, — g°6,) =0.
Operating (as it always will) on a potential of zero
divergence the (¢ug,—8,.¢%)a, is simply —g¢a,, the
D’Alembertian of the potential, that is, the current pro-
ducing the potential. The term —3(In(\*/#%))(guq.
—@%,,) therefore gives a current proportional to the
current producing the potential. This would have the
same effect as a change in charge, so that we would have
a difference A(e?) between ¢ and the experimen-
tally observed charge, ¢°+ A(e®), analogous to the dil-
ference between  and the observed mass. This charge
depends logarithmically on the cut-off, A(e?)/ct=
- (2¢*/3m) In(A/m). After this renormalization of charge
is made, no effects will be sensitive to the cut-off.

After this is done the final term remaining in (33),
contains the usual effects® of polarization of the vacuum.

¥ FE. A. Uchling, Phys. Rev. 48, 55 (1933), R. Serber, Phys.
Rev. 48, 49 (1933).
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It is zero for a free light quantum (¢*=0). For small ¢*
it behaves as (2/15)¢* (adding —1% to the logarithm in
the Lamb effect). For ¢°>(2m)? it is complex, the
imaginary part representing the loss in amplitude re-
quired by the fact that the probability that no quanta
are produced by a potential able to produce pairs
((g*)*>2m) decreases with time. (To make the neces-
sary analytic continuation, imagine m to have a small
negative imaginary part, so that (1—g¢*/4m?)* becomes
—i(g*/4m*—1)} as ¢* goes from below to above 4m®
Then 6=r/2+iu where sinhu=+4 (¢%/4m?*~—1)}, and
—1/tanf=1 tanhu=+1(g*—4m?)}(g*)~*.)

Closed loops containing a number of quanta or poten-
tial interactions larger than two produce no trouble.
Any loop with an odd number of interactions gives zero
(I, reference 9). Four or more potential interactions give
integrals which are convergent even without a con-
vergence factor as is well known. The situation is
analogous to that for self-energy. Once the simple
problem of a single closed loop is solved there are
no further divergence difticultics for more complex
processes.*

8. LONGITUDINAL WAVES

In the usual form of quantum electrodynamics the
longitudinal and transverse waves are given scparate
treatment. Alternately the condition (3.1,/dx,)¥ =0 is
carried along as a supplementary condition. In the
present form no such special considerations are neces-
sary for we are dealing with the solutions of the equation
—[PA,=4rj, with a current j, which i1s conserved
97,/ dx,=0. That means at lcast {_)'(9.1,/dx,) =0 and
in fact our solution also satisfies 3.4 ,/dv.=0.

To show that this is the cuse we consider the ampli-
tude for emission (real or virtual) of a photon and show
that the divergence of this amplitude vanishes. The
amplitude for emission for photons polarized in the u
direction involves matrix elements of +v,. Therefore
what we have to show is that the corresponding matrix
elements of g,v,=4¢ vanish. For example, for a first
order effect we would require the matrix element of ¢
between two states py and p:=p+¢q. But since
g=p.— Py and (Gaprrer) = m(1ha10,) = (pury) the matrix
element vanishes, which proves the contention in this
case. It also vanishes in more complex situations (essen-
tially because of relation (34), below) (for example, try
putting es=g. in the matrix (13) for the Compton
Lffect).

To prove this in general, suppose a;, 1=1 to .V are a
set of plane wave disturbing potentials carrying mo-
menta ¢, (e.g., some may be emissions or absorptions of
the same or dilferent quanta) and consider a mutrix for
the transition from a state of momentum p, to py such

= Therc are loups completely without external interactions. For
example, a pair is created virtually along with a photon. Next they
annihilate, absorbing this photon. Such loops are disregarded on
the grounds that they do not interact with anything and are

thereby completely unobservable. Any indirect effects they may
have via the exclusion principle have already been included.
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as ay 11Vt (pi—m)~'a; where pi=p;_+¢. (and in the
product, terms with larger i are written to the left).
The most general matrix element is simply a linear
combination of these. Next consider the matrix be-
tween states po and py-+¢ in a situation in which not
only are the a; acting but also another potential
a exp(—1q-x) where a= q. This may act previoustoalia;,
in which case it gives axyII (P4 ¢ —m)ta.(po+q—m)'q
which is equivalent to +anx[I(pi+g—m)~‘a; since
+ (po+q—m)"'q is equivalent to (potg—m)?
X{po+-g—m) as py is equivalent to m acting on the
initial state. Likewise if it acts after all the potentials
it gives g(py—m)~'an]] (p:—m)'a; which is equivalent
to —~anI1(p:—m) 'a; since py+q—m gives zero on the
final state. Or again it may act between the potential
a; and @, for each k. This gives

