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PREFACE 

As its title indicates, this volume contains a selection of Feynman’s important scientific 
papers together with short comments. Most of the papers contain pure research, but among 
them are scattered some articles that are largely pedagogical, such as published lectures that 
Feynman gave at advanced physics workshops and summer schools. As the editor I chose 
the papers and also provided the comments, except as indicated in the text. Such a selection 
cannot avoid arbitrariness, and I apologize to those who feel that their favorites may have 
been unjustly omitted. 

In the course of preparation, I have consulted some physicists, historians, and others, 
whom I would like to thank: Tian Yu Cao, Michael Cohen, Don Ellis, Joan Feynman, 
and Robert Michaelson. Carl Iddings and Frank Vernon, Jr. sent me valuable information 
concerning their collaborations with Feynman which are included in Part 111. Danny Hillis 
helped to orient me with regard to the papers on computers. I am especially indebted 
to Alexander Fetter for writing the commentary which appears with the liquid helium pa- 
pers. I am also greatly obliged for the hospitality of Judith Goodstein and the staff at the 
Caltech Archives who assisted me when I was reading Feynman’s unpublished documents, 
and provided the bibliography of Feynman’s writings at the end of this volume. Finally, 
I wish to acknowledge the great help of the editors at World Scientific. 
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RICHARD PHILLIPS FEYNMAN 

One of the century’s outstanding scientists, Richard P. Feynman was born on 11 May 1918 
at Far Rockaway, Queens, a part of New York City, where he received his education through 
high school. He then attended the Massachusetts Institute of Technology; exhibiting superior 
mathematical skills, he took advanced physics courses and earned a B.S. degree. According 
to S.S. Schweber, “By the time Feynman finished his undergraduate studies at MIT in 1939 
he had mastered many of the fields of theoretical physics.’’ Feynman went on to do graduate 
school at Princeton University, where his principal mentor was Professor John A. Wheeler, 
under whose sponsorship he wrote a doctoral thesis entitled “The Principle of Least Action 
in Quantum Mechanics”; he was awarded a Ph.D. in 1942. 

From Princeton Feynman moved to Los Alamos, New Mexico, to work on the wartime 
development of the nuclear bomb. There he became an important member, and the youngest 
group leader, of the theoretical physics division headed by Hans Bethe of Cornell University. 
After the war Bethe persuaded Feynman to accept a faculty position at Cornell, and it was 
in Ithaca, New York, that Feynman developed his diagrammatic methods and accomplished 
the work that earned him the Nobel Prize in Physics. In 1950 he became a professor at 
the California Institute of Technology, being appointed the Richard Chase Tolman Professor 
of Physics in 1959. He remained in Pasadena until his death at the age of sixty-nine, on 
15 February 1988. 

Feynman had three marriages. The first was in 1942 to Arline Greenbaum, who was 
incurably ill at the time of the marriage and died in 1945. His second marriage, to Mary 
Louise Bell in 1952, ended in divorce. In 1960 he married Gweneth Howarth, with whom he 
had a son, Carl, and an adopted daughter, Michelle. 

Early in his career, Feynman became well-known to the world physics community for his 
brilliant research, his outstanding teaching, and his flamboyant personality. After sharing 
the Nobel Prize in 1965 for his work on renormalized quantum electrodynamics (QED) with 
Julian Seymour Schwinger and Sin-itiro Tomanaga, he also became an important establish- 
ment figure, receiving many invitations to lecture throughout the world (most of which he 
politely declined). However, he became a notable public figure only near the end of his life, 
when, in January 1986, President Reagan appointed him to a presidential commission to 
investigate the cause of the explosion of the space shuttle Challenger. Appearing in the 
televised hearing of the investigative committee, Feynman performed a simple experiment 
with a glass of ice water and a piece of the shuttle’s failed 0 ring, in order to demonstrate 
the immediate cause of the disaster. His presentation made a deep impression on millions of 
television viewers, and, coupled with two best-selling books of his reminiscences ([112] and 
[121]*), other television appearances, and adulation in the press, Feynman became some- 
thing of a cult figure, especially after his death. A few of the biographies and other books 
dealing with him and his work are listed after this account. 

Besides the Nobel Prize, Feynman received the Albert Einstein Award (1954), the Ernest 
Orlando Lawrence Award for Physics (1962), the Oersted Medal (1972), and the Niels Bohr 
International Gold Medal (1973). He was a Member of the Brazilian Academy of Sciences 
and a Foreign Fellow of the Royal Society of London (1965). He was elected to the National 

‘Numbers in square brackets refer to the bibliography at the end of this volume. 
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Academy of Sciences (USA), but later resigned, and often declared that he was totally 
uninterested in receiving “honors.” 

See: 
James Gleick, Genius. New York, 1992. 
Laurie M. Brown and John S. Rigden (eds.), Most of the Good Stuff. New York, 1993. 
Jagdish Mehra, The Beat of a Different Drum. Oxford, 1994. 
Silvan S. Schweber, QED and the Men Who Made It. Princeton, 1994. 
Christopher Sykes (ed.), No Ordinary Genius. New York, 1994. 
David Goodstein and Judith Goodstein, Feynman’s Lost Lecture: The Motion of Planets 
Around the Sun. New York, 1996. 
John Gribbin and Mary Gribbin, Richard Feynman: A Life in Science. New York, 1997. 
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I. Quantum Chemistry 

In his final year as an undergraduate at the Massachusetts Institute of Technology, Feynman 
published with one of his teachers, Manuel S. Vallarta, a Letter to the Editor of the Physical 
Review on cosmic rays [l]. He also completed a senior dissertation under John C. Slater 
entitled “Forces and Stresses in Molecules” and published a shortened version, “Forces in 
Molecules,” as an article in the Physical Review. The latter contained a result - a general 
quantum-mechanical theorem - that has played an important role in theoretical chemistry 
and condensed matter physics and is frequently cited as the Hellmann-Feynman theorem.’ 
According to Feynman’s abstract, “The force on a nucleus in an atomic system is shown to be 
just the classical electrostatic force that would be exerted on this nucleus by other nuclei and 
by the electrons’ charge distribution.” Quantum mechanics is used to calculate the charge 
distribution as the absolute square of the Schrodinger wave function. The importance of the 
forces on the atomic nuclei for molecular geometry, the theory of chemical binding, and for 
crystal structure is evident. 

Selected Paper 
[2] Forces in molecules, Phys. Rev. 56 (1939): 340-343. 

‘The German quantum chemist H. Hellmann published the theorem in a textbook, Einfiihring in die  Quan- 
tenchemie (1937, Franz Deuticke, Leipzig), but the reference was unknown to Feynman and Slater. For the 
history of the H-F theorem see J.I. Musher, Am. J. Phys. 34 (1966): 267-268, and J.C. Slater, Solid State 
and Molecular Theory (1975, Wiley, New York), pp. 193-199. For applications see B.M. Deb (ed.), The Force 
Concept in Chemistry (1981, Van Nostrand Reinhold, New York). 
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Forces in Molecules 
R. P. FEYNMAN 

Massachusetts Institute of Technology, Cambridge, Massachusetts 
(Received June 22, 1939) 

Formulas have been developed to calculate the forces in a molecular system directly, rather 
than indirectly through the agency of energy. This permits an independent calculation of the 
slope of the curves of energy us. position of the nuclei, and may thus increase the accuracy, or 
decrease the labor involved in the calculation of these curves. The force on a nucleus in an 
atomic system is shown to  be just the classical electrostatic force that would be exerted on this 
nucleus by other nuclei and by the electrons’ charge distribution. Qualitative implications of 
this are discussed. 

ANY of the problems of molecular structure M are concerned essentially with forces. The 
stiffness of valence bonds, the distortions in 
geometry due to the various repulsions and 
attractions between atoms, the tendency of 
valence bonds to occur a t  certain definite angles 
with each other, are some examples of the kind 
of problem in which the idea of force is para- 
mount. 

Usually these problems have been considered 
through the agency of ener.gy, and its changes 
with changing configuration of the molecule. 
The reason for this indirect attack through 
energy, rather than the more qualitatively illumi- 
nating one, by considerations of force, is perhaps 
twofold. First it is probably thought that  force 
is a quantity that is not easily described or calcu- 
lated by wave mechanics, while energy is, and 
second, the first molecular problem to be solved 
is the analysis of band spectra, strictly a problem 
of energy as such. I t  is the purpose of this paper 
to show that forces are almost as easy to calculate 
as energies are, and that the equations are quite 
as easy to interpret. In fact, all forces on atomic 
nuclei in a molecule can be considered as purely 
classical attractions involving Coulomb’s law. 
The electron cloud distribution is prevented 
from collapsing by obeying Schrodinger’s equa- 
tion. In these considerations the nuclei are 
considered as mass points held fixed in position. 

A usual method of calculating interatomic 
forces runs somewhat as follows. 

For a given, fixed configuration of the nuclei, 
the energy of the entire system (electrons and 
nuclei) is calculated. This is done by the variation 
method or other perturbation schemes. This 

entire process is repeated for a new nuclear 
position, and the new value of energy calculated. 
Proceeding in this way, a plot of energy vs. 
position is obtained. The force on a nucleus is 
of course the slope of this curve. 

The following method is one designed to 
obtain the forces a t  a given configuration, when 
only the configuration is known. I t  does not 
require the calculations at neighboring configura- 
tions. That is, it permits a calculation of the 
slope of the energy curve as well as its value, 
for any particular configuration. I t  is to be 
emphasized that this allows a considerable saving 
of labor of calculations. To obtain force under the 
usual scheme the energy needs to be calculated 
for two or more different and neighboring con- 
figurations. Each point requires the calculation 
of the wave functions for the entire system. 
In this new method, only one configuration, the 
one in question, need have its wave functions 
computed in detail. Thus the labor is consider- 
ably reduced. Because it permits one to get an 
independent value of the slope of the energy 
curve, the method might increase the accuracy 
in the calculation of these curves, being especially 
helpful in locating the normal separation, or 
position of zero force. 

In the following it is to be understood that the 
nuclei of the atoms in the molecule, or other 
atomic system, are to be held fixed in position, 
as point charges, and the force required to be 
applied to the nuclei to hold them is to be 
calculated. This will lead to two possible defini- 
tions of force in the nonsteady state, for then 
the energy is not a definite quantity, and the 
slope of the energy curve shares this indefinite- 

340 
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ness. I t  will be shown that these two possible 
definitions are exactly equivalent in the steady- 

But H+= U+ and H+*= U+* so that we can 
write, 

au aH a+* a+ 
Let be one of any number of parameters ax  ax ax a x  

state case, and, of course, no ambiguity should 
arise there. 

-= s+*-+dn+ U s  -+dv+ U s  -+*dv. 

which specify nuclear positions. For example, 
might be the x component of the position of 

one of the nuclei. A force fi is to be associated 
with in such a way that fidX measures the 
virtual work done in displacing the nuclei 
through dX. This will define the force only when 
the molecule is in a steady state, of energy U ,  
for then we can say fi= -aU/ax. In the non- 
steady-state case we have no sure guide to a 
definition of force. For example, if o= f +*H+dv 
be the average energy of the system of wave 
function + and Hamiltonian H ,  we might define 

f i i =  -a (U) /ax ' .  (1 1 
Or again, we might takefi to be the average of 
-aH/ax or 

We shall prove that under steady-state con- 
ditions, both these definitions of force become 
exactly equivalent, and equal to -aU/ax, the 
slope of the energy curve. Since (2) is simpler 
than (1) we can define force by (2) in general. 
In particular, it gives a simple expression for the 
slope of the energy curve. 

Thus we shall prove, when H+= U+ and 
f +J.*dv = 1 that, 

au aH 

ax  ax -= J+*-+dv. 

S 
-= au S+*-+dv+S-H+dv+s+*Il-du. aH a+* aJ. 

Now 

U= +*H+dv, 

whence, 

ax ax  ax ax 

These last two terms cancel each other since 
their sum is. 

a 
ax  " S  ax u- +*+dv = u-( 1) = 0. 

Whence 

-=J+*,+dv au aH 

ax 
in the steady state. This much is true, regardless 
of the nature of H ,  (whether for spin, or nuclear 
forces, etc.). In the special case of atomic systems 
when H=T+V where T is the kinetic energy 
operator, and V the potential, since aH,/ax 
=av/ax we can write 

The actual calculation of forces in a real 
molecule by means of this theorem is not im- 
practical. The J+*+(dV/aX)dv is not too differ- 
ent from f +*+Vdv, which must be calculated if 
the energy is to be found a t  all in the variational 
method. Although the theorem (3) is the most 
practical for actual calculations, it can be 
modified to get a clearer qualitative picture of 
what it means. Suppose, for example, the system 
for which + is the wave function contains several 
nuclei, and let the coordinates of one of these 
nuclei, a, be X a ,  Ya, Za or X P a  where p= 1, 2, 3, 
mean X, Y, 2. If we take our X parameter to be 
one of these coordinates, the resultant force on 
the nucleus (Y in the p direction will be given 
directly by 

f,a= - JN*(a v/ax ,a )aV  

Since H is a self-adjoint operator, from (3). 
Now V is made up of three parts, the inter- 

action of all nuclei with each other ( V a p ) ,  of each 
nucleus with an electron (Vbi), and of each 
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electron with every other (Vij) ; or 

V = C  VaB+C v~i+C vij. 
a. B 6. i i .  i 

Suppose xci are the coordinates of electron i, 
and as before X p a  those of nucleus CY of charge qa. 
Then V,i = qpe/RBi, where 

3 

RBi2 = C ( X , ~ - X , ~ ) * .  
Ir-1 

So we see that 

a Vpi a VBi a vij 
and that  -- - 0. -- - - &a- 

ax,a ax,; axpa 
Then (3) leads to 

since aVa,/ax,i does not involve any electron 
coordinate except those of electron i. f i f. * -dv 
means the integral over the coordinates of all 
electrons except those of electron i. The last 
term has been reduced since a V,B/ax," does not 
involve the electron coordinates, and is constant 
as far as integration over these coordinates goes. 
This term gives ordinary Coulomb electrostatic 
repulsion between the nuclei and need not be 
considered further. Now e f i J W * d v  is just the 
charge density distribution p i ( % )  due to electron i, 
where e is the charge on one electron. The 
electric field EPa(x i )  a t  any point xi due to the 
nucleus (Y is (l/e)aVQi/axpi, so that (4) may be 
written 

The 3N space for N electrons has been reduced 
to a 3 space. This can be done since EPa(x i )  
depends only on x i  and is the same function of xi 
no matter which i we pick. This implies the 
following conclusion : 

The force on any nucleus (considered fixed) in 
any system of nuclei and electrons is just the 
classical electrostatic attraction exerted on the 
nucleus in question by the other nuclei and by 

the electron charge density distribution for all 
electrons, 

I. 

I t  is possible to simplify this still further. 
Suppose we construct an electric field vector F 
such that 

V.F=- -4ap(x ) ;  V X F = O .  

Now from the derivation of E,. we know that it 
arises from the charge pu on nucleus a, so that 
V.E'= 0 except a t  the charge (Y where its integral 
equals 4.. Further, 

Then 

fPu= --J(V.F)E,.ad~-C- 1 a v.8 
4a  B ax,. 

the transformation of the integral being accom- 
plished by integrating by parts. Or finally, the 
force on a nucleus is the charge on that nucleus 
times the electric field there due to all the 
electrons, plus the fields from the other nuclei. 
This field is calculated classically from the 
charge distribution of each electron and from 
the nuclei. 

I t  now becomes quite clear why the strongest 
and most important attractive forces arise when 
there is a concentration of charge between two 
nuclei. The nuclei on each side of the concen- 
trated charge are each strongly attracted to it. 
Thus they are, in effect, attracted toward each 
other. In a Hz molecule, for example, the anti- 
symmetrical wave function, because it must be 
zero exactly between the two H atoms, cannot 
concentrate charge between them. The sym- 
metrical solution, however, can easily permit 
charge concentration between the nuclei, and 
hence i t  is only the solution which is sym- 
metrical that leads to  strong attraction, and the 
formation of a molecule, as is well known. I t  is 
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clearly seen that concentrations of charge be- 
tween atoms lead to strong attractive forces, and 
hence, are properly called valence bonds. 

Van der Waals’ forces can also be interpreted 
as arising from charge distributions with higher 
concentration between the nuclei. The Schrod- 
inger perturbation theory for two interacting 
atoms a t  a separation R, large compared to the 
radii of the atoms, leads to the result that the 
charge distribution of each is distorted from 
central symmetry, a dipole moment of order 
1/R7 being induced in each atom. The negative 

charge distribution of each atom has its center of 
gravity moved slightly toward the other. I t  is 
not the interaction of these dipoles which leads 
to van der Waals’ force, but rather the attraction 
of each nucleus for the distorted charge dis- 
tribution of its own electrons that gives the 
attractive l/R7 force. 

The author wishes to express his gratitude to 
Professor J. C. Slater who, by his advice and 
helpful suggestions, aided greatly in this work. 
He would also like to thank Dr. W. C. Herring 
for the latter’s excellent criticisms. 
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11. Classical and Quantum Electrodynamics 

While Feynman made many original and imaginative contributions to theoretical physics, 
it may well be that his place in the history of science will be largely based on his approach 
to renormalizing quantum electrodynamics (QED), and especially on the tools that he in- 
vented to accomplish that goal, such as path integrals, the operator calculus, and the famous 
Feynman diagrams. Eventually QED may be replaced by a finite theory, rather than the 
present divergent, though renormalizable, one. (QED is already incorporated in the unified 
electroweak theory, one of the two parts of the Standard Model.) Feynman himself never 
regarded renormalized QED as complete, frequently pointing out its limitations and sug- 
gesting that it was merely what we now call an “effective field theory.” But even if QED 
proves to be transitory, the theoretical methods that Feynman developed are permanently 
embedded in mathematical physics, and have been widely applied in areas far beyond their 
original domain. 

Of our nine selected papers that deal with electrodynamics, two are in the nature of 
reviews, one being his 1961 report to the Solvay Conference [45], included for its lively 
originality. The other is Feynman’s Nobel Lecture, which is placed first in this section on 
electrodynamics for a special reason. That is not because the Prize itself has great scientific 
significance. (He even thought of refusing it, had that been practical; its award to Feynman 
honors the Prize as much as its recipient.) Rather, paper [73] occupies the leading position 
here because it provides a far more valuable and eloquent commentary on this group of 
papers than could be produced in any other way. It outlines the significant steps, including 
the less successful ones, by which Feynman recognized and worked his way through the 
problem situation, from classical to quantum electrodynamics, to find the solution, and it 
tells about the physicists with whom he interacted. In its context as a Nobel Lecture it is a 
surprisingly “human” story; at the least, its style would surprise us if it were told by anyone 
other than Feynman. 

The separation of the various papers into neat groups is rather arbitrary, and I have 
chosen to place papers [7], [14], and [15], which also contain derivations of QED, in a separate 
Section I11 which emphasizes the methodological innovations, because they have a wide range 
of applications in other fields as well. This applies especially to [7], which describes the path 
integral method.‘ 

1I.A Classical and Quantum Electrodynamics - The Space-Time View 

Selected Paper 
[73] The development of the space-time view of quantum electrodynamics. In: Les Prix 
Nobel 1965. Stockholm, 1965: Imprimerie Royale P.A. Norstedt & Soner: 172-191. 

‘This is the subject of Feynman’s doctoral thesis, written at Princeton University, under the sponsorship of 
John Wheeler. We would have included this dissertation, but were unable to get permission to do so. 
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The development of the space-time view 
of quantum electrodynamics 

Nobel Lecture, December 1 I ,  1965 

We have a habit in writing articles published in scientific journals to make the 
work as finished as possible, to cover all the tracks, to not worry about the 
blind alleys or to describe how you had the wrong idea first, and so on. So 
there isn’t any place to publish, in a dignified manner, what you actually did 
in order to get to do the work, although, there has been in these days, some 
interest in this kind of thing. Since winning the prize is a personal thing, I 

thought I could be excused in this particular situation, if I were to talk per- 
sonally about my relationship to quantum electrodynamics, rather than to 
discuss the subject itself in a refined and finished fashion. Furthermore, since 
there are three people who have won the prize in physics, if they are all going 
to be talking about quantum electrodynamics itself, one might become bored 
with the subject. So, what I would like to tell you about today are the sequence 
of events, really the sequence of ideas, which occurred, and by which I finally 
came out the other end with an unsolved problem for which I ultimately 
received a prize. 

I realize that a truly scientific paper would be of greater value, but such a 
paper I could publish in regular journals. So, I shall use this Nobel Lecture as 
an opportunity to do something of less value, but which I cannot do elsewhere. 
I ask your indulgence in another manner. I shall include details of anecdotes 
which are of no value either scientifically, nor for understanding the develop- 
ment of ideas. They are included only to make the lecture more entertaining. 

I worked on this problem about eight years until the final publication in 
1947. The beginning of the thing was at the Massachusetts Institute of Tech- 
nology, when I was an undergraduate student reading about the known phys- 
ics, learning slowly about all these things that people were worrying about, 
and realizing ultimately that the fundamental problem of the day was that 
the quantum theory of electricity and magnetism was not completely satis- 
factory. This I gathered from books like those of Heitler and Dirac. I was in- 
spired by the remarks in these books; not by the parts in which everything 
was proved and demonstrated carefully and calculated, because I couldn’t 
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understand those very well. At the young age what I could understand were 
the remarks about the fact that this doesn’t make any sense, and the last sen- 
tence of the book of Dirac I can still remember, << It seems that some essentially 
new physical ideas are here needed. >> So, I had this as a challenge and an in- 
spiration. I also had a personal feeling, that since they didn’t get a satisfactory 
answer to the problem I wanted to solve, I don’t have to pay a lot of attention 
to what they did do. 

I did gather from my readings, however, that two things were the source 
of the difficulties with the quantum electrodynamical theories. The first was 
an infinite energy of interaction of the electron with itself. And this difficulty 
existed even in the classical theory. The other difficulty came from some in- 
finites which had to do with the infinite numbers of degrees of freedom in the 
field. As I understood it at the time( as nearly as I can remember) this was simply 
the difficulty that if you quantized the harmonic oscillators of the field (say in a 
box) each oscillator has a ground state energy of ( I/.) 6w and there is an infinite 
number of modes in a box of every increasing frequency o, and therefore 
there is an infinite energy in the box. I now realize that that wasn’t a complete- 
ly correct statement of the central problem; it can be removed simply by 
changing the zero from which energy is measured. At any rate, I believed 
that the difficulty arose somehow from a combination of the electron acting 
on itself and the infinite number of degrees of freedom of the field. 

Well, it seemed to me quite evident that the idea that a particle acts on itself, 
that the electrical force acts on the same particle that generates it, is not a 
necessary one-it is a sort of a silly one, as a matter of fact. And, so I suggested 
to myself, that electrons cannot act on themselves, they can only act on other 
electrons. That means there is no field at all. You see, if all charges contribute 
to making a single common field, and if that common field acts back on all 
the charges, then each charge must act back on itself. Well, that was where the 
mistake was, there was no field. It was just that when you shook one charge, 
another would shake later. There was a direct interaction between charges, 
albeit with a delay. The law of force connecting the motion of one charge 
with another would just involve a delay. Shake this one, that one shakes later. 
The sun atom shakes; my eye electron shakes eight minutes later, because of a 
direct interaction across. 

Now, this has the attractive feature that it solves both problems at once. 
First, I can say immediately, I don’t let the electron act on itself, I just let this 
act on that, hence, no self-energy! Secondly, there is not an infinite number 
of degrees of freedom in the field. There is no field at all; or if you insist on 
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thinking in terms of ideas like that of a field, this field is always completely 
determined by the action of the particles which produce it. You shake this 
particle, it shakes that one, but if you want to think in a field way, the field, 
if it’s there, would be entirely determined by the matter which generates it, 
and therefore, the field does not have any independent degrees of freedom and 
the infinities from the degrees offreedom would then be removed. As a mat- 
ter of fact, when we look out anywhere and see light, we can always << see >> 

some matter as the source of the light. We don’t just see light (except recently 
some radio reception has been found with no apparent material source). 

You see then that my general plan was to first solve the classical problem, 
to get rid of the infinite self-energies in the classical theory, and to hope that 
when I made a quantum theory of it, everything would just be fine. 

That was the beginning, and the idea seemed so obvious to me and so ele- 
gant that I fell deeply in love with it. And, like falling in love with a woman, it 
is only possible if you do not know much about her, so you cannot see her 
faults. The faults will become apparent later, but after the love is strong enough 
to hold you to her. So, I was held to this theory, in spite of all difficulties, by 
my youthful enthusiasm. 

Then I went to graduate school and somewhere along the line I learned 
what was wrong with the idea that an electron does not act on itself. When 
you accelerate an electron it radiates energy and you have to do extra work 
to account for that energy. The extra force against which this work is done is 
called the force of radiation resistance. The origin of this extra force was iden- 
tified in those days, following Lorentz, as the action of the electron itself The 
first term of this action, of the electron on itself, gave a kind of inertia (not 
quite relativistically satisfactory). But that inertia-like term was infinite for 
a point-charge. Yet the next term in the sequence gave an energy loss rate, 
which for a point-charge agrees exactly with the rate you get by calculating 
how much energy is radiated. So, the force of radiation resistance, which is 
absolutely necessary for the conservation of energy would disappear if I said 
that a charge could not act on itself. 

So, I learned in the interim when I went to graduate school the glaringly 
obvious fault of my own theory. But, I was still in love with the original 
theory, and was still thinking that with it lay the solution to the difficulties of 
quantum electrodynamics. So, I continued to try on and off to save it some- 
how. I must have some action develop on a given electron when I accelerate 
it to account for radiation resistance. But, if I let electrons only act on other 
electrons the only possible source for this action is another electron in the 
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world. So, one day, when I was working for Professor Wheeler and could no 
longer solve the problem that he had given me, I thought about this again and 
I calculated the following. Suppose I have two charges-I shake the first 
charge, which I think of as a source and this makes the second one shake, but 
the second one shaking produces an effect back on the source. And so, I cal- 
culated how much that effect back on the first charge was, hoping it might 
add up the force of radiation resistance. It didn’t come out right, of course, 
but I went to Professor Wheeler and told him my ideas. He said, -yes, but 
the answer you get for the problem with the two charges that you just men- 
tioned will, unfortunately, depend upon the charge and the mass of the second 
charge and will vary inversely as the square of the distance R, between the 
charges, while the force ofradiation resistance depends on none of these things. 
I thought, surely, he had computed it himself, but now having become a pro- 
fessor, I know that one can be wise enough to see immediately what some 
graduate student takes several weeks to develop. He also pointed out some- 
thing that also bothered me, that if we had a situation with many charges all 
around the original source at roughly uniform density and if we added the 
effect of all the surrounding charges the inverse R square would be compen- 
sated by the F i n  the volume element and we would get a result proportional 
to the thickness of the layer, which would go to infinity. That is, one would 
have an infinite total effect back at the source. And, finally he said to me, and 
you forgot something else, when you accelerate the first charge, the second 
acts later, and then the reaction back here at the source would be still later. In 
other words, the action occurs at the wrong time. I suddenly realized what a 
stupid fellow I am, for what I had described and calculated was just ordinary 
reflected light, not radiation reaction. 

But, as I was stupid, so was Professor Wheeler that much more clever. For 
he then went on to give a lecture as though he had worked this all out before 
and was completely prepared, but he had not, he worked it out as he went 
along. First, he said, let us suppose that the return action by the charges in the 
absorber reaches the source by advanced waves as well as by the ordinary re- 
tarded waves of reflected light; so that the law ofinteraction acts backward in 
time, as well as forward in time. I was enough of a physicist at that time not to 
say, << Oh, no, how could that be? >> For today all physicists know from study- 
ing Einstein and Bohr, that sometimes an idea which looks completely para- 
doxical at first, if analyzed to completion in all detail and in experimental 
situations, may, in fact, not be paradoxical. So, it did not bother me any more 
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than it bothered Professor Wheeler to use advance waves for the back reaction 
-a solution of Maxwell’s equations, which previously had not been physically 
used. 

Professor Wheeler used advanced waves to get the reaction back at the right 
time and then he suggested this : If there were lots of electrons in the absorber, 
there would be an index of refraction n, so, the retarded waves coming from 
the source would have their wave lengths slightly modified in going through 
the absorber. Now, if we shall assume that the advanced waves come back 
from the absorber without an index-why? I don’t know, let’s assume they 
come back without an index-then, there will be a gradual shifting in phase 
between the return and the original signal so that we would only have to 
figure that the contributions act as if they come from only a finite thickness, 
that of the first wave zone. (More specifically, up to that depth where the 
phase in the medium is shifted appreciably from what it would be in vacuum, 
a thickness proportional to I /(n - I ) . )  Now, the less the number of electrons 
in here, the less each contributes, but the thicker will be the layer that effec- 
tively contributes because with less electrons, the index differs less from I. The 
higher the charges of these electrons, the more each contribute, but the thinner 
the effective layer, because the index would be higher. And when we estimat- 
ed it, (calculated without being careful to keep the correct numerical factor) 
sure enough, it came out that the action back at the source was completely 
independent of the properties of the charges that were in the surrounding ab- 
sorber. Further, it was of just the right character to represent radiation resis- 
tance, but we were unable to see if it was just exactly the right size. He sent 
me home with orders to figure out exactly how much advanced and how 
much retarded wave we need to get the thing to come out numerically right, 
and after that, figure out what happens to the advanced effects that you would 
expect if you put a test charge here close to the source? For if all charges gen- 
erate advanced, as well as retarded effects, why would that test not be affected 
by the advanced waves from the source? 

I found that you get the right answer if you use half-advanced and half- 
retarded as the field generated by each charge. That is, one is to use the solution 
of Maxwell’s equation which is symmetrical in time and that the reason we 
got no advanced effects at a point close to the source in spite of the fact that 
the source was producing an advanced field is this. Suppose the source s sur- 
rounded by a spherical absorbing wall ten light seconds away, and that the 
test charge is one second to the right of the source. Then the source is as much 
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as eleven seconds away from some parts of the wall and only nine seconds 
away from other parts. The source acting at time t= o induces motions in the 
wall at time + ro.Advanced effects from this can act on the test charge as 
early as eleven seconds earlier, or at t= - sa this is just at the time that the 
direct advanced waves from the source should reach the test charge, and it 
turns out the two effects are exactly equal and opposite and cancel out! At 
the later time + reffects on the test charge from the source and from the walls 
are again equal, but this time are of the same sign and add to convert the half- 
retarded wave of the source to full retarded strength. 

Thus, it became clear that there was the possibility that if we assume all 
actions are via half-advanced and half-retarded solutions of Maxwell's equa- 
tions and assume that all sources are surrounded by material absorbing all the 
the light which is emitted, then we could account for radiation resistance as 
a direct action of the charges of the absorber acting back by advanced waves 
on the source. 

Many months were devoted to checking all these points. I worked to show 
that everything is independent of the shape of the container, and so on, that 
the laws are exactly right, and that the advanced effects really cancel in every 
case. We always tried to increase the efficiency of our demonstrations, and to 
see with more and more clarity why it works. I won't bore you by going 
through the details of this. Because of our using advanced waves, we also had 
many apparent paradoxes, which we gradually reduced one by one, and saw 
that there was in fact no logical difficulty with the theory. It was perfectly satis- 
factory. 

We also found that we could reformulate this thing in another way, and 
that is by a principle of least action. Since my original plan was to describe 
everything directly in terms of particle motions, it was my desire to represent 
this new theory without saying anything about fields. It turned out that we 
found a form for an action directly involving the motions of the charges only, 
which upon variation would give the equations of motion of these charges. 
The expression for this action A is 

where 

~ d z  = [xi, (ail - xi ,  (aj)] [xi, (ail - xj,(aj)] 
whereX$ (ai) is the four-vector position of the i "'particle as a function of 
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some parameter a;, X $  (ai)  is dX$ (a) 1 dai. The first term is the integral of 
proper time, the ordinary action of relativistic mechanics of free particles of 
mass mi. (We sum in the usual way on the repeated index p.) The second term 
represents the electrical interaction of the charges. It is summed over each pair 
of charges (the factor 1/2 is to count each pair once, the term i=j is omitted 
to avoid self- action) .The interaction is a double integral over a delta function 
of the square of space- time interval I2 between two points on the paths. Thus, 
interaction occurs only when this interval vanishes, that is, along light cones. 

The fact that the interaction is exactly one- half advanced and half- retarded 
meant that we could write such a principle of least action, whereas interaction 
via retarded waves alone cannot be written in such a way. 

So, all of classical electrodynamics was contained in this very simple form. 
It looked good, and therefore, it was undoubtedly true, at least to the beginner. 
It automatically gave half- advanced and half-retarded effects and it was with- 
out fields. By omitting the term in the sum when i = j, Iomit self-interaction 
and no longer have any infinite self-energy. This then was the hoped-for 
solution to the problem of ridding classical electrodynamics of the infinities. 

It turns out, of course, that you can reinstate fields if you wish to, but you 
have to keep track of the field produced by each particle separately. This is 
because to find the right field to act on a given particle, you must exclude the 
field that it creates itself. A single universal field to which all contribute will 
not do. This idea had been suggested earlier by Frenkel and so we called these 
Frenkel fields. This theory which allowed only particles to act on each other 
was equivalent to Frenkel’s fields using half- advanced and half-retarded solu- 
tions. 

There were several suggestions for interesting modifications of electro- 
dynamics. We discussed lots of them, but I shall report on only one. It was to 
replace this delta function in the interaction by another function, say, f( Pg), 
which is not infinitely sharp. Instead of having the action occur only when the 
interval between the two charges is exactly zero, we would replace the delta 
function of f b y  a narrow peaked thing. Let’s say that f(Z) is large only near 
Z= o width of order a’. Interactions will now occur when T- P i s  of order 
a’roughly where Tis the time difference and R is the separation of the charges. 
This might look like it disagrees with experience, but if a is some small dis- 
tance, like io”cm, it says that the time delay Tin action is roughly J R 2 +  uz 
or approximately,-if R is much larger than a, T= R+ a2/2R. This means 
that the deviation of time Tfrom the ideal theoretical time R of Maxwell, gets 
smaller and smaller, the further the pieces are apart. Therefore, all theories 
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involving in analyzing generators, motors, etc., in fact, all of the tests of 
electrodynamics that were available in Maxwell’s time, would be adequately 
satisfied if a were 10’” cm. If Ris of the order of a centimeter this deviation 
in Tis only io.‘6parts. So, it was possible, also, to change the theory in a 
simple manner and to still agree with all observations of classical electrody- 
namics. You have no clue of precisely what function to put in for f: but it was 
an interesting possibility to keep in mind when developing quantum electro- 
dynamics. 

It also occurred to us that if we did that (replace 6 by f )  we could not rein- 
state the term i =j in the sum because this would now represent in a relativis- 
tically invariant fashion a finite action of a charge on itself. In fact, it was pos- 
sible to prove that if we did do such a thing, the main effect of the self-action 
(for not too rapid accelerations) would be to produce a modification of the 
mass. In fact, there need be no mass m,, term, all the mechanical mass could 
be electromagnetic self-action. So, if you would like, we could also have an- 
other theory with a still simpler expression for the action A. In expression (I) 

only the second term is kept, the sum extended over all i and j ,  and some func- 
tion f replaces 6. Such a simple form could represent all of classical electro- 
dynamics, which aside from gravitation is essentially all of classical physics. 

Although it may sound confusing, I am describing several different alterna- 
tive theories at once. The important thing to note is that at this time we had 
all these in mind as different possibilities. There were several possible solu- 
tions of the difficulty of classical electrodynamics, any one of which might 
serve as a good starting point to the solution of the difficulties of quantum 
electrodynamics. 

I would also like to emphasize that by this time I was becoming used to a 
physical point of view different from the more customary point of view. In 
the customary view, things are discussed as a function of time in very great 
detail. For example, you have the field at this moment, a differential equation 
gives you the field at the next moment and so on; a method, which I shall call 
the Hamilton method, the time differential method. We have, instead (in (I) 
say) a thing that describes the character of the path throughout all of space 
and time. The behavior of nature is determined by saying her whole space- 
time path has a certain character. For an action like (I) the equations obtained 
by variation (ofxi, (ai)) are no longer at all easy to get back into Hamiltonian 
form. If you wish to use as variables only the coordinates of particles, then 
you can talk about the property of the paths- but the path of one particle at a 
given time is affected by the path of another at a different time. If you try to 
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describe, therefore, things differentially, telling what the present conditions 
of the particles are, and how these present conditions will affect the future- 
you see, it is impossible with particles alone, because something the particle 
did in the past is going to affect the future. 

Therefore, you need a lot of bookkeeping variables to keep track of what 
the particle did in the past. These are called field variables. You will, also, 
have to tell what the field is at this present moment, if you are to be able to see 
later what is going to happen. From the overall space- time view of the least 
action principle, the field disappears as nothing but bookkeeping variables in- 
sisted on by the Hamiltonian method. 

As a by-product of this same view, I received a telephone call one day at 
the graduate college at Princeton from Professor Wheeler, in which he said, 
<< Feynman, I know why all electrons have the same charge and the same mass >> 
<< Why? >> << Because, they are all the same electron! >> And, then he explained 
on the telephone, << suppose that the world lines which we were ordinarily 
considering before in time and space-instead of only going up in time were a 
tremendous knot, and then, when we cut through the knot, by the plane 
corresponding to a fixed time, we would see many, many world lines and 
that would represent many electrons, except for one thing. If in one section 
this is an ordinary electron world line, in the section in which it reversed itself 
and is coming back from the future we have the wrong sign to the proper 
time - to the proper four velocities - and that’s equivalent to changing the 
sign of the charge, and, therefore, that part of a path would act like a positron. >> 
<< But, Professor D, I said, << there aren’t as many positrons as electrons. >> << Well, 
maybe they are hidden in the protons or something >>, he said. I did not take 
the idea that all the electrons were the same one from him as seriously as I 
took the observation that positrons could simply be represented as electrons 
going from the future to the past in a back section of their world lines. That, I 
stole ! 

To summarize, when I was done with this, as a physicist I had gained two 
things. One, I knew many different ways of formulating classical electro- 
dynamics, with many different mathematical forms. I got to know how to 
express the subject every which way. Second, I had a point ofview-the over- 
all space- time point of view-and a disrespect for the Hamiltonian method 
of describing physics. 

I would like to interrupt here to make a remark. The fact that electrodynam- 
ics can be written in so many ways-the differential equations of Maxwell, 
various minimum principles with fields, minimum principles without fields, 
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all different kinds of ways,was something I knew, but I have never understood. 
It always seems odd to me that the fundamental laws of physics, when dis- 
covered, can appear in so many different forms that are not apparently iden- 
tical at first, but, with a little mathematical fiddling you can show the relation- 
ship. An example of that is the Schrodinger equation and the Heisenberg 
formulation of quantum mechanics. I don’t know why this is -it remains a 
mystery, but it was something I learned from experience. There is always an- 
other way to say the same thing that doesn’t look at all like the way you said it 
before. I don’t know what the reason for this is. I think it is somehow a repre- 
sentation of the simplicity of nature. A thing like the inverse square law is just 
right to be represented by the solution of Poisson’s equation, which, there- 
fore, is a very different way to say the same thing that doesn’t look at all like 
the way you said it before. I don’t know what it means, that nature chooses 
these curious forms, but maybe that is a way of defining simplicity. Perhaps a 
thing is simple if you can describe it fully in several different ways without im- 
mediately knowing that you are describing the same thing. 

I was now convinced that since we had solved the problem of classical 
electrodynamics (and completely in accordance with my program from M. 
I.T., only direct interaction between particles, in a way that made fields un- 
necessary) that everything was definitely going to be all right. I was convinced 
that all I had to do was make a quantum theory analogous to the classical one 
and everything would be solved. 

So, the problem is only to make a quantum theory, which has as its classical 
analog, this expression ([).Now, there is no unique way to make a quantum 
theory from classical mechanics, although all the textbooks make believe there 
is. What they would tell you to do, was find the momentum variables and re- 
place themby(&/i)(a/ax), but I couldn’t find a momentum variable, as there 
wasn’t any. 

The character of quantum mechanics of the day was to write things in the 
famous Hamiltonian way - in the form of a differential equation, which de- 
scribed how the wave function changes from instant to instant, and in terms of 
an operator, H. If the classical physics could be reduced to a Hamiltonian 
form, everything was all right. Now, least action does not imply a Hamilto- 
nian form if the action is a function of anything more than positions and veloc- 
ities at the same moment. If the action is of the form of the integral of a func- 
tion, (usually called the Lagrangian) of the velocities and positions at the same 
time 

S = JL(k,  X )  dt (2) 
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then you can start with the Lagrangian and then create a Hamiltonian and 
work out the quantum mechanics, more or lessuniquely. But this thing (I) 

involves the key variables, positions, at two different times and therefore, it 
was not obvious what to do to make the quantum-mechanical analogue. 

I tried - I would struggle in various ways. One of them was this; if I had 
harmonic oscillators interacting with a delay in time, I could work out what 
the normal modes were and guess that the quantum theory of the normal 
modes was the same as for simple oscillators and kind of work my way back 
in terms of the original variables. 1 succeeded in doing that, but I hoped then 
to generalize to other than a harmonic oscillator, but I learned to my regret 
something, which many people have learned. The harmonic oscillator is too 
simple; very often you can work out what it should do in quantum theory 
without getting much of a clue as to how to generalize your results to other 
systems. 

So that didn’t help me very much, but when I was struggling with this 
problem, I went to a beer party in the Nassau Tavern in Princeton. There was 
a gentleman, newly arrived from Europe (Herbert Jehle) who came and sat 
next to me. Europeans are much more serious than we are in America because 
they think that a good place to discuss intellectual matters is a beer party. So, 
he sat by me and asked, << what are you doing >> and so on, and I said, << I’m 
drinking beer. >> Then I realized that he wanted to know what work I was 
doing and I told him I was struggling with this problem, and I simply turned 
to him and said, ((listen, do you know any way of doing quantum mechanics, 
starting withaction - where the action integral comes into the quantum me- 
chanics? >> << No >>, he said, << but Dirac has a paper in which the Lagrangian, at 
least, comes into quantum mechanics. I will show it to you tomorrow. >> 

Next day we went to the Princeton Library, they have little rooms on the 
side to discuss things, and he showed me this paper. What Dirac said was the 
following : There is in quantum mechanics a very important quantity which 
carries the wave function from one time to another, besides the differential 
equation but equivalent to it, a kind of a kernal, which we might call K(x’, x ) ,  
which carries the wave function w (x) known at time t, to the wave function 
u, (x ’) at time, t +E. Dirac points out that this function K was analogous to the 
quantity in classical mechanics that you would calculate if you took the ex- 
ponential of it, multiplied by the Lagrangian L( i, x )  imagining that these 
two positions x,x’ corresponded t and t +E. In other words, 

i& ~ ( c x , x ) / f i  K ( x ’ , x )  is analogous to e 
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Professor Jehle showed me this, I read it, he explained it to me, and I said, 
<< what does he mean, they are analogous; what does that mean, analogous? 
What is the use of that? B He said, << you Americans ! You always want to find 
a use for everything! >> I said, that I thought that Dirac must mean that they 
were equal. << No >>, he explained, << he doesn’t mean they are equal. >> << Well >>, 
I said, << let’s see what happens if we make them equal. >> 

So I simply put them equal, taking the simplest example where the Lag- 
rangian is x / z M x 2 - V ( x )  but soon found I had to put a constant of propor- 
tionality A in, suitably adjusted. When I substituted heiEL/* for K to get 

and just calculated things out by Taylor series expansion, out came the Schro- 
dinger equation. So, I turned to Professor Jehle, not really understanding, and 
said, << well, you see Professor Dirac meant that they were proportional. >> Pro- 
fessor Jehle’s eyes were bugging out-he had taken out a little notebook and 
was rapidly copying it down from the blackboard, and said, << no, no,this is an 
important discovery. You Americans are always trying to find out how some- 
thing can be used. That’s a good way to discover things! >> So, I thought I was 
finding out what Dirac meant, but, as a matter of fact, had made the discovery 
that what Dirac thought was analogous, was, in fact, equal. I had then, at least, 
the connection between the Lagrangian and quantum mechanics, but still 
with wave functions and infinitesimal times. 

It must have been a day or so later when I was lying in bed thinking about 
these things, that I imagined what would happen if I wanted to calculate the 
wave function at a finite interval later. 

I would put one of these factors ei&L in here, and that would give me the 
wave functions the next moment, t+e  and then I could substitute that back 
into (3) to get another factor of ei&L and give me the wave function the next 
moment, t + 2 ~ .  and so on and so on. In that way I found myself thinking of a 
large number of integrals, one after the other in sequence. In the integrand was 
the product of the exponentials, which, of course, was the exponential of the 
sum of terms like EL. Now, L is the Lagrangian and E is like the time interval 
dt, so that if you took a sum of such terms, that’s exactly like an integral. 
That’s like Riemann’s formula for the integral Ldt, you just take the value 
at each point and add them together. We are to take the limit as E - 0, of 
course. Therefore, the connection between the wave function of one instant 
and the wave function of another instant a finite time later could be obtained 
by an infinite number of integrals, (because E goes to zero, of course) of ex- 
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ponential ( is  In) where S is the action expression (2). At last, I had succeeded 
in representing quantum mechanics directly in terms of the action S. 

This led later on to the idea of the amplitude for a path; that for each pos- 
sible way that the particle can go from one point to another in space-time, 
there’s an amplitude. That amplitude is e to the i/& times the action for the 
path. Amplitudes from various paths superpose by addition. This then is an- 
other, a third way, of describing quantum mechanics, which looks quite dif- 
ferent than that of Schrodinger or Heisenberg, but which is equivalent to 
them. 

Now immediately after making a few checks on this thing, what I wanted 
to do, of course, was to substitute the action (I) for the other (2). The first 
trouble was that I could not get the thing to work with the relativistic case of 
spin one-half. However, although I could deal with the matter only non- 
relativistically, I could deal with the light or the photon interactions perfectly 
well by just putting the interaction terms of (I) into any action, replacing the 
mass terms by the non-relativistic (Mx2/2)&. When the action has a delay, as 
it now had, and involved more than one time, I had to lose the idea of a wave 
function. That is, I could no longer describe the program as; given the ampli- 
tude for all positions at a certain time to compute the amplitude at another 
time. However, that didn’t cause very much trouble. It just meant develop- 
ing a new idea. Instead of wave functions we could talk about this; that if a 
source of a certain kind emits a particle, and a detector is there to receive it, 
we can give the amplitude that the source will emit and the detector receive. 
We do this without specifying the exact instant that the source emits or the 
exact instant that any detector receives, without trying to specify the state of 
anything at any particular time in between, but by just finding the amplitude 
for the complete experiment. And, then we could discuss how that amplitude 
would change if you had a scattering sample in between, as you rotated and 
changed angles, and so on, without really having any wave functions. 

It was also possible to discover what the old concepts of energy and momen- 
tum would mean with this generalized action. And, so I believed that I had a 
quantum theory of classical electrodynamics-or rather of this new classical 
electrodynamics described by action (I). I made a number of checks. If I took 
the Frenkel field point of view, which you remember was more differential, I 
could convert it directly to quantum mechanics in a more conventional way. 
The only problem was how to specify in quantum mechanics the classical 
boundary conditions to use only half-advanced and half-retarded solutions. 
By some ingenuity in defining what that meant, I found that the quantum 



22 

1 9  6 5 R I C H A R D  P . F E Y N M A N  

mechanics with Frenkel fields, plus a special boundary condition, gave me 
back this action, (1)in the new form of quantum mechanics with a delay. 
So, various things indicated that there wasn’t any doubt I had everything 
straightened out. 

It was also easy to guess how to modify the electrodynamics, if anybody 
ever wanted to modify it. I just changed the delta to an f ,  just as I would for 
the classical case. So, it was very easy, a simple thing. To describe the old re- 
tarded theory without explicit mention of fields I would have to write prob- 
abilities, not just amplitudes. I would have to square my amplitudes and that 
would involve double path integrals in which there are two S’s and so forth. 
Yet, as I worked out many of these things and studied different forms and dif- 
ferent boundary conditions. I got a kind of funny feeling that things weren’t 
exactly right. I could not clearly identify the difficulty and in one of the short 
periods during which I imagined I had laid it to rest, I published a thesis and 
received my Ph.D. 

During the war, I didn’t have time to work on these things very extensively, 
but wandered about on buses and so forth, with little pieces of paper, and 
struggled to work on it and discovered indeed that there was something 
wrong, something terribly wrong. I found that if one generalized the action 
from the nice Langrangian forms (2) to these forms (I) then the quantities 
which I defined as energy, and so on, would be complex. The energy values of 
stationary states wouldn’t be real and probabilities of events wouldn’t add 
up to 100%. That is, if you took the probability that this would happen and 
that would happen -everything you could think of would happen, it would 
not add up to one. 

Another problem on which I struggled very hard, was to represent rela- 
tivistic electrons with this new quantum mechanics. I wanted to do a unique 
and different way-and not just by copying the operators of Dirac into some 
kind of an expression and using some kind of Dirac algebra instead of ordinary 
complex numbers. I was very much encouraged by the fact that in one space 
dimension, I did find a way of giving an amplitude to every path by limiting 
myself to paths, which only went back and forth at the speed of light. The 
amplitude was simple (is) to a power equal to the number ofvelocity reversals 
where I have divided the time into steps E and I am allowed to reverse velocity 
only at such a time. This gives (as E approaches zero) Dirac’s equation in two 
dimensions-one dimension of space and one of time (&= M= c=I). 

Dirac’s wave function has four components in four dimensions, but in this 
case, it has only two components and this rule for the amplitude of a path 
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automatically generates the need for two components. Because if this is the 
formula for the amplitudes of path, it will not do you any good to know the 
total amplitude of all paths, which come into a given point to find the am- 
plitude to reach the next point. This is because for the next time, if it came in 
from the right, there is no new factor ie if it goes out to the right, whereas, if it 
came in from the left there was a new factor is. So, to continue this same infor- 
mation forward to the next moment, it was not sufficient information to know 
the total amplitude to arrive, but you had to know the amplitude to arrive 
from the right and the amplitude to arrive to the left, independently. If you did, 
however, you could then compute both of those again independently and thus 
you had to cany two amplitudes to form a differential equation (first order in 
time). 

And, so I dreamed that if I were clever, I would find a formula for the am- 
plitude of a path that was beautiful and simple for three dimensions of space 
and one of time, which would be equivalent to the Dirac equation, and for 
which the four components, matrices, and all those other mathematical funny 
things would come out as a simple consequence-I have never succeeded in 
that either. But, I did want to mention some of the unsuccessful things on 
which I spent almost as much effort, as on the things that did work. 

To summarize the situation a few years after the way, I would say, I had 
much experience with quantum electrodynamics, at least in the knowledge 
of many different ways of formulating it, in terms of path integrals of actions 
and in other forms. One of the important by-products, for example, of much 
experience in these simple forms, was that it was easy to see how to combine 
together what was in those days called the longitudinal and transverse fields, 
and in general, to see clearly the relativistic invariance of the theory. Because 
of the need to do things differentially there had been, in the standard quantum 
electrodynamics, a complete split of the field into two parts, one of which 
is called the longitudinal part and the other mediated by the photons, or 
transverse waves. The longitudinal part was described by a Coulomb potential 
acting instantaneously in the Schrodinger equation, while the transverse part 
had entirely different description in terms of quantization of the transverse 
waves. This separation depended upon the relativistic tilt of your axes in space- 
time. People moving at different velocities would separate the same field into 
longitudinal and transverse fields in a different way. Furthermore, the entire 
formulation ofquantum mechanics insisting, as it did, on the wave function at 
a given time, was hard to analyze relativistically. Somebody else in a different 
coordinate system would calculate the succession of events in terms of wave 
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functions on differently cut slices of space- time, and with a different separa- 
tion of longitudinal and transverse parts. The Hamiltonian theory did not 
look relativistically invariant, although, of course, it was. One of the great 
advantages of the overall point of view, was that you could see the relativistic 
invariance right away-or as Schwinger would say- the covariance was mani- 
fest. I had the advantage, therefore, of having a manifestedly covariant form 
for quantum electrodynamics with suggestions for modifications and so on. I 
had the disadvantage that if I took it too seriously-I mean, if I took it seriously 
at all in this form,-1 got into trouble with these complex energies and the 
failure of adding probabilities to one and so on. I was unsuccessfully struggling 
with that. 

Then Lamb did his experiment, measuring the separation of the 2S+ and 
zPf levels of hydrogen, finding it to be about 1000 megacycles of frequency 
difference. Professor Bethe, with whom I was then associated at Cornell, is a 
man who has this characteristic : If there’s a good experimental number you’ve 
got to figure it out from theory. So, he forced the quantum electrodynamics 
of the day to give him an answer to the separation of these two levels. He 
pointed out that the self-energy of an electron itself is infinite, so that the 
calculated energy of a bound electron should also come out infinite. But, when 
you calculated the separation of the two energy levels in terms of the corrected 
mass instead of the old mass, it would turn out, he thought, that the theory 
would give convergent finite answers. He made an estimate of the splitting 
that way and found out that it was still divergent, but he guessed that was 
probably due to the fact that he used an unrelativistic theory of the matter. 
Assuming it would be convergent if relativistically treated, he estimated he 
would get about a thousand megacycles for the Lamb-shift, and thus, made 
the most important discovery in the history of the theory of quantum electro- 
dynamics. He worked this out on the train from Ithaca, New York to Schen- 
ectady and telephoned me excitedly from Schenectady to tell me the result, 
which I don’t remember fully appreciating at the time. 

Returning to Cornell, he gave a lecture on the subject, which I attended. 
He explained that it gets very confusing to figure out exactly which infinite 
term corresponds to what in trying to make the correction for the infinite 
change in mass. If there were any modifications whatever, he said, even 
though not physically correct, (that is not necessarily the way nature actually 
works) but any mod&cation whatever at high frequencies, which would 
make this correction finite, then there would be no problem at all to figuring 
out how to keep track of everything. You just calculate the finite mass correc- 
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tion d rn to the electron mass rno, substitute the numerical values of rno + d rn for 
m in the results for any other problem and ali these ambiguities would be 
resolved. If, in addition, this method were relativistically invariant, then we 
would be absolutely sure how to do it without destroying relativistically in- 
variant. 

After the lecture, I went up to him and told him, << I can do that for you, I’ll 
bring it in for you tomorrow. >> I guess I knew every way to modify quantum 
electrodynamics known to man, at the time. So, I went in next day, and ex- 
plained what would correspond to the modification of the delta-function to f 
and asked him to explain to me how you calculate the self-energy of an elec- 
tron, for instance, so we can figure out if it’s finite. 

I want you to see an interesting point. I did not take the advice of Professor 
Jehle to find out how it was useful. I never used all that machinery which I 
had cooked up to solve a single relativistic problem. I hadn’t even calculated 
the self-energy of an electron up to that moment, and was studying the dif- 
ficulties with the conservation of probability, and so on, without actually 
doing anything, except discussing the general properties of the theory. 

But now I went to Professor Bethe, who explained to me on the blackboard, 
as we worked together, how to calculate the self-energy of an electron. Up to 
that time when you did the integrals they had been logarithmically divergent. 
I told him how to make the relativistically invariant modifications that I 
thought would make everything all right. We set up the integral which then 
diverged at the sixth power of the frequency instead of logarithmically! 

So, I went back to my room and worried about this thing and went around 
in circles trying to figure out what was wrong because I was sure physically 
everything had to come out finite, I couldn’t understand how it came out 
infinite. I became more and more interested and finally realized I had to learn 
how to make a calculation. So, ultimately, I taught myself how to calculate 
the self-energy of an electron working my patient way through the, terrible 
confusion of those days of negative energy states and holes and longitudinal 
contributions and so on. When I finally found out how to do it and did it with 
the modifications I wanted to suggest, it turned out that it was nicely conver- 
gent and finite, just as I had expected. Professor Bethe and I have never been 
able to discover what we did wrong on that blackboard two months before, 
but apparently we just went off somewhere and we have never been able to 
figure out where. It turned out, that what I had proposed, if we had carried it 
out without making a mistake would have been all right and would have 
given a finite correction. Anyway, it forced me to go back over all this and to 
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convince myself physically that nothing can go wrong. At any rate, the cor- 
rection to mass was now finite, proportional to In (mu /ti) where a is the width 
of that function f which was substituted for 6. If you wanted an unmodified 
electrodynamics, you would have to take a equal to zero, getting an infinite 
mass correction. But, that wasn’t the point. Keeping a finite, I simply followed 
the program outlined by Professor Bethe and showed how to calculate all the 
various things, the scatterings of electrons from atoms without radiation, the 
shifts of levels and so forth, calculating everything in terms of the experimen - 
tal mass, and noting that the results as Bethe suggested, were not sensitive to a 
in this form and even had a definite limit as a + 0. 

The rest of my work was simply to improve the techniques then available 
for calculations, making diagrams to help analyze perturbation theory 
quicker. Most of this was first worked out by guessing-you see, I didn’t have 
the relativistic theory of matter. For example, it seemed to me obvious that 
the velocities in non-relativistic formulas have to be replaced by Dirac’s 
matrix a or in the more relativistic forms by the operators yr.  I just took my 
guesses from the forms that I had worked out using path integrals for non- 
relativistic matter, but relativistic light. It was easy to develop rules of what 
to substitute to get the relativistic case. I was very surprised to discover that 
it was not known at that time, that every one of the formulas that had been 
worked out so patiently by separating longitudinal and transverse waves could 
be obtained from the formula for the transverse waves alone, if instead of 
summing over only the two perpendicular polarization directions you would 
sum over all four possible directions of polarization. It was so obvious from 
the action (1)that I thought it was general knowledge and would do it all the 
time. I would get into arguments with people, because I didn’t realize they 
didn’t know that; but, it turned out that all their patient work with the longi- 
tudinal waves was always equivalent to just extending the sum on the two 
transverse directions of polarization over all four directions. This was one of 
the amusing advantages of the method. In addition, I included diagrams for 
the various terms of the perturbation series, improved notations to be used, 
worked out easy ways to evaluate integrals, which occurred in these problems, 
and so on, and made a kind of handbook on how to do quantum electrody- 
namics. 

But one step of importance that was physically new was involved with the 
negative energy sea of Dirac, which caused me so much logical difficulty. I got 
so confused that I remembered Wheeler’s old idea about the positron being, 
maybe, the electron going backward in time. Therefore, in the time depen- 
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dent perturbation theory that was usual for getting self-energy, I simply sup- 
posed that for a while we could go backward in the time, and looked at what 
terms I got by running the time variables backward. They were the same as 
the terms that other people got when they did the problem a more complicat- 
ed way, using holes in the sea, except, possibly, for some signs. These, I, at 
first, determined empirically by inventing and trying some rules. 

I have tried to explain that all the improvements of relativistic theory were 
at first more or less straightforward, semi-empirical shenanigans. Each time I 
would discover something, however, I would go back and I would check it 
so many ways, compare it to every problem that had been done previously 
in electrodynamics (and later, in weak coupling meson theory) to see if it 
would always agree, and so on, until I was absolutely convinced of the truth 
of the various rules and regulations which I concocted to simplify all the work. 

During this time, people had been developing meson theory, a subject I 
had not studied in any detail. I became interested in the possible application 
of my methods to perturbation calculations in meson theory. But, what was 
meson theory? All I knew was that meson theory was something analogous 
to electrodynamics, except that particles corresponding to the photon had a 
mass. It was easy to guess the 6 function in (I), which was a solution of d’Alem- 
bertian equals zero, was to be changed to the corresponding solution of d’A- 
lembertian equals rn’. Next, there were different kind of mesons-the one in 
closest analogy to photons, coupled via yByr, are called vector mesons- there 
were also scalar mesons. Well, maybe that corresponds to putting unity in 
place of the y p ,  I would here then speak of << pseudo vector coupling >> and I 
would guess what that probably was. I didn’t have the knowledge to under- 
stand the way these were defined in the conventional papers because they 
were expressed at that time in terms of creation and annihilation operators, 
and so on, which, I had not successfully learned. I remember that when some- 
one had started to teach me about creation and annihilation operators, that this 
operator creates an electron, I said, << how do you create an electron? It dis- 
agrees with the conservation of charge >>, and in that way, I blocked my mind 
from learning a very practical scheme of calculation. Therefore, I had to find 
as many opportunities as possible to test whether I guessed right as to what the 
various theories were. 

One day a dispute arose at a Physical Society meeting as to the correctness 
of a calculation by Slotnick of the interaction of an electron with a neutron 
using pseudo scalar theory with pseudo vector coupling and also, pseudo scalar 
theory with pseudo scalar coupling. He had found that the answers were not 
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the same, in fact, by one theory, the result was divergent, although convergent 
with the other. Some people believed that the two theories must give the same 
answer for the problem. This was a welcome opportunity to test my guesses 
as to whether I really did understand what these two couplings were. So, I 
went home, and during the evening I worked out the electron neutron scat- 
tering for the pseudo scalar and pseudo vector coupling, saw they were not 
equal and subtracted them, and worked out the difference in detail. The 
next day at the meeting, I saw Slotnick and said, << Slotnick, I worked it out 
last night, I wanted to see if I got the same answers you do. I got a different 
answer for each coupling-but, I would like to check in detail with you be- 
cause I want to make sure of my methods. >> And, he said, << what do you mean 
you worked it out last night, it took me six months ! D And, when wecompared 
the answers he looked at mine and he asked, << what is that Q in there, that 
variable Q? N (I had exp-essions like (tan -‘Q) /Q etc.). I said, << that’s the mo- 
mentum transferred by the electron, the electron deflected by different angles. >> 

<< Oh n, he said, << no, I only have the limiting value as Q approaches zero; the 
forward scattering. B Well, it was easy enough to just substitute Q equals zero 
in my form and I then got the same answers as he did. But, it took him six 
months to do the case of zero momentum transfer, whereas, during one eve- 
ning I had done the finite and arbitrary momentum transfer. That was a thrill- 
ing moment for me, like receiving the Nobel Prize, because that convinced 
me, at last, I did have some kind of method and technique and understood 
how to do something that other people did not know how to do. That was my 
moment of triumph in which I realized I really had succeeded in working out 
something worthwhile. 

At this stage, I was urged to publish this because everybody said it looks like 
an easy way to make calculations, and wanted to know how to do it. I had to 
publishit, missing two things; one was proof of every statement in a mathemat- 
ically conventional sense. Often, even in a physicist’s sense, I did not have a 
demonstration of how to get all of these rules and equations from conventio- 
nal electrodynamics. But, I did know from experience, from fooling around, 
that everything was, in fact, equivalent to the regular electrodynamics and 
had partial proofs of many pieces, although, I never really sat down, like 
Euclid did for the geometers of Greece, and made sure that you could get it 
all from a single simple set of axioms. As a result, the work was criticized, I 
don’t know whether favorably or unfavorably, and the << method >> was called 
the aintuitive method)). For those who do not realize it, however, I should 
like to emphasize that there is a lot of work involved in using this <<intuitive 
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method>> successfully. Because no simple clear proof of the formula or idea 
presents itself, it is necessary to do an unusually great amount of checking and 
rechecking for consistency and correctness in terms of what is known, by com- 
paring to other analogous examples, limiting cases, etc. In the face of the lack 
of direct mathematical demonstration, one must be careful and thorough to 
make sure of the point, and one should make a perpetual attempt to demon- 
strate as much of the formula as possible. Nevertheless, a very great deal more 
truth can become known than can be proven. 

It must be clearly understood that in all this work, I was representing the 
conventional electrodynamics with retarded interaction, and not my half- 
advanced and half-retarded theory corresponding to (I). I merely use (I) to 
guess at forms. And, one of the forms I guessed at corresponded to changing 6 
to a function f of width a’, so that I could calculate finite results for all of the 
problems. This brings me to the second thing that was missing when I publish- 
ed the paper, an unresolved difficulty. With 6 replaced by f the calculations 
would give results which were not << unitary >>, that is, for which the sum of the 
probabilities of all alternatives was not unity. The deviation from unity was 
very small, in practice, if a was very small. In the limit that I took a very tiny, 
it might not make any difference. And, so the process of the renormalization 
could be made, you could calculate everything in terms of the experimental 
mass and then take the limit and the apparent difficulty that the unitary is 
violated temporarily seems to disappear. I was unable to demonstrate that, as 
a matter of fact, it does. 

It is lucky that I did not wait to straighten out that point, for as far as I know, 
nobody has yet been able to resolve this question. Experience with meson 
theories with stronger couplings and with strongly coupled vector photons, 
although not proving anything, convinces me that if the coupling were 
stronger, or if you went to a higher order ( 137th order of perturbation theory 
for electrodynamics), this difficulty would remain in the limit and there 
would be real trouble. That is, I believe there is really no satisfactory quantum 
electrodynamics, but I’m not sure. And, I believe, that one of the reasons for 
the slowness of present-day progress in understanding the strong interactions 
is that there isn’t any relativistic theoretical model, from which you can really 
calculate everything. Although, it is usually said, that the difficulty lies in the 
fact that strong interactions are too hard to calculate, I believe, it is really be- 
cause strong interactions in field theory have no solution, have no sense- 
they’re either infinite, or, if you try to modify them, the modification destroys 
the unitarity. I don’t think we have a completely satisfactory relativistic quan- 
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turn- mechanical model, even one that doesn’t agree with nature, but, at least, 
agrees with the logic that the sum of probability of all alternatives has to be 
100%. Therefore, I think that the renormalization theory is simply a way to 
sweep the difficulties of the divergences of electrodynamics under the rug. I 
am, of course, not sure of that. 

This completes the story of the development of the space-time view of 
quantum electrodynamics. I wonder if anything can be learned from it. I 
doubt it. It is most striking that most of the ideas developed in the course of 
this research were not ultimately used in the final result. For example, the 
half-advanced and half-retarded potential was not finally used, the action 
expression (I)  was not used, the idea that charges do not act on themselves 
was abandoned. The path-integral formulation of quantum mechanics was 
useful for guessing at final expressions and at formulating the general theory 
of electrodynamics in new ways-although, strictly it was not absolutely 
necessary. The same goes for the idea of the positron being a backward 
moving electron, it was very convenient, but not strictly necessary for the 
theory because it is exactly equivalent to the negative energy sea point of 
view. 

We are struck by the very large number of different physical viewpoints and 
widely different mathematical formulations that are all equivalent to one an- 
other. The method used here, ofreasoning in physical terms, therefore, appears 
to be extremely inefficient. On looking back over the work, I can only feel a 
kind of regret for the enormous amount of physical reasoning and mathe- 
matically re-expression which ends by merely re-expressing what was pre- 
viously known, although in a form which is much more efficient for the cal- 
culation of specific problems. Would it not have been much easier to simply 
work entirely in the mathematical framework to elaborate a more efficient 
expression? This would certainly seem to be the case, but it must be remarked 
that although the problem actually solved was only such a reformulation, the 
problem originally tackled was the (possibly still unsolved) problem of avoid- 
ante of the inifinities of the usual theory. Therefore, a new theory was sought, 
not just a modification of the old. Although the quest was unsuccessful, we 
should look at the question of the value of physical ideas in developing a new 
theory. 

Many different physical ideas can describe the same physical reality. Thus, 
classical electrodynamics can be described by a field view, or an action at a 
distance view, etc. Originally, Maxwell filled space with idler wheels, and 
Faraday with fields lines, but somehow the Maxwell equations themselves are 
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pristine and independent of the elaboration of words attempting a physical 
description. The only true physical description is that describing the experi- 
mental meaning of the quantities in the equation-or better, the way the 
equations are to be used in describing experimental observations. This being 
the case perhaps the best way to proceed is to try to guess equations, and dis- 
regard physical models or descriptions. For example, McCullough guessed 
the correct equations for light propagation in a crystal long before his col- 
leagues using elastic models could make head or tail of the phenomena, or 
again, Dirac obtained his equation for the description of the electron by an 
almost purely mathematical proposition. A simple physical view by which all 
the contents of this equation can be seen is still lacking. 

Therefore, I think equation guessing might be the best method to proceed 
to obtain the laws for the part of physics which is presently unknown. Yet, 
when I was much younger, I tried this equation guessing and I have seen 
many students try this, but it is very easy to go off in wildly incorrect and im- 
possible directions. I think the problem is not to find the best or most efficient 
method to proceed to a discovery, but to find any method at all. Physical 
reasoning does help some people to generate suggestions as to how the un- 
known may be related to the known. Theories of the known, which are de- 
scribed by different physical ideas may be equivalent in all their predictions 
and are hence scientifically indistinguishable. However, they are not psycho- 
logically identical when trying to move from that base into the unknown. For 
different views suggest different kinds of modifications which might be made 
and hence are not equivalent in the hypotheses one generates from them in 
ones attempt to understand what is not yet understood. I, therefore, think 
that a good theoretical physicist today might find it useful to have a wide range 
of physical viewpoints and mathematical expressions of the same theory (for 
example, of quantum electrodynamics) available to him. This may be asking 
too much of one man. Then new students should as a class have this. If every 
individual student follows the same current fashion in expressing and think- 
ing about electrodynamics or field theory, then the variety of hypotheses 
being generated to understand strong interactions, say, is limited. Perhaps 
rightly so, for possibly the chance is high that the truth lies in the fashionable 
direction. But, on the off-chance that it is in another direction-a direction 
obvious from an unfashionable view of field theory-who will find it? Only 
someone who has sacrificed himself by teaching himself quantum electro- 
dynamics from a peculiar and unusual point of view; one that he may have to 
invent for himself. rsay sacrificed himself because he most likely will get 
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nothing from it, because the truth may lie in another direction, perhaps even 
the fashionable one. 

But, if my own experience is any guide, the sacrifice is really not great be- 
cause if the peculiar viewpoint taken is truly experimentally equivalent to the 
usual in the realm of the known there is always a range of applications and 
problems in this realm for which the special viewpoint gives one a special 
power and clarity of thought, which is valuable in itself. Furthermore, in the 
search for new laws, you always have the psychological excitement of feeling 
that possible nobody has yet thought of the crazy possibility you are looking 
at right now. 

So what happened to the old theory that I fell in love with as a youth? 
Well, I would say it’s become an old lady, that has very little attractive left in 
her and the young today will not have their hearts pound when they look at 
her anymore. But, we can say the best we can for any old woman, that she 
has been a very good mother and she has given birth to some very good chil- 
dren. And, I thank the Swedish Academy of Sciences for complimenting one 
of them. Thank you. 
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1I.B Action-at-a-Distance Classical Electrodynamics 

While still an undergraduate at NIT, Feynman became aware of the so-called divergence 
problems of QED. That is, physical quantities which should have been calculable by the 
theory, such as the self-mass of the electron (the effect of the action of the electron’s own 
electromagnetic field on its mass), were predicted to have an absurd result: infinity. Feynman 
knew that a similar result was predicted classically; namely, the energy contained in the 
Coulomb field of a point charge is theoretically infinite. As he said in his Nobel Lecture, his 
“general plan was to first solve the classical problem, to get rid of the infinite self-energies 
and to hope that when I made a quantum theory of it, everything would just be fine.” The 
idea which he embraced (“fell deeply in love with”) was to replace the field itself by “delayed 
action-at-a-distance.” In this view the electron would act only on other charges, not on itself, 
and the field would be only a useful invention for representing that delayed interaction. He 
abandoned this idea after an accurate experimental value obtained for the Lamb shift in 
hydrogen in the late 1940s showed the presence of an effect called “vacuum polarization,” 
which could only be obtained by using the full field concept.’ 

Papers [4] and [lo] are, respectively, Part 3 and Part 2 of a three-part paper projected 
by John Archibald Wheeler and Richard Phillips Feynman. Part 1, never published (and 
probably never written), was to have been a careful study of the classical limit of the quantum 
theory of radiation. Paper [4] introduces the absorber theory, according to which half of the 
electromagnetic field propagates before the electron emitting it accelerates (advanced) and 
half as it accelerates (retarded). The advanced field is assumed to be absorbed in distant 
matter, where it would reradiate and arrive at the accelerating electron at the right time 
and in the right amount to produce the “radiation reaction” that is needed to reduce the 
radiating electron’s kinetic energy by the amount of energy that it is radiates. There are 
no observable “advanced effects.” That was the solution to the problem of lack of energy 
conservation that would result (as Wheeler had pointed out to Feynman) if the electron’s 
radiated field did not act back upon the electron. Edward Kerner has remarked that the 
“ ‘complete absorption’ in the electromagnetic universe is a kind of electrodynamic Mach’s 
principle accounting marvelously for the appearance of the Lorentz-Dirac force of radiation 
damping, and for the appearance of retarded interactions on the local scene.”2 

Paper [lo], “Classical Electrodynamics in Terms of Direct Interparticle Interaction,” was 
published in 1949 while Feynman was deeply involved in his work on quantum electrodynam- 
ics. Like [4] it is a scholarly paper, published in the Reviews of M o d e m  Physics. Remarking 
on it in an interview, Feynman said, “That was written by Wheeler, and was done essentially 
independently. We worked t ~ g e t h e r . ” ~  By this he meant that the contents were worked out 
jointly with Wheeler, who did the actual writing. The paper continues the critique of clas- 
sical electrodynamics begun in [4], based upon this idea: The field of a charge is determined 
by its motion; its field is only sensed by its action on other charges, whose motions act back 
upon the first charge. Thus it should be possible to eliminate the field and to discuss directly 

‘In a letter to John Wheeler in 1951, Feynman wrote, iiI wish to deny the correctness of the assumption that” 
electrons act only on other electrons, citing two pieces of evidence, one being the Lamb shift. He concluded 
the letter thus: “So I think we guessed wrong in 1941. Do you agree?” (Feynman to Wheeler, May 4, 1951). 
‘E.H. Kerner, ed., The Theory of Action-at-a-Distance i n  Relativistic Particle Dynamics. New York, 1972, 
pp. viii-ix. 
31nterview of Feynman by Charles Weiner, June 27, 1966, p. 39. 
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how the motion of one charge affects the motion of another. This can be done by writing 
the relativistic expression for the principle of least action, which determines the equations of 
motion of the charges (Fokker’s action principle). The last requires the use of half-advanced 
and half-retarded four-vector potentials, and this leads to a discussion on the “paradox of 
advanced effects.” 

Paper [8] is included in this section because it is a further step in Feynman’s plan to 
modify classical electrodynamics as a forerunner to attacking the problems of QED. Again it 
uses the action-at-a-distance approach, half-advanced and half-retarded interaction, and the 
Fokker action principle, although Feynman points out that his modification of the classical 
“pointlike” interaction could also be applied to the conventional electrodynamics. However , 
the latter makes use of the Hamiltonian method that singles out the time as a preferred 
variable, making it difficult to construct a relativistic theory, which is more symmetrical 
in time and space. Indeed, using the Hamiltonian requires keeping track of an infinity of 
variables on a plane of constant time in space-time (or on a spacelike surface). That would 
be at least as complicated as the field concept that Feynman is trying to eliminate. 

The solution invoked by H.A. Lorentz to the classical electron self-energy problem at 
the turn of the century was to give the electron a finite size. In [8], Feynman introduces an 
equivalent relativistic “cut-off ” that spreads out the interaction, conventionally occurring 
only on the light-cone ( “pointlike” interaction), over a small timelike interval. This finite 
interval can be chosen as small as one wishes, and it would in principle be possible to 
determine it experimentally at high energy. The paper also discusses the least action solution 
to the problem of an electron striking a barrier and penetrating it, either directly, or indirectly 
by a process involving the production of a virtual positron electron pair. It introduces the 
forerunner of the Feynman diagrams, containing an electron moving “backward in time” to 
represent the positron! 

Selected Papers 
[4] With J.A. Wheeler. Interaction with the absorber as the mechanism of radiation, Rev. 

[lo] With J.A. Wheeler. Classical electrodynamics in terms of direct interparticle action. 
Rev. Mod. Phys. 21 (1949): 425-433. 
[8] A relativistic cut-off for classical electrodynamics. Phys. Rev. 74 (1948): 939-946. 

Mod. Phys. 17 (1945): 157-181. 
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Interaction with the Absorber as the Mechanism 
of Radiationt* 

JOHN ARCHIBAED WHI~I<LIX** A N D  RICIIARD PHILLIPS FEYS\I . \N*** 

P a l m e r  P h y s i c a l  Laboratory ,  P r i n c e t o n  U n i v e r s i t y ,  P r i n c e t o n ,  Xexl J e r s e y  

“We must, thercfore, be prcpatctl to lind that  further advance into this region will require 
a still more extensive renunciation of features which we are  accustotncd to tleniand of the 
space time niodc of description.”-Nicls Bohr’ 

PAST FAILURE OF ACTION AT A DISTANCE TO 
ACCOUNT FOR THE MECHANISM OF RADIATION 

T was the 19th of March in 1845 when Gauss I described the conception of a n  action at a 
distance propagated with a finite velocity, the 
natural generalization to electrodynamics of the 
view of force so fruitfully applied by Newton and 
his followers. I n  the century between then and 
now what obstacle has discouraged the general 
use of this conception in the study of iiaturc? 

The difficulty has not been that of giving to 
the idea of propagated action a t  i i  distance a 

* A preliminary account of the considerations which 
appear in this paper was presented by us a t  the Cambridge 
meeting of the American Physical Society, Fcbriiary 21, 
1941, Phys. Rev. 59, 683 (1941) 

** On leave of absence from Princeton Ilniversity. 
*** Now a member of the faculty of Cornell Univcrsity, 

but on leave of absence from that institution. 
t Introductory Note.-In commemoration of thc sixtieth 

birthday of Niels Bohr i t  had been hoped to prcscnt a 
critique of classical field theory which has been in prepara- 
tion since before the war by the writer and his former 
student, R. P. Feynman. The accompanying joint article, 
representing the third par t  of the survey, is however the 
only section now finished. The war has postponed comple- 
tion of the other parts. As reference to them is made in 
the present section, it may be useful to outline the plan of 
the survey. 

The motive of the analysis is to clear the present 
quantum theory of interacting particles of those of, its 
difficulties which have a purely classical origin. The 
method of approach is to define a s  closely a s  one can 
within the bounds of classical theory the proper use of the 
held concept in the description of nature. Division I is 
intended first to recall the possibility of idealizing to the 
case of arbitrarily small quantum effects. a possibility 
which is offered by the freedom of choice in the present 
quantum theory for the dimensionless ratio (quantum of 
angular momentum) (velocity of light)/(electronic charge)2; 
then however to recognize the possible limitations placed 
on this analysis by the relatively large value, 137, of the 
ratio in question in nature; and finally to present a general 
summary of the conclusions drawn from the more technical 
parts of the survey. The plan of the second article is a 
derivation and resum6 of the theory of action a t  a distance 
of Schwarzschild and Fokker, to prepare this theory as a 
tool to analyze the field concept. From the correlation of 
the two points of view, one comes to Frenkel’s solution of 
the problem of self-energy in the classical field theory and 

suitable embodiment of elcctroinagrictic cqiix- 
tions. This problem, to be true, rcrnained i in-  

solved to Gauss and his successors for three 
quarters of the centur).. B u t  the formulation 
then developed by Schnarzschild and Fokker, 
described and amplified i n  another article,2 
demonstrated that the conception of Gauss is at 
the same time mathematically self consistent, 
in agreement with experience 011 static and 
current electricity, and in complcte harmony 
with Maxwell’s equations. 

To  find the real obstacle to acceptance of the 
tool of Newton and Gauss for the analysis of 
forces, we have to go beyond thc bounds of 
steady-state electromagnetism to thc phenomena 
of emission and propagation of cnerg).. No 
branch of science has done morc than radiation 
physics to favor the evolution of present concepts 
of field or more to pose difficulties for the idea of 
action a t  a distance. The difficulties haw bcen 
twofold-to obtain a satisfactory account of the 
field generated by a n  accelerated charge a t  a 

to new expressions for the energy of electromagnetic 
interaction in the theory of action a t  a distance. The third 
division, which is published herewith, is a n  analysis of thc 
mechanisnl of radiation believed to complete the last tie 
between action a t  a distance and field theory and to 
remove the obstacle which has so far prevented the use of 
both points of view as complementary tools in the de- 
scription of nature. I t  is the plan of a subsequent divisioii 
to discuss the problems which arise when the fields a re  
regarded a s  subordinate entities with no degrees of freedoin 
of their own. An infinite number of degrees of freedom arc  
found to be attributed to the particles themselves by the 
theory of propagated action a t  a distance. Hoivever, it  
appears tha t  the additional modes of motion are divergent 
and have on this account to be excluded by a general 
principle of selection. Acceptance of this principle leads 
to the conclusion that  the union of action a t  a distance 
and field theory constitutes the natural and self-consistent 
generalization of Newtonian mechanics to the four- 
dimensional space of Lorentz and Einstein.-J. -1. \V. 