V-1 N~}
Z ay H (Pu'}‘Q""')—laz(ﬁk‘*‘q—m)‘l
k=1 =kl
k—1
Xg(pp—m)ay T (p;—m)7a;
il
However,

(brtg—m)~'q(pr—m)~
={(pr—m)" = (ppt-q—m)™', (34)

so that the sum breaks into the difference of two sums,
the first of which may be converted to the other by the
replacement of £ by k—1. There remain only the terms
from the ends of the range of summation,

N-1 N-1
+av I1 (po—m)ai—ax T (pi+gq—m)a;.
i=1 {==]

These cancel the two terms originally discussed so that
the entire effect is zero. Hence any wave emitted will
satisfy 84,/9x,=0. Likewise longitudinal waves (that
is, waves for which 4,=9¢/dx, or a=¢q) cannot be
absorbed and will have no effect, for the matrix ele-
ments for emission and absorption are similar, (We
have said little more than that a potential A,=8¢/dx,
has no effect on a Dirac electron since a transformation
¢’ =exp(—~i¢)y removes it. It is also easy to see in
coordinate representation using integrations by parts.)

This has a useful practical consequence in that in
computing probabilities for transition for unpolarized
light one can sum the squared matrix over all four
directions rather than just the two special polarization
vectors. Thus suppose the matrix element for some
process for light polarized in direction e, is ¢,M . If the
light has wave vector ¢, we know from the argument
above that ¢.M,=0. For unpolarized light progress-
ing in the z direction we would ordinarily calculate
MZ2+M/} Butwecanaswell sum M 24+M 2+ M2- M7
for guM, implies M,= M, since q,=gq, for free quanta.
This shows that unpolarized light is a relativistically
invariant concept, and permits some simplification in
computing cross sections for such light.

Incldentally, the virtual quanta interact through
terms like v, « - y.R%d*%. Real processes correspond to
poles in the formulae for virtual processes. The pole
occurs when k?=0, but it looks at first as though in the
sum on all four values of g, of v, + -y, we would have
four kinds of polarization instead of two. Now it is clear
that only two perpendicular to k are effective.

The usual elimination of longitudinal and scalar vir-
tual photons (leading to an instantaneous Coulomb
potential) can of course be performed here too (although
it is not particularly useful). A typical term in a virtual
transition is y,---v.R*d*% where the --. represent
some intervening matrices. Let us choose for the values
of u, the time {, the direction of vector part K, of &,
and two perpendicular directions 1, 2. We shall not
change the expression for these two 1, 2 for these are
represented by transverse quanta. But we must find
(vevo—(yg - -vx)- Now k=kyy,—Kvyg, where
K= (K-K)} and we have shown above that k replacing
the v, gives zero.® Hence K vk is equivalent to b4y, and

('Yl' . “Yt)_('YK' . "YK)= ((K:—ka?)/Kz)(‘Yl‘ DR

so that on multiplying by k~?d*k =d*k(k&— K?)~! the net
effect is —(v,---v,)d*k/K? The v, means just scalar
waves, that is, potentials produced by charge density.
The fact that 1/K? does not contain k; means that &,
can be integrated first, resulting in an instantaneous
interaction, and the &®K/K? is just the momentum
representation of the Coulomb potential, 1/7.