Niels Bohr, Atomic Theory and the Description of Nature 
(Cambridge University Press, Teddington, England, 1934). 

Unpublished, see Introductory Note. 

157 
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remote point and to understand the source of 
the force experienced by the charge itself as a 
result of its motion: 

(a) An accelerated charge generates a field given, ac- 
cording to the formulation of SchwarzschiM and Fokker, 
by half the usual retarded solution of Maxwell's equations, 
plus half the advanced solution. From the presence of the 
advanced field in the expression for the electric vector, i t  
follows that  a distant test body will experience a prenioni- 
tory force well before the source itself has commenced to  
move. To avoid a conclusion so opposed to experience 
RitzJ and Tetrode' proposed to~abandon the symmetry in 
time of the elementary law of force. However, it  was then 
necessary to give up the possibility to derive the equations 
of motion and all the electromagnetic forces consistently 
from a single unified principle of least action like that  of 
Fokker. More important, the sacrifice made to alleviate 
one difficulty of the theory of action a t  a distance did not 
help to solve the other, the problem of the origin of the 
force of radiative reaction. 

(b) Experience indicates that  an accelerated charge 
suffers a force of damping which is simultaneous with the 
moment of acceleration. However, the theory of action a t  
a distance predicts that an accelerated charge in otherwise 
charge-free space will experience no electric force. To 
exclude the acceleration and thus to avoid the ,issue does 
not appear reasonable. Uncharged particles can be present 
and can accelcrate the charge via gravitational forces. I t  
seems just as  difficult to explain the reactive force when 
other charged particles are present. They will indeed be 
set into motion and will act back on the source. However, 
if these elementary interactions have the purely retarded 
character assumed by Ritz, and also by Frenkel,' the 
reaction will arrive at  the accelerated particle too late and 
will have the wrong magnitude' to produce the damping 
phenomenon. On the other hand, interactions symmetrical 
between past and future-the half-retarded, half-advanced 
fields of the unified theory of action at a distance-have so 
far appeared to be equally incapable of accounting for the 
observed force of radiative reaction, with its definitely 
irreversible character. 

I t  is clear why the viewpoint of Newton and 
Gauss has not been generally applied in recent 
times; it has so far failed to give a satisfactory 
account of the mechanism of radiation. 

The failure of action a t  a distance cannot pass 
unnoticed by field theory. The two points of 
view, according to the thesis of the present 
critique, are not independent, but mutually 
complementary. Consequently field theory, too, 
faces in the radiation problem a significant issue: 

* W. Ritz, Ann. d .  Chem. e t  d. Physique 13, 145 (1908). 
H. Tetrode, Zeits. f .  Physik 10, 317 (1922). 
I]. Frenkel, Zeits. f .  Physik 32, 518 (1925). 
6 J. L. Synge, Proc. Roy. Soc. London Al77, 118 (1940). 

does this theory give an explanation for the 
observed force of radiative reaction which can 
be translated into the particle mechanics of 
Schwarzschild and Fokker, or does i t  likewise 
fail to provide a complete picture of the mecha- 
nism of radiation? 

In attacking the radiation problem our first 
move, following the above reasoning, is to review 
the status of the reaction force in  existing classi- 
cal field theory. No more intelligible clue is found 
to  the physical origin of the force in this theory 
than in the theory of action at a distance. 
Stopped on this approach, we take up a sug- 
gestion made long ago by Tetrode that the act 
of radiation should have some connection with 
the presence of an absorber. We develop this 
idea into the thesis that the force of radiative 
reaction arises from the action on the source 
owing to the half-advanced fieIds of the particles 
of the absorber; or, more briefly, that radiation 
is a matter as much of statistical mechanics as 
of pure electrodynamics. We find that this thesis 
leads to a quantitative solution of the radiation 
problem. Finally we examine some of the impli- 
cations of this thesis for the conception of 
causality. 

THE STATUS OF RADIATIVE REACTION IN 
FIELD THEORY 

A charged particle on being accelerated sends 
out electromagnetic energy and itself loses 
energy. This loss is interpreted as caused by a 
force acting on the particle given in magnitude 
and direction by the expression 

2 (charge)2 (time rate of change of acceleration), 
3 (velocity of light)3 

when the particle is moving slowly, and by a 
more complicated expression when its speed is 
appreciable relative to the velocity of light. The 
existence of this force of radiative reaction is 
well attested : (a) by the electrical potential 
required to drive a wireless antenna; (b) by the 
loss of energy experienced by a charged particle 
which has been deflected, and therefore aeceler- 
ated, in its passage near an atomic nucleus; and 
(c) by the cooling suffered by a glowing body. 

The origin of the force of radiative reaction 
has not been nearly so clear as its existence. 
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Lorentz’ considers the charged particle to have 
a finite size and attributes the force i n  question 
to the retarded action of one part of the particle 
on another. His expression for the forcc appears 
as a series in powers of the radius of the particle. 
The first term in the series gives the expression 
already mentioned. Otherwise, the derivation 
leads to difficulties: 

(a) All higher terms depend explicitly up011 the structure 
assumed for the entity. These dubious terms enter in a 
more and more important way into the calculated law of 
radiative reaction a s  the frequency of oscillation of the 
particle is raised, and  the period approaches the time 
required for light to cross the system. 

(b) Nonelectric forces are  required to hold together the 
charge distribution, according to Poincar6,8 for to neglect 
such forces is to violate the relativistic relation between 
mass and energy. A composite system of this kind would 
possess a n  infinite number of internal degrees of freedom 
of oscillation. No consistent model has been found for the 
Lorentz electron in either classical or quantum mechanics. 

Briefly, Lorentz attempts to propose a physical 
mechanism behind the radiative reaction, but 
arrives at a mathematically incomplete expres- 
sion for this force. 

D i r a ~ , ~  in contrast, advances no explanation 
for the origin of the radiative damping, but 
supplies a well-defined and relativistically in- 
variant prescription to calculate its magnitude: 

Let the motion of the particle be given. Calculate the 
field produced by the particle from Maxwell’s equations, 
with the boundary condition that  a t  large distances from 
the particle this field shall contain only outgoing waves. 
I n  addition to the so-defined retarded field of the particle, 
calculate its advanced field, the sole change being the 
existence of only convergent waves a t  large distances. 
Define half the difference between retarded and advanced 
fields a s  the radiation field (half the quantity denoted as 
radiation field by Dirac). This field is everywhere finite. 
Evaluate i t  a t  the position of the particle and multiply by 
the magnitude of the charge to obtain the force of radiative 
reaction. 

Dirac’s prescription is appealing. (a) I t  is well-defined. 
(b) The calculated force reduces for slowly moving particles 
to the simple expression which was given above and which 
has been wel!-tested a t  non-relativistic velocities. (c) The  
calculation treats the elementary charge a s  being localized 
a t  a mathematical point, a picture which is not only 
physically reasonable but  also translatable into quantum 

‘H. A. Lorentz (1892), republished in his Collected 
Papers. Vol. 11, pp. 281 and 343. See also his treatise 
The Theory of Elecictfons (Leipzig, 1909), pp. 49 and 253. 

*P. A. M. Dirac, Proc. Roy. Soc. London A167, 148 
(1938). 

H. Poincarci, Rend. Palermo 21, 165 (1906). 

mechanics. (d) The elements of the prescription involve no 
more than standard electromagnetic theory plus the as- 
sumption that  the radiation field, a s  above defined, is the 
source of the force. 

The physical origin of Dirac’s radiation field is never- 
theless not clear. (a) This field is defined for times before 
a s  well a s  after the moment of acceleration of the particle. 
(b) The field has no singularity a t  the position of the 
particle and b y  Maxwell’s equations must, therefore, be 
attributed either to sources other than the charge itself 
or to radiation coming in from a n  infinite distance. 

We accept as reasonable Dirac’s results. His 
concept of radiation field, however, we cannot 
adopt as an assumption subject to no further 
analysis. To  do so would be to add to field theory 
a principle incapable of translation into the 
language of action at a distance. 

To carry the analysis further requires us to 
find a new idea. We go back to a suggestion once 
made by Tetrode.Io He proposed to abandon the 
conception of electromagnetic radiation as a n  
elementary process and to interpret it as a con- 
sequence of a n  interaction between a source and 
a n  absorber. In his words, 

“The sun would not radiate if it  were alone in space and 
no other bodies could absorb its radiation. . . . I f  for 
ewmple I observed through my telescope yesterday eve- 
ning that s tar  which let us say is 100 light years away, then 
not only did I know that  the light which it allowed to 
reach my eye was emitted 100 years ago, but  also the s tar  
or individual atoms of it knew already 100 years ago that  I ,  
who then did not even exist, would view it yesterday 
evening a t  such and such a time. . . . One might ac- 
cordingly adopt the opinion that  the amount of material 
in the universe determines the rate of emission. Still this 
is not necessarily so, for two competing absorption centers 

lo H. Tetrode, Zeits. f .  Physik 10. 317 (1922). When we 
gave a preliminary account of the considerations which 
appear in this paper (Cambridge meeting of the American 
Physical Society, February 21, 1941, Phys. Rev. 59. 683 
(1941)) we had not seen Tetrode’s paper. We are indebted 
to Professor Einstein for bringing to our attention the 
ideas of Tetrode and also of Ritz, who is cited in this 
article. An idea similar to that  of Tetrode was subsequently 
proposed by G. A’. Lewis, Nat. Acad. Sci. Proc. 12, 22 
(1926): “I a m  going to make the . . . assumption that  
a n  atom never emits light except to another atom, and to 
claim that  it is a s  absurd to think of light emitted by one 
atom regardless of the existence of a receiving atom as it 
would be to think of a n  atom absorbing light without the 
existence of light to be absorbed. I propose to eliminate 
the idea of mere emission of light and substitute the idea of 
transmission, or a process of exchange of energy between 
two definite atoms or molecules.” Lewis went nearly a s  far 
a s  it is possible to go without explicitly recognizing the 
importance of other absorbing matter in the system, a 
point touched upon by Tetrode, and shown below to  be  
essential for the existence of the normal radiative mech- 
anism. 
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will not collaborate but  will presumably interfere with 
each other. I f  only the amount of matter is great enough 
and is distributed to some extent in all directions, further 
additions to it may well be Xvithout influence.” 

Tetrode’s idea tha t  the absorber may be an essential 
element in the mechanism of radiation has been neglected, 
perhaps partly because it appears to conflict with custom- 
ary notions of causality, and partly also because of his 
mistaken belief that  the ne\v point of view could by itself 
explain quantum phenomena. In  this connection he as- 
sumed that  the interaction between charged particles 
should be described by forces more complicated than those 
given by electromagnetic theory. Finally, a s  Tetrode 
remarks, “on She last pages we have let our conjectures 
go rather far beyond what has niathenatically been 
proven.” 

ABSORBER RESPONSE AS THE MECHANISM OF 
RADIATIVE REACTION 

We take up the proposal of Tetrcde that 
the absorber may be an essential element in the 
mechanism of radiation. Using the language of 
the theory of xtioii  a t  a distance, we give the 
idea the following detinite formulation: 

( 1 )  An accelerated point charge in otherwise charge-free 
space does not radiate electromagnetic energy. 

( 2 )  The fields which act on a given particle arise only 
from other particles. 

( 3 )  These fields are represented by one-half the retarded 
plus one-half the advanced Libnard-Wiechert solutions of 
Maxwell’s equations. This law of force is symmetric with 
respect to past and future. I n  connection with this assump- 
tion we may recall an inconclusive but  illuminating dis- 
cussion carried on by Ritz and Einstein in 1909, in which 
“Ritz treats the limitation to retarded potentials a s  one of 
the foundations of the second law of thermodynamics, 
while Einstein believes that  the irreversibility of radiation 
depends exclusively on considerations of probability.”” 
’I‘etrode, himself, like Ritz, was willing to assume ele- 
mentary interactions which were not symmetric in time. 
However, complete reversibility is assumed here because 
it is an essential element in  a unified theory of action a t  a 
distance. In proceeding 011 the basis of this symmetrical 
law of interaction, we shall be testing not only Tetrode’s 
idea of absorber reaction, but also Einstein’s view that  the 
one-sidedness of the force of radiative reaction is a 
purely statistical phenomenon. This point leads to our 
final assumption: 

(4) Sufficiently many particles are present to absorb 
completely the radiation given off by the source. 

On the basis of these assumptions we shall 
consider as the source of radiation an accelerated 
charge located in  the absorbing system. A tlis- 
turbance travels outward from the source. By it 

W. Ritz and A. Einstein, Physik. Zeits. 10, 323 (1909); 
see also W. Ritz, Ann. d. Chemie e t  d. Physique 13, 145 
(1908). 

each particle of the absorber is set in motion and 
caused to generate a field, half-advanced and 
half-retarded. The sum of the advanced effects 
of all particles of the absorber, evaluated in the 
neighborhood of the source, gives a field which 
we find to have the following properties: 

(1) I t  is independent of the properties of the absorbing 
medium. 

(2) I t  is completely determined by the motion of the 
source . 

( 3 )  I t  exerts on the source a force which is finite, is 
simultaneous with the moment of acceleration, and is just  
sufficient in magnitude and direction to take away from 
the source the energy which later shows u p  in the sur- 
rounding particles. 
(4) I t  is equal in magnitude to one-half the retarded 

field minus one-half the advanced field generated by the  
accelerated charge. I n  other words, the absorber is the 
physical origin of Dirac’s radiation lield. 

(5) This field coiiil~incs with the ha!f-retarded, half- 
advanced field of the source to give for the total disturbance 
the f u l l  retarded lield \\ hich accords with experience. 

I t  will be sufficient to establish these results in  
order to have botb i n  field theory and in the 
theory of action a t  a distance a solution of the 
problem of radiation, including an explanation 
of the force of radiative damping. 

We shall present four derivations of the reac- 
tion of radiation on the source of successively 
increasing generality. In  the tirst we consider an 
absorber in which the particles are far from one 
another. We assume without proof that the 
disturbance which passes through the medium 
is the full  retarded field of experience. In the 
second derivation we examine the field of the 
absorber in the neighborhood of the source and 
find it just such as to compensate the advanced 
field of the accelerated charge and to give a 
retarded field of the previously assumed magni- 
tude. I n  this case we have allowed the medium 
to have arbitrary density. ‘The third derivation 
-in contrast to the first two, where the source 
was taken to be a t  rest or moving only slowly- 
considers the case of motion with arbitrary 
velocity and leads to the same relativistic ex- 
pression which Dirac has given for the force of 
radiative reaction. All three treatments proceed 
by adding up the fields owing to the individual 
particles of the absorber. A fourth derivation 
uses a much more general approach, assuming 
only that the medium is a complete absorber. 



39 

A B S O R B E R  T H E O R Y  O F  R A D I A T I O N  161 

THE RADIATIVE REACTION: DERIVATION I 

For a first analysis of the mechanism of 
radiative reaction, we shall simplify as much as 
possible the properties of the absorber: 

(a) it is taken to be composed of free-char& particles; 
(b) these corpuscles are a t  rest or are moving only 

slowly with respect to the particle which we treat as the 
source; 

(c) the charged entities are well separated from one 
another; 

(d) the particles occupy space to distances sufficiently 
great to bring about essentially coniplete absorption of 
radiation from the source. 

We begin by considering the reaction set up 
between the source and a typical charge in the 
absorber when the particlc of the source receives 
an acceleration 3, by collision with a third 
particle or otherwise. The source has a charge 
+e  and, therefore, sends out an electromagnetic 
disturbance. This effect traverses the distance 
Y k  to the particle of the absorber, rcacliing i t  at 
a time ( i k / c )  seconds later than the instant of 
acceleration. For the electric field acting on the 
absorber at this place and time, we adopt the 
usual retarded solution of Maswcll’s equation, 
in conformity with espericuce, but without any 
attempt in this first derivation of the force of 
radiative reaction to reconcile such an assump- 
tion with the half-retarded, half-advanced field 
of the theory of action a t  a distance. A t  the 
distances in which we are interested, the retarded 
field of the source reduces to the well-known 
expression, 

- ( e 3 / r k c 2 )  sin (Yl, r k ) ,  (1) 

together with a term of electrostatic origin. This 
second term falls off inversely as the square of 
the distance and may, therefore, be neglccted. 
The electric vector lies in the plane defined by 
the directions of % and i k ,  is perpendicular to Y k ,  

and is considered positive when its component 
along the direction of % is positive. 

The typical particle of the absorber has a 
charge ek and mass mk. I t  will experience in the 
electric field of the disturbance an acceleration, 
%k,  equal to ( e k / m k )  times expression (I). Its 
motion will generate a field which will be half- 
advanced and half-retarded. The advariccd part 
of this field will exert on the source a force 
silnultaneous with the original acceleration. The 
component of this reactive force along the 

direction of the acceleration will be 
- e ( e r % / 2 r k c * )  sin (3, YJ 

= (91e2/24(ek2/mrrk2) sin2 (3, i k ) .  (2) 
From expression (2) for the reactive force due 

to one particle of the absorber, we can evaluate 
the total effect due to many particles, present to 
the number N per unit of voluiiie. The number 
of particles in a spherical shell of thickness d r k  

will be 4rNrk2drk. For the particles in this shell 
the average value of the geometrical factor 
sin2 (3, i k )  will be ( 2 / 3 ) .  Consequently we obtain 
for total force of reaction the integral of the 
expression 

(3) ( 2 % e 2 / 3 c S )  ( 2  rNek2/nzkc) d y k .  

The force (3) gives an account of the phe- 
nomenon of radiative reaction which is not i n  
accord with experience: 

(1) The force acts on the source in phase with its 
acceleration; or in other words, it is proportional to the 
acceleration itself rather than to the time rate of change 
of acceleration. 

(2) The reaction depends upon the nature of the ab- 
sorbing particles. 

(3)  The force appears at first sight to grow without 
limit as the number of particles or the thickness of the 
absorber is indefinitely increased. 

Nevertheless, proper addition of the effects duc 
to all the particles of a complcte absorber, with 
due allowance for their phase relations, does 
lead, as we shall see, to a reasonable expression 
for the reaction on the source. 

There exists a phase lag between outgoing 
disturbance and returning reaction which we 
have not taken into account. The advanced force 
acting on the source due to the motion of a 
typical particle of the absorber is an elementary 
interaction between two charges, propagated 
with the speed of light in vacuum. On the other 
hand, the disturbance which travels outward 
from the source and determines the motion of 
the particle in question is made up not only of 
the proper field of the originally accelerated 
charge, but also of the secondary fields generated 
in the material of the absorber. The elementary 
interactions are of course propagated with the 
speed of light; but the combined disturbance 
travels, as is well known from the theory of the 
refractive index, at a different speed, 

c/(refractive index) = c /n .  



1 6 2  J .  A .  W H E E L E R  A N D  R .  P .  F E Y N M A N  

I n  order to speak of the change in velocity of 
the disturbance, or to treat the refractive index 
of the absorber in a well-defined way, it will be 
necessary to consider a single Fourier component 
of the acceleration. The  connection between 
acceleraticn and reactive force being a linear 
one, i t  will be legitimate to decompose the 
acceleration in to  parts of this kind, and later 
to recompose the corresponding Fourier compo- 
nents of the radiative reaction. We  shall, there- 
fore, suppose for the moment tha t  the primary 
acceleration varies with time according to the 
formula 

%=Bo exp (-id), (4) 

where w represents the circular frequency of the 
motion. A disturbance of this frequency will 
experience in a medium of low density a refrac- 
t ivc index given by the familiar formula, 

( 5 )  

'I'hus the radiative reaction which reaches the 
source from a depth r k  in the absorber will lag 
i n  phase behind the acceleration by the angle 

?t = 1 - 2TNek2/mkW2. 

\Ve apply this phase correction to the contribu- 
tion (3) of absorber particles in the range r h  to 
rk+drk,  and sum over all depths in the medium 
to obtain the total reactive force, 

( 2 e 2 / 3 C 3 ) ? f l * (  2 X N e k 2 / W Z k C ) d 7 r  
XeXp ( - i 7 k 2 ? f N e k 2 / m k c w ) .  ( 7 )  

This integral will converge at the upper limit 
when we allow for the existence of a small but 
finite coefficient of absorption in the medium. 
Or i n  the language of physical optics, so familiar 
from the writings of R. W. Wood, we can say 
that we have to determine the  combined effect 
of a number of wave zones, alternately i n  and 
out of phase ivith the acceleration. The  resultant 
force is 90" out of phase with the acceleration 
and is equal in magnitude to the arithmetic 
s u m  of the contributions from depths up to  a 
point where the phase lag is one radian : 

(total reaction) = ( 2 e 2 / 3 c 3 ) (  - i d )  
= ( 2 8 / 3 C 3 )  (dg ldt ) .  (8) 

This result, derived by considering only a single 
Fourier component of the acceleration, no longer 

contains explicit reference to the  frequency of 
tha t  component. Consequently expression (8) 
applies whatever is the dependence of acceler- 
ation upon time, so long as the velocities of all 
particles remain non-relativistic. In  this respect 
we have a quite general derivation of the  law of 
radiative reaction generally accepted as correct 
for a slowly moving particle subjected to a n  
arbitrary acceleration. 

\Ve conclude that the force of radiative reac- 
tion arises, not from the  direct action of a 
particle upon itself, bu t  from the  advanced 
action upon this charge caused by  the future 
motion of the particles of the absorber. 

RADIATIVE REACTION: DERIVATION I1 

I n  t h e  above treatment we considered first the 
retarded electromagnetic disturbance traveling 
outward in the absorbing medium ; second, the 
motion of the pnrticles of the  medium due to this 
disturbance; third, the advanced part  of the 
elementary fields produced by these motions; 
fourth, the sun1 of these fields at the  position of 
the source. ? b e  same chain of reasoning will 
allow us to sum the elementary advanced fields 
of the particles of the absorbing medium at points 
in the neighborhood of the source. We shall find 
tha t  this field is just sufficient, when added to 
the lialf-advanced, half-retarded field of the 
soul-ce itself, to give the usual full strength 
purely retarded field which one is accustomed to 
attribute to a radiating source. T h u s  we shall 
justify the assumption made in the  first deriva- 
tion as to the strength of the  outgoing disturb- 
ance. I n  order to make it clear t ha t  our reasoning 
is not circular, we shall represent the  magnitude 
of the disturbance by a multiple, (?), of the 
usual fall retarded field, and shall actually deduce 
the value unity for this a t  present undetermined 
factor. 

\ire shall now evaluate the contribution of 
particles i n  the absorber t o  the  electric field 
acting i n  the region roundabout the  source. In 
order t o  simplify the geometrical considerations 
as much as possible, we shall visualize the source 
as located a t  the center of a spherical cavity of 
radius R in the medium. We  shall t ake  the 
distance, r ,  from the source to the  point of 
evaluation of the field to be small in comparison 
with th i s  radius. We shall however give up the 
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assumption that the particles of the absorber are 
necessarily free, or that they are far from one 
another. To make this generalization in our 
previous derivation, we shall espress the acccler- 
ation of the typical particle of the absorber for 
a disturbance of circular frequency w in the form 

(electric field of disturbance). ( e k / n z k )  . p ( w ) .  (9) 
Here p ( w )  is in general a complex function of w 
which approaches unity only i n  the case of weak 
binding or high frequencies. 'The factor p ( w ) ,  
according to the theory of dispersion, determines 
the complex refractive index, n - i k ,  of the 
medium: 

1 - (n - i k ) 2 =  ( 4 7 r N e ~ ~ / m ~ w ~ ) p ( w ) .  (10) 

The advanced field produced by the absorber 
at  the distance from the source will be given in 
amplitude and phase by the product of the 
following factors: 
% = % o  exp (- id), 

the acceleration of the source, here assumed for 
simplicity to be periodic, although this periodicity 
will drop out of the final result. 

the factor by which theacceleration must be multiplied 
to obtain the strength of the full retarded electric ficld 
in vacuum a t  a great distance.,,rt. froin an accclcrated 
particle of charge e. 

factor as yet undetermined, which allows for the 
possibility that the disturbance which is propagated 
outward from the particle, and which is in  general 
due only partly to the source itself, may differ in 
strength from the usual full retarded field. For ;in 
isolated charge in otherwise charge-free space this fac- 
tor is equal to ( t ) .  In  the present case of a complete 
absorber we shall however later find for this factor the 
value unity. The product of the factors so far gives 
the strength of the electric field which would act 011 

an isolated particle a t  the distance r k .  

the phase of the disturbance which would act o n  such 
an isolated particle. 

factor by which the strength of the electric field of 
the disturbance inside the medium is reduced by 
reflection a t  the wal! of the cavity, a factor taken 
over from electromagnetic theory. 

factor allowing for the change in phase and amplitude 
of the disturbance produced by propagation to the 
depth (rr-R) in the medium. 

factor relating acceleration of absorber particle t o  
electric field experienced by it. 

- (e/rkc2) sin (PI, rk) .  

(?I! 

exp (iordc), 

2( 1 +n- &-I,  

exp (iw(n-ik- l ) ( r k - R ) / c ) ,  

( e t l m t ) p ( w )  

- (Ck/2rkc*)  sin (H, It), 
factor to be multiplied by acceleration of absorber 
particle to give the magnitude of the component of 
the advanced electric field produced by the absorber 
in the neighborhood of, and parallel to the acceleration 
of, the source. 

factor allowing for the difference in phase between 
(a) the advanced field of the absorber as evaluated 
'it the source itself and (b) the acceleration of the 
typical absorber particle. 

correction to be applied to phase of absorber field a t  
the source itself in order to evaluate this field a t  the 
distance, r, from the source. The product of the factors 
so far gives in magnitude and phase the advanced 
field a t  this point owing to a single particle of the 
absorber. 

number of absorber particles in the element of solid 
angle dR and in the interval of distance drA 

\\re evaluate the product of the listed factors 
and sum over all particles of the absorber to 
evaluate the total advanced field of the absorber 
.n the neighborhood of the source: 

( ')(e/c3)Y10 exp ( -iw!) 

C k p  (-?Urk/C), 

c \p  (twr cos (r, rk)/c), 

A'rt'drLddR, 

I 

esp ( i ( w / c ) r  cos ( Y ,  Y L ) )  s, 
Xsinz (8, ik)(dQ/47r) k( 47rNek2/mkc) p ( w )  ( 1 + n - ik)-'dr k 

The last integral is simplified by the relationship 
(10) between refractive index and physical 
properties of the medium to an expression 

Xesp ( ~ w ( n - ~ ~ - l ) ( Y k - ~ ) / c ) .  (11) 

lm(Cd ' /c ) ( l  - n f i k ) d r k  

xcvp ( ~ ~ ( ~ - i k - l ) ( ~ k - ~ ) / G ) =  - i W ,  (12) 

completely independent of the properties of the 
absorber. Having thus summed over all particles 
lying in a given direction, we sum over different 
directions, using the relations 

(dQ/4~)=(1/2)d cos ( I ,  1k)(dp/2~), (13) 

where (a is the dihedral angle between the ( Y ,  PI) 
and ( 7 ,  Y k )  planes; and 

J sin? (a, rk)(dp/2n) 

= ( ~ / ~ ) J [ ~ - - P z ( C O S  (3, r k ) ) 3 9 / 2 n  

= (2/3)[1--P~(cOS (3, Y))P,(cos ( y k t  y))]. (14) 
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={ -u2/15 for small u 
(16) 

(eiu - e+)/2iu for large 11.  

By use of these mathematical results, we find 
that the advanced field of the absorber has in 
the cavity an electric component parallel to the 
acceleration of the source which is given in 
magnitude and phase by the expression 

(?)(2e/3c3)(-ido) exp (--id) 
[Fo(mr/c) -Pz(~~~ (U, ~))FZ(WT/C)]. (17) 

The radiation field so obtained reduces a t  the 
source itself to the form 

( ? ) ( 2 e / 3 4  ( d ' l l l 4 ,  (18) 

and a t  distances a number of wave-lengths from 
the source goes over into the expression 

- (?)(e%o/2rcz) exp ( k / c - i u ~ )  
+ ( ?) (e?Io/2rc2) exp ( - i w r / c  - id). ( 19) 

In words, formula (19) states that the advanced 
field of the absorber is equal in the neighborhood 
of the accelerated particle to the still undeter- 
mined factor (?), multiplied by the difference 

between half the retarded field (first term) and 
half the advanced field (second term) which one 
calculates for the source itself. 

I t  is instructive to see how superposition of the 
advanced fields of a large number of particles 
can give the appearance of both retarded and 
advanced fields due to the source itself. The 
advanced field of a single charge of the absorber 
can be symbolized as a sphere which is converging 
towards the particle and which will collapse upon 
it a t  just the moment when it is disturbed by 
the source. But a t  the moment when the source 
particle itself was accelerated, the sphere in 
question had a substantial radius. One point on 
i t  touched, or nearly touched, the source. The 
shrinking sphere therefore appears to the source 
as a nearly plane wave which passes over it 
headed towards one of the particles of the 
absorber. When we consider the effect of all the 
absorbing charges, we.have to visualize an  array 
of approximately plane waves, all marching to- 
wards the source and passing over it in step. 
The resultant of these individual effects is a 
spherical wave, the envelope of the many nearly 
plane waves. The sphere converges, collapses on 
the source, and then pours out again as a 
divergent sphere. An observer in the neighbor- 
hood will gain the impression that this divergent 
wave originated from the source. 

A test particle will be unable to make a 
separation between the two retarded fields, one 
properly owing to the source, the other really 
owing to the advanced field of the absorber. 
Thus we have for the disturbance diverging 
from the source the relation 

actually composed of parts converging (20) 
total disturbance propcr retarded field apparently diverging from source, 
diverging from ) = (field of source ) + ( 
source itself on individual absorber particles 

We are now in a position to evaluate the uncle- 
termined factor, (?), in the expression we have 
used in the above analysis for the force acting 
on the typical particle of the absorber. We have 
only to express all three terms of Eq. (20) in 
units of the usual retarded solution of Maxwell's 
equations, a solution which asymptotically for 
large distances from the source gives for the 
electric field parallel to the acceleration the 
expression 

- (eU/rc2) sin2 (U, r ) .  (21) 

To evaluate the third term in (20), we refer back 
to Eq. (19). Thus we find the algebraic equation 

(?) = (1/2)+(?/2), (22) 

( I )=  (1/2)+(1/2). (23) 

of which the solution is 

From our derivation we find for the disturbance 
diverging from an accelerated charge the f u l l  
retarded field required by experience. 

Along the same lines we can find the strength 
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of the advanced field converging upon thc source before the moment of acceleratjoii : 
total disturbance proper advanced 
converging on ) = (field of source 
source itself 

held apparcntly convergent on source, 

on  individual absorber particles 
actually composed of parts convergent ) . (24) 

At distances of sevcral wave-lengths from the 
source, the two terms on the right possess simple 
mathematical expressions. Measured i n  terms of 
(21) as a unit of field strength, the right-hand 
side of (24) has the value (1/2) - (1/2) = 0. We 
conclude tha t  there is no net disturbance con- 
verging upon the source prior to the time of 
acceleration. T h e  advanced field of the source is 
completely compensated by the advanced field 
of the absorber. 

Our picture of the mechanism of radiation is 
seen to be self-consistcnt. Any particle on being 
accelerated generates a field which is half- 
advanced and half-retarded. From the source a 
disturbance travels outward in to the surrounding 
absorbing medium and sets into motion a11 the 
constituent particles. They generate a field which 
is equal to half the rctardcd minus half the 
advanced field of the source. In this field we have 
the explanation of the radiation field assumed by 
Dirac. The  radiation field combincs with the ficld 
of the source itself to produce the usual retarded 
effects which wc cspcct from observation, and 
such retarded effects only. ‘The radiation field 
also acts on thc sourcc itsclf to produce thc force 
of radiative rcaction. \\That ivc have said of one 
particle holds for cvcry particle in a complctcly 
absorbing medium. All advanced fields are con- 
cealed by interference. Their effects show up  
directly only in the forcc of radiative reaction. 
Otherwise we appear to have a system of particles 
acting on each other via purely retarded forces. 

RADIATIVE REACTION: DERIVATION I11 

So far the source has been assumed to be a t  

rest, or in slow motion, at the time of accelera- 
tion. The  expression derived a1)ovc for the force 
of radiative reaction is thcrefol-c limited in  its 
applicability. T o  obtain the corrcspoiiding law 
of damping for a swift particle tlircc possibilities 
suggest themselves, each calling for a matlic- 
matical technique quite differcn t from that of 
the other two. The  first and simplest procedure 
is to look at the particle from a frame of reference 
moving with nearly its own specd, apply in this 
frame the expression which wc already have, 
and then transform back to the laboratory frame 
of reference. This application of thc transforma- 
tion of Lorentz is perfectly Icgitimate but not 
especially instructive. 

A second method to calculate the force of 
reaction for a fast particle coincs from Dirac. 
He makes the assumption tha t  the damping 
arises from the action on the particle of a field 
equal to half the difference be tnwn  thc particle’s 
own retarded and advanced ficlds, a conccptioii 
which we have now interprctctl i n  terms of the 
radiative reaction of the absorbcr. As cach of the 
two fields is individually singulat- a t  the location 
of the charge, evaluation of thc diffcteiicc re- 
quires one to apply a limiting Iiroccss which 
presents a certain mathematical difficulty, though 
in principle perfectly straightforivartl. 

In connection with the limiting proccss of 
Dirac, i t  is interesting to refer back to the 
calculation of radiative reaction made bj. Lorcntz 
on the model of an  extended charge, evcry part 
of which exerted a retarded effect upon cvcry 
other part. The  elementary retarded field can be 
written in the form 

Here the first term is singular and is related to  
what Lorentz called the electromagnetic mass of 
the particle. The  second part, on the other hand, 
is the only one asymmetrical in time and capable 
of contributing to the force of radiative reaction. 
In present terms, the procedure of Lorentz 

amounts to an ingenious means to determine the 
limiting value of Dirac’s radiation field at  the  
position of the source. Unfortunately the pro- 
cedure is not convenient to apply to a rapidly 
moving extended charge because of the relativ- 
istic contraction of its spherical form. 
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The third procedure to evaluate the law of 
radiative damping for a swift particle is to calcu- 
late directly the reaction of the absorber on the 
source, along the lines of derivations I and 11. 
T h i s  approach uses the espression for the field 
of a radiating charge, not a t  small distances, 
where it is singular, bu t  a t  large distances, where 
it has a simple asymptotic form. We  shall esplore 
this type of derivation because of its direct 
relation to the absorber theory of radiation. 

We idealize the absorber as before as a sphere 
of very large radius, r ,  centered on the point 
reached by the given particle a t  a chosen instant. 
At the surface of the absorber, those constituents 
of the field which drop away as l / r 2  will have 
become negligible i n  comparison with those which 
fall off as l / r .  'The typical particle on this surface 
experiences an electric field perpendicular to the 
direction of r .  'The magnitude of this field was 
represented i n  the case of a slowly moving source 
by an expression of the form, -(e/rc?)(conipo- 
nent of acceleration perpendicular to r ) ,  and is 
similarly representable in the present case by a n  
rxpression of the type, - (e/r)(function of nio- 
tion)n. Here the function in parenthesis, while 
iiiore coniplicated than before, still depends only 
on the motion of the particle and the direction 
to the point of action. The influence of this 
tlisturbancc causes the particles of the absorber 
to generate a field, the advanced part of which 
a t  the position of tlie source claims our attention. 
We consider the portion of this returned field 
arising from particles of the absorber which 
lie within an elenient of solid angle dQ. The  elec- 
tric component of this field is perpendicular to r 
and had for a slowly moving source the magni- 
tude (e/c?) ( - L / c )  (component of acceleration 
pcrpcndicular to r )  (dG/47r) when the acceleration 
was a periodic function of time, and more gcner- 
ally was given by the derivative (e/c*)(d/cdt) 
x (component of acceleration perpendicular to r )  

'I'he relationship between returned field and 
01-iginal disturbance is a property only of the 
absorber antl is independent of the state of 
motion of the source. Consequently, for the case 
of a particle moving a t  arbitrary velocity the 
returned electric field is perpendicular to r and 
equal in magnitude to 

x ( d Q / 4 x ) .  

e(d/cdl)  (function of rnotion)~(dQ/iix). 

What we have said of the electric field applies 
also to the magnetic field, because at great 
distances from an accelerated particle the two 
vectors Rave equal magnitudes and perpendicular 
directions. Thus  we conclude tha t  the reaction 
of the absorber on the source is described by  a 
field, F,,, ivhich is directly related to the retarded 
field, R,,,, of thc source at great distances, r ,  by 
the equationi2 

P 

F,,,, = - 7 (dR, , /a~~)  ( d 0 / 4 ~ ) .  (25) J 
T h e  retarded field of the source particles, R,,,, 

in Eq. (25) is dcrived from the retarded po- 
tentials 

A ,,, = 2e dnL( a )  6 (xa,xap)da, S 
through the equation 

Here the integration over the proper cotime, a ,  
goes only over that portion of the world line of 
particle a from which a retarded disturbance can 
reach the point of action, x"'. T h e  significant 
value of a is connected with the coordinates 

l2 Here antl below we use the following notation: 
the three space coordinates of a typical point 

of evaluation of the field. 

length, and given by the product of the 
velocity of light and the time elapsed between 

a quantity also having the dimensions of a 

a certaiti zero hour and  the moment of 
observation. 

a"', similar space-time coordinates of a typical point 
on the world line of the a t h  particle. 

Successive points along the world line a re  designated b y  
the values of a parameter, a, the proper cotime, which has 
the dimensions of a length and is equal to  the product of 
the velocity of light and the proper time. The  difference, 
da ,  in proper cotinie between two neighboring points has 
the same sign as the tliKerence d d ,  and is given in magni- 
tude by the equation 

(do)2=cZ(tinle interval)?- (space interval)2= -da,dafi. 
Derivatives with respcct to a are  denoted b y  dots. In 
comparing forniulae given in this notation with those given 
elsewhere i n  the literature, i t  will be noted tha t  some 
authors go from contrnvnriant to covariant representation 
of a vertor by  reversing the sign of its space components 
and leaving its time component unaltered; also t h a t  dots 
arc often used to intlic;itc differentiation with respect to 
propcr time, rather than proper cotime. In  our notation 
tlie derivatives a" are dimensionless quantities which 
satisfy the relation a&'= - 1. We use xam a s  a n  abbrevia- 
tion for the vector, s'"-una. The usual scalar potential of 
the electromagnetic field is represented by the component 
A' of a four-vector, of which the other three parts, A', A P ,  
A s ,  constitute the space components of the customary 
vector potential. The typical component of the  field is 
given in the equation F,""= (aA,/axm)- (aA,,,/ax"), where 
we have for the electric field E,= FM= - R I ,  etc., and for 
the magnetic field H, = F23= - F s ~ ,  etc. 

x?=x2 
2' = X I  

x3 = X I  
x 4 = - s 4 ,  

1 
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by the equation 

The  integration yields 
xu,xu4 = 0. ( 2 6 )  

A ,  = - earn/ (a,xu@). 

In differentiating this expression with respect 
to the coordinates of the point of observation, 
we have to allow for the associated change in 
the value of the proper cotimc, given by the 
differential of ( 2 6 ) ,  

(dx, - ci,da) (xc  - ur) = 0,  

da= (xu,dx'')/(U,xu~). (27) 
or 

Thus  the retarded field of a is found to be given 
by the expression 

R,,= e(u,xu~)-z(u,xu,,- &xum) 
+ e ( l  +u,xa~)(u,xa~)-3( -uci,,xa,+u,xa,,,). 

All terms in this expression fall off a t  large 
distances inversely as the first power of the 
separations xu, except for the terms arising from 
the unity in the factor ( l+u,xup) ,  which we may 
henceforth omit. For the same reason i n  differ- 
entiating the field with respect to x4, we may 
treat all differences xu'" as constant. Thus  we 
find in the limit of large distances 

-rS(dR, , /dx4)(dQ/47r)  

= r J (  -xa4/a,xufl) ( d l d a )  R,,,,(ctQ/4~) 

= e J  (3(ii,xap)(ci,xu')-.'(xa,,,ii,,-xX(L,ii,,,) 

- (u~xu')-3(xa,u, --xun&,) 

+ (U,XU+) (u,xu~)-4(Xumu, - xu,,ci,,J 

-3(u,xa~)2(upXu')-5(Xumu" -xu,U,) I 
X (r2dQ/47r). ( 2 8 )  

As variables of integration it is convenient to 
use a colatitude e and azimuthal angle 9,  taking 
for polar axis the direction of the space compo- 
nent, (ul, u2, u3), of the four-vector, u'". With 
this choice of variables the denominator of the 
typical term in the preceding expression is a 
power of the factor (u,xu') =r(&+u cos e ) ,  where 
U&-u2=1. The absence of the azimuthal angle 
from the denominator and the relatively simple 
form of the numerator makes it easy to carry out 

the integration over cp. The numerator of tlie 
typical term then reduces to a polynomial in 
cos 0. The integration over 0 therefore leads only 
to algebraic functions of cos e to be evaluated at 
the two limits cos 8= f l .  The reduction of the 
resulting expressions to simple form requires 
rather long calculation. The final result for the 
field of radiative reaction at the location of tlie 
source is 

F,, = -I r (aR,,/ax4) ( d Q / 4 x )  
J 

= (2e/3)(u,Un-u,&,). 