9. KLEIN GORDON EQUATION

The methods may be readily extended to particles of
spin zero satisfying the Klein Gordon equation,

D2¢— miy=19(4 ‘.lﬁ)/ax,.—f- iA4 ua\l’/axﬂ —~ A AW

2 A little more care is required when both v,’s act on the same
%article. Define x=4kyv+Kvg, and consider (k---x)+(x- - k).

xactly this term would arise if a system, acted on by potential x
carrying momentum — &, is disturbed by an added potential & of
momentum +k (the reversed sign of the momenta in the inter-
mediate factors in the second term x---& has no effect since we
will later integrate over all k). Hence as shown above the resuit is
zero, hut since (R -x)+(x- - Ry =k&(ye e v)—RK(vk" 7K
we can still conclude (vg- - vK) = 32K (ve + o)

# The equations discussed in this section were deduced from the
formulation of the Klein Gordon equation given in reference §,
Section 14. The function ¢ in this section has only one component
and is not a spinor. An alternative formal method of making the
equations valirl for spin zero and also for spin 1 is (presumably)
by use of the Kemmer-Dulfin matrices 8, satisfying the commu-

tation relation

BuBBo+BaBuBu= 8Bt Bo,Byu.
If we interpret @ to mean a,8,, rather than a,v,, for any a,, all
of the equations in momentum space will remain formally identical
to those for the spin 1/2; with the exception of those in which a
denominator (p—m)™ has been rationalized to (p+m)(P*—m*)™?
since p? is no longer equal to a number, p-p. But p* does equal
(p-p)p so that (p—m)™ may now be interpreted as (nzp+m-‘
+pP—p-p)(p- p—mA) ™. This implies that equations in co-
ordinate space will be valid of the function K.(2, 1) is given as
K. (2, 1)=[(6V4m) —m~ 1 (V24 02 Jil (2, 1} with Vo=p,3/3x1.
This is all in virtue of the fact that the many component wave
function ¥ (5 components for spin 0, 10 for spin 1) satishes
(iV—m)y = Ay which is formally identical to the Dirac Equation.
See W. Pauli, Rev. Mod. Phys. 13, 203 (1940).

(35
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The important kernel is now 7,(2, 1) defined in (I, Eq.
(32)). For a free particle, the wave function (2) satisfies
+[P—m*=0. At a point, 2, inside a space time region
it is given by

'P(z):f[‘l‘(l)ah(l 1)/,
—(ay/ 0, )4 (2, 1) IN (DT,

(as is readily shown by the usual method of demon-
strating Green’s theorem) the integral being over an
entire 3-surface boundary of the region (with normal
vector N,). Only the positive frequency components of
¢ contribute from the surface preceding the time corre-
sponding to 2, and only negative frequencies from the
surface future to 2. These can be interpreted as electrons
and positrons in direct analogy to the Dirac case.

The right-hand side of (33) can be considered as a
source of new waves and a series of terms written down
to represent matrix elements for processes of increasing
order. There is only one new point here, the term in
A,A, by which two quanta can act at the same time.
As an example, suppose three quanta or potentials,
a, exp(—iga-x), b, exp(—ige-x), and c, exp(—iq.- x) are
to act in that order on a particle of original momentum
pou so that p.=po+-go and po= pa-tgqs; the final mo-
mentum being p.=ps+¢g.. The matrix element is the
sum of three terms (p*=p,p,) (illustrated in Fig. 7)

(perct po- ) (P2 —m*) " (po- b+ pa-b)

X (pat— mﬂ)_l(Pa ‘a+ po- a) (36)
= (perctpo-)(pF—m*)"'(b-a) ’
- (C : b) (paz_‘mz)_l(Pa . G+Pu' 0).

The first comes when each potential acts through the
perturbation i3(A,y)/dx,+14,0¢/dx,. These gradient
operators in momentum space mean respectively the
momentum after and before the potential 4, operates.
The second term comes from b, and g, acting at the
same instant and arises from the A,4, term in (a).
Together b, and a, carry momentum gsu+gaq. S0 that
after b-a operates the momentum is po+ga—+gs Or Ps.
The final term comes from ¢, and b, operating together
in a similar manner. The term A,/ thus permits a new
type of process in which two quanta can be emitted (or
absorbed, or one absorbed, one emitted) at the same
time. There is no a-¢ term for the order q, b, ¢ we have
assumed. In an actual problem there would be other
terms like (36) but with alterations in the order in
which the quanta g, b, ¢ act. In these terms a-¢ would
appear.