'This expression for the field of tlie absorbing 
particles agrees with tha t  given by Dirac for 
half the difference of retarded and advanccd 
fields due to the source itself, provided account 
is taken of the difference bet\veen the present 
notation and his. 

I f  we define the force of rd i a t ivc  reaction 
through its contribution to the product of the 
iiiass of the particle by its acceleration, nzc2d',I, 
then we have for this force the cypression 

eF,,,,ac = (2e2/3)(a,u;-uii,u,)u~. (30) 

In the case of a slowly moving particle the first 
space component of this force is readily evaluated 
by noting that (1) u, is of the order of tlie ratio 
of the velocity of the corpuscle to the speccl of 
light and is therefore negligible; (2)  the quantity 
-ci$ has the value unity; and ( 3 )  the derivative 
u, represents (1/2) times tlie time rate of 
change of the given component of the accelera- 
tion, %. Consequently, the expression (30 )  re- 
duces in the non-relativistic limit to the usual 
formula, (2e2 /32)  (d%/dt),  for the damping force. 

From the properties of the retartlet1 fielcl a t  
large distances from an  accelerated particle i n  
motion at an  arbitrary velocity, we have obtained 
an expression for the force of radiative reaction 
previously derived by Dirac on the assumption 
tha t  this force arises from half the diffcrencc of 
the advanced and retarded fields of the particle 
itself. I t  is, therefore, of interest to see tha t  
this equivalence can be demonstrated without 
going through the rather long calculations which 
are required on either method of derivation 
to obtain explicit expressions for the force of 
radiative reaction. To bring out the relationship 
between the two derivations, we go back to tha t  
expression for the retarded field of the source 
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which contains a delta function, and arrange the 
evaluation of Eq. (25) in such a way as always 
to keep a delta function in evidence. Thus we 
write the retarded field in the form 

R,,= 2e [ -Um(a/axn) + c i , ( a / a ~ ~ ) ] s ( ~ ~ , ~ ~ . ) d a .  J' 
I n  order to postpone the differentiation of the 
delta function, we adopt an expedient to trans- 
form the variable of differentiation. We consider 
in addition to  the actual world line of the source, 
am(a) ,  a displaced world line, a particle moving 
along which reaches a t  the proper cotime, a ,  the 
point hm(a)=am(a)+Dm, where the Dm are four 
numbers independent of a. We note that the 
derivative with respect t o  xm of any function of 
the differences xk-cik is equal to the negative of 
the tlcrivativc of the same function with respect 
to D'". Consequently we may write the expres- 
sion for the retarded field in the form 

R,.= 2e [um(a/aDn) -Un(a/aDm)] 
X 6(x@"d,)da, (31) 

where the result is to be evaluated in the limit 
when the clisplacements Dm go to zero. 

We now insert esprcssion (31) for the retarded 
field into the integral for the field returned by 
the absorber, 

s 

F,, = Y (dR,,/dD4) ( d Q / 4 r ) ,  s 
ss 

and encounter the integral 

Fm,= 2er(d/aD4) [Um(d/aDn) -cin(a/~DvPl)] 

x 6(x4xciP)da(dQ/4*).  

T o  bring out the meaning of this integral, we 
note that we want the radiative reaction on the 
source a t  a definite point, am=um(a*), along its 
world line; that this point is a t  the center of a 
sphere of radius r ;  and that advanced disturb- 
ances from the particles on the inner surface of 
this sphere contribute to the force a t  this point 
only if they start at a cotime, 9, equal t o  
r+a4(a*). Consequently, x4 has this fixed value 
as the integration over the surface of the sphere 
is carried out. Also during this integration we 
keep fixed the variable a and consequently hold 
constant 6=d(cr). Under these circumstances it 
is convenient to adopt for variable of integration 

the angle B between the space directions ad and 
ax : 

( u ~ ) ~ + ( ~ x ) ~ - ~ ( u ~ ) ( u x )  cos 8. 

Then we have 

Ss(ax,,axM)(dnj in) = (1/2) s(ax,a+qcos e) s: 
=S (az) =(az)-(aa) 

= J 6 (6x,6xfl)d (axPcZ3cq/4 (aa)r. 

(62) = ( a z ) + ( a 6 )  
6 (ax,axr)  

xd [ (ax ) ' -  (a6)'- (ax)2]/4(a6)(ax) 

In this last expression the range of integration 
includes the point, hx,6~', for which the delta 
function gives a contribution, only if there are 
some points on the surface of the sphere which 
can be reached simultaneously by two retarded 
waves which start out with am(.*) and am(.) as 
centers. This condition will be satisfied if and 
only if 6(a)  lies between the forward and back- 
ward light cones drawn with a(.*) as origin. 
Thus we have 

F,,= e(a/dD4) da[cim(a/aDn) -ci,(a/aDm)] 

1- { ;/2(u6) when ha,&z, > 0 

when &a,&zfi<O 

s 
The  differentiation with respect t o  D4 of the 
discontinuous function in the last pair of brackets 
gives a function which has the character of a 
delta function except for a change in sign at one 
of the singularities. Specifically, writing 

6(6U,ciU') = 6++6-, 

where 6, is different from zero only when a 
retarded disturbance from a(a)  can reach the 
point a(a*),  and 6-  is different from zero only 
when an advanced disturbance from (z(a) can 
reach khe point a(a*),  we have 

= 6+- 6-. I 1/2(ah) when da,,&fi>O 

when da,&z" <O 

Then the field clue to the absorber takes the form 

F,,=e [cim(a/aDn) -u,(a/aDm)](6+- 6-)da s 
= e ~ [ U . ( d / d u m )  -Um(a/dan)](6+-6-)da. (32) 
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In other words, the reactive field at the point 
um=um(a*) of the actual path is equal to half the 
retarded minus half the advanced field due to an 
equal charge moving on a world line of identical 
shape, all points of which are displaced by the 
amount Dm, this field evaluated in the limit 
D*+O. This result establishes the connection 
between two different methods of evaluating the 
force of radiative reaction, one based on the 
properties of the retarded field of the source a t  
great distances, the other containing half the 
difference of retarded and advanced fields a t  the 
location of the source itself. 

THE RADIATIVE REACTION: DERIVATION IV 

From the preceding applications of the ab- 
sorber theory of radiation, i t  has become clear 
that  such properties of the absorber as refractive 
index and density have no bearing on the magni- 
tude of the force of radiative reaction. Thc only 
essential point is that  the medium should be a 
complete absorber. We therefore expect that  
there should somehow be a means to take this 
point into account in a very general way. 

In physical terms, complete absorption implies 
that  a test charge placed anywhere outside the 
absorbing medium will experience no disturbance. 
In mathematical terms, using I;,,, and F a d v  to 
denote the retarded and advanced fields due to 
the kth particle, we have 

(k) (k) 

( k )  
Ck(+Fret+ap:::) = O  (outside the absorber). (33) 

From the fact that  this sum vanishes outside the 
absorber everywhere and a t  all times, it follows 
that each of the two sums also vanishes outside 
the absorber: 

and (34) 

(35) 
(k) Ck F a d v = O  (outside). 

Thus, the one sum, if it  does not vanish, repre- 
sents at large distances a n  outgoing wave, and 
the other represents a converging wave; but 
complete destructive interference between two 
such waves is impossible. Hence, if their sum 
vanishes, so does each field individually. From 
this conclusion it follows that the difference of 
the fields vanishes outside the absorber a t  all 
times: 

The field ( 3 6 ) ,  in contrast to the fields (33)- 
(3.9, has no singularities within the absorber; 
it is a solution of Maxwell's equations for free 
space. Vanishing oiitside the absorber a t  all 
times, it must therefore forever be zero inside. 
The special property of a completely absorbing 
medium is expressed by the equation 

The consequences of Eq. (37) for the forcc on 
a typical particle are easily deduced. On the ath 
charge the entire field acting is given, according 
to the theory of action a t  a distance, by the sum 

k#a 

This expression can be broken down into three 
parts: 

k+a all k 

Of these terms the third has just been slio\vn to 
vanish for a complete absorber. The second gives 
rise to the phenomenon of radiative damping. 
In the case of non-relativistic velocities we have 
the result 

(a) ( a )  
ea(+Eret-+Endv) = (2ea2/3c3)(d2t,/dl); (40) 

and in the case of swift particles we havc for the 
force on the uth charge 

(a) (4 

This expression reduces, according to Dirac, to 
the form 

ea(3Fn.z ret-$Fnaadv)Ua. 

(2ea2/3) (Un& -ii,Ua)C;a, (41) 

in agreement with the reaction of the absorber 
as calculated in the preceding derivation. \\;ith 
this reactive term and the first term of (39), we 
arrive a t  the equation of motion of the typical 
particle in a completely absorbing medium 

maan=ea C F,,, retaa (k) 

k #a 

+ ( 2ea2/3) (&u; - ii;u a )  a". (4 2) 

In arriving at this equation we have shown that 
the half-advanced, half-retarded fields of the 
theory of action at a distance lead to a satis- 
factory account of the mechanism of radiative 
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reaction and to a description of the action of one 
particle on another in which no evidence of the 
advanced fields is apparent. We find in  the case 
of an absorbing universe a complete equivalence 
between the theory of Schwarzschild and Fokker 
on the one hand and the usual formalism of 
electrodynamics on the other. This is what was 
to be Ivoved. 

THE IRREVERSIBILITY OF RADIATION 

An oscillating charge surrounded by a11 all- 
sorbing medium loses energy. Why does radiation 
have this irreversible character even in a foi-mu- 
Iation of electrodynamics which is from the 
beginning symmetrical with respect to the intcr- 
change of past antl future? 

It might a t  first sight appear that the irre- 
versibilily is connected with the property of 
complete absorption. 'I'his is not the case. The  
expression (37) of the condition of absorption is 
perfectly symmetrical bctnreen advanced and 
retarded fields. We have only to reverse the roles 
of these two fields in the derivation following 
(37) i l l  order to arrive a t  an equation of motion 
for the typical particle just as legitimate as 
(42), antl i n  complete harmony with that 
equation: 

maan= e,  C F n n  
( k )  

I ,  # n  

- (2e,*/3)(ci,u~-uii,ci.)dn. (43) 

In  this equation, however, the force of radiative 
reaction appears with a sign just opposite to its 
usual one. Evidently the explanation of the one- 
sidedness of radiation is not purely a matter of 
electrod ynaniics. 

We have to conclucle with Einstein" that the 
irreversibility of the emission process is a phenom- 
enon of statistical mechanics connected with the 
asymnietry of the initial conditions with respect 
to time. In  our example the particles of the 
absorber were either at rest or in random motion 
before the time a t  which the impulse was given 
to  thc sourck. I t  follows that in the equation of 

motion (42) the sum, C F,,, ret, of the retarded 
fields of the adsorber particles had no particular 
effect on the acceleration of the source. Con- 
sequently the normal term of radiative damping 
dominates the picture. In the reverse formulation 
(43) of the equation of motion, the sum of the 

(k) 

k#n ' 

advanced fields of the absorber particles is not 
a t  all negligible, for they are put into motion by 
the source at just the right time to  contribute to 
the sum Ff:  ad". This contribution, apart 
from the natural random effects of the changes 
of the absorber., has twice the magnitude of the 
usual damping term. The  negative reactive force 
of (43) is therefore cancelled out,  and a force of 
the expected sign and magnitude remains. 

Tha t  it is solely the nature of the initial 
conditions which governs the direction of the 
radiation process can be seen by imagining a 
reversal of the direction of time in the preceding 
example. We have then a solution of the equa- 
tions of motion just as consistent as the original 
solution. However, our interpretation of the 
solution is different. As the result of chaotic 
motion going on in the absorber, we see each 
one of the particles receiving a t  the proper 
moment just the right impulse to generate a 
disturbance which converges upon the source a t  
the precise instant when it is accelerated. Thc  
source receives energy and the particles of the 
absorber are left with diminished velocity. No 
electrodynamic objection can be raised against 
this solution of the equations of motion. Small 
a pr ior i  probability of the given initial conditions 
provides our only basis on which t o  exclude such 
phenomena. 

A comparison of radiation with heat conduc- 
tion is illuminating. Both processes convert 
ordered into disordered motion although every 
elementary interaction involved is microscopi- 
cally reversible. 

Consider for the moment the question of the 
irreversibility of heat conduction, later to be put 
into relation with the problem of the one-sidecl- 
ness of radiation. A portion of matter observed 
a t  the present moment to  be warmer than its 
surroundings will cool off in the future with a 
probability overwhelmingly greater than the 
chance for i t  to grow hotter. About the past of 
the same portion of matter Boltzmann's H- 
theorem however also predicts an enormously 
greater likelihood that the body warmed up to 
its present state rather than cooled down to it. 
I n  other words, we are asked to understand the 
present temperature of the body as the result of 
a simple statistical fluctuation in the distribution 
of energy through the entire system. This de- 

k #a 
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TABLE I. Decomposition of the symmetric fields of the 
theory of action a t  a distance into the fields of the retarded 
field theory. 

Total field acting on atli particle 
iri tlieory of action a t  a distance; ( t )  Ck) 

Iiere decornoosed into: ‘#“(iP,,t +tFadv) 

(1) Retarded fields of usual 
formulation of electrody- S Fret 
nainics . k #a 

(2) A field completely deter- (o) (n) 

mined by the motion of the 
particle itself; denoted as the 
“radiation field“ by Dirac; 
accounts for the normal force 
of radiative reaction. 

( 3 )  A residual field, with (I.) ( k )  
singularities a t  none of the 2 (&F.dY-iFret) 
particles, b u t  completely de- pnr‘ie’e‘ Fine 
(ermined by the motion of 
the particles; identified by 
us with Dirac’s “incident 
iield.” 

( I )  

[iFrct- I F a d v l r n n  
= (2ea/3)(dn8Uk - G d , )  

tluction is based on the premise that the system 
was isolated before observation. However, com- 
mon experience tells us that  the given portion of 
matter probably acquired its abnormal tempera- 
ture, not via an  internal statistical fluctuation, 
but because it had earlicr not been isolated from 
the outside. 

For the radiative analogy of this example of 
heat conduction, conceive a charged particle 
bound to a position of cquilibrium by a quasi- 
clastic force. Furthcrmorc suppose its energy at 
the moment of observation is largc i n  comparison 
with the agitation of the surrounding absorber 
particles. There is then an ovcrwliclming proba- 
bility that  thc oscillator will losc energy to the 
absorber a t  a ratc i n  close accord with the law of 
radiative damping. What can be said of the 
particle prior to the moment of accelcration! In 
an ideal absorbing system completely free of 
special disturbances, there is an  equally over- 
whelming chance that the energy of the charge 
was then increasing at a rate given approximately 
by the inverse of the law of radiative damping. 
In this case as in heat conduction the abnormally 
high encrgy of the object is to be interpreted as 
the result of a statistical fluctuation. However, 
that the sun at  some past age acquired its energy 
by such a fluctuation no one now would seriously 
propose. Obviously the universe is a special 
system with respect to the origin of which 
probability considerations cannot freely be 
applied. 

We conclude that radiation and radiative 
damping come under the head, not of pure 
electrodynamics, but of statistical mechanics. 
The  conventional expression for the force of 
radiative reaction, like those for frictional rc- 
sistance and viscous drag, represents a statistical 
average only. Application of this concept is not 
required in such an  instance as the case of 
complete thermodynamical equilibriur~~, wlicrc 
the relative fluctuations of the actual forces 
about the conventional values arc substantial. 
The  concept of radiative tlaniping is of real 
value only when we deal with the conversion of 
organized into disorganized energy, as i n  wireless 
transmission or light production. 

COMPLETE AND INCOMPLETE ABSORPTION 

I n  the picture of radiation which we have 
built on the foundation of Tetrode’s suggestion, 
the absorber plays a role of hitherto unsuspected 
importance. On this account we should investi- 
gate not only how much the rncchanism tlepeilds 
upon the  completeness of the interception, but 
also the question what should be said of the 
absorption i n  the case of the actual universe. 

In discussing the case of incomplete intcrccp- 
tion, we require a convenient means to take into 
account the initial conditions which so clearly 
control the irreversibility of the force of radiative 
reaction. For this reason we shall brc,il; tloivn 
the half-retarded, half-advanced fields of the 
theory of action a t  a distance into tlirce parts ;IS 

shown in  ‘Tablc 1. With this decomposition of 
the field, tve arrive a t  a description of the 
behavior of a s).stcm of particles which is cntircl!. 
equivalent to the theory of action at  n distance 
but which in the equation of motion, 

conceals from view the existence of the advanced 
part of the fields of Schwarzschild and Fokker. 
We shall find it convenient to use for the field 
decomposition of Table I and the dynamical 
Eq. (44) the term “retarded field formulation of 
electrod~~namics. ” 

‘I‘lie field which enters the third term in the 
equation of motion (44) vanished in the case of 
a completely absorbing system. Its appearance 
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in the present case has led u s  t o  give i t  the name 
of “incident field,” which Dirac applied to  a 
quantity having an identical role in the equation 
of motion. However, on the origin of this field 
we go beyond Dirac’s treatment in giving a 
prescription for its unique determination in terms 
of the movements of all the particles of the 
system. This prescription reveals that  the field 
in question contains the advanced effects of the 
theory of action at a distance. 

Some properties of the incident field may be 
noted before use is made of this concept in the 
analysis of special problems. The  quantity Fino 
has a singularity a t  the site of none of the charged 
particles. Consequently i t  satisfies Maxwell’s 
equations for free space. Although completely 
determined by the motion of the charges, it thus 
has the character of a disturbance produced by 
sources a t  infinity. Now we already have in 
the retarded field, C(.II psrtic~es)Fret, a quantity 
whose behavior a t  all distances is likewise 
uniquely fixed by the motions of all the charges. 
Consequently we can expect to be able to deduce 
the incident field everywhere from a knowledge 
of the retarded field a t  large distances from the 
system of particles. Thus ,  in the determination 
of the incident fields we can, if we wish, avoid 
explicit reference to the movements of the 
chargcs, and base our considerations on the 
asymptotic behavior of their retarded fields 
alone. This point will be clearer after a considera- 
tion of a few examples, and can then be formu- 
lated in  a general mathematical form as a by- 
product of an investigation primarily aimed at 
examining the problem of complete and incom- 
plete absorption. 

The simplest example will be the idealized 
case of a single-charged particle, alone in other- 
wise charge-free space, which is accelerated either 
by the gravitational attraction of a passing mass 
or by some other non-electromagnetic force. For 
the three electromagnetic forces of the equation 
of motion (44) we then have the following 
accounting: (1) There are no other particles, so 
the retarded field of the first term vanishes. 
(2) The second term is different from zero and 
represents the conventional force of radiative 
reaction. (3) The incident field of the third term 
is in the present case equal t o  half the advanced 
field minus half the advanced field owing to  the 

(k) 

particle itself. If we imagine the acceleration of 
the charge to  be limited to a short stretch of 
time, then the incident field represents a dis- 
turbance which, long before the moment in 
question, was converging upon the particle from 
great distances. I t  focuses upon the particle at  
the period of acceleration and subsequently ap- 
pears as a wave diverging from the charge. This 
disturbance, apparently produced by sources at  
infinity, exerts on the particle a force which is 
just sufficient in magnitude and in sign to  cancel 
the normal force of radiative reaction. The  de- 
scription just given is the rather involved trans- 
lation into the language of the retarded field 
theory of the conclusion immediately apparent 
from the theory of action at a distance with its 
half-advanced, half-retarded fields; an isolated 
charge neither experiences a force of radiative 
reaction nor radiates away electromagnetic 
energy. 

The  incident field of the preceding problem 
could have been determined equally well without 
knowledge of the motion of the particle itself, by 
reference to the retarded field, Fret, of the charge 
at large distances. The  latter quantity represents 
an electromagnetic disturbance which was negli- 
gible before the moment of acceleration, and 
which considerably later than that  instant had 
the character of a diverging spherical wave. We 
can find a solution, S ,  of Maxwell’s equations 
for free space, the diverging wave in the asymp- 
totic expansion for which has exactly the same 
behavior as the field -tFrct. By this condition 
the solution i n  question is furthermore uniquely 
determined. On this account i t  must be identical 
with another field which also satisfies Maxwell’s 
equations for free space and has for its diverging 
wave a t  large distances the same form as -+Fret; 
namely, the incident field, Finc=$Fadv-$Fret. 
Consequently we may write Finc=S, where 5’ is 
the solution of Maxwell’s equations defined as 
above. From this means of arriving at  the value 
of the incident field we conclude that  the incident 
field is that solution of the wave equation for 
free space which, when added to the known 
retarded field, Fret, will reduce by one-half the 
strength of the diverging wave in the asymptotic 
representation of Fret. 

As next idealized example of incomplete ab- 
sorption we consider a source at the center of a 
blackbody with two opposed openings out into 
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FIG. 1. Advanced effects in two exaniples of an 
incompletely absorbing system. 

charge-free space (Fig. 1). I n  those directions 
not shielded by the absorber an incident field- 
to use the language of the retarded field theory 
-will enter, converge on the radiating particle, 
diverge and go out to infinity, as in the preceding 
example. This time, however, the wave incident 
from one side covers but the amount Q of the 
whole solid angle of 47r. Consequently at  the 
instant when it  is focused upon the source, i t  
reduces the force of radiative reaction only 
fractionally below the conventional value of this 
force. The fraction in question is equal in the 
case of a pair of small opposed openings and a 
slowly moving source to the product of the 
following factors: 
W T ,  

the fraction of the whole solid angle spanned by one 
hole. 

factor allowing for the existence of the two openings. 

factor allowing for the orientation of the holes relative 
3 sin2 (PI, I), 

to the direction of acceleration. Here (PI, r )  is the 
angle between the vectorial acceleration of the sourcc 
and the Vector from this particle to one opening. The 
given expression lor the polarization factor assumes 
that  the quantities d91/dl and ‘2 arc parallel, and has 
to be replaced by a more complicated tern) when this 
parallelism does not exist. 

When the source is moving a t  the time of accelcr- 
ation with a speed comparable to that of light, 
then the angular distribution of the radiation is 
represented by an expression more complicated 
than sin2 (3, Y) but the general principle is the 
same. 

In the present case of an absorber complete 
except for two inversion-symmetric openings to 
charge-free space we conclude that  there is a 
continuous transition, as the size of the apertures 
is increased, from the full conventional force of 
radiative reaction on a central source, to the 
case of no radiative reaction a t  all. Furthermore, 
we note that a test charge placed in one of the 
two openings will receive a disturbance some 
time before as well as sonic time after the 
moment when the source itself is given its 
acceleration. Generally we may say that the 
explicit appearance of advanced effects is un- 
avoidable in the case of a system which is an 
incomplete absorber. However, i n  neither of tlie 
cxamples so far examincd do advanced fields of 
the source produce explicit aclvaticccl effects on 
any other particle than a test charge: in the first 
example, because there is no other charged 
particle; and in the second case, because the 
incident field is restricted to a region of space 
where there are no particles to be disturbed, 
except a possible test particle. 

ADVANCED EFFECTS ASSOCIATED WITH 
INCOMPLETE ABSORPTION 

Recognizable advanced effects appear for the 
first time in a third example, a source a t  the 
center of a cavity completely absorbing except 
for a single passage to charge-free space. (See 
Fig. 1.) Fnr simplicity we consider the source to 
be a slowly moving particle. Also we shall denote 
as “antipassage” that  portion of the absorber 
which is marked out  by the inversion, with 
respect to the source, of the passage itself. Apart 
from the fields which come from and go to tlie 
passage and antipassage, we have the usual 
solution of the problem of a completely absorbing 
system. In the language of the retarded fonnu- 
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lation of field theory, we can say tha t  there is in 
all other directions no incident field, and tha t  
in those directions the absorber experiences only 
a normal f u l l  strength retarded field as a result 
of the acceleration of the source. In the language 
of the theory of action at a distance the result 
is the same. The  source gives out a half-advanced, 
half-retarded ficltl, the advanced part  cf which 
in the direction of the normal portions of the 
absorber is cancelletl by a portion of the advanced 
fields generated i n  the absorber itself. The  re- 
maining portion of this advanced field combines 
with the half-strength retarded field of the source 
to give the f u l l  retartlcd disturbance demanded 
by experience. The  advanced field of the absorber 
a t  the location of the source itself protluces a 
force of ratliativc rvxtion which is below the 
convcntional amount i n  proportion onlj. to the 
small solid angle \vhich we have so far left out 
of consideration. So far the results are quite a s  
expected. 

We have now to consider the effect on the 
antipassage of what, in the theory of action at n 
distance, is the half-advanced field of the source. 
If  the passage itself were filled with absorbent, 
this  material would have generated a field, the 
advanced part of which would have compensated 
the effect we are now considering. As it is, we 
visualize two possiblc solutions of the problem 
of motion. I n  the first, the uncompensated half- 
advanccd field of the source sets into motion 
ahead of time the particles on the inner face of 
the antipassage. I n  the second solution, this 
advanced field is compensated by a mechanism 
yet to be explaincd, and the particles in question 
are not disturbed before the moment of accelera- 
tion of the source. 

In the first solution, not illustrated in  Fig. 1, 
the particles on the inner face of the antipassage 
spontaneously accelerate a t  a moment sufficiently 
early so that their retarded fields reach the source 
at just the moment when i t  is radiating. The  
retarded field of the charges of the antipassage, 
evaluated in the cavity, has in the present 
solution the following properties: (1) I t  vanishes 
except in the directions of the passage and anti- 
passage. (2) I n  those directions it has a value 
completely determined by the movement of the 
source. (3) I t  combines with the Schwarzschild- 
Fokker field of the source to cancel its outgoing 
component travelling i n  the direction of the 

passage and to builcl up  its advanced component 
on the side of the antipassage to a full strength 
advanced wave. The  combined advanced wave 
has a magnitude exactly sufficient to account for 
the disturbance of particles of the antipassage 
ahead of time. (4) The  field of these particles at  
the location of the source acts in the  opposite 
sense from the conventional force of radiative 
reaction. The  magnitude of t ha t  force is reduced 
hy a fraction which, apart  from a polarization 
factor, is equal to twice the solid angle subtended 
by the passage, divided by 4 ~ .  

The  particles of the antipassage, in addition 
to the anticipatory movements already discussed, 
undergo, after the moment of acceleration of the 
source, a disturbance similar t o  tha t  experienced 
by the charges which neighbor them on the inner 
face of the cavity. In this way they are caused 
to generate fielcls, the advanced part of which 
(1) combines with the half-rctarded field of the  
source in the given direction to  produce a full 
retarded disturbance tha t  accounts for the mo- 
tions in question and (2) cancels the advanced 
field of the source in the direction of the passage. 
Thus  neither advanced nor retarded disturbance 
emerges from this passage to  be detected by an 
csternal test charge. 

‘I’lie self-consistent solution which we have 
just rlcscribed in terms of the symmetrical theory 
of action a t  a distance is easily summarized i n  
the language of the retarded field theory. T h e  
sources of radiation are the central particle and 
the charges on the inner face of the antipassage. 
Each is considered to experience the  conventional 
force of radiative reaction and to  produce only 
retarded fields. T h e  fields from the  disturbed 
charges on the inner face of the  cavity focus on 
the central charge a t  the moment of its accelera- 
tion, thus (1) partially compensating the con- 
ventional force of radiative reaction and (2) 
cancelling that part of its retarded field which 
is travelling in the direction of the passage. No 
retarded field gets outside the system. T h e  inci- 
dent field, cleterininablc as we have seen before 
from the asymptotic behavior of the retarded 
field, consequently vanishes. Thus  in the given 
illustration the equation of motion of each 
particle contains only the retarded fields of all 
the othcr particles, plus the f u l l  conventional 
force of radiative damping, a conclusion con- 
sistent with the solution which we have just 
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given. T o  complete the picture, we have to 
express in terms of these equations of motion, 
the explanation of the early motion of the 
particles on the inner face of the antipassage. 
This movement we attribute to the influence of 
the retarded fields coming from other portions 
of the wall of the cavity, and reinforcing at j u s t  
this particular region of the surface. The same 
type of reasoning can be followed back step by 
step in the past, along a course which is very 
like the reversal in time of the mechanism by 
which a burst of radiative energy dissipates 
itself. Granted that the existence of incomplete 
absorption requires, in our example, the explicit 
occurrence of advanced effects, we have in the 
given solution one reasonable picture how these 
advanced effects may build up until the time of 
disturbance of the source and may then be 
followed by a succession of retarded effects of 
magnitudes diminishing as absorption and re- 
flection at the inner walls of the cavity have 
their effects. 

In this third example a n  equally consistent 
solution of the problem of advanced effects may 
be briefly outlined (Fig. I ) .  l'he fields are in this 
case such that a test charge placed within tlie 
cavity experiences only the full retarded field of 
experience. The particles on the wall of the 
cavity are set into motion only after the time 
when the source was struck and caused to 
radiate. These particles, by the now familiar 
mechanism of absorber response, generate fields, 
the advanced parts of which i n  the cavity 
cancel the advanced field of the source and bring 
its retarded field up to full  strength. I n  particular, 
the advanced field of the source i n  the direction 
of the passage is compensated, so that a n  external 
test charge on that side of the absorber will 
experience no advanced disturbance. It will,  
however, on our picture undergo a full strength 
retarded disturbance. How the half-retarded 
disturbance of the source in this direction is built 
up to full strength, and how the half-advanced 
field in the direction of the antipassage is can- 
celled, is a question still to be cleared up. For 
explanation we cannot (1) call upon the advanced 
fields of the absorber in the direction of the 
passage, for there is no matter i n  this direction. 
Nor can we (2) call upon retarded fields of 
particles on the inner face of the antipassage for 
our purpose-although they lie in just the right 

direction thus to produce the field in question- 
because they have been assumed not to have 
been set in motion prior to tlie time of accelera- 
tion of the source. To  account for the directional 
field of so far unknown origin in the cavity, we 
are by (1) restricted to an explanation in terms 
of a retarded wave from some source yet to be 
found, lying in the direction of the antipassage 
and by (2) this source cannot consist of the 
particles on the inner face of that portion of tlie 
absorber. Consequently we must interpret the 
field in question as owing to particles set in  
motion ahead of time on the outer face of the 
antipassage. This conclusion, like many of the 
considerations to which we are led in the study 
of incompletely absorbing systems, appears para- 
doxical. Nevertheless i t  leads to a self'consistent 
solution of our problem. In the first place, the 
half-retarded field of the surface particles com- 
pensates within the antipassage as well as within 
the cavity the half-advanced field of the source. 
There is, therefore, no question of the propaga- 
tion of any disturbance through the thickness of 
the absorber. Secondly, the half-advanced field 
of the surface particles appears from the point 
of view of an external test particle to be a wave 
front of limited cross section which comes from 
outer space and which would converge upon thc 
source if the antipassage did not block its path. 
This half-advanced field in the region ehterior to 
the absorber adds to the half-advanced field 
from the central source to give a fu l l  strength 
disturbance convergent upon the surface particles 
in question. Thus an account is given for the 
force and for the acceleration which they experi- 
ence ahead of the time of acceleration of the 
source within the cavity. The energy which is 
absorbed at the outer surface is later paid out by 
the source. That accelerated particle experiences 
the full conventional force of radiative reaction. 

The solution just given is readil}, translated 
into the language of the retarded formulation of 
field theory, where the force on each particle is 
attributed to three sources: the conventional 
force of damping, the retarded fields of all other 
particles and an incident field. The incident field 
has the appearance of a disturbance convergent 
from outer space upon the external face of the 
antipassage. By it the particles are accelerated 
and caused to generate a full strength retarded 
field which at greater depths within the medium 
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cancels the incident field, a phenomenon which 
is the normal mechanism of absorption. Thus 
there is within the cavity no disturbance con- 
vergent upon the source, and consequently only 
the usual retarded effects are observed, part of 
which also is propagated out through the passage 
into charge-free space. 

In the retarded formulation of field theory, 
there is no apparent reason for a correlation 
between the surface absorption and the radiation 
process within the cavity. The requirement for 
a connection between the two comes into evi- 
dence only in the condition which must be 
satisfied by the incident field, and which has been 
discussed above. That there must be such a field 
follows from the existence of a full strength 
retarded field, R, diverging outward from the 
source through the passage in the absorber. 
Therefore, denote the strength of the incident 
field in this region of space and a t  this instant of 
time by nR, where n is a factor now to be found. 
Being also divergent from the source, but free of 
singularities there, the incident field must in this  
neighborhood and in the given cone of directions 
be a multiple of the radiation field of the source. 
On being followed backwards in time to moments 
previous to the acceleration of the particle, it  
must, therefore, have in the direction of the 
antipassage the magnitude -nA,  where A de- 
notes the advanced solution of Maxwell’s equa- 
tion for the accelerated source. Thus the field 
incident from great distances upon the particles 
on the outer surface of the antipassage must have 
the  magnitude -nA.  These particles generate a 
retarded field which within the absorber compen- 
sates the incident field and therefore has the 
magnitude +nA. This field, followed onward in 
the direction of the original source, where it 
naturally has no singularity, at first converges 
and then diverges to give the appearance of a 
retarded wave from the source itself. In this 
neighborhood the retarded field of the surface 
particles behaves much as does the radiation 
field of the source. Consequently the strength of 
the field in question, evaluated in the direction 
of the passage, is -nR. Thus the sum of the 
retarded fields of all the particles of the system, 
evaluated outside the passage way, is R (from 
the source) -nR (from the surface particles). 
To determine the strength of the incident field, 

we now apply the condition that the divergent 
term, nR, in its asymptotic representation must 
have a strength equal to -3 times that  of the 
divergent wave owing to the retarded fields of 
all the particles of the medium: 

nR= -$(R-nR). (45) 
The solution of this implicit equation gives for 
the magnitude of the incident wave in the direc- 
tion of the passage nR= -R, and consequently 
for the strength of the incident wave converging 
upon the other side of the system + A .  Thus we 
check the properties of this second solution of 
our problem as obtained previously by using 
the language of half-advanced, half-retarded 
fields, with no reference to the concept of 
incident field. 

Between the two self-consistent solutions of 
this third example of an incomplete absorber we 
make no attempt to choose. We have to accept 
the fact that the dynamical system in question 
possesses a number of degrees of freedom which 
is i n  direct proportion to the number of particles 
present. Once it is granted that advanced effects 
of sonic kind must be connected with the acceler- 
ation of the source, i t  does not follow uniquely 
upon which particles these advanced effects must 
act. The selection is a matter of initial conditions, 
not of equations of motion. The two solutions so 
far described are only two relatively simple 
samples from an infinite number of possible 
solutions, distinguished from one another by the 
requirements put upon the initial state of the 
particles of the absorber. I t  is only in the case 
of a completely absorbing system that there is 
the possibility to find a set of initial conditions 
which is relatively well determined by statistical 
considerations. 

Self-consistency being the only requirement 
which has to be met by a solution of the problem 
of an incomplete absorber, and this requirement 
in the retarded field formulation being largely 
contained in a condition to be satisfied by the 
incident field, it may be of interest to have our 
so far informal statement of this relation put 
into mathematical terms. The condition in ques- 
tion furnishes a connection between the incident 
field, here abbreviated as I, and the sum, R, of 
the retarded fields of all the particles. 
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To derive the desired relation, we note that  advanced field everywhere in space and (2) a 
the present formulation of electromagnctic Itnon~lctlge of the values taken on the points, 5 ,  
theory expresses the incident ficld as half tlic of a surface surrounding tlie system by an arbi- 
difference between the advanced and retarded trary solution, S ,  of Maxwell’s equations for the 
fields owing to  all the particles. Thus the ad- same charge distribution, we can derive the 
vanced field of the system is given by tlie values of this arbitrary solution a t  all other 
expression R f 2 1 .  From (1) a knowledge of this points in space, x, from the relation 

In Eq. (46) the symbol 6 stands for the delta 
function, S(x*- 4”-xr- 5,). The  integral is to be 
taken only over the imniediate neighborhood of 
those points on the surface from which an ad- 
vanced wave can reach the point XI, x2, x3 a t  the 
time x4. In the first integrand we have the dif- 
ference between the values of a certain quantity 
calculated for the largest and smallest values of 
F1 consistent with given values of t2, t3, 14; and 
similarly for the other three integrals. \Vc sliall 
write Eq. (46) symbolically in the form 

S= ( R t 2 1 ) f A d v .  [S].  (47) 

We now apply this general relation to the 
special half-advanced, half-retartled solution of 
Maxwell’s equations for the system of charges, 
S=R+1. In this way we arrive a t  an implicit 
equation by means of which to derive the inci- 
dent field from the retarded field: 

(48) 

This relation is the generalization of Eq. (45) 
from which we determined the strength of the 
incident field in the third cxample above. With 
this generalization wc end our study of tlie 
behavior of idealized systems with incoinplcte 
absorption and come to the wider question what 
we should say about the absorbing propertics of 
the system with which we have to deal in nature. 

There would be no problem in interpreting 
l3 The analogue of Eq. (46). for determination of the 

arbitrary solution from a knowledge of the retarded 
solution, has been given in a rather different form by W. 
R. Morgans, Phil. Mag. 9,  148 (1930). The present form 
is most easily derived by use of the relation 

0 = I+ Adv. [R+ I ] .  

(a/as*)(aiatp )w- s y . 3 ~ .  - I,) 
= -4lra(X1-€1)a(Y*-E2)6(~3-€5)6(X(-€4), 

and application of Green’s theorem in four dimensions. 

the universe as a completely absorbing system 
if i t  were an indefinitely extended Euclidean 
space. The  existence of the electron-positron 
field gives an  mechanism by which, even in a 
vacuum, radiation of sonic frcqucncies can 
undergo absorption processcs, and light of all 
wave-lengths can be scattcrcd. These processes 
are sufficient ultimately to degrade all the 
radiation given out by a n  accelerated cliarge. 

I he universe is however now gencrally re- 
garded as a closcd space, in harinpny with the 
illuminating theory put forward by Einstein. In 
this space present observations suggest that  thc 
absorption of radiation is far from complete even 
a t  the greatest depths so far plumbed, of the 
orclcr of one-tenth the calculated radius of the 
universe. If this conclusion is correct, then a 
complete clectrodynamic description of the 
mechanism of radiation would require us to take 
into account not only the curvature of space but 
also the phenomena summarized under the term 
“expanding universe.” At tlie present tinie we 
know too little about these matters to carry out  
such a complete description. hIoreover. there is 
yet no compelling reason to attempt this de- 
scription. We know of course that electro- 
d>  namics remains, in other respects as well, t o  
be tied to gravitational phenomena. But we 
recognize that in this sense our present theory 
of electrodynamics, like the theories in all other 
parts of science, is a n  idealization. 

So long as we limit ourselves to the idealization 
based on the concept of a Euclidean space, we 
have to consider the question of complete and 
incomplete absorption on a purely empirical 
basis. In this connection we will obtain a satis- 

*. 
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factory account of experience, as we have seen, 
on the assumption that the universe behaves as 
a completely absorbing system. 

PRE-ACCELERATION 

1s t h e  in the case of a completely absorbing 
universe any consequence of the act of radiation 
which is so apparently paradoxical as the obvi- 
ously advanced effects encountered in  the in- 
stance of an incompletely absorbing system? If 
so, what words can we reasonabl?. use to assimi- 
late such a phenomenon into our experience? 

Any advanced effects to appear in the case of 
a complctely absorbing system must be deducible 
from the conventional force of radiative reaction, 
for the only other elcctrotl\~namical effects ap- 
pearing in this case in the equation of motion 
(42) of the typical particle arc the retarded fields 
of all other particles. ‘That the damping term 
does lead to an atlvanccd cffcct follows from an 
interesting cxamplc alrcatly consitlercd by Dirac.!’ 
A sourcc scntls a sharp pulse of radiation to\vards 
a particle of charge e and mass in. At the instant 
of arrival the spcetl of the particle would be 
expected abruptly to increase if the force of 
damping were proportional to the first derivative 
of the displacement. Actually the radiative re- 
sistance is proportional to the third derivative 
of the displacement, and the nature of the solu- 
tion of the equation of motion is changed. The 
particle commences to move before the time of 
arrival of the pulse; and e2/mc3 seconds ahead of 
time it attains a velocity comparable with its 
final speed. 

As a suitable way to speak of this most inter- 
esting phenomenon of pre-acceleration brought 
to light by him, Dirac suggests saying that “it is 
possible for a signal to be transmitted faster 
than light through the interior of an electron. 
The finite size of the electron now reappears in 
a new sense, the interior of the electron being a 
region of failure, not of the field equations of 
electromagnetic theory, but of some of the ele- 
mentary properties of space-time.” This choice 
of language is perhaps suitable in certain respects 
to describe the pre-acceleration of the single 
charge in the example considered by Dirac. I t  
may also be of value in other special instances. 
However, the given mode of speaking suggests 
in the case of a medium of closely packed charges 

the possibility of transmission of signals with a 
speed greater than that of light over microscopic 
distances, a conclusion which appears to be 
denied by a direct investigation of the point. 
Also the idea that the properties of space time 
fail in a region of the order of e2/rnc2 around a 
charge appear to have possibilities of suggesting 
misleading conclusions sufficiently great to  call 
for a later search for a more suitable means of 
expression. 

We shall now attempt to test the idea sug- 
gested by the term “speed greater than that of 
light” that the phenomenon of pre-acceleration 
might be cumulative when charges are spaced a t  
a distance from one another comparable to  the 
quantity ez/mc2. The method of analysis will be 
very nearly that followed by So~nrnerfeld’~ and 
Br i l lo~in’~  in their classic resolution of the ques- 
tion how it can be that the speed of propagation 
of a disturbance in a dispersive medium never 
exceeds the velocity of light even when the phase 
velocity for certain frequencies is far above this 
upper limit. The only significant mathematical 
difference between thetwo cases is the change of 
the damping force from proportionality to the 
first power of the frequency to proportionality 
to the third power. 

The first step i n  the procedure of Sommerfeld 
and Brillouin is to determine the refractive index 
of the medium, n, as a function of frequency. 
The charges of the material are assumed normally 
to be at rest. Consequently the magnetic per- 
meability is unity. According to the standard 
result of electromagnetic theory the square of 
the refractive index is in this case equal to the 
dielectric constant: 

(electric field in a thin slot 

(electric field in a thin cavity 

cut normal to the field) 

cut parallel to the field) 
= (E+47rP)/E= 1 + (47rP/E). 

= 

(40) 

Here P *represents the polarization of the 
medium : 

P= (number of charges per unit volume). 
(charge of each). 
(displacement from equilibrium). (50) 

14 A. Sommerfeld, Ann. d. Physik 44, 177  (1914). 
16 L. Brillouin, Ann. d. Physik 44, 203 (1914). 
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For the force which determines the displacement 
of the charges in a homogeneous isotropic 
medium i t  is reasonable, according to Lorentz 
and Lorenz, t o  take the result valid for a cavity 
of spherical form, 

(force) = (charge per particle)(E+(4*P/3)). (51) 

The displacement itself is related to the force by 
the equation of motion, 

(force) = m(displadement) 
+(a constant). (displacement) 

- (2e2/3c3)(displaCement). (52) 

Here we have visualized in the second term of 
the right side the possibility that  the particles 
are bound to equilibrium positions by elastic 
forces. Without such forces we should be led by 
Earnshaw's theorem to expect that  the niedium 
would form a dynamically unstable system. We 
now follow Lorentz and Lorenz in selecting a 
function of refractive index which is easy to 
evaluate as a function of frequency: 

3 ( d -  l) /(n2+2) =4*P/[E+ (4*P/3)] 
4n(particle density) (chargc)2(displacement) 

m(dkp) + (const) (disp)h-(2e'/3c3) (dkp) 
' 

(53) 
We consider a monochroni<itic disturbance of 
circular frequency (3rncd/ 2e2)u, and express the 
elapsed time as (2e2/3nzcd)~, where both T and w 
are dimensionless quantities. \Ve assume that 
the displacement of the typical particle varies 
with time as exp ( - ~ w T ) .  Also we express the 
number of particles per unit volume in the form 
(N/3~) (3mc ' /2e~)~ ,  where N is also a magnitude 
without dimensions. Then  from (53) me obtain 
the refractive index as a function of frequency in 
the form: 

- - 

n(.) = [1+2IV/(w"?-w?-iW3)]~. (54) 
Here we have introduced the abbrevi a t '  ion 

wo2= (2e2/3mc3)*(coiistant/m) - (2N/3), ( 5 5 )  
where w 0  is a ineasure of the estcilt to which the 
assumed quasi-elastic force over-compensates the 
otherwise inherent electrical instability of the 
system. 

The propagation through a vacuum of an  
electrical disturbance of circular frequency 
(3mc3/2e2)u is conveniently described by an  elec- 

trical field of the form 

exp (iw.$-iw~), (56) 
when we use the quantity (2e2/3mc2)E as a meas- 
ure of distance in the direction of propagation. 
We suppose this disturbance to be inciclent on a 
medium occupying the infinite half-space from 
.$=O to E =  + a. Then the transverse electric 
field of the monochromatic wave will be repre- 
sen ted in the medium by the expression 

2(n+l)-l exp ( i o n . $ - i w ~ ) .  (57) 
As a measure of the disturbance in the medium 
we shall take the displacement of the typical 
particle or, what is up to a constant the sanic 
thing, the polarization : 

P = (n2 - 1)E/4n, 
= (2*)- ' (n-  1) esp  ( i u n t - i ~ ) .  (58) 

We are interested in following the 1)rogrcss 
through the medium, not of a monochromatic 
wave, but of a n  initially ivell defined pulse. \Ve 
shall idealize the incoming electric field as a 
delta function, b ( . $ - 7 ) ,  with the property ~ ( z L )  = O  
when 

2120, 1; 6(1L)dIL = 1. 

L'," 
We recall the representation of the delta function 
as a superposition of monochromatic wavcs: 

~ ( Z : - - . T )  = ( 2 ~ ) - '  csp ( i w [ - i w ~ ) d w .  (59) 

This expression will reprcscnt thc c~lcctl-ic fivltl 
in the vacuum. In the medium thc electric 
polarization will accordingly l x  givcn ;is ;L func- 
tion of position and time by the integr;iI 

P(S, T)=(28)-' ( n ( W ) - l )  

Xexp ( i w n [ - i w ~ ) d ~ ,  (60) 

where the refractive index is obtained as a 
function of frequency from (54). 

Of the mathematical details of evaluating the 
polarization of the medium from Eq. (60) it is 
enough to say that it is convenient to displace 
the path of integration in  the complex plane, and 
to apply the familiar saddle point method of 
approximation. This procedure is sufficiently 
accurate for our purpose when we accept the 
following reasonable conditions: 

S: 
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(1) We consider a medium of macroscopic dimensions. 
With the quantity (2e2/3rnc2) equal to 1.88X10-13 cm, it 
follows that  the values of the quantities and T are  of the 
order of magnitude of l O + I 3 .  

( 2 )  The number, N ,  of particles per volume element 
3a(2e2/3nic2)3 is of the order of, or greater than, unity. 

( 3 )  At the depth, E(2e2/3?nc2), in the medium, the dis- 
turbance, i f  propagated with the speed of light in vacuum, 
would arrive a t  that  time, r(2e2/3rnc3), for which T = E ;  or 
more briefly, we shall say that  the value of the “light- 
instant,” T ,  a t  the depth [ is given by the equation s = [ .  
We limit our interest to the disturbance a t  times ahead of 
the light-instant by an amount which, expressed in the 
dimensionless measure, [ - T .  is small in comparison with 
E-1013. although this difference may otherwise range all 
the way from a value very small in comparison with unity 
to a value as  great a s  several orders of magnitude of 10. 

(4) The dimensionless measure of natural frequency of 
oscillation of the systein, up, in order of magnitude is not 
large in comparison with unity. 

Under these conditions we obtain an approximate 
representation of the polarization of the medium 
in the form 

for values of ( t - ~ )  in a range of order l/(N[)k 
on either side of the light-instant; and 

4r’P+ ( 4 ~ N / 3 < )  $[ ( t  - i ) / Z N [ ] *  
exp C -  ( 3 / ’ 4 ) ( 2 N t / t -  d * ( t - ~ ) I  
cos C ( * / 3 ) + ( 3 1 / 4 ) ( 2 N t / E - - 7 ) * (€ - ~ ) 1 ,  (62) 

for values of [--7 between the rough limits 
l / ( N t ) r  on the little side and some small fraction 
of the quantity N [  on the big side. 

Wc obtain from expressions (61) and (62) the 
following picture of the displacement of the 
charges of the medium a t  the depth [(2e2/3mc2) 
before and a t  the light-instant: 

(1) The typical particle receives a displacement before 
the light-instant, thus justif! ing the use of the descriptive 
term “prc-acrcler.ition” even in the case of a medium 
containing m.iny particles. 

(2)  The displacement of the typical particle, instead of 
increasing with time according to the simple exponential 
law, exp ( T - [ ) ,  derived by Dirac for an isolated particle, 
is here before the light-instlnt an oscillatory function of 
time of much more rapidly increasing amplitude. 

( 3 )  The last f u l l  oscill.itioii before the light-instant is in 
the negatibe sense, that  is, opposite to the direction of the 
field in the oiigitial pulse. T h i s  oscillation is completed 
only slightly before the light-instant, so a t  that  time the 
displacement of the typical particle is positive but  small 
in comparison with its magnitude in the last few preceding 
vibrations. However, the velocity of the particle a t  a time 
about equal to the light-instant has reached the maximum 

value so far experienced. The condition of approximately 
zero displacement and high velocity has a certain corre- 
spondence with the result which would be expected a t  the 
time of arrival of the disturbance in the absence of the 
phenomenon of pre-acceleration. 
(4) The characteristic time of pre-acceleration may 

reasonably be taken to be measured b y  the interval 
between the last two nodes of the oscillation, a quant i ty  
xhich has the order of magnitude (Ng)-’(2e2/3mc2), a very 
small fraction of the so-called cla’ssical radius of the  
charged particle. Another estimate for the time of pri- 
acceleratioq of the same order of magnitude is obtained 
by studying the exponentially increasing envelope of the 
oscillatory motion described by Eq. (60). 

From the tentative conception that  the classical 
radius of a charged particle defines a region 
within which disturbances are propagated with 
a speed faster than the velocity of light, i t  would 
have appeared reasonable to expect in a very 
dense medium a macroscopic velocity of propa- 
gation significantly greater than the normal 
limiting value. I f  this were the case, the interval 
of pre-acceleration, t -  7, would have increased in 
proportion to  the depth, t ,  and would have been 
appreciable in comparison with 5. In contrast, 
we have now found that the characteristic time 
of pre-acceleration not only decreases slowly with 
depth i n  a dense niediuni, but also is an  exceed- 
ingly small fraction of the value obtained by 
Dirac for the case of a single particle. We con- 
clscie that  it is misleading to  attribute the phe- 
nomenon of pre-acceleration to  an abnormal 
velocity of light or to a failure of the usual 
conccptions of space-time in the immediate 
neighborhood of a charged particle. We are 
therefore obliged to look to  other terms for a 
suitable way to  describe the phenomenon. 

PRE-ACCELERATION A S  WITNESS TO THE 
INTERACTION OF PAST AND FUTURE 

Pre-acceleration and the force of radiative re- 
action which calls it forth are both departures 
from that  view of nature for which one once 
hoped, iwwhich the movement of a particle at  a 
given instant would be completely determined 
by the motions of all other particles at earlier 
moments. All thought was excluded of a de- 
pendence of the force experienced by the particle 
upon the future behavior of either that  charge 
itself or any other charges. The  past was con- 
sidered to be completely independent of the 
future. This idealization is no longer valid when 
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we have a particle commencing to move in 
anticipation of the retarded fields which have yet 
to reach i t  from surrounding chargcs. Still less is 
i t  a good approximation to the truth in tlie case 
of an incompletely absorbing systcni, where we 
have in addition to  the normal damping force an 
incident field seen above to dcpcnd explicitly 
upon the advanced fields of tlic individual 
particles, and where we encountcr advanced 
effects even more striking than prcacccleration. 

The  mechanism by which thc future affects 
the past is illuminated by considering a system of 
three or more charges in the light of the half- 
advanced, half-retarded fields of tlie theory of 
action at  a distance. T h e  retarded ficld produced 
by the acceleration of a affects b ;  the advanced 
field of b sets G in motion; and c generates a 
field, the advanced part  of which affects a before 
ihe moment of its acceleration. By an extension 
of this line of reasoning i t  is apparent that  the 
past and future of all particlcs arc tied together 
by a maze of interconnections. The  happenings 
in neither division of time can be considcrcd to 
be independent of those in the other. Nevcrthe- 
less, in a system containing particlcs sufficient 
in number to provide effective absorption, an 
interference takes place betwccn thcsc forces. 
All the advanced effects are cancellcd out except 
those which are comprised in tlic conven tional 
force of radiative reaction; and thcsc arc limited 
in their influence to a time of tlie order of 
magnitude of the quantity (e?/mc3).  Tlicrcfore, 
to the extent that  the force of radiative reaction 
can be neglected, we have in tlie case of a 
completely absorbing system the possibility to 
make a cut between past and future; but the 
cleanness of this cut is limited to  times of the 
order of ez/rnc3 or greater. Those phenoincna 
which take place in times shorter than this figure 
require u s  to recognize the complete interde- 
pendence of past and future in nature, an inter- 
dependence due to  an elementary law of inter- 
action between particles which is perfectly 
symmetrical between advanced and retarded 
fields. 

SUMMARY 

Use of action at a distance with field theory as 
equivalent and complementary tools for tlie 

description of nature has so far been prcvcnrcd 
by inability of the first point of vicw fully to 
account for the mechanism of radiation. Eluci- 
dation of this process in both theories conics 
from a 23-year old suggestion of Tctrodc, that  
the absorber may be a n  essential clenicnt of tlie 
act  of emission. A quantitative formulation of 
this idea is given here on the basis of tlic following 
postulatcs: (1) An accelerated charge i n  otlicr- 
wise charge-free space does not radiate cncrgy. 
(2) The  fields which act  on a given particle arise 
only from other particles. (3) TIicsc ficlds arc 
represented by one-half the retardcd plus onc- 
half the advanced Lienard-Wieclicrt solutions 
of Maxwell's equations. 

In a system containing particlcs suficicnt in 
number ultimately to absorb all radiation, the 
absorber reacts upon an acccleratcd charge with 
a field, the advanced part of which, evaluatcd 
in the ncighborliood of tlie source on tlic basis of 
these postulates, is found to have tlic following 
properties: (1) I t  is independent of the propcrtics 
of the absorbing medium. (2) I t  is complctcly 
determined by the motion of thc sourcc. ( 3 )  I t  
exerts on the source a force which is finite, is 
simultaneous with the moment of accclcration, 
and is just sufficient in magnitude and tlircction 
to take away from the source the cnergy \vliicli 
the act  of radiation imparts to tlic surrounding 
particles. (4) I t  is equal in niagnitudc to one-half 
tlie retardcd field minus one-half thc advanced 
field of the acccleratcd chargc itself, just tlic 
field postulatcd by Dirac as the sourcc of Llic 
force of radiative reaction. ( 5 )  This ficld compen- 
sates the half-advanced ficld of tlic sourcc anti 
combines with its half-retarded field to producc 
the full  retarded disturbance which is rcquircd by 
experience. Radiation is concludcd to bc a phc- 
nomcnon as much of statistical mechanics as of 
pure electrodynamics. A complete corrcspontlcnce 
is established between action a t  a distance and 
tlie usual formulation of field theory in tlic case 
of a completely absorbing system. In such a 
system the phenomenon of pre-acceleration ap- 
pears as the sole evidence of the advanccd effects 
of the theory of action a t  a distance. Other 
advanced effects appear in the case of an incorn- 
pletely absorbing system and arc also discussed. 
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Classical Electrodynamics in Terms of Direct 
Interparticle Action' 

JOHN ARCHIBALD WHEELER AND RICHARD  ILLI IPS FEYNMAN~ 
Princeton University, Princeton, New Jersey 

". . . the energy tensor can be regarded only as a provisional means of representing matter. 
I n  reality, matter consists of electrically charged particles. . . ."3 

INTRODUCTION AND SUMMARY 

ANY of our present hopes to understand the M behavior of matter and energy rely upon the 
notion of field. Consequently it may be appropriate to 
re-examine critically the origin and use of this century- 
old concept. This idea developed in the study of classical 
electromagnetism a t  a time when it was considered 
appropriate to treat electric charge as a continuous 
substance. It is not obvious that general acceptance in 
the early 1800's of the principle of the atomicity of 
electric charge would have led to the field concept in 
its present form. Is it after all essential in classical field 
theory to require that a particle act upon itself? Of 
quantum theories of fields and their possibilities we 
hardly know enough to demand on quantum grounds 
that such a direct self-interaction should exist. Quantum 
theory defines those possibilities of measurement which 
are consistent with the principle of complementarity, 
but the measuring devices themselves after all neces- 
sarily make use of classical concepts to specify the quan- 
tity mea~ured .~  For this reason it is appropriate to begin 
a re-analysis of the field concept by returning to classical 
electrodynamics. We therefore propose here to go back 
to the great basic problem of classical physics-the 
motion of a system of charged particles under the 
influence of electromagnetic forces-and to inquire 
what description of the interactions and motions is 
possible which is at  the same time (1) well defined 
(2) economical in postulates and (3) in agreement with 
experience. 

We conclude that these requirements are satisfied by 
the theory of action a t  a distance of Schwarz~child,~ 
Tetrode,6 and Fokker.' In this description of nature no 
direct use is made of the notion of field. Each particle 
moves in compliance with the principle of stationary 

1 Part I1 of a critique of classical field theory of which another 
part here referred to as I11 appeared in Rev. Mod. Phys. 17, 157 
(1945). For related discussion see also R. P. Feynman, Phys. Rev. 
74, 1430 (1948). 

* Now a t  Cornell University, Ithaca, N. Y .  
J A. Einstein, The Meaning of Rdutioily (Princeton University 

Press, Princeton, New Jersey, 1945), second edition, p. 82. 
'See in this connection Niels Bohr, Atomic Theory and the 

Dcscriptia of Nature (Cambridge University Press, 1934) and 
chapter by Bohr in Einstein, of the Limnn Philosophers Serizs  
(Ndrthwestern University, scheduled for 1949). 

H. Tetrode. Zeits. f. Phvsik 10. 317 (1922). 
6 K. Schwarzschild, Gottinger Nachrichten, 128, 132 (1903). 

7 A. D. Fokl;er, Zeits. f .  Physik'58, 386 (1929) ; Physica 9, 33 
(1929) and 12, 145 (1932). 

action,8 

(-da,daP)tf c (eaeb/c) 
a<b 

P P  

XJ  J 6(ab,ab")(da.dbv) =extremum. (1) 

All of mechanics and electrodynamics is contained in 
this single variational principle, 

However unfamiliar this direct interparticle treat- 
ment compared to the electrodynamics of Maxwell and 
Lorentz, it deals with the same problems, talks about 
the same charges, considers the interaction of the same 
current elements, obtains the same capacities, predicts 
the same inductances and yields the same physical 
conclusions. Consequently action a t  a distance must 
have a close connection with field theory. But never 
does it consider the action of a charge on itself. The 
theory of direct interparticle action is equivalent, not 

Here the letters a,  b .  . . denote the respective particles, 
Particle u has in c.g.s. units a mass of m. grams, a charge of e, 
franklins (e.s.u.), and has a t  a given instant the coordinates 

a2=a2 the three space coordinates, measured in cm. 

and which represents the product of the time coordi- 
nate by the velocity of light, c (ct="cotime"). 

a'=u1 

u3=a3 
d = = - - a r ,  a quantity which has also the dimensions of a length. 

(Note: In comparing formulas here with those in the literature, 
note that not all authors use the same convention about signs of 
covariant and contravariant components.) 

The expression ub" is an abbreviation for the vector, am-bm. 
Greek indices indicate places where a summation is understood 
to be carried out over the four values of a given label. The argu- 
ment ub,& of the delta-function thus vanishes when and only 
when the locations of the two particles in space-time can be 
connected by a light ray. Here the delta-function S(x)  is the 
usual symbolic operator defined by the conditions 6(x )  =O when 
zfO and J-*S(z)dz= 1. In the evaluation of the action, J ,  from 
(l), the world lines of the several particles are considered to be 
known for all time; i.e., the coordinates a" are taken to be given 
functions of a single parameter, a, which increases monotonically 
along the world line of the first article; likewise for b, G, etc. 
An arbitrary assumed motion of ti!, particles is not in general in 
accord with the variation principle: a small change of the first 
order, 6um(u), 6bm(b), . . . in the world lines of the particles (this 
change here being hmited for simplicity to any finite interval of 
time, and the length of this time interval later being increased 
without limit) produces in general a non-zero variation of the 
first order, SJ, in J itself. Only if all such first order variations 
away from the originally assumed motion produce no first order 
change in J is that originally assumed motion considered to 
satisfy the variational principle. It is such motions which are in 
this article concluded to be in agreement with experience. 

1 
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to the usual field theory, but to a modified or adjunct 
field theory, in which 

(1) the motion of a given particle is determined by the sum of 
the fields produced hy-or adjunct to-every particle other than 
the given particle. 

(2) the field adjunct to a given particle is uniquely determined 
by the motion of that particle, and is given by half the retarded 
plus half the advanced solution of the field equations of Maxwell 
for the point charge in question. 

This description of nature differs from that given by 
the usual field theory in three respects : 

(1) There is no such concept as “the” field, an independent 
entity with degrees of freedom of its own. 

(2) There is no action of an elementary charge upon itself and 
consequently no problem of an infinity in the energy of the 
electromagnetic field. 

(3) The symmetry between past and future in the prescription 
for the fields is not a mere logical possibility, as in the usual 
theory, but a postulational requirement. 

There is no circumstance of classical electrodynamics 
which compels us to accept the three excluded features 
of the usual field theory. Indeed, as regards the question 
of the action of a particle upon itself, there never was 
a consistent theory, but only the hope of a theory. It 
is therefore appropriate now and hereafter to formulate 
classical electrodynamics in terms of the adjunct field 
theory or the theory of direct interparticle action. The 
agreement of these two descriptions of nature with each 
other and with experience assures us that we arrive in 
this way a t  the natural and self-consistent generalization 
of Newtonian mechanics to the four-dimensional space of 
Lorentz and Einstein. 

It is easy to see why no unified presentation of 
classical electrodynamics along these lines has yet been 
given, though the elements for such a description are 
all present in isolated form in the literature. The 
development of electromagnetic theory came before the 
era of relativity. Most minds were not prepared for the 
requirement that interactions should be propagated 
with a certain characteristic speed, still less for the 
possibility of both advanced and retarded interactions. 
Newtonian instantaneous action a t  a distance with its 
century and a half of successes seemed the natural 

FIG. 1. The paradox of advanced effects. Does the pellet strike 
X at  6 p.m.? If so, the advanced field from A sets B in motion a t  
1 pm., and B moves A at 8 a.m. Thereby the shutter TS is set 
in motion and the path of the pellet is blocked, so i t  cannot 
strike X a t  6 pm. If it does not strike X a t  6 p.m., then its path 
is not blocked a t  5.59 pm.  via this chain of actions, and therefore 
the pellet ought to strike X. 

framework about which to construct a description of 
electromagnetism. Attempt after attempt failed.9 And 
unfortunately uncompleted was the work of Gauss, 
who wrote to Weber on the 19th of March, 1845: “I 
would doubtless have published my researches long 
since were it not that a t  the time I gave them up I had 
failed to find what I regarded as the keystone, !Vil actum 
reputans si quid superesset agendum: namely, the deriva- 
tion of the additional forces-to be added to the 
interaction of electrical charges a t  rest, when they 
are both in motion-from an action which is propagated 
not instantaneously but in time as is the case with 
light.”‘O These failures and the final success via the 
apparently quite different concept of field were taken 
by physicists generally as convincing arguments against 
electromagnetic action a t  a distance. 

Field theory taught gradually and over seven decades 
d a c u l t  lessons about constancy of light velocity, about 
relativity of space and time, about advanced and 
retarded forces, and in the end made possible by this 
circuitous route the theory of direct interparticle 
interaction which Gauss had hoped to achieve in one 
leap. On this route and historically important was 
LiCnard” and Wiechert’s12 derivation from the equations 
of Maxwell of an expression for the elementary field 
generated by a point charge in an arbitrary state of 
motion. With this expression as starting point Schwarzs- 
child arrived a t  a law of force between two point charges 
which made no reference to field quantities. Developed 
without benefit of the concept of relativity, and 
expressed in the inconvenient notation of the prerela- 
tivistic period, his equations of motion made no appeal 
to the physicists of the time. After the advent of 
relativity Schwarzschild’s results were rederived inde- 
pendently by Tetrode and Fokker. These results are 
most conveniently summarized in Fokker’s principle 
of stationary action of Eq. (1). 

To investigate the consistency of the Schwarzschild- 
Tetrode-FoMrer theory of direct interparticle inter- 
action and its relation to field theory, we have first to 

9 For a stimulating and instructive if not always objective 
account of early researches on field theory and action a t  a distance 
see A. O’Rahilly, Electromagnetics (Longmans, Green and Com- 
pany, New York (1938)). See also J. J. Thomson, Report of the 
British Assn. for the Adv. of Science for 1885, p. 97; J. C. Maxwell, 
Electricity and Magnetism (Oxford University Press, London, 
1892), third edition, Chapter 23); R. Reif and A. Sommerfeld, 
Encyclopadie der Math. Wiss. 5, Part 2, Section 12 (1902). A 
recent very brief account has been given by H. J. Groenewold, 
report on Puntladingen en stralingsveld, Ned. Nat. Ver., Amster- 
dam (May 1947). M. Schonherg regards field and direct action 
not as two equivalent representations of the Same force, but as 
two different parts of the total force: Phys. Rev. 74, 738 (1948); 
Sum. Bras. Math. 1, Nos. 5 and 6 (1946); J. L. Lopes and M. 
Schonbere. Phvs. Rev. 67. 122 (1945). 

10 C. F.”Ga&s, Werkc 5,’ 629 (1867j. 
11 A. LiCnard, L’pclairage Electrique 16, pp. 5, 53, 106 (1898). 

E. Wiechert, Archives Neerland (2) 5, 549 (1900) ; Ann. d 
Physik 4, 676 (1901). Compare these derivations in prerelativistic 
notation with that given for example by W. Heitler, The Quantum 
Themy of Radiation (Oxford University Press, New York, 1944), 
second edition, p. 19, or A. Sommerfeld, Ann. d. Physik 33, 668 
(1910). 



C L X S S  I C A L E L E C T R 0 D Y N A M I C S 427 

examine in the next section the paradox of advanced 
interactions. In the following section is recalled the 
derivation of the equations of motion from the variation 
principle. Next these equations of motion are shown to 
satisfy the principle of action and reaction as generalized 
to the non-instantaneous forces of a relativistic theory 
of action a t  a distance. In a subsequent section the 
corresponding formulation of the laws of conservation 
of energy and momentum is given. Finally the con- 
nection is established between these conservation laws 
and the field-theoretic description of a stress-energy 
tensor defined throughout space and time. 

THE PARADOX OF ADVANCED ACTIONS 

The greatest conceptual difficulty presented by the 
theory of direct interparticle interaction is the circum- 
stance that it associates with the retarded action of a 
on b, for example, an advanced action of b on a. A 
description employing retarded forces alone would 
violate the law of action and reaction or, in mathe- 
matical terms, could not be derived from a single 
principle of stationary action. 

Advanced actions appear to conflict both with 
experience and with elementary notions of causality. 
Experience refers not to the simple case of two charges, 
however, but to a universe containing a very large 
number of particles. In the limiting case of a universe 
in which all electromagnetic disturbances are ultimately 
absorbed it may be shown' that the advanced fields 
combine in such a way as to make it appear-except for 
the phenomenon of radiative reaction-that each 
particle generates only the usual and well-verified 
retarded field. It is only necessary to make the natural 
postulate that we live in such a completely absorbing 
universe to escape the apparent contradiction between 
advanced potentials and observation. 

In a universe consisting of a limited number of 
charged particles advanced effects occur explicitly. It 
is no objection if the character of physics under such 
idealized conditions conflicts with our experience. It is 
only required that the description should be logically 
self-consistent. In particular in analyzing the behavior 
of an idealized universe containing only a few particles 
we cannot introduce the human element as we know it 
into the systems under study. To do so would be to 
assume tacitly the possibility of a clean cut separation 
between the effects of past and future. This possibility 
is denied in a description of nature in which both 
advanced and retarded effects occur explicitly. 

The apparent conflict with causality begins with the 
thought: If the present motion of a is affected by the 
future motion of b, then the observation of a attributes 
a certain inevitability to the motion of b. Is not this 
conclusion in direct codict with our recognized ability 
to influence the future motion of b? 

All essential elements of the general paradox appear 
in the following idealized example: Charged particles a 
and b are located in otherwise charge-free space a t  a 

distance of 5 light-hours. A clockwork mechanism is 
set to accelerate a a t  6 p.m. Thereby b will be affected, 
not only a t  11 p.m. via retarded effects, but also a t  
1 p.m. via advanced forces. This afternoon motion will 
cause a to suffer a premonitory movement a t  8 a.m. 
Seeing this motion in the morning, we conclude the 
clockwork will go off in the evening. We return to the 
scene a few seconds before 6 p.m. and block the 
clockwork from acting on a. But then why did a move 
in the morning? 

To formulate the paradox acceptably, we have to 
eliminate human intervention. We therefore introduce 

I / \  

V I 
SEED OF MOVING SHUTTER W G  M 

FIG. 2. Analysis and resolution of the paradox of advanced 
effects. The action of the shutter on the pellet-the interaction 
of past and future-is continuous (dashed line in diagram) and 
the curves of action and reaction cross. See text for physical 
description of solution. 

a mechanism which saves charge a from a blow a t  
6 p.m. only if this particle performs the expected 
movement a t  8 a.m. (Fig. 1). Our dilemma now is this: 
Is a hit in the evening or is it not? If it is, then it 
suffered a premonitory displacement a t  8 a.m. which 
cut off the blow, so a is not struck a t  6 p.m. ! If it is 
not bumped a t  6 p.m. there is no morning movement 
to cut off the blow and so in the evening a is jolted! 

To resolve, we divide the problem into two parts: 
effect of past of a upon its future, and of future upon 
past. The two corresponding curves in Fig. 2 do not 
cross. We have no solution, because the action of the 
shutter on the pellet, of the future on the past, has been 
assumed discontinuous in character. 

The paradox, and the case it presents against ad- 
vanced potentials, evidently depends on the postulate 
that discontinuous forces can exist in nature. From a 
physical point of view we are led to make just the 
contrary assumption, that the influence of the future 
upon the past depends in a continuous manner upon 
the future configuration. 

Our general assumption about continuity is explicitly 
verified in the present case. The action of shutter on 
pellet is not discontinuous. The pellet will strike the 
point S a glancing blow if the shutter lies only part way 
across its path (dashed curve in Fig. 2). 

Of the problem of iduence of future upon past, and 
past upon future, we now have in Fig. 2 a self-consistent 
solution: Charge a by late afternoon has moved a 
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very slight distance athwart the path of the pellet. 
Thus one second before 6 p.m, it receives a glancing 
blow in the counter-clockwise sense and a t  6 p.m. 
a stronger acceleration in the clockwise direction. The 
accelerations received by a a t  these two moments 
are by electromagnetic interaction transmitted in re- 
duced measure to b a t  1 p.m. and back from b in yet 
greater attenuation to a. Thus this particle receives 
one second before 8 a.m. a certain counter-clockwise 
impulse and a t  8 a.m. an opposite impulse. The net 
rotational momentum imparted to the lever is clock- 
wise. It carries the point S in the course of 10 hours 
the necessary distance across the path of the pellet. 
The chain of action and reaction is completed. The 
paradox is resolved. 

Generalizing, we conclude advanced and retarded 
interactions give a description of nature logically as 
acceptable and physically as completely deterministic 
as the Newtonian scheme of mechanics. In  both forms 
of dynamics the distinction between cause and effect is 
pointless. With deterministic equations to describe the 
event, one can say: the stone hits the ground because 
it was dropped from a height; equally well: the stone 
fell from a height because it was going to hit the ground. 

The distinction between Newtonian and relativistic 
mechanics is one of detail-instantaneous interactions 
versus forces unconfined to a single plane in space time. 
The interrelations between the world lines are more 
complicated than those of Newtonian mechanics, but 
just as deikite. There a well-defmed division of past 
and present was possible; here these divisions of time 
are inextricably mixed. 

EQUATIONS OF MOTION 

Advanced and retarded forces being accepted on 
equal footing in the description of nature, we now 
reproduce the derivation from Fokker’s action principle 
of equations of motion which contain them both. Let 
the world line of a typical particle a be altered from 
P ( u )  to am(a)+6am(a). Let the abbreviation be intro- 
duced, 

(vector potential of particle b at point 5). Also denote 
by ~‘ “ ’ (u )  the derivative dam(a)/da. Then the change 
in action produced by the alteration of the world line 
of a is 

6J = mat (us’( W)‘/ (- u,’a*’)+ ] da s 
or, by partial integration, and dropping terms at the 

limits where the variations 6a“ vanish, 

{ - m,c(d/da)[a,’/(-a,‘a~’)~] 

+ (eo/ c )  C [ (dA, (b) /aam)  - (aA,(b) /da~)]a~‘) .  (3) 

The condition that 6J be zero to the first order for 
arbitrary 6a“ is the vanishing of the curly bracket in 
(3) for all four values of m, whence result the four 
components of the equation of motion for particle a. 
Instead of expressing the motion in terms of the arbi- 
trary parameter a, introduce a new parameter, a=a(a),  
the “proper cotime,” defined in terms of a up to an 
unimportant additive constant by the equation da/de 
= (-ua,’a”)* and denote by dots derivatives with 
respect to the proper cotime. Introduce also the 
abbreviation 

b # a  

F,,(b)(x) = aA,(b)(X)/aP- aA,(b) (x)/axn (4) 
(field a t  point x due to b).13 Then the four-vector 
equation of motion takes a form, 

mac2u,= e,  ( 5 )  F,p(b)(a)(ip, 
b #a 

identical with that of Lorentz, with the following 
exceptions : self-actions are explicitly excluded; no fields 
act except those adjunct to the other particles; each 
such adjunct field is uniquely determined by the 
prescription of Eqs. (2) and (4). 

Now we come to the well known proof that each 
adjunct field satisfies Maxwell’s equations when for 
charge and current are introduced the appropriate 
expressions for the given particles. We employ Dirac’s 
identity14 
( a 2 / a x , d ~ ’ ) 6 ( ~ b , d ’ )  = -44*6(Xi-b1)6(?h- b2) 

X6(x3- b 3 ) 6 ( ~ 4 -  b J ,  (6) 
multiply both sides by db,(P) = b,(P)d& integrate with 
respect to fi from - -m to +a, and conclude that 
A,(b)(x) satisfies the equation 

Here 
(dz/d@xP)A,(”(~) = - 4 ~ j , ( ~ ) ( ~ ) .  (7) 

X 6 ( ~ 3 - b 3 ) 6 ( ~ ~ - - b 4 ) k ( B ) d 1 3  (8) 

is an abbreviation for the density-current four-vector 
at point x due to particle b, an obviously singular 
quantity, obeying certain evident conservation rela- 

13 The electric field E, k F14= -p41 and the magnetic field Hz 
is Fz1=-F22: the vector potential A, is A l = A 1  and the scalar 
potential is A4=-A4 .  Likewise in E . (8) j 4 = - j 4  represents the 
charge density in franklins (e.s.u.)7cma and jl= i gives (1/6) 
times (z-component of the charge flux in franklinsLn3 w.). 

14 P. A. M. Dirac, Proc. Roy. Soc. London. A167, 148 (1938). 
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tions. The vector potential ( 2 ) ,  in addition to satisfying 
the inhomogeneous wave equation (6), has a four- 
dimensional divergence which vanishes : 

(c3 /d~, , )A, , (~)  (x) = e b  6'(xb,xbV)2~b''6,dfl c 
= 2eb6(xb,xbV) = 0. (9) 

We differentiate this zero divergence with respect to xm 
and subtract from it ( 7 ) ,  obtaining the field equations 

1:: 
c3Fmp(b) (x)/ax,= h j m ,  (10) 

equjvalent to the usual relations divE =4xp and cur@ 
= E/c+4rJZ/C. The other pair of Maxwell's equa- 
tions follow identically from the definition (4) of the 
F's in terms of the A's. 

The fields ( 2 )  are distinguished from all other solu- 
tions of Maxwell's equations by being half the sum of 
the advanced and retarded Lihard-Wiechert potentials 
of particle b :  

= ( 1 / 2 )  R,(*) (x) + ( 1/2)Sm(b) (x) . (11) 

Here, for example, R represents the retarded potential 

evaluated a t  that point on the world line of b which 
intersects the light cone drawn from the point of 
observation into the past: 

xb,xb'=O; x4>b4, (13) 
and S similarly represents the advanced potential. 

By way of illustration of these results in familiar 
cases consider first the case of a point charge, b, a t  rest 
a t  the origin. Then retarded and advanced fields are 
identical, all components of the four-potential vanish 
except the last, b4=d(cotime)/d(proper cotime)= 1 ,  
bxq= bd-xd=X4- b'=elapsed cotime=distance to point 
of observation=r, and the scalar potential has the 
familiar value eb/r. Next, in the case of a slowly,moving 
point charge, it similarly follows that A*= e4bm/2r)ret 
+eb(bm/2r)adv. If this point charge is a t  the same 
time being accelerated, then the derived electric field 
has a t  large distances the value E= -eb(bL/2r),, 
-ea(bl/2r)dv, where b, is the component of the three- 
vector b perpendicular to the line r. This result refers 
only to the field of the particle in question. I n  the 
idealized case of a universe containing charged particles 
sdicient  in number to absorb all electromagnetic 
disturbances, the advanced fields of the particles of the 
absorber will combine with the given field to produce 
the full retarded field of experience, -eb(b;Jr),,t, as 
shown in 111. As a final example consider a fixed linear 

conductor past any point of which flow per second i / e  
particles of charge e. The interval of cotime between 
the kth and the (k+l)st particle is ce/i .  The coordi- 
nates of the kth particle are 

k4(y)=s4(y)+kce / i  ( k = - m ,  ..., - l , O , l ,  . . . )  (14) 
where s*(y) is the parametric representation of the 
curve of the wire. The four-potential a t  a point of 
observation a n  appreciable distance from the wire is 
obtained by summing over all the particles or equiva- 
lently, because of the close spacing of the charges, by 
integrating over k :  

Am(x)=e 6[P(y)- ( c t - S ' ( y ) - k ~ e / i ) ~ ]  

k"(y)=P(y) (m=1, 2 , 3 )  

Xdk(ds"(y)/&)dy 
ss 

fJdsm'(y)/cr(y) for m= 1 ,  2 ,  3 
- - 

[ e J d k / r  for m=4. 

Here r ( y )  is the magnitude of the vector x(y), y(y) ,  z(y)  
which runs from the point y of the curve to the point 
of observation. The scalar potential of Eq. (15) will 
normally be compensated wholly or in part by contri- 
butions from opposite charges a t  rest and need not be 
considered here. From the vector potential follows an 
expression for the magnetic field 

H=curlA = i  (dsXr)/cr3, (16) s 
identical with that due to Ampere. 

To go further in deriving well known results would be 
pointless. Adequate textbooks exist. They treat well 
defined problems of electromagnetism, where there is 
no compelling reason to consider a particle to act on 
itself. Thus all their analyses are immediately trans- 
latable into terms of the present modiiied or adjzlnct 
$eZd theory. However, this point of view is mathemati- 
cally identical with that of action a t  a distance. Conse- 
quently the theory of direct interparticle action, far 
from attempting to replace field theory, joins with field 
theory to provide the science of electromagnetism with 
additional techniques of mathematical analysis and to 
facilitate deeper physical insight. The rest of this 
article may illustrate how the two points of view join 
hands to elucidate in four-dimensional mechanics the 
principle of action and reaction and the laws of conser- 
vation of momentum and energy. 