As a further example the self-energy of a particle of
momentum p, is

(62/27ri”1)f[(2P— k) ((p— R —m?)~!
X (2p—k)u— 8, JdkRTC(R?),

where the 6,,=4 comes from the 4,4, term and repre-
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sents the possibility of the simultaneous emission and
absorption of the same virtual quantum. This integral
without the C(%?) diverges quadratically and would not
converge if C(k*)=—\?/(k*—\?). Since the interaction
occurs through the gradients of the potential, we must
use a stronger convergence factor, for example C(k?)
=N(&*—7*)72 or in general (17) with Sfi®AN*G(A\)dA=0.
In this case the self-energy converges but depends
quadratically on the cut-off X and is not necessarily
small compared to m. The radiative corrections to
scattering after mass renormalization are insensitive to
the cut-off just as for the Dirac equation.

When there are several particles one can obtain Bose
statistics by the rule that if two processes lead to the
same state but with two electrons exchanged, their
amplitudes are to be added (rather than subtracted as
for Fermi statistics). In this case equivalence to the
second quantization treatment of Pauli and Weisskopf
should be demonstrable in a way very much like that
given in / (appendix) for Dirac electrons. The Bose
statistics mean that the sign of contribution of a closed
loop to the vacuum polarization is the opposite of what
it is for the Fermi case (see I). It is (pr=p.+¢q)

62
Jpp=— f[(/’lw+ POH)(I)VW+ P‘,y)(p.fl— m?)

2wim

X (p—m®y ' =5, (pa>— m*) !

=8Pt —m) " Jd' pa
giving,

¢ 1 A 1 dmwi-g 6
Ju."=—-<quq,—swq'-’)[— It -—— —~—( 1-— )J
™ 6 m* 9 3q° tang

the notation as in (33). The imaginary part for (¢*)!> 2m
is again positive representing the loss in the probability
of finding the final state to be a vacuum, associated with
the possibilities of pair production. Fermi statistics
would give a gain in probability (and also a charge
renormalization of opposite sign to that expected).

/c 2
bc/"

0

/o
¢ X
\e»

Fic. 7. Klein-Gordon particle in three potentials, Tiq. (36).
The coupling to the electromagnetic ficld is now, for example,
Po-a+ pa-a, and a new possibility arises, (b}, of simultaneous inter-
action with two quanta a-b. The propagation factor is now
(p- p—m?) " [or a particle of momentum p,.
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10. APPLICATION TO MESON THEORIES

The theories which have been developed to describe
mesons and the interaction of nucleons can be easily
expressed in the Janguage used here. Calculations, to
lowest order in the interactions can be made very easily
for the various theories, but agreement with experi-
mental results is not obtained. Most likely all of our
present formulations are quantitatively unsatisfactory.
We shall content ourselves therefore with a brief sum-
mary of the methods which can be used.

The nucleons are usually assumed to satisfy Dirac’s
equation so that the factor for propagation of a nucleon
of momentum pis (p— M)~ where M is the mass of the
nucleon (which implies that nucleons can be created in
pairs). The nucleon is then assumed to interact with
mesons, the various theories differing in the form as-
sumed for this interaction.

First, we consider the case of neutral mesons. The
theory closest to electrodynamics is the theory of vector
mesons with vector coupling. Here the factor for emis-
sion or absorption of a meson is gy, when this meson is
“polarized” in the u direction. The factor g, the
“mesonic charge,” replaces the electric charge e. The
amplitude for propagation of a meson of momentum ¢
in intermediate states is (¢g°— 4®)~! (rather than.g? as it
is for light) where p is the mass of the meson. The neces-
sary integrals are made finite by convergence factors
C(g*— u?) as in electrodynamics. For scalar mesons with
scalar coupling the only change is that one replaces the
v, by 1 in emission and absorption. There is no longer
a direction of polarization, u, to sum upon. For pseudo-
scalar mesons, pseudoscalar coupling replace v, by
Ys=17,YyY:Ye. For example, the self-energy matrix of
a nucleon of momentum p in this theory is

(gz/vri)fn(l’— R—M)"'yedb (B~ p2)~'\C (R — ).