ACTION AND REACTION 

Laws of conservation of angular momentum, energy 
and linear momentum are well known to exist in any 
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theory for which the equations of motion are derivable 
from an action principle which is invariant with respect 
to rotation, translation, or displacement of the time 
c00rdinate.l~ Thus Fokker16 has derived an energy- 
momentum conservation principle for an idealized 
situation in which there are only two particles, of which 
a acts on b via purely retarded forces. The present 
treatment is the natural generalization of Fokker's 
analysis to the case of a theory which is symmetric 
between every pair of particles and which is based on 
the action principle (1). I t  will be sufficient to prove 
the conservation law for a single pair of particles in 
order to see the corresponding result for a system of 
particles. 

For the typical particle a let the four-vector of energy 
and comomentum be denoted by 

G*=G1 three space components of 
mcv(l-v2/c2)~= Q=G2 the kinetic comomentum 

Q = G 3  (velocity of light times 
kinetic momentum: ex- 
pressible in energy units). 

mc2(1-vZ/c2)f=G4= -G4, kinetic energy plus rest- 

Then the change in kinetic comomentum and energy 
in the interval of proper cotime, d a ,  on account of the 
action of particle b follows directly from the equations 
of motion ( 5 )  and the expressions (4) and (2) for the 
force coefficients : 

dGm((i)(cu) = mac2a,&= e.edae 

{ I  
mass energy. 

x (a/aam) b,- (a/aap) b,,, G(abpb')d& (17) 1 J '  s t  
We carry out the differentiations with respect to the 
coordinates a and add to the result the following zero 
quantity 

+m 
e . e t d h S  (d/dB) 6 (ab,abv)dB, (18) 

4 

thus finding for the impulse 

dG,(")(a) = 2e,eb 6'(ab,abv) 
8- s, 

X (ab,da#db,- db,daPab,- da,,,db'ab,). (19) 

In this expression the integrand is changed in sign but 
unaltered in value by an interchange of the roles of 
particles a and b. 

To the result just obtained we give the following 
obvious interpretation : 

(1) The right hand side of (19), after removal of the integral 
sign, represents in terms of the symbolic delta-function the 

transfer of impulse or energy to a during the stretch of cotime 
da from effects which originate a t  b in the cotime interval d,3. 

(2) There is no energy or impulse transfer except when the 
stretch dB of the world line of b is intersected by either the forward 
or backward light cone drawn from a :  i.e., b acts on a through 
both retarded and advanced forces. 

(3) The impulse communicated to a over the portion da of its 
world line via retarded forces, for example, from the stretch dj3 
of the world line of b is equal in magnitude and opposite in sign 
to the impulse transfer from a to b via advanced forces over the 
same world line intervals (equality of action and reaction). 

The relativistic generalization of the Newtonian 
principle of action and reaction as just stated is obvi- 
ously not identical with the non-relativistic formulation. 
In no Lorentz frame of reference are action and reaction 
simultaneous. For the instant a t  which a experiences a 
force from b there is not one corresponding time a t  
which b gets a back reaction, but two instants." Thus 
for a given point on the world line of a we can make 
two statements about the transfer of energy (or 
impulse) from b. Each statement refers to a single one 
of the two parts of the total transfer. I t  is evidently 
reasonable that the law of action and reaction should 
have this Jacob's ladder character in 4-dimensional 
space- time. 

ENERGY AND MOMENTUM OF INTERACTION 

Considering two isolated particles a and b, we 
immediately conclude from the law of action and 
reaction as just stated the constancy in time of the 
total energy and comomentum four-vector 

Gm(a, a) =m,c2h(a)+mbc2h(P) 

+ 2 e . e ~ ( - - ~ ' ~ m + [ m ~ '  -m 4 ) 6 ' ( a b a W  

(ab,,,dapdb,,- db,,,da#ab,,- da,db'ab,) = (constant),,,. 

In the case of more particles we have a corresponding 
expression with a kinetic term for each individual 
particle and an interaction term for each pair of charges. 
Thus Gm becomes a function of as many parameters 
a, 8, y, . . . as there are particles. To prove constancy 
with respect to a given parameter, such as a, we have 
only to differentiate (20) and insert for m,c2u,,,(a) the 
quotient dG,( ')(a)/da obtained from (19). 

Evidently we have in (20) what may be called a 
many-time formulation of the conservation laws, de- 
rived of course from the equations of motion, but from 
which conversely the equations of motion are derivable 
with equal ease. 

The interpretation of the double integral in (20) as 
an interaction energy is obvious in the case of two 
stationary charges separated by a distance R. Thus 
by integration we find for G4 the familiar result m,cp 
+mac2+eaeb/R. 

(20) 

Is E. Noether, Gottinger Nachrichten, Math. Phys. Klasse. 235 
(1918) : E. Bessel-Hagen, Math. Ann. 84, 258 (1921). 

l6 A. D. Fokker, Zeits. f .  Physik 58, 386 (1929). 

17 L. Page, Am. J. Phys. 13, 141 (1945), has reviewed the com- 
plications which come from comparing action and reaction at the 
same time. 
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In the case of individual moving charges it is some- 
times convenient to add to the idea of kinetic co- 
momentum and energy G,,,ca) the notion of potential 
comomentum and energy 

Um(a)=e,  C A,(b)(a(ct)) ,  (21) 
b #a 

and total comomentum and energy, 

p,(a)=G,(a)+u,(a). (22) 
In terms of these expressions, the four-vector of energy 
and comomentum of the whole system takes the form 

Gm(ct,  P ,  . . .)=CPm(')(~)+ C 2eaeb 
a<b 

X [ imsB - s: im} G'(ab,ab')ab,da~db,. (23) 

The summation of the potential energies so to speak 
counts twice the interaction between each pair of 
particles. The double integrals in (23) correct for this 
overcount. 

From either Eq. (20) or Eq. (23) for the energy of 
the system it is clear (see Fig. 3) that the electromag- 
netic energy of a finite number of particles is definable 
from a knowledge of only a finite stretch of their world 
lines. It is also evident that particles which come 
together in otherwise charge free space, interact, and 
then separate in a regular way, will in the end experi- 
ence no net loss of energy to outer space. Both features 
of the four-vector G,,, are reasonable in the mathe- 
matical description of a physically closed system. 

RELATION OF INTERACTION ENERGY TO 
FIELD ENERGY 

--ap 

In field theory it is customary to attempt to define 
throughout space a symmetrical stress energy tensor1* 
T,,(s) with the following properties: 

(1) The divergence aT,,/az, vanishes at every place where 
there is no particle. 

(2)  At the location of a typical charge a this divergence becomes 
singular in such a way that its integral over a small volume 
element containing the charge gives the value of the electro- 
magnetic force acting on that charge: 

- d~SSS(aT,,/ar,)dr'dzIdZJ= rn.c2a, (24) 

when the integration extends over a region of constant time which 
contains a. When the integration proceeds over an arbitrary 
space-like region or "surface," c, such that no pair of points in 

neighborhood 
of a 

Typical components are 
2'11, force in positive $-direction across unit area in yz plane 

exerted upon medium on negative side of plane by medium 
on positive side (equal in the Maxwell theory to (87r)-1 

T14, velocity of light times energy flux in r direction per cm* of 
yz plane and per sec. (Maxwell value ( ~ T ) - ~ ( E @ ~ - E ~ ~ ) ) .  

T4, negative of the energy density (usual expresson -&)-I 

X (~,*-a~*-a,*+E,1-E,*-E~)). 

X(G+a*.)). 

L DSPLACEMENT 

FIG. 3. Interactions considered in formulating the law of 
conservation of momentum and energy. Note that the stretches 
of world line from a a d v  to aret and from pad" to @..t completely 
determine the value of the energy-momentum four vector G,,,(a, 6). 
It is also natural to specify these two world-line segments as 
initial conditions in dealing with the two-particle problem. 

the surface can be connected by a light ray, then the corresponding 
statement is 

m,c?ii,+ ~ , J J J ( ~ T ~ J ~ ~ ~ ) ~ ~  = 0. (25) 
neighborhood 

of a 
Here, if the surface is defined by a parametric representation in 
terms of three quantities u, v ,  w, then 

&4= [a@, 9, x"/a(u, v ,  w)-&dvdw 
with corresponding expressions for the other three components 
of durn. 

(3) For every space-like surface c there is defined afour-vector of 
energy and commenturn 

G,(U) = Z, rn.,c2h(a)+iIJTmade, (26) 
which is conserved in the sense that its value is completely 
independent of the choice of u. Thus consider a change bc in the 
surface u-i.e., an alteration from zm(u, v,  w) to xm+6zm(u, v, w) 
-and the associated alterations dcr, d@, . . . in the points where 
the respective world lines intersect this surface. Then the change 
in G,,, is expressible via the theorem of Gauss in terms of an 
integral over the volume, w ,  comprised between the two surfaces: 

6G,= 2, rn.c2a,da+SSJ'S(aT-/a$=)~.  (27) 

But the integrand vanishes everywhere except in the immediate 
neighborhood of the typical particle, a, and there-writing 
dw-da,dd, and using (25)-we conclude that the contribution 
from the integral just cancels out the first term in bG,. 

Is there any choice of the tensor T,, in the adjunct 
field theory which will yield for the energy-comomenturn 
vector G,(u) of (26) a value identical with the corre- 
sponding vector G m ( m , P . . * )  of the theory of direct 
interparticle action? The appropriate tensor may be 
constructed when one recalls that the field of a given 
particle is to produce changes only in the motions of 
the other particles, and that the principle of action and 
reaction connects the retarded effects exerted for 
example by a on b via the retarded field (l/2)R,,,,,(a) 
with the advanced effects exerted by b on a via the 
advanced field (1/2)Sm,,(b) : 

T,,(x)= c (R(")(Z) & S(b)(X)),n. (28) 
a r h  
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Here R and S denote the retarded and advanced 
Lihard-Wiechert fields, so that F,,(')= (l/2)Rmn(4 
+(1/2)S,,,,("). For a convenient abbreviation we have 
adopted the notation 

with g,,,,=O for m f n  and g,,=g22=g33=1= -g44. 
That the tensor T,, of (28) does lead to the energy- 

comomentum four-vector (20) of the theory of action 
a t  a distance is proven in the appendix. Here we shall 
only establish that the stress energy tensor satisfies the 
conditions (1) and (2) (and hence (3)). Thus, we 

TABLE I. Correspondence of principal alternative expressions 
for interaction energy in adjoint field theory and in theory of 
direct interparticle interaction. 

Canonical form Frenkel iorm 

Basic type of field Those partial fields which Total (time-symmetric) 
coupling envisazed are reciprocally responsi- field adjunct to each 

ble for equality of action of the coupled particles 
and reaction 

Typical term in 
stress-energy tensor 

RW & SCb) 

Expression for inter- Eq. (20)  Eq. (20) plus expres- 
action energy: sion (40) 

Depends upon: Finite stretch oi the Shape of the two 
two world lines world lines from 

l = - *  to +=a 

evaluate the divergence of the typical term in the 
tensor of Eq. (28), finding 

ar,,,,/ax,= 1 { (~(b)p?/i6*)(a~,,(a)/ax? 
a # b  

+aRpn(a)/axm+aR,,(a)/axp) 

+ ( s , , , ( b ) p / 8 4  (aRp;ax,,) 

+similar term with Sb) and 

Rcn) interchanged}. (30) 

Here the first three cyclically related terms cancel, as 
seen for example from the antisymmetrical representa- 
tion of the fields via potentials; and the divergence of 
R gives the same charge and current distribution (8) 
which appeared in the time-symmetric case. Using 
this circumstance, and combining terms, we have 

ar,,,,/az,= c ~ , , , , , ~ * q ~ ) p q ~ )  
b #a 

= b c f a  ~ ~ ~ ( b ) ( x ) e a S s ( x ~ - a ~ ) 6 ( . t l - a a ' )  

x 6 ( 9 -  2) 6 (x4 - 4 ci'(a)da 

X 6 ( ~ -  u ~ ) ~ . c ~ & & Y ,  (31) 

in complete satisfaction of requirements (1) and (2). 

As alternative choice for the stress energy tensor 
which also has the properties (l), (2) and (3 )  is that 
proposed by Frenkel,lg who was among the first to 
stress the notion of fields as always adjunct to specific 
particles: 

T,,,,*(x)= C (F("'(x) & F(b)(x) )m, , .  (32) 

Thus the difference between Frenkel's tensor and the 
canonical tensor (28) is a quantity 

a f b  

T,,*- T,,= C (+R(a)-$(d) & (+R(b)-+S(b)) (33) 
a f b  

which has everywhere a zero divergence. 
The possibility of more than one expression for the 

stress-energy tensor with the same divergence is well 
known in the usual single-field formulation of electro- 
dynamics,2O and is not surprising here. However, the 
expressions for field energy also turn out to differ 
(Table I). 

The energy-comomentum four-vector G, defined by 
(26) and (28), and the alternative four-vector G,* 
defined by (26) and (32), are both ordinarily finite for 
a system of point charges. I n  illustration, note that 
near a typical particle a the corresponding field varies 
as l/rz, the field of any other particle b is finite, the 
volume element is proportional to 47rr2dr and the 
integral of (26) converges, yielding for example in the 
interaction energy eaeb/rab  for two stationary point 
charges separated by the distance rob. The density of 
field energy, while finite, is not positive definite, even 
for two particles of the same charge. Also the flow of 
energy and momentum may have finite values a t  a 
point in space where the total field, F(")+F(b)+.  . . , 
actually vanishes. This result, unexpected from the 
point of view of the usual field theory, nevertheless 
presents no logical difficulties. 

ENERGY OF RADIATION 

The canonical and the Frenkel tensors, which give 
the same interaction energy in the case of two charges 
which are a t  rest, give different results for the case of a 

TABLE 11. Energy flux at  distance r from accelerated charge for 
adjunct field theory in completely absorbing universe. 

Form of strewenergy tensor Time of observation 
relative to  moment 

of acceleration Canonical Frenkel Maxwell 

r/c seconds earlier no flux --E'/Br bwards no flux 

I / C  seconds later E2/4w oufward E'/8w outward E'/4s outward 
at other times no flux no flux no flux 

the source 

l9 J. Frenkel, Zeits. f. Physik 32, 518 (1925). See also J. L. 
Synge, Trans. Roy. SOC. Canada 34, 1 (1940) and Proc. Roy. SOC. 
London A177. 118 (1940) as well as the discussion of Svnae's . ,  . -  
treatment in 111. 

A168, 398 (1938). 
*Osee in particular M. H. L. Pryce, Proc. Roy. SOC. London. 
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single accelerated particle in a completely absorbing 
universe. There we have in the neighborhood of the 
radiating source = (1/2)R(‘)+ (1/2)S(”) and Fb) 
+F(‘)+. . . = (sum of advanced fields of absorber parti- 
cles)21= (1/2)R(”)- (1/2)S(4. For the parts of these 
fields which are proportional to the acceleration of the 
charge, and which vary at large distance as 1/r, we 
have for RcG) and respectively a zero value except 
for an instant r / c  seconds after or before the moment 
of acceleration. The corresponding energy flux (Table 
11) satisfies in both the Frenkel and the canonical 
formulations the law of conservation of energy, but 
agrees only in the canonical case with customary ideas 
of energy localization. From the standpoint of pure 
electrodynamics it is not possible to choose between 
the two tensors. The difference is of course significant 
for the general theory of relativity, where energy has 
associated with it a gravitational mass. So far we have 
not attempted to discriminate between the two possi- 
bilities by way of this higher standard. 

CONCLUSION 

We conclude that the theory of direct interparticle 
action, and the equivalent adjunct field theory, provide 
a physically reasonable and experimentally satisfactory 
account of the classical mechanical behavior of a system 
of point charges in electromagnetic interaction with one 
another, free of the ambiguities associated with the 
idea of a particle acting upon itself. 

APPENDIX 

To compute the integral of the field energy which appears in 
(26) ,  we express each field as a superposition of elementary fields 
from each infinitesimal range of path d a ,  and the tensor T,, or 
TA* as the superposition of parts due to stretches da of the world 
line of a and d,8 of b. We use the notation fidcrd,!?, flda to indicate 
each such elementary contribution to T,  F, etc. Thus the four- 
potential a+& arises from a charge which appears for an instant 
a t  a(.) and disappears a t  a ( a + d a ) .  

The lack of conservation of the charge which generates the 
elementary potential causes the four-divergence of 6lt to equal a 
non-zero scalar, r, 

whose integral however satisfies the conservation condition 
J l r ( 4 ( x ,  a)&=O. This circumstance permits some latitude in 
the definition of the elementary field in terms of the potential. 
It will prove useful to adopt the definition 

R,,(o)t = aan(a)/axm- acRm(o)/azn- (+/2)gmn. (35) 
The elementary field is not antisymmetrical in the indices m and 
n, hut the normal field Rmn(‘)=JRm,(a)tda changes sign of course 
on this interchange of labels. 

The elementary component of the stress-energy tensor is not 
symmetric in its two indices, but its divergence is found by direct 

** See part I11 for fuller discussion. 

FIG. 4. Contribution to canonical expression for field energy 
which arises from coupling of retarded field of a and advanced 
field of b. 

algebra to have the simple value 
(a /a~, ) (~(a) t  & .sb)t),,,,= ( 1 / 8 * ) ( - a 2 ~ , ( ~ ’ t / a ~ ~ a ~ ~ )  

x (s,(bitp- (s@)/z)~,P)+ (i/sT)(- azS,,(b)t/ar,axa) 
X (R,(a)tp- (da ) /Z )6 ,” ) ,  (36) 

where the typical field d’Alembertian has the value 
- alR,(@t/ax=ax, 

= ~ e ~ ~ ( ~ ~ - a l ) ~ ( r * - a 2 ) 6 ( x ~ - a ~ ) 6 ( x 4 -  a * ) a m .  ’ (37) 
We integrate (36) over a four-dimensional region of the form 
shown in Fig. 4. Of the terms on the right the second vanishes 
throughout this region, and the first gives 
(e&) (S,,@)t(a) - (gmp/2)db’(a))dP 

= (e&) (asp(b)t/aam- as,,,(b)t/aap- gmPaSpt/aa&iD 
= 2 ~ & b ( U b ~ a ” 6 ~ -  b,,,*ab,,cifi- &abp6Y)6‘(Ub##) (38) 

when b‘>a‘, and zero otherwise. The four-integral on the left 
hand side may be expressed via the theorem of the Gauss in the 
form 

(39) 

Here the integral, which goes over the whole of the three-dimen- 
sional region or ‘‘surface” in the figure, contributes only over the 
upper region because of the vanishing elsewhere of a t  least one 
of the fields in question. The elementary contributions just 
computed we now sum over the world line of a from - 00 to a 
and over the world line of b from ,9 to 00, where a and ,4 determine 
the points where the world lines of a and b intersect the space-like 
surface u. We have then only to erase the daggers in (39). The 
converse expression, with RCb) & .Sa), we obtain by interchanging 
the roles of b and a in (38) and in the limits of integration. In 
this way follows at once the identity of expression (20) for the 
energy in the theory of direct interparticle interaction and the 
canonical expression (26-28) of the adjunct field theory. 

When instead the Frenkel expression (32)  is used for the 
stress-energy tensor, then there results an increment in the 
energy-comomentum four-vector given by the expression 

a covariant which is independent of (I and B and which has an 
interesting relation to the two world lines in question. 
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A Relativistic Cut-Off for Classical Electrodynamics 
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Ordinarily i t  is assumed that interaction between charges occurs along light cones, that is, 
only where the four-dimensional interval s2 = tz--r2 is exactly zero. We discuss the modifications 
produced if, as in the theory of F. Bopp, substantial interaction is assumed to occur over a 
narrow range of s2 around zero. This has no practical effect on the interaction of charges which 
are distant from one another by several electron radii. The action of a charge on itself is finite 
and behaves as electromagnetic mass for accelerations which are not excessive. There also 
results a classical representation of the phenomena of pair production in sufficiently strong 
fields. 

UANTUM electrodynamics is built from a Q classical counterpart that already contains 
many difficulties which remain upon quantiza- 
tion. I t  has been hoped that if a classical electro- 
dynamics could be devised which would not 
contain the difficulty of infinite self-energy, and 
this theory could be quantized, then the problem 
of a self-consistent quantum electrodynamics 
would be solved. For this reason many successful 
attempts have been made to produce such a 
classical theory. The field equations can be 
made non-linear,’ the fields produced by or 
acting on an electron can be redefir~ed,~.~ or one 
may resort to some averaging of the fields over 
space or These theories have, however, 
met with considerable difficulties when an at- 
tempt has been made to quantize them. In this 
paper a consistent classical theory is described 
which the author believes can be quantized. 
Some preliminary results of the quantization of 
this theory will be discussed in a future paper. 
Some of the physical ideas of the classical form 

M. Born and L. Infeld, Proc. Roy. SOC. London A144, 
425 11935’1. 
2P. A.’M. Dirac, Proc. Roy. SOC. London A167, 148 

(1938). An excellent discussion of these matters is given 
by C. J. Eliezer, Rev. Mod. Phys. 19, 147 (1947). 

* J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 
17, 157 (1945). 

There are many theories of this nature. The author’s 
theory is essentially that of F. Bopp, Ann d. Physik 42, 
573 (1942). R. Peierls and H. McManus have developed 
a theory in which the electron is pictured as a rigid dis- 
tribution of charge in both space and time. The theory can 
be shown to be exactly equivalent to the present one, at 
least for a class o f f  functions. Their physical ideas may 
offer advantages over the present one in which the function 
f is not so directly interpretable. I thank Dr. McManus 
for a copy of his thesis. For a summary of another theory 
of this type see B. Podolsky and P. Schwed, Rev. Mod. 
Phys. 20, 40 (1948). A somewhat different type is that of 
N. Rosen, Phys. Rev. 72, 298 (1947). 

of the theory are sufficiently interesting in them- 
selves to warrant their discussion first in a 
separate paper. 

The potential at a point in space a t  a given 
time depends on the charge at a distance r from 
the point a t  a time previous by t = r (taking the 
speed of light as unity). Speaking relativistically, 
interaction occurs between events whose four- 
dimensional interval, s, defined by ?= t2-r2,  
vanishes. There results, however, an infinite 
action of a point electron on itself. The present 
theory modifies this idea by assuming that 
substantial interaction exists as long as the 
interval s is time-like and Iess than some small 
length, a, of order of the electron radius. When t 
is large since A(s2) = 2t.At this means a spread in 
the time of arrival of a signal of amount of 
order a2/2 t .  For charges separated by many 
electron radii there is, therefore, essentially no 
effect of the modification. For the action of an 
electron on itself, however, there is a considerable 
modification. The result is to reduce the infinite 
self-energy to a finite value. For accelerations 
which are not extreme, the action of an electron 
on itself appears simply as an electromagnetic 
mass. If desired in the classical theory, all the 
mass of an electron may be represented as electro- 
magnetic. (In the quantum theory this cannot 
be done in a reasonable way as the electromag- 
netic mass comes out quite small under reason- 
able assumptions for a.) We have, therefore, a 
consistent classical theory which does not dis- 
agree with classical experience. 

In the remainder of the paper we formulate 
this idea mathematically, and draw one or two 
simple consequences. We then discuss a curious 

939 
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feature of this theory. I t  can give a classical 
representation of the phenomena of pair pro- 
duction in sufficiently strong fields. This is of 

The  result of seeking an  extremum of this is to  
lead in the well-known way to the equations of 
motion, 

interest because the physical ideas may possibly 
be carried over to give a clearer understanding 
of the hole theory of positrons. 

The main result which is to be carried over to 
quantum problems is this: In any process in 
which there is no permanent emission of quanta 
one must assume the field quanta to  have a 
“density“ g(k4,K) in frequency, and wave num- 
ber space. This replaces the usual assumption 
that the frequency k 4  equals the magnitude of 
the wave number, K ,  and that the density in 
wave numbers K, is uniform (corresponding to 
g(k4,K) = b(k42-KK2)).  The properties g(k4,K) 
ought to have are discussed more fully below. 

MATHEMATICAL FORMULATION 

I t  is most convenient (but not necessary) to 

(3) 

where we can call FPY@)(x) the field at x caused 
by particle b. I t  is given by 

F,”(b) (x) = aA,‘b’(x)/ax, - dA ” ( b )  (x)/dx,. 

We have written dra  = (da,,da,)+ for the proper 
time along the path of a. 

Since D6(s,b2) = 4.1r6(x1-b1)6(x2-bbz)6(x,-ba) 
Xb(xq-b4), where nz= (a/ax,)(a/ax,), Eq. (2) 
gives 

formulate these ideas in the language of action 
a t  a d i ~ t a n c e . ~  Hence a brief summary of that 
point of view is given here. We start  with 
Fokker’s action principle that the action 

which is 47r times the current four-vector of a 
point charge e b .  T h u s  F,,Y(b)(x) satisfies Maxwell’s 
equations. But the special solution (2) is not the 
usual retarded solution but is rather half the 

S = C m a s  (da,da,) 4 
a 

is an extremum. Here a, represents, for p =  1 to 
4, the three space coordinates and the time 
coordinate of a particle a of mass ma, charge e,. 
We shall later consider them as functions of a 
parameter a ,  say. The b, are corresponding 
quantities for a particle b, etc. The symbol 
x,y, means x4y4 -xlyl -x2y2 -x3y3 and .Tab2 = (a,, 
-bp)(ap-b,). The 6 is Dirac’s delta function. 

The integrals are taken over the trajectories 
of the particles. The C‘ means the sum over 
all pairs a,  b with a#b. We consider varying 
the path a,(a) of particle a. Defining 

where x stands for x,, a point in space time, 
we can write (1) as 

retarded plus half the advanced solution of 
Lienard and Wiechert5 (since 6 ( t 2  -72) = (I/%) 
x ( b ( t + r ) + 6 ( 1 - ~ ) . )  Thus we may write (dots 
representing derivatives with respect to T,, and 
the fields being calculated at the point x,,=a,), 

ma&=ea(ilr ( + F ( b ) p ~  r e t + + F ( b ) p  ad“). (5) 
b # a  

This can be compared to the usual theory which 
j u s t  uses retarded effects by writing i t  in the form 

VZ& =eaap C F(b),v r e , + &  C [ F ( b ) p v  ad” 
. l b + a  all b 

- F ( b ) p ~  ret]-!$[F(a)pv adv- F ( a ) p v  re$]} (6 )  

as in the paper3 by Wheeler and Feynman. As in 
that  paper the first term is the retarded field of 
other charges, the second term vanishes in a 
world where all emitted light is eventually ab- 

This use of advanced and retarded potentials is really 
unnecessary for an understanding of the modifications of 
electrodynamics which is the main point of the paper. I t  
results from the aurhor’s desire to start with a principle 
of least action, for it is in this form that the transition to 
quantum theory can be made. 
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sorbed,6 and the third term, depending only on 
the motion of a ,  is the force of radiative damping. 
Thus (1) is equivalent to (6) and thus satis- 
factorily describes the known laws of classical 
electrodynamics. There is no self-energy. 

According to the above, a particle does not 
act upon itself, as the term with a = b  in the 
sum C’a,beoebJ.  . . in the action has been 
omitted. (Radiation resistance is pictured as 
in indirect effect of source on absorber and 
absorber on source.) The  field of each particle 
must be kept separate in order to  exclude, when 
asking for the force on a particle, the field of 
the particle itself. 

There is no need to do so, but i t  is an interest- 
ing question to try to reinstate the idea of a 
universal field. This requires that  a particle be 
allowed to act on itself and the term a = b  in- 
cluded in the action sum. This leads immediately 
to an infinite self force. This difficulty can be 
eliminated if the 6(sab2) is replaced, as Bopp4 has 
suggested, by some other function f(sab2) of the 
invariant sab2, which behaves like 6(sab2) f6r large 
dimensions but differs for small. (We shall dis- 
cuss the properties of this function later, bu t  as 
an example to keep in mind, consider f(s2) 
=(1/2a2)exp(- Is l /a)  for s2>0, and f(s2)=0 for 
s2<0 with a of order of the electron radius 
e2/mcz.) 

We study the consequences of replacing (1) 
by the law that S is extremum if 

S = C m,J (da,da,) 
a 

+$ c a b  c eaeaSSf(sab2)dapdbp. (7)  

The term with a=b  may be written 

where a and a’ are two points on the world-line 

That the second term vanishes in these circumstances 
may be seen as follows. If a source radiates for a time, at 
a very long time afterwards the total retarded field van- 
ishes, for all the light is absorbed. But also the total ad- 
vanced field vanishes at this time (for charges are no 
longer accelerating and the advanced field exists only at 
times previous to their motion). Hence, the difference 
vanishes everywhere at this time and, since i t  is a solution 
of Maxwell’s homogeneous equations, at all times. 

of a. The variation problem clearly leads to 

1 rnaiiv=eau,, C P p , ( b ) ( a ) + P p v ( a ) ( u )  , (9) 
’ [ b # a  

where 

P , , ” ( b )  ( x )  = a A p y x ) / a x ,  - aA .yx)/ax, (10) 

and the bar over the field quantities indicate 
that they are calculated from the f function 
rather than the 6 function. That  is, 

A p c b ) ( X )  = e b  f ( S , b 2 ) d b , .  (11) S 
This theory differs from the usual in two re- 
spects: A .  There is an extra force h ,  = eaupPpv(a)(u) 
on particle a depending only on the motion of a. 
This we shall study in a moment and show that 
it represents inertia. B. The fields of other 
particles are given by the curl of a potential but 
the potential (11) no longer solves the Maxwell 
equations (4). However, since f ( s 2 )  is close to 
6(s2) this means that except for particles very 
close together nothing is changed very much. 
Thus f ( t 2 - r 2 )  is large only when t = Y is nearly 
satisfied, but  for large t near + r ,  say, f ( t 2 - r 2 )  
S f ( Z t ( t - r ) )  so that the function which has 
width u2 in its argument s2 has width u?/2t in 
t--r. Thus for increasing distances from the 
source the potentials satisfy hlaxwell’s equations 
ever more accurately. 

The analog of Eq. (6) becomes 

maav = eaap C ( F ) ( b ) p v  r e t  1 b + a  

-I-$ L: [ F ( b ) ~ ~  n d v - F ( ’ ) u v  r e t ]  
al l  b 

- $ [ F ( a ) p v  adv- F t a ) p v  r e t ] + F ( a ) p v  , (12) I 
where we define (F)ret = P + $ F r e t - $ F a d v .  Thus 
only the 6 part, so to  speak, of the fields becomes 
retarded. I t  would not do to replace F by P 
throughout in (6) for then we could not deduce 
that  the second term is zero at the source be- 
cause i t  was zero at infinity for i t  would not 
then be a solution of Maxwell’s equation in 
empty space. The  damping term is unaltered. I t  
plus the self-force can be written ( F ) ( a ) , , y  (see 
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footnote 5 ) ,  so in practice one can write simply 

maau=eaa, C (F)@),. ret. 
a 

The effect of the modification in the theory 
using retarded fields is therefore to change, 
slightly, the field of one particle on another when 
they are very close, and to add a self-force h,. 

We now turn to  a study of the self-force h,. 
This can be calculated directly from the for- 
mulae ( lo) ,  (11) but a simpler way is from the 
action term (8). This term in the action can be 
re-expressed approximately if we assume that 
the accelerations are not too great. Only values 
of a’ near a are important. Let us define a 
parameter along the path and say a corresponds 
to the value a of this parameter, a‘ to  the value 
&=a+€ .  Assuming a’ not to vary too rapidly 
with e we can approximate soa,2 = (ag-a,’) 
X (a,, - a,,’) by e’(da,/da) ( d ~ , / d a )  = e ’ ( d ~ ~ / d a ) ~ .  
Likewise da,da,’ is to sufficient accuracy 
(da,/da) (da,/da)dade. Thus the self-action term 
is approximately +eo2JJf(t2(dra/da)2) . (dra/da)’ 
Xdcda. Then calling 7=t (dra /da )  we can write 
this as 

r . J (dr , /da )da=p .  S (da,da,)*, (13) 

where we have set 

pa=+ea2JWj(n2)dn. --m (14) 

That is, the self-action term to this approxima- 
tion represents pure electrodynamic mass. The 
term readily combines with ma fa ra  for the 
mass is correctly invariant. We can go further 
a i d  assume that originally m, is zero and all 
mass of electrons is electrodynamic, but for 
protons this would then not be so. 

The functionf(s2) is to be normalized such that 

S:f(s’)d(s2) = 1. (15) 

The condition (14) says the range in 7 of f(qz) is 
of order e 2 / p ,  or if p is the electron mass, of order 
of the electron radius. The function f(9) is 
chosen so that it is symmetrical near past and 
future light cones since any asymmetry drops 
out in the form (7) of the action. Other than 

these conditions, there are strictly no further 
conditions on f(sz). I t  is convenient to assume 
f(s2) to be zero if s2 is negative (space-like). I t  
is also very desirable to  have f(sz) fall rapidly 
away from the light cone, rather than oscillate 
indefinitely, and to have f(s’) finite everywhere. 

By taking the Fourier transform of (ll), one 
can represent the field as a superposition of the 
effects of harmonic oscillators in the usual way. 
However, the oscillators corresponding to  waves 
of wave number k l ,  k z ,  k S  need not have a fre- 
quency k4 equal to the magnitude of the wave 
number. Instead we can take the density of the 
oscillators to be kq times, g(k,k,)dkldkZdksdk4 
where y is defined for positive k 4  only, and is 

g(k!Jk,)  = (1/4..*)J-f(sZzz,) cos(k,(x,-y,)) 
Xdxldxzdxdxc .  

I t  is a function of the invariant k,k ,  only. The 
ordinary casc, f(9) = 6(s2) corresponds to g(k,k,,) 
= 6 ( k , k , ) .  ‘I‘hc condition that  f(sz) be finite on 
the light conc implies that  g(k,k,)  can be written 
in the form 

g(k,kJ = J k k , k , )  - 6(k,k,-X2)1G(X)dX. (16) 
0 

Here G(X) is normalized such that JomG(X)dX= 1, 
in vie\\- of (15). I t  is otherwise arbitrary, as 
f(s2) is. The X values for which g must exist 
must be large, going up to order p / e 2 .  

If G is chosen as 6 ( X - X 0 )  the resulting f(9) 
is (for s2 3 0) the Besscl function, XJ1(Xos)/s. 
For large t ,  if s=( t2 - r2 )8 ,  this does not die off 
fast with t - 7 ,  but oscillates with phase varying 
as Xo(t2-rr2) f .  T h a t  is, it  oscillates with frequency 
X o ( l  - r2 / t2) - f  at a time corresponding to  arrival 
of signals with velocity r / t  and thus in quantum 
mechanics would represent arrival of radiated 
“particles” of mass hXo. The free emission of 
such “particles” is removed in classical theory 
by interference among the various values of X 
if a smooth distribution, G(X), of X is used. This 
is required if f is to represent say a function 
decaying rather than oscillating (see appendix). 

I t  appears that  the quantum mechanical re- 
sult is simply this: For processes without per- 
manent radiation the oscillator density g is to 
replace 6(k ,k , ) .  The negative sign in (16) proves 
embarrassing (see appendix) if quanta of mass 
Xo can be freely radiated so a wide distribution 
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in A corresponding to a monatonic j ( s 2 )  is 
preferable. As an example, for f(s2) = (1/2a2) 
xexp(- [ s [ / a )  find G ( X ) = ( ~ U ~ X ) ( ~ + U ~ X * ) - ~ ’ ~ .  

The electrostatic potential a t  a distance r 
from a stationary charge, is according to ( l l ) ,  

i ~ , ( r )  =eJmj( t2-r2)d t .  -m (17) 

For large r ,  in view of (15) this is readily seen 
to be e jr .  At the origin r=O however, i t  is finite 
being ex-mmf(t2)dt or 2 p / e .  This has a simple 
interpretation if all mass is electromagnetic. 
The energy released in bringing a positron and 
electron charge together and so canceling out all 
external fields is just 2p, the rest mass these 
particles have in virtue of their fields. Or put 
otherwise, the rest mass particles have is simply 
the work done in separating them against their 
mutual attraction after they are created. No 
energy is needed to create a pair of particles at 
the same place. (These ideas do not have direct 
quantum counterparts since in quantum theory 
all mass does not appear to be electromagnetic 
self energy, at least in the same simple way.) 
There may be a maximum field of attraction 
between two like charges a t  some separation 
since, for some functions f the force arising from 
(17) vanishes at the origin, and of course again 
at  infinity. 

There remains to discuss a curious point about 
the solutions of the least action principle (7)  
with the mechanical mass term m, absent. First 
Ict us study the simple problem of an ordinary 
single particle of mass p in a potential A 4  (caused 
by other charges) which depends only on one 
coordinate x. Call the time t ,  and use this for 
the parameter a. The action is 

Now suppose the potential A4 is zero outside a 
small band in x say 1x1 <b/2  (potential barrier) 
and that it is large positive, and constant within 
the region. Consider, in Fig. 1, the paths from a 
point 1 to a point 2 which make S a local maxi- 
mum. A typical solution is the solid line which 
is kinked out of the straight line so as to increase 
the time integral of A4. This represents a par- 
ticle moving from 1 rapidly toward the barrier, 
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2 

X 

FIG. 1. If two points 1, 2 are separated by a high po- 
tential barrier, there are two paths which make action an 
extremum. One (solid line) represents passage of a fast 
electron. The other (dotted line) has a section reversed in 
time and is interpreted as the effective penetration of the 
barrier by a slow electron by means of a pair production 
at Q and annihilation a t  P, section PQ representing the 
motion of the positron. 

entering the region of high potential, losing 
energy and thus going slower in this region. The  
high velocity is regained on passing out of the 
region to  2. Slow particles cannot penetrate 
the barrier. 

But there may be another local maximum. 
Consider the path 1PQ2. In the interval PQ the 
proper time integral must be taken positively 
as can be verified from a study of the derivation 
of (13). Now moving the point P upward by At 
might be expected to  increase the action by over 
2pAt because the length of P1 and PQ are both 
increased. On the other hand, the integral JA4dt 
is now negative and if A ,  exceeds 2p such a 
curve may be a local maximum. Thus for A 4  
greater than 2p there is a new way that slow 
particles can penetrate the barrier. This is a 
classical analog of the Klein Paradox. 

How would such a path appear to someone 
whose future gradually becomes past through a 
moving present? He would first see a single 
partide at 1, then at Q two new particles would 
suddenly appear, one moving into the potential 
to the left, the other out to  the right. Later at 
P the one moving to the left combines with the 
original particle at 1 and they both disappear, 
leaving the right moving member of the original 
pair to arrive at 2. We therefore have a classical 
description of pair production and annihilation. 
The  particle whose trajectory has its proper 
time opposed in sign to the true time t (section 
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PQ) would behave as a particle of opposite 
sign, for changing the sign of db, in (7)  is equiva- 
lent to changing the sign of e b .  This idea that  
positrons might be electrons with the proper 
time reversed was suggested to me by Professor 
J.  A. Wheeler in 1941. 

The field a t  N =  +6/2 is infinite. If i t  is finite 
the action (18) does not show such a local 
maximum, the sharp corner a t  P becoming a 
cusp which can go indefinitely into the future. 
On the other hand, if the correct self-force from 
(7) is used instead of the approximation (13), a 
path reversal again becomes a possibility. I t  
is only necessary that the field exceed a critical 
value, namely, that maximum value of attraction 
of two unlike particles mentioned above. This 
field represents a potential of 2 p  in a distance of 
the order of an electron radius and must be as 
great as this to get the pair of newly created 
particles apart over the potential barrier of their 
mutual attraction. (The actual field required to  
produce pairs in quantum mechanics is 137 
times weaker. One might ascribe this to a quan- 
tum mechanical penetration of the potential 
barrier over a Compton wave-length.) 

There are many interesting problems pre- 
sented by these ideas. For example, will pairs 
be produced ad infiniturn by the field, or only 
to that extent that we can guarantee that  the 
positrons will be annihilated by electrons in 
the future? Again, in a weak field can a large 
number of pairs be created which separate 
slightly in the field (which is insufficient to  tear 
the two apart) and thus produce a large polariza- 
tion of that field? It  is hoped that an application 
of these ideas to a study of positron hole theory 
will appear in a future paper. 

I should like to thank Professor J. A. Wheeler 
for inoculating me with many ideas without 
which this work would not have been done. 

APPENDIX 

The difficulties in a theory such as the one 
presented here have been discussed by many 
authors. A very brief discussion of them will be 
given i n  this appendix. 

The first point is that  the action S defined in 
(1) or (7) is infinite and meaningless because of 
the infinite extent of the integrals along the path 
of the particles. The principle of extreme action 

which we mean to apply can be more rigorously 
defined as follows. Consider any given variation 
in paths 6a, such that 6a,-+0 as a++ 00. Then 
define 6s as the limit of the quantity 6s calcu- 
lated from (7) with this path variation, the limit 
being taken as the range of integration passes to 
infinity. Then the law of motion shall be 6S=O 
for all variations which satisfy 6a,-+0 as a++ m . 
The equations of motion (9) are then conse- 
quences of the action principle, of course, but 
not all solutions of these equations satisfy the 
principle of least action as defined here. There 
are certain runaway solutions of the equations 
of motion, such as those discussed by Dirac2 in 
the case of Eq. (6), in which the kinetic energy 
and momentum of a particle increase exponen- 
tially with time. These are excluded for they 
do not satisfy the principle of least action. 

Bopp4 has studied in great detail the conse- 
quences of equations of motion. However, he 
assumes that the function f acts only a t  retarded 
times. He finds that the radiation resistance of 
an oscillator decreases below the normal value 
with increasing frequency of the oscillator. How- 
ever, if an oscillator is enclosed in a large, light 
tight box the fields a t  the walls of the box are 
effectively unchanged by the use off rather than 
6. (We are assuming that f decays and does not 
oscillate. Below, we discuss the situation if f 
oscillates.) Hence the energy absorbed by the 
walls will not, apparently, decrease with the 
increase in oscillator frequency and the radiation 
resistance will not keep up with it. In the modifi- 
cation described in this paper, in such a box, 
only the &part off  is to  be retarded. The radia- 
tion resistance has its normal value a t  all fre- 
quencies, and the energy lost will all be found 
eventually in the walls of the box. 

The conservation of quantities like energy 
(and momentum) can be demonstrated directly 
if a theory starts from a principle of least action, 
the form of which action is invariant under a 
change of origin of the time (and space). For the 
action (7) consider the quantity 

g,= c { nz,u,+e, c i i V ( b ) ( u ) }  
a *At ap(no) 

2 (av - h)f’ (s,b2)daMdb, (1 9) 
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wheref’(x) =df(x)/dx. The points ao, Po,  . . are an 
arbitrary set of points, one chosen on the world- 
line of each particle. In virtue of the equations 
of motion (9) the derivative of g, with respect to 
any of the so's is zero. This is a generalization 
of the usual conservation of energy. Ordinarily, 
we would choose all the a. such that all u4(a0) 
are equal, and find g, is independent of this 
common value of u4. The energy is seen to 
consist of a self-energy, an energy caused by the 
presence of the potential on each particle, and 
(since this last would count each interaction 
twice) a further correction to  interaction energy. 
This is described as a line integral over the paths 
of the particles, but  since one point is in the 
futureand the other in the past, the actual 
range of integration does not extend beyond the 
time during which b could interact with a at a. 
and that a could interact with b a t  Po. This is 
the way in which energy which is usually spoken 
of as being in the field is represented in a theory 
of action at a distance between particles. Since 
it is an integral only over a limited range, the 
energy of motion of the particles is conserved in 
the long run. ( I t  is easy to generalize (19) to the 
case that paths may reverse themselves in time.) 

We now consider the situation in which the 
function f oscillates rather than decays. I f ,  as 
was discussed by Bopp4 and others (e.g., 
B. Podolsky and P. Schwed4), f is replaced by a 
Bessel function XoJ1(Xos)/s, the theory corre- 
sponds as we have seen to that of interaction 
through ordinary “quanta” rni9ius those corre- 
sponding to a mass hXo. The f function does not 
appear as a pure &function a t  large distances, 
but another component appears if the frequency 
of the source exceeds Xo. Thus, a source at high 
frequency w emits waves of two wave-lengths, 
light of wave number K=w and “X0-quanta” of 
wave number K =  ( w 2 - X O 2 ) f .  Again Bopp’s equa- 
tions (using retarded potentials only) show that 
the radiative resistance force on a dipole oscil- 
lator of amplitude x, frequency W ,  is constant a t  
2e2u3xT/3C3 for w <Ao and falls off as w exceeds Xo, 
as (2e2x2 /32) [u3  - (u2+fXO2) (w2 -A$)  $1, remain- 
ing positive, however, for all frequencies. The  
decrease a t  higher frequencies must correspond 
to a negative contribution to radiation resistance 
accompanying the emission of “Xo-quanta.” That  
is, the Xo-quanta behave as though they had 
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negative energy. That  this is so and that it 
results in fundamental difficulties may be seen 
from a few examples. If through interference the 
rate of emission of “Xo-quanta” can be enhanced 
relative to the rate for the ordinary light quanta, 
a net negative radiation resistance will result. 
For example, a set of two vertical dipoles oscil- 
lating in phase (at frequency w = 2 X 0 / 3 t ) ,  sepa- 
rated horizontally by one-half the wave-length 
of light, and one-fourth the wave-length of the 
Xo-quanta of the same frequency, shons n nega- 
tive net radiation resistance. I t  irould oscillate 
with ever-increasing amplitude, the large emis- 
sion of negative energy Xo-quanta supplying the 
increase in energy of the oscillators a n d  the 
energy of the light quanta emitted. Again a beam 
of Xo-quanta passing through a medium con- 
taining damped (energy-absorbing) oscillators 
increases in amplitude. The wave of Xo-quanta 
scattered by the oscillators in the forward dircc- 
tion which ordinarily interferes destructively 
with the incident wave, in this case has a re- 
versed sign and enhances the incident wave. 
(The light scattered forward has the incorrect 
wave-length to  make an appreciable effect by 
interference.) A beam of Xo-quanta can be sepa- 
rated from light of the same frequency by having 
the radiation from a source of a given frequency 
impinge on a diffraction grating of scattering 
centers. The Xo-quanta and light quanta will 
then be scattered in different directions as they 
have different wave-lengths. 

What results if instead of using only retarded 
waves for Xo-quanta, we start  from the least 
action principle and analyze the situation of a 
source enclosed in a box? Then the derivation of 
Eq. (12) is still incomplete as (F),,t still contains 
both advanced and retarded components (of 
Xo-quanta) at large distances. We could now split 
off the advanced parts for Xo-quanta just as we 
did for light. The resulting equation is just 
that  used by Bopp, namely all retarded inter- 
actions but negative contribution of Xo-quanta 
to radiation resistance, and therefore leads this 
time to conservation of energy but to diverging 
solutions. Such diverging solutions are, as indi- 
cated above, excluded by the least action prin- 
ciple so this form of the equation is not con- 
venient. Non-divergent motions do exist. T o  see 
this it is better to split off the retarded part of 
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the Ao-quanta. What results is that  light goes 
by retarded waves, Ao-quanta by advanced 
waves,7 and the radiation resistance of both 
contribute positively. Thus an accelerating 
charge will emit light, but it is predestined that  
negative energy &-quanta were coming toward 
it to be absorbed, still further increasing the 
radiation resistance. This avoids the divergent 
solutions only to predict observable advanced 
effects. 

For these reasons i t  is better to restrict one- 

’ This may be understood in that ,  a s  indicated above, 
the energy-absorbing walls of the box absorb retarded 
light waves, b u t  cannot be presumed to absorb retarded 
Xo-quanta. Instead, in fact, they spontaneously emit such 
waves (warming up in the process) and non-divergent 
solutions result only if they emit just exactly the  XO- 
quanta which can later be absorbed by the accelerating 
charge a t  the center. 

self to the case of a decaying f-function (dis- 
tribution of A) for which a consistent theory 
can be made. Then the modifications of classical 
electrodynamics will only appear a t  very small 
distances from a charge. On the other hand, 
these distances are well within the Compton 
wave-length so that modifications caused by 
quantum mechanics would in any case appear 
before the ones here discussed. There is, there- 
fore, little reason to believe that  the ideas used 
here to solve the divergences of classical electro- 
dynamics will prove fruitful for quantum elec- 
trodynamics. Nevertheless, the corresponding 
modifications were attempted with quantum 
electrodynamics and appear to  solve some of 
the divergence difficulties of that  theory. This 
will be discussed in a future paper. 
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1I.C Quantum Electrodynamics 

Because Feynman’s unconventional approach to QED did not use quantum field theory, he 
found it difficult to convince his peers of its validity. When he outlined his views to them 
at a small elite gathering, the Pocono Conference of March 30-April 1, 1948, as he later 
recalled, his lecture was “a hopeless presentation.” He was treated as an alien: “I had too 
much stuff. My machines came from too far away.’” He thus thought that it would be best 
first to describe his important physical results, and to show how they could be obtained by 
more standard methods. In this way he hoped to motivate his colleagues to make the effort 
to follow his more powerful new methods, which he would present later. 

In this section we group the papers containing physical results in QED, some already 
published by others, but some obtained correctly for the first time. The papers that detail 
Feynman’s new mathematical tools and derivations will be given in Part I11 below. 

Feynman began this acclimatization process by publishing paper [9], which includes a 
quantum-mechanical version of the relativistic high-frequency cutoff that he had introduced 
for classical electrodynamics in paper [8]. This method, an example of what would later 
be called “regularization,” made the divergent integrals of QED finite - except for the so- 
called vacuum polarization integrals, which would require a stronger form of regularization.’ 
Using the “old-fashioned” perturbation theory of Dirac, Feynman showed that his cutoff 
procedure led to the same results for the electromagnetic shift of energy levels of hydrogen 
(Lamb shift) and the radiative corrections to potential scattering as had been published 
earlier by others, including Bethe, Schwinger, and Weisskopf. However, Feynman’s results 
avoided the subtraction of infinite integrals, using only finite ones that he showed were very 
insensitive to the value chosen for the cutoff. 

Paper [12] treats the “motion of electrons and positrons in given external potentials.” It 
introduces the overall spacetime view, emphasizing the solutions of the Dirac relativistic 
electron equation in the integral form, the Green’s function or “propagator,” which is the 
probability amplitude for the electron to pass from one point in space-time to another. 
The allowed paths can propagate forward or backward in time, the time-backward paths 
being interpreted as  positron^.^ Thus here are introduced the famous trademark “Feynman 
diagrams,’’ In an appendix, Feynman derives his formulation from the (misnamed) “second 
quantization” theory of the Dirac electron-positron field. 

Paper [13], submitted a month later than paper [12], appeared in the same issue of the 
Physical Review. A continuation of the first paper, it uses the same notation and diagrams, 
but now it attacks the general problem of QED, involving, besides the external potentials and 
photons, also the fields of the charged particles themselves, involving both real and virtual 
photons. This paper constitutes a textbook of Feynman’s powerful methods for solving real 
problems in QED, and describes his propagators and their formulation in momentum space. 
He discusses the electron self-energy problem, the convergence of processes with virtual 
quanta, the radiationless scattering problem, and the Lamb shift. His footnote (numbered 
13 - appropriately, as he remarked) on the history of the calculation of the relativistic Lamb 

‘Feynman interview with S.S. Schweber, 1984. See Schweber’s QED, p. 436. 
’W. Pauli and F. Villars, “On the invariant regularization in relativistic quantum theory,” Rev. Mod. Phys. 
21, 434 (1949). 
3This provocative notion is a major technical advance, but it has engendered as much (mostly meaningless) 
speculation about its “meaning” among the uninformed as has Einstein’s “relativity.” 
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shift apologizes for delays caused by the disagreement of his slightly wrong result of early 
1948 with other (correct) calculations. He also calculates the vacuum- polarization part of 
the Lamb shift, using a regularization method that he credits to Pauli and Bethe (the Pauli- 
Villars paper had not yet appeared). In footnote 18 he writes: “It would be very interesting 
to calculate the Lamb shift accurately enough to be sure the 20 megacycles expected from 
vacuum polarization are actually present.” This shows that he had not yet fully accepted 
the need for a quantum field theory, as opposed to delayed action-at-a-distance! 

Paper [18] is a calculation of the radiation corrections to the Klein-Nishina formula for 
Compton scattering. Even when making full use of the Feynman calculational tricks, it 
was a long and tedious calculation. However, the scattering of a photon by an electron 
can be regarded as the fundamental interaction described by QED, and unlike the other 
processes mentioned (Lamb shift, electron anomalous magnetic moment), it is not a single 
quantity but a complete differential cross-section, and it does not make use of an approximate 
nonrelativistic potential, like the radiationless scattering and the Lamb shift. Thus it is an 
especially appropriate testing ground for QED, as well as being an important observable 
effect at higher electron energies, which would be employed to analyze experiments in the 
decades that followed. 

As stated in the introduction, paper [45] is a review of QED as of 1961, included here for 
its originality and stimulating language. Feynman concludes it by referring to his “long-held 
strong prejudice that [QED] must fail significantly (other than being simply incomplete) at 
around 1 GeV virtual en erg^."^ Furthermore, he wrote, “I still hold this belief, and do not 
subscribe to the philosophy of renormalization.” 

Selected Papers 
[9] Relativistic cut-off for quantum electrodynamics. Phys. Rev. 74 (1948): 1430-1438. 
[12] The theory of positrons. Phys. Rev. 76 (1949): 749-759. 
[13] Space-time approach to quantum electrodynamics. Phys. Rev. 76: 769-789. 
[18] With Laurie M. Brown. Radiative corrections to Compton scattering. Phys. Rev. 85 

[45] The present status of quantum electrodynamics. Extrait des rapports et  discussions, 
Solvay, Institut International de Physique (1961). 

(1952): 231-244. 

4Reference [45], p. 89. 
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Relativistic Cut-Off for Quantum Electrodynamics 
RICHARD P. FEYNMAN 

Cornell University, Ithuca, New York 
(Received July 12, 1948) 

A relativistic cut-off of high frequency quanta, similar to that suggested by Bopp, is shown 
to produce a finite invariant self-energy for a free electron. The electromagnetic line shift for a 
bound electron comes out as  given by Bethe and Weisskopf’s wave packet prescription. The 
scattering of an  electron in a potential, without radiation, is discussed. The cross section 
remains finite. The problem of polarization of the vacuum is not solved. Otherwise, the results 
will in general agree essentially with those calculated by the prescription of Schwinger. An 
alternative cut-off procedure analogous to one proposed by Wataghin, which eliminates high 
frequency intermediate states, is shown to do the same things but to offer to solve vacuum 
polarization problems as well. 

main problems of quantum electro- 

the observations of Bethe’ and of Weisskopf* that 
the divergent terms in the line shift problem can 
be thought to be contained in a renormalization 
of the mass of a free electron. That  this principle 
applies as well to other problems was demon- 
strated by Lewis3 in analyzing the radiationless 
scattering of an electron in a potential. Am- 
biguities which remained in the subtraction 
procedures are removed by Schwinger.2, He 
formulated, in a general way, which terms are to  
be identified in a future correct theory with rest 
mass, and hence should be omitted from a cal- 
culation which does not renormalize the mass. 
These results are remarkable because they solve 
the problem without the addition of any new 
fundamental lengths or dimensions. 

The solution given by Schwinger does, how- 
ever, assume that in some future theory the 
divergent self-energy terms will be finite. There- 
fore, it is of interest to  point out that  there is a 
model, a modification of ordinary e!ectrody- 
namics, for which all quantities automatically do 
come out finite. With this model the ideas of 
Bethe, Oppenheimer, and Lewis and Schwinger 
can be directly confirmed. 

The model results from the quantization of a 
classical theory described in a previous paper.b 

IH.  A. Bethe, Phys. Rev. 72, 339 (1947); 73, 1271A 

* J. Schwinger and V. Weisskopf, Phys. Rev. 73, 1272A 

3 H .  W. Lewis, Phys. Rev. 73, 173 (1948). ’ J .  Schwinger, Phys. Rev. 73, 415A (1948). 

P r H E  dynamics have been essentially solved by 

(1948). 

(1 948). 

R. P. Feynman, Phys. Rev. 74, 939 (1948). 

In this paper we describe only the results for 
processes in which only virtual quanta are 
emitted and absorbed. The problems of per- 
manent emission and the position of positron 
theory must be more completely studied. I t  is 
hoped that a complete physical theory may be 
published in the near future. Lacking such a 
complete pictuie,the present paper may be looked 
upon merely as presenting an arbitrary rule to 
cut off at high frequencies in a relativisticall!. 
invariant manner, the otherwise divergent in- 
tegrals appearing in quantum field theories. For 
electrodynamics the rule is to  consider the 
(positive) frequency w and wave number k of the 
field oscillators as independent and to  integrate 
them over the density function g(w2-kz)dwdk 
where 

g(w2--  k Z )  = ~ m [ 6 ( w 2 -  k 2 )  

- ~ ( W ~ - ~ ~ - X * ) ] G ( X ) ~ X .  (1) 

Here 6(x )  is Dirac’s delta function and G(X) is 
some smooth function such that  JomG(X)dX = 1 
and for which the mean values of X which are 
important are of order of the frequency 137 
mc2/h, or higher. Ordinary quantum electro- 
dynamics replaces the function g ( w 2 - k 2 )  by 
6 ( w 2 - - k 2 ) .  According to (l), the density g is not 
everywhere p ~ s i t i v e . ~  Therefore, ihe model is 
essentially that due to B ~ p p . ~  

The model therefore cont..:r.s an arbitrary 
function and the numerical results depend on the 

8 F .  Bopp, Ann .  d. Physik 42, 573 (1942). 
1430 
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form of G(X). However, the only term that  
depends seriously (logarithmically) on the cut-off 
frequency is the self-energy, which can be used 
to renormalize the electron mass. After this is 
done, the remaining terms are nearly independent 
of the function G(X). 

We shall illustrate these points by studying 
the particular examples of self-energy and radi- 
ationless scattering. We shall then discuss an 
alternative cut-off procedure in which the density 
of electron states is cut off rather than that of 
the quanta. This promises to solve problems of 
vacuum polarization which are not touched by 
the former procedui-e. 

SELF-ENERGY 

The transverse self-energy of a free electron, of 
mechanical mass F, in state of momentum Po 
energy Eo=(p2+Po2) f  is given to  the first order 
in e2 by the second-order perturbation theory, 
using the one-electron theory of Dirac, by 

Here the intermediate state f arises from the 
initial state through emission of a quantum of 
momentum k and of energy k = I k I (the velocity 
of light is taken as unity, as is Planck’s constant). 
Thus in the intermediate state the electron has 
momentum P,=Po-k and an energy of mag- 
nitude E / =  + ( F ~ + P , ~ ) ~  but which may be either 
plus or minus in sign. The sums indicate the sum 
over all such intermediate states (actually just 
two) for each sign of the energy. The terms for 
positive and negative energy have been separated 
and the sums are written c+ and C- for these 
two cases. The ( f l a i lO)  are the matrix elements 
of Dirac’s a-matrices, the sum on i being over 
the two directions of polarization of the quanta. 
We shall henceforth write the integral dk/k over 
k space by its equivalent 2Jdwdk6(w2 - k 2 ) ,  the 
integral being over all positive w ,  and all wave 
numbers k .  We shall also write w for k in the 
energy denominators as we shall later wish to 
distinguish the energy of a quantum and the 
magnitude of the momentum change that its 

recoil represents. We may further simplify the 
expression by the use of the well-known pro- 
jection operators : 

A + =  ( E , f H , ) / 2 E , =  (Eff  (Y . P , f f l g ) / 2 E / .  

According to  the theory of holes, the last 
term, the transition to negative energy states, is 
to be left ou t ;  such transitions are prevented 
because the negative levels are already occupied. 
On the other hand, in the vawum,  electrons in 
state of energy -E, could make virtual transi- 
tions to  positive energy state Eo. This is now 
prevented by the presence of an electron in the 
state Eo, so that,  relative to the vacuum, the 
transverse self-energy is 

The treatment of the longitudinal self-energy 
is usually different, for the longitudinal oscil- 
lators are first eliminated from the Hamiltonian, 
their effect being the term e2/roo where roo is the 
meaningless distance of the electron from itself. 
These terms must be expressed as integrals over 
oscillators and combined with (3) before the 
change suggested by (1) is to be performed. An 
additional point of confusion is that the longi- 
tudinal elimination assumes the intermediate 
states to  form a complete set as they do  in ( 2 ) ,  
but  the situation in (3) is not so clear. For- 
tunately, all these points may be most easily 
circumvented by simply not eliminating the 
longitudinal oscillators from the field Hamil- 
tonian at all. One need simply to specify that the 
sum on i in (3) now be interpreted to mean the 
sum over each of three perpendicular space 
directions minus a term for the time direction. We 
may write C i a , i i a i = a . ~ a - ~ ,  which is a 
relativistic combination since a4= 1. One does 
not need to be concerned about the gauge con- 
dition in a problem in which all quanta are 
virtual, for the quanta are created by a charge 
which is conserved. This solution automatically 
insures the gauge condition j u s t  as the Lienard 
Wiechert classical solution of the Maxwell 
equations will automatically satisfy the gauge 
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condition if the charge which produces the 
potential is conserved. 

With this convention for xi, Eq. (3) repre- 
sents the total self-energy. I t  is easily calculated. 
The numerator of first term may be written as 
1/2E, times Ct(OI~,(H/+E,)ailO) where H, is 
cy.P/+/3p. Now since Ci cyiai= +2, LY,/%Y~= 

-40, and C ,  ( Y ~ ( I L Y ~ =  - 2a ,  this becomes 

- 2 (0 I - E/+2Pp + P/ 10). 
The diagonal elements of /3 and QI for the state 
0 are p/Eo and Po/Eo, respectively. 

The change in energy AEo can, since the 
momentum is given, be represented as a change 
A p  in rest mass of the electron. In virtue of the 
general relation E2 = p2+P2, the relation between 
these quantities is pAp=EoAEo. Thus we find, 
treating the sum of negative energies in a similar 
manner, 

e2  
Ape=- budk6(w2 - k2) 

2p2 - EJ$+ Po. Pr 1 E@f - Eo+ w )  2 7r2p 

2 p2 + E&f+ Po. Pf 
E/(E/+Eo+w) 

+ }. (4) 

The integral diverges logarithmically and Ago  
defined here is meaningless. If the 6 ( w 2 - k 2 )  is 
replaced by g ( w 2 - k 2 )  defined in (l), the result is 
finite and invariant (i.e., does not depend on the 
momentum Po of the electron). 

How this comes about may be seen by cal- 
culating the integral in (4 )  for 

g(w2-k2)  = 6 ( 0 2 - k 2 )  - 6(w2-k2--XZ) 

and reserving an integration on X until later. The 
integral (4) will converge with this g ( w Z - k 2 ) ,  but 
it is convenient to divide i t  for purposes of cal- 
culation into the difference of two diverging ones. 

This is legitimate providing the divergent 
integrals are first both computed over the same 
finite region of k space, the difference taken, and 
then the region allowed to  pass to  infinity. 
Therefore, we shall define A p 0  by (4), in which 
we choose the region arbitrarily to  be first over 
all (positive) w and then over a sphere in k space 
of very large radius I(. Likewise A ~ A  is defined as 
expression (4) with 6(w2 - k2 - Xz) replacing 
6(w2-Kz) ,  and the integration taken over the 
same region. 

F E Y N M A N  

The true self-mass is therefore 

AP= ~m[Lim(A~o-Ail*)]G(X)dh. K+CC ( 5 )  

We may now calculate these integrals, starting 
with A p i .  Since Po.Pf=Po-(Po-k) =Eo2-p2 
- PO. k and Ef2  = Eo2+k2 - 2Po. PI, the Po. PI 
term in the numerator of the first term may be 
eliminated, the numerator becoming 

+(Ef2 +Eo2 - k2)  - EoE/+p2 = p2++(w2 - k2)  + 4 (Ej - Eo - a) (Ej - Eo +w).  

Thus the first term in Apx becomes 

p 2 + + ( d - k 2 )  
6(w2-k2-X2)dwdk s Ef(& - Eo + w )  

++ 6(w2  - k2-X2)dwdk(E / - -Eo-w) /E f .  ( 6 )  J- 
Adding the corresponding second term which 
differs from the first only in the sign of Eo, and 
performing the integral on w (which requires 
simply division by 2 w ) ,  we find 

1 
(2a2/e2)pApx = &+$Az) s ( E ~ + w ) ~ - E O ~  

, ( 7 )  
E f  w 2 

where w = ( k 2 + X 2 ) f  and the integration is to  be 
taken over a sphere of radius K in k space. The 
first and, obviously, the second integrals turn 
out to  be invariant; the third is not, but  its 
contribution will cancel out on taking A p o -  A ~ A  
as i t  does not depend on The  result of the 
integrationss is, dropping terms of order 1/K and 

'Pais has suggested that one subtract from Apo the 
-AM* that one gets not from electrodynamics but from 
the scalar f field (for which 8 . .  .p repIaces ZJ (xi- * *a;). 
Proceeding in this way the integrals f dk/Ej  do not appear 
with the same coefficient. Therefore, although this pro- 
cedure leads to a finite rest mass i t  is not invariant in the 
sense here, that  the limits of k space integration can be 
taken to be independent of the momentum of the electron. 
A. Pais, Kon. Ned. Akad. v .  Wet. Verh. D1, 19, 1 (1947). 

8The  first integral may be performed in the following 
manner: First integrate over the directions in k space a t  
constant magnitude k .  Only E, depends on the direction of 
k and one may therefore replace the solid angle integral 
by one on E,. The limits of E, are E + = ( ~ ~ + ( P o + K ) ~ ) *  
and E-= ( p 2 + ( q o - k ) T ) *  but both terms may be considered 
together as one if the integral on k be extended from --K 
to K instead of 0 to K. To integrate this on k, substitute 
the variable x=E++o-Eo and (the algebra is long) 
integrate by parts to reduce it to elementary integrals. 
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The  emission and subsequent absorption of a 
quantum acts similarly to  the effect of a change 
in mass not only on the diagonal matrix element 
which we have just calculated, but on non- 
diagonal elements as well. Consider that  the 
state appearing on the left of all the matrices in 
(3) were arbitrary, say x. Then the numerator of 
the first term can be expressed, as we have seen, 
by (-l/E,)(xl -E,+ZPp+cu.P,IO). The  second 
term can be expressed similarlj.. The two terms 
can be combined so that  the whole expression in 
brackets in (3) can be written 

(X 1 -E,Eo+ (E,+w)(~PP+  PO- W . k )  10) 

J%((&+W)~-EO~) 
(10) 

This expression may be multiplied by 
+ X2-p2+po2---- X 2 -  2 X 2 P ~  2 ) Inr+po2. (7b) ( 6(w2 - k2-  X2) 

and integrated with respect to w and over a 
sphere of radius K in k space. We make use of the 
following integrals which can be directly verified : 

Thus X o ( p ,  p) = 1 / 2 p 2  and for X large compared 
to p, Xx(p,  p) = 1/4X2. Hence 

X2 x I* 
In-+ - 

2 xz-I .12  I.1 2 
(r/e2)(Apo-ApA) =?! .__. 

- (Cc2+;h2)PXx(P, PI, (8) = Nx+ P 0 2 X X ( P ,  PO) ! 

which is independent of K (in the limit K-+m). 

( r / m  

1 
6 ( ~ * - - k * - X ~ ) d w d k / ’ ~  .f ( E , + U ) ~ - E O ~  I f  the important values of X are much greater 

than p, we find approximately (to terms of order 

AP = p ( e 2 / a )  [ 4  I n ( b / ~ >  + ;I, 
lnXo = Jo” InXG(X)dX. 

= 3Nh + 3 (P2 + PO2 - A’) xx (P v P)O, ( 1 1) 

E/+w .- 6(w2 - k 2 -  X ? ) d w d k / T  
k 

(9) .f (E,+W)~-EO* Ef 
where 

= ~ P O [ ~ f N k +  (x2+cL02 -P?)xX(u, PO) 1. 
Judging from the classical case we would have 

expected to take Xo of order 137p, for then all 
mass would be electromagnetic. But A p  here is 
too small for this to represent a real possibility. 
The experimental electron mass rn is of course 
/ . S A P .  

The value of X would have to be of phe- 
nomenal size (-e13’p) before A p  can represent a 
sizeable fraction of the experimental mass. How- 
ever, to go t o  the limit of the conventional elec- 
trodynamics, Xo should be taken as infinite. 
Then the self-energy diverges logarithmically in 
the manner found by Weis~kopf .~  

V. Weisskopf, Phys. Rev. 56, 72 (1939). 

The  integrals have been calculated under the 
assumption tha t  ED2 = po2+Po2. In our application 
we should take p o = p .  The  quantities Nx and 
X,(p,  PO) are given by (7a), (7b). (The extra 
parameter po is helpful in obtaining other 
integrals, useful in the radiationless scattering 
problem, by differentiations with respect t o  the 
various parameters under the integral sign.) 

The  result of integration (10) with the density 
6 ( w 2 - k 2 )  - 6 ( w 2 - k 2 - X 2 )  is therefore 
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Now the energy of state 0 is Eo so tha t  
a.Po=Ho-Pp is equivalent t o  E o - P p ,  since i t  
operates on state 0 (no implication about state x 
is involved). Making this replacement, all the 
terms in Eo are seen to  cancel and the result is 
simply 

(. IP  10) * ( & J O - - A d ,  (12) 
where A p o - A p x  is given in (8). On integrating 
over G(X)dX then we find (xIPApI0). But this is 
just the perturbation element which would result 
from a change of mass by A p  in the Dirac 
equation. 

We may use this result to show that the level 
shift for an electron in a bound state given in the 
present theory will be essentially that given by 
Weisskopf and Bethe according to their so-called 
wave-packet method. The change in energy of 
our electron in a bound state may be calculated 
in a straightforward manner according to the 
present formulation. One would simply start 
with Eq. (2) but with the wave functions and 
energies for states 0 and f being appropriate for 
the potential by which the electron is bound. 
Then one would integrate over g ( u 2 - k 2 )  rather 
than 6(u2-k2)  and obtain a definite finite result. 
The result would show a fairly large change in EO 
depending logarithmically on X. 

A good part of this change could be accounted 
for as simply due to the change in Eo that  would 
occur if the mass of the electron were altered 
from p to m = p f A p .  We can define the true 
term shift, then, as the complete change in Eo, 
less A p ( a E o / a p ) ,  the change due to using p 
instead of m in computing the energy with 
radiation absent. But aEo/t3p is by perturbation 
theory the expected value ($o* I P I&) of for the 
state in question. From the result (12), how- 
ever, this is also equivalent t o  computing the 
self-energy of a wave packet $0, assuming the 
electron as free. But Bethel and Weisskopf2 
compute their term shift by just  this prescription: 
the total effect less the self-energy of the free 
packet. The only difference here is that  we would 
compute the term shift integral on g(w2 - k 2 )  
rather than 6(u2-k2) .  But since the integral con- 
verges either way, the difference between the 
two results is very small, being of order of 
(p2/Xo2) times smaller than the result. 

RADIATIONLESS SCATTERING 

We can study the radiationless scattering 
problem in a similar manner. This problem is the 
correction to  the scattering by a first-order 
potential due to  the possibility of emission and 
absorption of a virtual quantum. For example, 
this emission and absorption can occur a t  any 
time previous to  the scattering. ( I t  would, in this 
case, be nearly equivalent to  a change in mass 
in the wave function of the electron arriving at 
the scatterer.) There will be a large change in 
cross section, which would be expected as the 
result of a change in mass of the electron plus a 
smaller change caused essentially by emissions 
previous to and absorptions subsequent to the 
scattering. As in the case of the self-energy in a 
field and, in fact, in all such problems, we will 
really be interested in those effects of radiation 
over and above that resulting from the change in 
mass. I t  is, therefore, simpler to compute the 
difference between the desired quantity calcu- 
lated with no radiation and electrons of mass m, 
and the same quantity computed with the pos- 
sibility of a virtual quantum emission and ab- 
sorption with an electron of mass p. This dif- 
ference, which we shall call the radiative cor- 
rection, can be looked upon as the result of per- 
turbation due to the addition to the Hamiltonian 
of both the radiative interaction terms and a 
term --PAP. The latter term can, as we have 
shown, be represented by the integral over oscil- 
lators of 

when acting on a free electron state of positive 
energy Eo and momentum Po. When acting on a 
state of negative energy -Eo, the term can be 
shown in a similar manner to  be the expression 
(13) with the sign of Eo changed in the de- 
nominator. 

Terms like these are just the ones that 
Schwinger4 thought should be omitted from the 
Hamiltonian if one wishes to  get meaningful 
results, so that the present model agrees with 
Schwinger's prescription. 

When this proces is applied to  the scattering 
problem to  obtain the radiative correction to  
the matrix elements, we are left with several 
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residual terms. First, the emissions and absorp- 
tions previous to scattering are not exactly 
equivalent to a change in mass. If the emission 
occurs too close (in time) to the scattering, the 
absorption must occur in a restricted time, rather 
than a t  leisure as for a free electron forming pap.  
'The correction to the matrix element (in the 
theory of holes) for this is proportional to  

We assume the potential b' (vector or scalar) 
depending on position like eiq.R and time like 
e c t Q f  induces transitions from a state 1 of mo- 
mentum P 1 ,  energy E l ,  to the state 2 of momen- 
tum P z = P l + q ,  energy E ~ = E ~ + Q = ( $ + P Z ~ ) * .  
The operator b' is jus t  1 for scalar potential, az 
for vector potential in x direction, etc. The term 
(14) represents only that contribution due to  a 
quantum of momentum k, frequency w .  We 
expect later to integrate over w and k, times 
g ( u 2 - k 2 ) .  We. put P , = P 1 - k ,  E f =  ( j ~ ~ + P , ~ ) i .  
This term can also be regarded as due to the 
second-order normalization correction in the 
ordinary perturbation theory on the incoming 
wave function. There is a corresponding cor- 
rection for the final wave function resulting from 
virtual quanta emitted and absorbed after the 
scattering: ( P , = P z - k ,  E,= (p2+Po2) f ) .  

All the effects of pap are now included. The 
remaining terms are those for which the potential 
scattering occurs between the emission and ab- 
sorption. They may be worked out as by 
Dancofflo (except that  we include the longitudinal 
\ 

l 0 S .  M. Dancoff, Phys. Rev. 55, 959 (1939). 

2w 

Es+Eg+Ez-Ei  
-1. (17) x[1+ 

Although each separate term diverges, the sum 
of (14), (15), (16), (17) will lead to  an integral 
convergent for large k even if integrated in the 
conventional manner on 6(w2-k2) .  This is the 
result of Lewis. Integration on g ( u 2 - k 2 )  will 
make each term converge for large k, but will 
then only make correction to  the sum of order 
(,U/X)~ smaller. These we shall neglect. 

The integrals do, however, diverge logarithmi- 
cally at the lower limit of small momentum 
transfer. This infra-red catastrophe has been 
completely cleared up by Bloch and Nordsieck." 
They show that  for very long wave-length quanta 
the amplitude for emission and reabsorption of 
more than one quantum is not negligible. In- 
clusion of these higher order terms, which is 
necessary only in the non-relativistic region, 
solves the problem. T o  keep the results given 
here in a simple form, we can imagine the inte- 
grals to be performed down to  some minimum 
momentum &,,in, small compared to p. What is 
effectively the same thing but which is easier 
(because relativistic invariance is maintained) 
for practical purposes, is to imagine that the 
quanta have a very small rest mass X m i n .  Thus 
we integrate the density 

6(wZ-kz-Xmin2)dwdk 
'IF. Bloch and A. Nordsieck, Phys. Rev, 52, 54 (1937). 
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and assume Xmin<<p. The two methods are 
equivalent if one replaces lnX,in by 1n(2k,in) - 1. 

The integrals may be expanded in powers of 
q and Q, say up to the second.12 The constant 
term vanishes on integration. The integrals 
appearing may all be expressed in terms of 
various parametric derivatives of the integrals 
already given in (11). The result may be ex- 
pressed in terms of a general potential in a very 
simple way. A term linear in q, such as propor- 
tional to qz say, is equivalent to taking the 
matrix element (2 I q. exp(iq. R) I 1) directly be- 
tween the two states 2, 1. But this is also equiva- 
lent to the matrixelement of -i(d/dx) exp(iq. R). 
Thus if the potential varied in any other manner 
in space, one sees by superposition that the 
matrix element is the same as that of -idV/dx. 
Thus the terms up to second order can be repre- 
sented by matrix elements of first and second 
space and time derivatives of the potential. That 
is, the radiative correction to the scattering in 
any potential is equivalent to the first order in e2 
and in the potential, to the scattering produced 
by a perturbation AH to the Dirac Hamiltonian. 
The perturbation up to terms of first and second 
derivatives of the vector potential A and the 
scalar potential p is calculated in this manner 
to be 

e2 he 

2 r h d  2pc 
A l l = -  -- (/3(a*B) -i/3a.E) 

The first term, where B = V X A  and E = - V q  
- (l/c)dA/dt, has the same effect as an alteration 
in the electron magnetic moment13 by a fraction 
e2/2rhc. This effect was first discovered by 
S~hwinger.~ 

LINE SHIFT 

The perturbation to H given here is useful not 
only for scattering problems but also for the 
line-shift problem. The actual motion of an 
electron in a binding potential can be visualized 

'*The integrals have also been worked out, by other 
methods, for arbitrarily large q and Q. These will appear in 
a future publication. 

I3 W. Pauli, Handbuch der Physik (1933), Vol. 24/1, p. 
233. 

F E Y N M A N  

as simply a continued sequence of scatterings in 
this potential. For each scattering we can cal- 
culate the effect of virtual quanta in the way 
outlined above. However, it is possible, if the 
potential is strong, that two scatterings occur 
between the emission and reabsorption of the 
quantum, in which case the above formula for AH 
is incorrect. In hydrogen the potential over most 
of the atom is sufficiently weak that this does not 
occur with effective probability. The very long 
wave-length quanta do have a tendency to exist 
in the virtual state for long periods, but they 
have been eliminated by the cut-off X m i n  a t  low 
frequencies. 

In hydrogen, then, the line shift due to quanta 
above minimum wave number kmin is the ex- 
pected value, for the state in question, of 

2hkmin 8 

where (O = e / r ,  r being the distance to the proton, 
and we have used the relation 

ln~,in=ln(2k,in) - 1. 

The first term insures that the fine structure 
separation correction will be that expected from 
the change in the electron's magnetic moment. 
The second may be combined with Bethe's non- 
relativistic calculation for quanta below k,in.I4 

APPLICATION TO OTHER PROCESSES 

The important problem of verifying that the 
self-energy will not diverge in higher-order ap- 
proximations has not been carried to completion. 
I t  appears unlikely that trouble will arise here. 
If that is true the model probably gives sensible 
answers to all problems of quantum electro- 
dynamics other than those involving Uehling 
polarization effects, discussed below. I t  has been 
found to give finite self-mass if we have, instead 
of a vector field, a scalar field or a pseudoscalar 
field, coupled to the electron in the simplest way 
possible without gradient operators. If the field 

l4 Using Eq. (18), Professor Bethe finds 1050 megacycles 
for the separation between 2p812 and 2sln in hydrogen. 
(Solvay Report.) 
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quanta have mass M ,  g ( 0 2 - k 2 )  is replaced by 
g ( d - k 2 - M 2 ) ,  and the values of X of importance 
are chosen to be large compared to M. 

The results for electrodynamics, then, after 
mass renormalization, depend only slightly on 
the form of G(X) and the size of Xo. Since Xo may 
be taken to be extremely large without spoiling 
the smallness of Ap, there would appear to  be 
good reason to drop the dependence on A 
altogether. Thus the G(X) appears only as a 
complicated scaffold which is removed after the 
calculation is done. 