Other types of meson theory result from the replace-
ment of v, by other expressions (for example by
4(v,v,—v,vs) with a subsequent sum over all pand v
for virtual mesons). Scalar mesons with vector coupling
result from the replacement of v, by u~'g where ¢ is the
final momentum of the nucleon minus its initial mo-
mentum, that is, it is the momentum of the meson if
absorbed, or the negative of the momentum of a meson
emitted. As is well known, this theory with neutral
mesons gives zero for all processes, as is proved by our
discussion on longitudinal waves in electrodynamics.
Pseudoscalar mesons with pseudo-vector coupling corre-
sponds to v, being replaced by u~'ysg while vector
mesons with tensor coupling correspond to using
(2u)"Y(v.g—g~v.). These extra gradients involve the
danger of producing higher divergencies for real proc-
esses. For example, v:¢ gives a logarithmically divergent
interaction of neutron and electron.?® Although these
divergencies can be held by strong enough convergence

2 M. Slotnick and W. Heitler, Phys. Rev. 75, 1645 (1949).
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factors, the results then are sensitive to the method used
for convergence and the size of the cut-off values of A,
For low order processes pu~'vsq is equivalent to the
pseudoscalar interaction 2M u~'y; because if taken be-
tween free particle wave functions of the nucleon of
momenta p; and p.= p,-+¢, we have

(Brysqui) = (days(pa— pr)1er) = — (@apaysir)
~ (@xysprur) = — 2M (dxys1e)

since vs anticommutes with p. and p. operating on the
state 2 equivalent to M as is p, on the state 1. This
shows that the vs interaction is unusually weak in the
non-relativistic limit (for example the expected value
of s for a free nucleon is zero), but since ys*=1 is not
small, pseudoscalar theory gives a more important inter-
action in second order than it does in first. Thus the
pseudoscalar coupling constant should be chosen to fit
nuclear forces including these important second order
processes.” The equivalence of pseudoscalar and pseudo-
vector coupling which holds for low order processes
therefore does not hold when the pseudoscalar theory
is giving its most important effects. These theories will
therefore give quite different results in the majority of
practical problems.

In calculating the corrections to scattering of a nu-
cleon by a neutral vector meson field (v,) due to the
effects of virtual mesons, the situation is just as in
electrodynamics, in that the result converges without
need for a cut-off and depends only on gradients of the
meson potential. With scalar (1) or pseudoscalar (ys)
neutral mesons the result diverges logarithmically and
so must be cut off. 'Vhe part sensitive to the cut-off,
however, is directly proportional to the meson poten-
tial. It may thereby be removed by a renormalization
of mesonic charge g. After this renormalization the re-
sults depend only on gradients of the meson potential
and are essentially independent of cut-off. This is in
addition to the mesonic charge renormalization coming
from the production of virtual nucleon pairs by a meson,
analogous to the vacuum polarization in electro-
dynamics. But here there is a further difference from
electrodynamics for scalar or pseudoscalar mesons in
that the polarization also gives a term in the induced
current proportional to the meson potential representing
therefore an additional renormalization of the mass of
the meson which usually depends quadratically on the
cut-off.

Next consider charged mesons in the absence of an
electromagnetic field. One can introduce isotopic spin
operators in an obvious way. (Specifically replace the
neutral vs, say, by 7ivs and sum over i=1, 2 where
=144 7_, 1,=i(r.—7.) and 7, changes neutron to
proton (7. on proton=0) and r_. changes proton to
neutron.) It is just as easy for practical problems simply
to keep track of whether the particle is a proton or a
neutron on a diagram drawn to help write down the

% H, A. Bethe, Bull. Am. Phys. Soc. 24, 3, Z3 (Washington,
1949).
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matrix element. This excludes certain processes. For
example in the scattering of a negative meson from q,
to go by a neutron, the meson > must be emitted first
(in order of operators, not time) for the neutron cannot
ahsorb the negative meson g, until it becomes a proton.
That is,in comparison to the Klcin Nishina formula (13),
only the analogue of second term (see Fig. 3(b)) woull
appear in the scattering of negative mesons by neu-
trons, and only the first term (I'ig. 3(a)) in the neutron
scattering of positive mesons.

The source of mesons of a given charge is not con-
served, for a neutron capable of emitting negative me-
sons may (on emitting one, say) become a proton no
longer able to do so. The proof that a perturbation ¢
gives zero, discussed for longitudinal electromagnetic
waves, fails. This has the consequence that vector me-
sons, if represented by the interaction v, would not
satisfy the condition that the divergence of the poten-
tial is zero. The interaction is to be taken™ as vy, —~pu~¢.q
in emission and as v, in absorption if the real emission
of mesons with a non-zero di