On the other hand, electrodynamics probably 
does break down somewhere and i t  is interesting 
to keep the terms in A for various phenomena to 
see if one might be selected which is particularly 
sensitive to A. This phenomena would then be a 
promising one to study experimentally. The 
MZller interaction between two electrons is 
modified by the present theory. There is, of 
course, the radiative correction, but in addition 
to that there is simply a change due to the change 
in the density function for the quanta which can 
be exchanged. The M#ller interaction ordinarily 
is proportional to l/@, where q is the magnitude 
of the momentum transferred from one electron 
to the other in the center of gravity system. The  
modification is only that this factor is changed to 
Som (1 /a2 - 1 / (a2 + X2))G( A)&. This represents a 
decrease in cross section for hard collisions. If X 
is of order 137 pc2, we would need electrons in 
the center of gravity system of roughly 30 Mev 
to find a strong effect. This corresponds, however, 
to bombardment of stationary electrons by elec- 
trons of 33 Bev.I6 

I t  is interesting to note that the M#ller inter- 
action can be viewed as simply a correction to 
self-energy due to the exclusion principle. The 
self-energy of two electrons, 1 and 2, is not the 
sum of the self-energy of each, for one of the 
virtual states that  2 could ordinarily enter by 
emission of a quantum is now occupied by 1. The 
difference between the self-energy of two elec- 
trons and the sum of the self-energy of each 

16A more promising way to obtain processes with high 
momentum transfer would be wide-angle scattering of 
electrons from nuclei. But here deviations from expecta- 
tions might be associated with uncertainties in the nuclear 
charge distributions rather than electrodynamics. Very 
wide angle pair production is a phenomena which does 
occur for high energy incident y-rays with large momentum 
transfer in a region not too close to the nucleus. 

separately comes out t o  be just their interaction 
energy. 

VACUUM POLARIZATION. ALTERNATIVE 
CUT-OFF PROCEDURES 

In the above calculation, terms of the type 
discussed by Uehling16 have been omitted. These 
terms represent processes involving a pair pro- 
duction followed by annihilation of the same 
pair. For example, a pair produced by the poten- 
tial may annihilate again emitting a quantum. 
This quantum is then absorbed by the electron 
in state 1 transferring it to state 2. These terms 
are infinite and are not made convergent by the 
present scheme. There is some point, neverthe- 
less, to  solving problems a t  first without taking 
them into account. This is because their net 
effect is only to  alter the effective potential in 
which the electron finds itself, for it may be 
scattered either directly or by the quantum 
produced by the Uehling terms. That  is, if this 
problem of polarization of the vacuum is solved 
it will mean, if there is any effect, simply that 
the potential A ,  cp appearing in the Dirac equa- 
tion and (to high order) in such terms as (18) 
should be replaced by new “polarized” poten- 
tials A’, 9’. 

These polarization terms can be characterized 
in a relativistically invariant manner. All the 
terms which have been calculated above contain 
matrix elements of operators between states in a 
sequence such as 1 to f, f to g, g to 2. The omitted 
polarization terms contain transitions like f to g ,  
g to f, 1 to 2. For higher order processes the 
polarization terms are those which do not contain 
a continued sequence of transitions from the 
initial to  the final state. 

The polarization terms are not affected in any 
helpful way by the changes in the density of 
quanta. It is likely that this problem will have 
its an~swer in a changed physical viewpoint. 
However, there is a simple alternative procedure 
to produce finite self-energies which also makes 
convergent the integrals appearing in Serber’s” 
treatment of the polarization problem. (Since, 
however, this treatment of Serber already pre- 
supposes a partial subtraction procedure of 
Heisenberg and Dirac, the situation is not so 
clear here as in the self-energy problem.) 

I s E .  A. Uehling, Phys. Rev. 48, 55 (1935). 
17 R. Serber, Phys. Rev. 48, 49 (1935). 
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From the point of view of coordinate space, 
the reason that the electronic self-energy diverges 
appears to be this. A virtual light quantum 
emitted a t  one point spreads out as 6(t2-r2)  from 
the origin. The wave packet of the electron 
spreading out after the emission of the quantum 
has, as a consequence of Dirac's equation, a 
similar discontinuous value along the light cone. 
I t  is the continued coincidence of these singu- 
larities which makes the matrix element for the 
subsequent absorption of the quantum infinite. 
The method outlined above of changing 6(u2-k2)  
to g ( d - k 2 )  has the effect of changing 6(t2-r2)  
to f ( t 2 - ~ 2 )  where j ( 9 )  is everywhere finite and 
goes to zero rapidly for I s2 I >,1/Xo2. The quanta 
have been moved away from the electrons so that 
overlap on the light cone is reduced. 

An obvious alternative procedure is to move 
the electron wave function away from the quanta. 
This is easily done in a very similar manner. We 
assume the density of electron states of energy E ,  
momentum P to be g ( E 2 - - p 2 - 1 2 )  rather than 
6 ( ~ 5 ? - P - - p ~ ) . ~ ~  The quanta are conventional, 
o=K, density d k / k .  The self-energy integrals ( 2 )  
can, of course, be expressed as an integral over 
the intermediate state momentum PI rather than 
k. Replacing d P j / E f  by g(Ef2-  Pr2 -p2)dE,dPf, 
we find 

e2 

2n 
M i = - l  JW - prz - r2>dE/dPr 

1. Ej (0 1 aiAf+ai 10) (0 I ailtr-ai 10) 

'k 4 Ef+k-Eo Er+k+Eo 
- 

'*This is seen to be essentially the method proposed 
by Wataghin. G. Wataghin, Zeits. f .  Physik 88, 92 (1934). 

where k =  IPr-Pol,  Eo=(p2+PO2)f. The pro- 
jection operators are unchanged since it is only 
the density of states which we wish to alter. They 
are still A?& = (Ej+ (Y - Pjf /3p) /2Ej .  The result 
of this calculation is to verify that A&' is finite, 
(depending logarithmically on A,). The other 
problems can be analyzed in the same way. 

In the problem of polarization of the vacuum, 
the wave functions of both electron and positron 
ordinarily spread with a singularity on the light 
core. The matrix element for their subsequent 
annihilation is therefore infinite. With the modi- 
fication here described these wave functions are 
made less singular and their overlap integral is 
finite. The polarization integrals in Serber's 
article" may now be integrated to yield finite 
results. 

Other than terms which might be removed by 
a small renormalization of charge (depending 
logarithmically on lo), the net effect in (17) 
would be to change the - (3) in the last \term of 
(17) to -(g)-($). However, the real existence 
of such polarization corrections is, in the author's 
view, uncertain. These matters will be discussed 
in much more detail in future publications. Also 
reserved for future publication is a more com- 
plete physical theory from which the results 
reported here may be directly deduced. I t  yields 
much more powerful techniques for setting up 
problems and performing the required integra- 
tions. 

The author would like to express his gratitude 
to Mr. P. V. C. Hough for assistance in the 
calculations and to Professor H. A. Bethe and 
Dr. F. Dyson and many others for useful dis- 
cussions. 
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The problem of the behavior of positrons and electrons ih given 
external potentials, neglecting their mutual interaction, is analyzed 
by replacing the theory of holes by a reinterpretation of the solu- 
tions of the Dirac equation. It is possible to write down a complete 
solution of the problem in terms of boundary conditions on the 
wave function, and this solution contains automatically all the 
possibilities of virtual (and real) pair formation and annihilation 
rogether with the ordinary scattering processes, including the 
correct relative signs of the various terms. 

In  this solution, the “negative energy states” appear in a form 
which may be pictured (as by Stlickelberg) in space-time as waves 
traveling away from the external potential backwards in time. 
Experimentally, such a wave corresponds to a positron approach- 
ing the potential and annihilating the electron. A particle moving 
forward in time (electron) in a potential may be scattered forward 
in time (ordinary scattering) or backward (pair annihilation). 
When moving backward (positron) it niay he scattered backward 

in time (positron scattering) or forward (pair production). For 
such a particle the amplitude for transition from an initial to a 
final state is analyzed to any order in the potential by considering 
it to undergo a sequence of such scatterings. 

The amplitude for a process involving many such particles is 
the product of the transition amplitudes for each particle. The 
exclusion principle requires that antisymmetric combinations of 
amplitudes he chosen for those complete processes which differ 
only by exchange of particles. It seems that a consistent interpre- 
tation is only possible if the exclusion principle is adopted. The 
exclusion principle need not be taken into account in intermediate 
states. Vacuum problems do not arise for charges which do not 
interact with one another, but these are analyzed nevertheless in 
anticipation of application to quantum electrodynamics. 

The results are also expressed in momentum-energy variables, 
Equivalence to the second quantization theory of holes is proved 
in an appendix. 

1. INTRODUCTION as a whole rather than breaking it up into its pieces. 

HIS is the first of a set of papers dealing with the T solution of problems in quantum electrodynamics. 
The main principle is to deal directly with the solutions 
to the Hamiltonian differential equations rather than 
with these equations themselves. Here we treat simply 
the motion of electrons and positrons in given external 
potentials. In  a second paper we consider the interactions 
of these particles, that is, quantum electrodynamics. 

The problem of charges in a fixed potential is usually 
treated by the method of second quantization of the 
electron field, using the ideas of the theory of holes. 
Instead we show that by a suitable choice and inter- 
pretation of the solutions of Dirac’s equation the prob- 
lem may be equally well treated in a manner which is 
fundamentally no more complicated than Schrodinger’s 
method of dealing with one or more particles. The vari- 
ous creation and annihilation operators in the conven- 
tional electron field view are required because the 
number of particles is not conserved, i.e., pairs may be 
created or destroyed. On the other hand charge is 
conserved which suggests that if we follow the charge, 
not the particle, the results can be simplified. 

In  the approximation of classical relativistic theory 
the creation of an electron pair (electron A ,  positron B )  
might be represented by the start of two world lines 
from the point of creation, 1. The world lines of the 
positron will then continue until i t  annihilates another 
electron, C, at a world point 2. Between the times 11 
and t2 there are then three world lines, before and after 
only one. However, the world lines of C, I?, and A 
together form one continuous line albeit the “positron 
part” B of this continuous line is directed backwards 
in time. Following the charge rather than the particles 
corresponds to considering this continuous world line 

7 4 

It is as though a bombardier aying-low over a road 
suddenly sees three roads and i t  is only when two of 
them come together and disappear again that he realizes 
that he has simply passed over a long switchback in a 
single road. 

This over-all space-time point of view leads to con- 
siderable simplification in many problems. One can take 
into account a t  the same time processes which ordi- 
narily would have to be considered separately. For 
example, when considering the scattering of an electron 
by a potential one automatically takes into account the 
effects of virtual pair productions. The same equation, 
Dirac’s, which describes the deflection of the world line 
of an electron in a field, can also describe the deflection 
(and in just as simple a manner) when it is large enough 
to reverse the time-sense of the world line, and thereby 
correspond to pair annihilation. Quantum mechanically 
the direction of the world lines is replaced by the 
direction of propagation of waves. 

This view is quite different from that of the Hamil- 
tonian method which considers the future as developing 
continuously from out of the past. Here we imagine the 
entire space-time history laid out, and that we just 
become aware of increasing portions of i t  successively. 
In  a scattering problem this over-all view of the com- 
plete scattering process is similar to the S-matrix view- 
point of Heisenberg. The temporal order of events dur- 
ing the scattering, which is analyzed in such detail by 
the Hamiltonian differential equation, is irrelevant. The 
relation of these viewpoints will be discussed much more 
fully in the introduction to the second paper, in which 
the more complicated interactions are analyzed. 

The development stemmed from the idea that in non- 
relativistic quantum mechanics the amplitude for a 
given process can be considered as the sum of an ampli- 

9 
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tude for each space-time path availab1e.l In  view of the 
fact that in classical physics positrons could be viewed 
as electrons proceeding along world lines toward the 
past (reference 7) the attempt was made to remove, in 
the relativistic case, the restriction that the paths must 
proceed always in one direction in time. I t  was dis- 
covered that the results could be even more easily 
understood from a more familiar physical viewpoint, 
that of scattered waves. This viewpoint is the one used 
in this paper. After the equations were worked out 
physically the proof of the equivalence to the second 
quantization theory was found? 

First we discuss the relation of the Hamiltonian 
differential equation to its solution, using for an example 
the Schrodinger equation. Next we deal in an analogous 
way with the Dirac equation and show how the solu- 
tions may be interpreted to apply to positrons. The 
interpretation seems not to be consistent unless the 
electrons obey the exclusion principle. (Charges obeying 
the Klein-Gordon equations can be described in an 
analogous manner, but here consistency apparently 
requires Bose  statistic^.)^ A representation in momen- 
tum and energy variables which is useful for the calcu- 
lation of matrix elements is described. A proof of the 
equivalence of the method to the theory of holes in 
second quantization is given in the Appendix. 

2. GREEN'S FUNCTION TREATMENT OF 
SCHRODINGER'S EQUATION 

We begin by a brief discussion of the relation of the 
non-relativistic wave equation to its solution. The ideas 
will then be extended to relativistic particles] satisfying 
Dirac's equation, and finally in the succeeding paper to 
interacting relativistic particles, that is, quantum 
electrodynamics. 

The Schrodinger equation 

ia+/at = H+, (1) 
describes the change in the wave function $ in an 
infinitesimal time At as due to the operation of an 
operator exp(-iHAt). One can ask also, if $(XI, /I) is 
the wave function a t  X I  a t  time 11, what is the wave 
function a t  time t Z > t , ?  I t  can always be written as 

#(xz, 11) = J m X Z '  12; x1, tl)#(XIl tl)@Xl, (2) 

where K is a Green's function for the linear Eq. (I). 
(We have limited ourselves to a single particle of co- 
ordinate x, but the equations are obviously of greater 
generality.) If H is a constant operator having eigen- 
values En, eigenfunctions +,, so that +(x, f J  can be ex- 
panded asx . ,  C"+,(x), then +(x, tl)=exp(-iE,(t~-h)) 
XC.+.(x). Since C n = J + ) n * ( ~ r ) + ( ~ ~ ,  tl)d3xr, one finds 

1 R. P. Feynman Rev. Mod. Phys. 20, 367 (1948). 
'The equivalenck of the entire procedure (including photon 

interactions) with the work of Schwinger and Tomonaga has been 
demonstrated by F. J. Dyson, Phys. Rev. 75, 486 (1949). 

*These are special examples of the general relation of spin and 
statistics deduced by W. Pauli, Phys. Rev. 58, 716 (1940). 

(where we write 1 for XI, t~ and 2 for XZ, t 2 )  in this case 

K ( 2 , 1 ) = C  4 n ( x ~ ) + n * ( x ~ )  exp(--&.(t2-td), (3) 

for 1 ~ > 1 1 .  We shall find it convenient for k < f l  to define 
K ( 2 , 1 ) = 0  (Eq. ( 2 )  is then not valid for f t< t l ) .  I t  is 
then readily shown that in general K can be defined by 
that solution of 

n 

( ia/afZ--Hz)K(2,  1)=i6(2,  l ) ,  (4) 
which is zero for l z < t l ,  where 6(2, 1 ) = 6 ( t z - - 1 ~ ) 6 ( z ~ - ~ l )  
X ~ ( ~ Z - ~ I ) ~ ( Z ~ - Z ~ )  and the subscript 2 on HZ means 
that the operator acts on the variables of 2 of K(2,  1). 
When H is not constant, ( 2 )  and (4) are valid but K .is 
less easy to evaluate than (3).' 

We can call K(2, 1) the total amplitude for arrival 
a t  XZ, IZ starting from XL, t1. (It results from adding an 
amplitude,expiS,for each space time path between these 
points, where S is the action along the path.l) The 
transition amplitude for finding a particle in state 
~ ( x r ,  f z )  a t  time t z ,  if a t  61 it  was in #(XI, 11), is 

JX*(2)K(2 ,  1)+(l)@XId"Z. (5) 

A quantum mechanical system is described equally well 
by specifying the function K, or by specifying the 
Hamiltonian H from which it results. For some purposes 
the specification in terms of K is easier to use and 
visualize. We desire eventually to discuss quantum 
electrodynamics from this point of view. 

To gain a greater familiarity with the K function and 
the point of view it suggests, we consider a simple 
perturbation problem. Imagine we have a particle in 
a weak potential U(x, t ) ,  a function of position and 
time. We wish to calculate K(2, 1) if U differs from 
zero only for 1 between 11 and $2. We shall expand K in 
increasing powers of U: 

To zero order in U ,  K is that for a free particle, Ko(2, l).'  
To study the first order correction K(l'(2, l), first con- 
sider the case that LI differs from zero only for the 
infinitesimal time interval Ah between some time I t  
and /3+Af3(t1</3<t2). Then if # ( 1 )  is the wave function 
a t  x1, (1, the wave function a t  XS, 13 is 

K(2,  1) = Ko(2, 1)+K'"(2, l)+K("(2, 1 ) + .  . . . (6) 

+(3)=f iO(3 ,  1)+(1)d3xl, (7) 

since from t I  to 13 the particle is free. For the short 
interval At3 we solve (1) as 
+(x, t3+&)= exp(--iHAfd$(x, f a )  

= ( l - iHoAta- iUAl~)$(~ ,  /3), 

'For a non-relativistic free particle, where +.=exp(ip,x), 

K ~ ( z ,  1) -1 expc - ( i p . x , - i p .  x ~ ) - i ~ ( ~ ~ - f l ) / z f f l ~ ~ p ( z ~ ) - a  

E.=p*/Zm, (3) gives, as is well known 

= (2.&1-1(1z-h))-t exp(lim(x2- xJz(f2-fl)-') 
for t ~ > l l ,  and Ko=O for lZ<#1. 
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where we put H = H o + U ,  HO being the Hamiltonian 
of a free particle. Thus $(x ,  ld-1113) differs from 
what it would be if the potential were zero (namely 
( l - iHoA/&(x,  1 3 ) )  by the extra piece 

A+= - iU(x~,  t d . + ( x a ,  13)Ak., (8) 
which we shall call the aniplitude scattered by the 
potential. The wave function a t  2 is given by 

+(xt, 11) = S K o ( x 2 ,  11; x 3 ,  ta+Ak)$(xa, 13fAk)flx3. 

since after ls+Ats the particle is again free. Therefore 
the change in the wave function a t  2 brought about by 
the potential is (substitute (7) into (8) and (8) into 
the equation for $(xg, 1 2 ) )  : 

n 

A+(2)  = - i  Ko(2, 3)U(3)Ko(3 ,  l)$(l)daxiflx3A13. J 
In the case that the potential exists for an extended 
time, it may be looked upon as a sum of effects from 
each interval A / $  so that the total effect is obtained by 
integrating over 11 as well as x3. From the definition (2) 
of K then, we find 

K"'(2, I ) =  - i J K o ( z ,  3 )u (3 )Ko(3 ,  1)dTs ,  (9) 

where the integral can now be extended over all space 
and time, ds3=d3x3d13. Automatically there will be no 
contribution if 1 3  is outside the range 11 to 12 because of 
our definition, Ko(2, 1)=0 for 12<11. 

We can understand the result (6), (9) this way. We 
can imagine that a particle travels as a free particle 
from point to point, but is scattered by the potential U .  
Thus the total amplitude for arrival a t  2 from 1 can 
be considered as the sum of the amplitudes for various 
alternative routes. It may go directly from 1 to 2 
(amplitude KO@,  l ) ,  giving the zero order term in (6) ) .  
Or (see Fig. l(a)) it may go from 1 to 3 (amplitude 
Ko(3, l)) ,  get scattered there by the potential (scatter- 
ing amplitude - i U ( 3 )  per unit volume and time) and 
then go from 3 to 2 (amplitude KO@, 3 ) ) .  This may 
occur for any point 3 so that summing over these 
alternatives gives (9). 

Again, it may be scattered twice by the potential 
(Fig. l(b)). It goes from 1 to3 (Ko(3, l)),gets scattered 
there ( - - iU(3) )  then proceeds to some other point, 4, 
in space time (amplitude Ko(4,  3)) is scattered again 
(--iU(4)) and then proceeds to 2 ( K 0 ( 2 , 4 ) ) .  Summing 
over all possible places and times for 3,  4 find that the 
second order contribution to the total amplitude 
K(2)(2,  1) is 

x u(3)&(3 ,  1)dTdTr. (10) 
This can be readily verified directly from ( 1 )  just as (9) 
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FIG. 1 .  The Schrodinger (and Dirac) equation can be visualized 
as describing the fact that plane waves are scattered successively 
by a potential. Figure 1 (a) illustrates the situation in first order. 
K o ( 2 , 3 )  is the amplitude for a free particle starting at  point 3 
to arrive at 2. The shaded region indicates the resence of the 
potential A which scatters at 3 with amplituie -iA(3) per 
cm'sec. (Eq. (9)). In  (h) is illustrated the second order process 
(Eq. ( lo)) ,  the waves scattered at 3 are scattered again at 4. How- 
ever, in Dirac one-electron theory K0(4,3) would represent elec- 
trons both of positive and of negative energies proceeding from 
3 to 4. This is remedied by choosing a different scattering kernel 
K+(4, 3), Fig. 2. 

was. One can in this way obviously write down any of 
the terms of the expansion (6).6 

3. TREATMENT OF THE DIRAC EQUATION 

We shall now extend the method of the last section 
to apply to the Dirac equation. All that would seem 
to be necessary in the previous equations is to consider 
H as  the Dirac Hamiltonian, IL. as a symbol with four 
indices (for each particle). Then KO can still be defined 
by (3 )  or (4) and is now a 4-4 matrix which operating 
on the initial wave function, gives the final wave func- 
tion. In (lo), U ( 3 )  can be generalized to A4(3)--cr.A(3) 
where A , ,  A are the scalar and vector potential (times e, 
the electron charge) and (I are Dirac matrices. 

To discuss this we shall define a convenient rela- 
tivistic notation. We represent four-vectors like x, 1 by 
a symbol z,, where p= 1, 2, 3 ,  4 and z r=f  is real. Thus 
the vector and scalar potential (times e)  A ,  A t  is A,. 
The four matrices (3u, ,3 can be considered as transform- 
ing as a four vector ?,, (our ?,, differs from Pauli's by a 
factor i for p= 1, 2, 3) .  We use the summation conven- 
tion a,b,=a,b,-albl-azb2-a~ba=a.b. In particular if 
a, is any four vector (but not a matrix) we write 
u=a,y, so that a is a matrix associated with a vector 
(a will often be used in place of a,, as  a symbol for the 
vector).The?,satisfy ~ , , y . + - y . ~ ~ = 2 6 , .  where 6 4 , = + 1 ,  
b l l = 6 2 2 = 6 3 ) =  -1, and the other 6,. are zero. As a 
consequence of our summation convention 6,,a,= a, 
and 6,,=4. Note that ab+ba=2a.b and that a2=a,a, 
= a . a  is a pure number. The symbol a/&, will mean 
a/& for p=4, and -ad/&, -a/ay, -aa/az for p = l ,  
2 , 3 .  Call V= r,d/dz,=(3a/al+j3u.V. We shall imagine 

6 We are simply solving by successive approximations an integral 
equation (deducible directly from (1) with H = H o + U  and (4) 

$42)- - iSKo(2 ,  3)11(3)#43)dn+SKo(2, l)rl.(l)d*% 

where the first integral extends over all space and all tiw 
greater than the 1, appearing in the second term, and f r > l  

w ~ t h  H = H o ) ,  
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expansion of the integral equation 

K+‘“)(2,  1)=K+(2, 1) 

- - iSK+(2 ,3 )A( .3 )K+(”) (3 ,  l ) d ~ , ,  (16) 

which it also satisfies. 
We would now expect to choose, for the special solu- 

tion of (12), K+=Ko where Ko(2, 1) vanishes for / 2 < f 1  

and for / 2 > 1 1  is given by (3) where and En are the 
eigenfunctions and energy values of a particle satis- 
fying Dirac’s equation, and +,,* is replaced by 4“. 

The formulas arising from this choice, however, suffer 
from the drawback that they apply to the one electron 
theory of Dirac rather than to the hole theory of the 
positron. For example, consider as in Fig. l(a) an 
electron after being scattered by a potential in a small 
region 3 of space time. The one electron theory says 
(as does (3) with K+=Ko) that the scattered amplitude 
at  another point 2 will proceed toward positive times 
with both positive and negative energies, that is with 
both positive and negative rates of change of phase. No 
wave is scattered to times previous to the time of 
scattering. These are just the properties of K0(2,3). 

On the oiher hand, according to the positron theory 
negative energy states are not available to the electron 
after the scattering. Therefore the choice K+= K O  is 
unsatisfactory. But there are other solutions of (12). 
We shall choose the solution defining K+(2, I) so that 
K+(Z, I )  JOY t2>t1 i s  the sum of (3)  over posilive energy 
slales only. Now this new solution must satisfy (12) for 
all times in order that the representation be complete. 
I t  must therefore differ from the old solution K O  by a 
solution of the homogeneous Dirac equation. It is clear 
from the definition that the difference KO-K+ is the 
sum of (3) over all negative energy states, as  long as 
/ 2 > l l .  But this difference must be a solution of the 
homogeneous Dirac equation for all times and must 
therefore be represented by the same sum over negative 
energy states also for 12<L1 .  Since Ko=O in this case, 
it follows that our .iew kernel, K+(Z, I ) ,  for tz<ll i s  the 
ncgotire of [he sum (3, cwer w g n / i o e  energy sfnlss. That is, 

K+(2,  1) = EP0.S E” #“(2)6“(1) 
Xexp(-iEn(h-tl)) for t 2 > f 1  

Xexp(--iE,(t2--tl)) for 12<t1. 

( 1 7 )  
= - C N E O  E ,  ‘$n(2)’$n(I) 

With this choice of K+ our equations such as  (13) and 
(14) will now give results equivalent to those of the 
positron hole theory. 

That (14), for example, is the correct second order 
expression for finding a t  2 an electron originally a t  1 
according to the positron theory may be seen as follows 
(Fig. 2).  Assume as a special example that t z > l l  and 
that the potential vanishes except in interval 1 2 - / ,  so 
that 1, and 13 both lie between 

First suppose / ( > / a  (Fig. 2(b)). Then (since / I > / I )  

and 12 .  

( 0 )  FIRST ORDER. EQ(13) 

WTDW O f  i’ WYTRON I‘ 

. .. . 
ID) VIRTUAL SCATTERING (c )  VIRTUAL PAIR 

1*>13 l 6 1 a  

FIG. 2. The Dirac equation permits another solution K+(2 ,  1 )  
if one considers that waves scattered by the potential can proceed 
backwards in time as in Fig. 2 (a). This is interpreted in the second 
order processes (h), ( c ) ,  by noting that there is now the possi- 
bility (c) of virtual air production at 4 the positron going to 3 
to be annihilated. +his can he pictured as  similar to ordinary 
scattering (b) exce t that the electron is scattered backwards in 
time from 3 to 4. T i e  waves scattered from 3 to 2’ in (a) represent 
the possibilit of a positron arriving at 3 from 2’ and annihilating 
the electron $om 1. This view is proved equivalent to hole theory: 
electrons traveling backwards in time are recognized as positrons. 

SECOND ORDER. €0. (141 

hereafter, purely for relativistic convenience, that +,,* 
in (3) is replaced by its adjoint &,= +,,*@. 

Thus the Dirac equation for a particle, mass m, in an 
external field A= A,y,  is 

(iV-?n)$=A$, (11) 
and Eq. (4) determining the propagation of a free 
particle becomes 

(iV2--m)K+(2, 1)= i S ( 2 ,  l), (12) 
the index 2 on V2 indicating differentiation with respect 
to the coordinates zzU which are represented as 2 in 
K+(2, 1) and a(& 1). 

The function K+(2, 1) is defined in the absence of a 
field. If a potential A is acting a similar function, say 
K+(”)(2, 1) can be defined. I t  differs from K+(2, 1) by a 
first order correction given by the analogue of (9) 
namely 

K+‘”(2, 1 ) s  - i K + ( 2 ,  3)A(3)K+(3, l ) d ~ a ,  (13) s 
representing the amplitude to go from 1 to 3 as a free 
particle, get scattered there by the potential (now the 
matrix A(3) instead of U(3)) and continue to 2 as free. 
The second okder correction, analogous to (10) is 

K+(l)(2, 1) = - S J K + ( Z ,  4)A(4) 

XK+(4,3)A(3)K+(3, l ) d T d + t ,  (14) 

and so on. In general K+(A)  satisfies 
(iVz-A(2)-m)K+‘”’(2, 1)=i6(2, l ) ,  (15) 

and the successive terms (13), (14) are the power series 
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the electron assumed originally in a positive energy 
state propagates in that state (by K+(3 ,  1)) to position 
3 where it gets scattered ( A ( 3 ) ) .  I t  then proceeds to 4, 
which it must do as a positive energy electron. This is 
correctly described by (14) for K+(4,3) contains only 
positive energy components in its expansion, as h>k. 
After being scattered at  4 it then proceeds on to 2, 
again necessarily in a positive energy state, as k>b: 

In  positron theory there is an additional contribution 
due to the possibility of virtual pair production (Fig. 
2(c ) ) .  A pair could be created by the potential A(4) 
a t  4, the electron of which is that found later a t  2. The 
positron (or rather, the hole) proceeds to 3 where it 
annihilates the electron which has arrived there from 1. 

This alternative is already included in  (14) as con- 
tributions for which /<</s, and its study will lead us to 
an interpretation of K+(4,3) for 1 4 < 1 3 .  The factor 
K+(2,  4) describes the electron (after the pair produc- 
tion a t  4) proceeding from 4 to 2. Likewise K+(3, 1) 
represents the electron proceeding from 1 to 3. K+(4,3) 
must therefore represent the propagation of the positron 
or hole from 4 to 3 .  'That it does so is clear. The fact 
that in hole theory tlie hole proceeds in the manner of 
and electron of negative energy is reflected m the fact 
that K+(4,  ,3) for is (minus) the sum of only 
negative energy components. In  hole theory the real 
energy of these intermediate states is, of course, 
positive. This is true here too, since in the phases 
exp(-iEn(14-t3)) defining K+(4, 3) in (17), En is nega- 
tive but so is t 4 - t 3 .  'That is, the contributions vary with 

as exp(-ilEnl(ls-14)) as they would if the energy 
of the intermediate state were IE.1. The fact that the 
entire sum is taken as negative in computing K+(4,3) 
is reflected i n  the fact that in hole theory the amplitude 
has its sign reversed in  accordance with the Pauli 
principle and the fact that the electron arriving a t  2 
has been exchanged with one in the sea.E To this, and 
to higher orders, all processes Involving virtual pairs 
are correctly clescrilied in this way. 

The expressions such as (14) can still be described as 
a passage of the electron from 1 to 3 (K+(3 ,  l)) ,  scatter- 
ing a t  3 by A(3), proceeding to 4 ( K + ( 4 ,  3 ) ) ,  scattering 
again, A(4), arriving finally a t  2. The scatterings may, 
however, be toward both future and past times, an 
electron propagating backwards in  time being recog- 
nized as a positron. 

This therefore suggests that negative energy com- 
ponents created by scattering in a potential be ron- 
sidered as waves propagating from the scattering point 
toward the past, and that sucli waves represent the 
propagation of a positron ;rnnihilating the electron i n  
the potential.' 

It hasoften been noted t h a t  the one-electron theory apparrntly 
gives the same nratrix elenients for this Iproress as does hole theory. 
The probiem is one of interpretation, especially in il way that will 
also give correct results for o ther  processes, q., sell-energy. 

'The idea that positrons can he represented as elcrtrons with 
proper 1% reversed relative to t rue  tinie has heen discussed by 
the author and others, particularly by Stuckelherg. E. C .  C. 

With this interpretation real pair production is also 
described correctly (see Fig. 3). For example in (13) if 
11</3<h the equation gives the amplitude that if a t  
time I t  one electron is present a t  1, then a t  time l 2  just 
one electron will be present (having been scattered a t  3) 
and it will be a t  2. On the other hand if l? is less than t 3 ,  
for example, if t n=l l< ta ,  the same expression gives the 
amplitude that a pair, electron a t  1, positron a t  2 will 
annihilate a t  3, and subsequently no particles will be 
present. Likewise if 1:! and exceed 13 we have (minus) 
the amplitude for finding a single pair, electron at 2, 
positron a t  1 created by A ( 3 )  from a vacuum. If 
f l > l a > t ? ,  (13) describes the scattering of a positron. 
All these amplitudes are relative to the amplitude that 
a vacuum will remain a vacuum, which is taken as 
unity. (This will he discussed more fully later.) 

The analogue of (2) can be easily worked out.* I t  is, 
n 

W )  =J K+\L, 1 ) ~ ( 1 ~ ( 1 ~ 1 . ~ ,  (18) 

where dJVl is the volume element of the closed 3- 
dimensional surface of a region of space time containing 

(C) 

FIG. 3. Several different processes can be described hy the  same 
formula depending on the tinie relations of the  variables 11, I t .  
Thus P,IR+'"'(2, 1 ) 1 2  is the probability that: (a) An electron a t  
1 will be scattered at 2 (and no other pairs farm i n  vacuum). 
(b) Electron at 1 and positron at 2 annihilate leaving nothing. 
(c) A single pair a t  1 and 2 is created from vacuum. (d) A positron 
at 2 is scattered to 1. (K+'"J(2, 1 )  is the sum of the effects of 
scattering in the potential to all orders. P ,  is a nornializing 
constant.) 

Sttickelberg Helv. Phys. Acta 15 23 (1942). R. P. Feynman 
Phys. Rev.'74, 939 (1948). The fk t  that clahsically the a c t i d  
(proper time) increases continuously as one follows a trajectory 
is reflected in quantum mechanics in the fact that the phase, which 
is lEnl 112-11/, always increases as the particle proceeds from one 
scattering point to the next. 

8 By multiplying (12) on the right by ( - iVl -ni )  and noting 
that V,6(2, 1)=-Vd(2,  1) show that  K+(2 ,  1 )  also satisfies 
K+(2, l)(-iV,-ntj=i6(2, l ) ,  where the V, operates on variable 
1 in K+(2 ,  1) h u t  is written alter that function to keep the  correct 
order of the y matrices. Multiply this equation by + ( 1 )  and Eq. 
( I l ) , ( w i t h  A = O ,  calling the variables 1) by K+(2, l ) ,  subtract 
and integrate over a region of space-time. The integral on the ieft- 
hand side can be transformed to an integral over the surface of 
the region. The right-hand side is $(2) if the point 2 lies within 
tlie region, and is zero otherwise. (What happens when the 3- 
surface contains a light line and hence has no unique normal need 
not concern us as these points can be made to occur so far away 
from 2 that their contribution vanishes.) 
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point 2, and N(1)  is NP( l )yF  where N,(l)  is the inward 
drawn unit normal to the surface a t  the point 1.  That 
is, the wave function +(2) (in this case for a free par- 
ticle) is determined a t  any point inside a four-dimen- 
sional region if its values on the surface of that region 
are specified. 

To  interpret this, consider the case that the 3-surface 
consists essentially of all space a t  some time say t = O  
previous to t 2 ,  and of all space a t  the time T> 12. The 
cylinder connecting these to complete the closure of the 
surface may be very distant from x2 so that it gives no 
appreciable contribution (as K+(2, 1) decreases expo- 
nentially in space-like directions). Hence, if y ~ =  @, since 
the inward drawn normals N will be @ and -@, 

I 

-J K + P ,  l’)i3+(l’)d3x1,, (19) 

where t l = O ,  L l , =  T. Only positive energy (electron) 
components in +(1) contribute to the first integral and 
only negative energy (positron) components of +(1’) to 
the second. That is, the amplitude for finding a charge 
a t  2 is determined both by the amplitude for finding 
an electron previous to the measurement and by the 
amplitude for finding a positron after the measurement. 
This might be interpreted as meaning that even in a 
problem involving but one charge the amplitude for 
finding the charge at  2 is not determined when the only 
thing known in the amplitude for finding an electron 
(or a positron) a t  an earlier time. There may have been 
no electron present initially but a pair was created in 
the measurement (or also by other external fields). The 
amplitude for this contingency is specified by the 
amplitude for finding a positron in the future. 

We can also obtain expressions for transition ampli- 
tudes, like (5). For example if a t  1=0 we have an elec- 
tron present in a state with (positive energy) wave 
function f(x), what is the amplitude for finding it a t  
/=T  with the (positive energy) wave function g(x)? 
The amplitude for finding the electron anywhere after 
/ = O  is given by (19) with +(1) replaced by f(x), the 
second integral vanishing. Hence, the transition ele- 
ment to find it in state g(x) is, in analogy to (S), just 
(I*= T ,  h = O )  

J0(x2)Bn.+(2, l)Pf(Xl)d”Xld3X2, (20) 

since g*= 00. 
If a potential acts somewhere in the interval between 

0 and T ,  K+ is replaced by K+(-”. Thus the first order 
effect on the transition amplitude is, from (13). 

- iJg(x2)PR,(2,3W3)K+(3, 1)P.f(Xl)dJxl@xz. (2 1 )  

Expressions such as this can be simplified and the 
3-surface integrals. which are inconvenient for rela- 

tivistic calculations, can be removed as follows. Instead 
of defining a state by the wave function f(x), which it 
has a t  a given time h = O ,  we define the state by the 
function f(1) of four variables XI,  f I  which is a solution 
of the free particle equation for all t I  and is /(xl) for 
t1=0. The final state is likewise defined by a function 
g(2) over-all space-time. Then our surface integrals can 
be performed since f K+(3, 1)~j(x1)dax1=f(3) and 
f S(x2)B#x2K+(2,3) = g(3). There results 

the integral now being over-all space-time. The transi- 
tion amplitude to second order (from (14)) is 

- JJg(2 )42W+(2 ,  1)A(l)fU)d~1drt ,  (23) 

for the particle arriving a t  1 with amplitude f(1) is 
scattered (A(l)) ,  progresses to 2, (K+(2, l ) ) ,  and is 
scattered again ( A ( 2 ) ) ,  and we then ask for the ampli- 
tude that it is in state g(2). If g(2) is a negative energy 
state we are solving a problem of annihilation of elec- 
tron in f(1), positron i n  g(2), eLc. 

We have been emphasizing scattering problems, but 
obviously the motion in  a fixed potential V ,  say in a 
hydrogen atom, can also be dealt with. If it is first 
viewed as a scattering problem we can ask for the 
amplitude, &(l),  that an electron with original f ree  
wave function was scattered k times in the potential V 
either forward or backward in time to arrive a t  1. Then 
the amplitude after one more scattering is 

4 ~ + 1 ( 2 ) = - - i P + ( L  1JV(1)&(1)&. (2.1) 

An equation for the total amplitude 
m 

W = X  +d1) 
k - 0  

for arriving a t  1 either directly or after any number of 
scatterings is obtained by summing (24) over all k from 
0 to 00; 

+ ( 2 ) = 4 0 ( 2 ) - i ~ ~ , ( &  1) V(I ) + . ( l ) A 7 ~ .  (25) 

Viewed as  a steady state problem we may wish, for 
example, to find that initial condition i$o (or better just 
the 6)  which leads to a periodic motion of #. This is 
most practically done, of course, by solving the Dirac 
equation, 

(iV-m)+(l)= V(l)+(l) ,  . (26) 
deduced from (25) by operating on both sides by iGt- m, 
thereby eliminating the $0, and using (12). This illus- 
trates the relation between the points of view. 

For many problems the total potential A +  V may be 
split conveniently into a fixed one, V ,  and another, A ,  
considered as a perturbation. If K,‘” is defined as in  
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(16) with Y for A ,  expressions such as  (23) are  valid 
and useful with K+ replaced by  K+'"' and the functions 
f( l ) ,  g(2! replaced by solutions for all space and time 
of the Dirac Eq.  (26)  in the potential V (rather than 
free particle wave functions). 

4. PROBLEMS INVOLVING SEVERAL CHARGES 

We wish next to consider the case that  there are  two 
(or more) distinct charges (in addition to pairs they may 
produce in virtual states). In  a succeeding paper we 
discuss the interaction between such charges. Here we 
assume that  they do not interact. In  this case each 
particle behaves independently of the other. We ran 
expect that  i f  we have two particles a and b,  the ampli- 
tude that particle a goes from xl a t  f l ,  to xa a t  La while 
b goes from x t  a t  12 to x( a t  f 4  is the product 

K(3 ,4 ;  1, 2)=K+o(3, 1)K+c(4,2). 
The symbols a, b simply indicate that  the matrices 

appearing in the K+ apply to the Dirac four component 
spinors corresponding to  particle a o r b  respectively (the 
wave function now having 16 indices). In  a potential 
K+.  and K+b become K+&'.,') and K+bCA) where K+,'." 
is defined and calculated as for a single particle. They 
commute. Hereafter the a, b can be omitted; the space 
time variable appearing in the kernels sufice to define 
on what they operate. 

The particles are  identical however antl satisfy the 
exclusion principle. The  principle requires only that  one 
calculate K(3,  4 ;  1 ,  2)-K(4, 3; 1 ,  2) to get the net 
amplitude for arrival of charges a t  3,4 .  (It  is normalized 
assuming that  when an integral is performed over points 
3 and 4, for example, since the electrons represented are 
identical, one divides by 2. )  This expression is correct 
for positrons also (Fig. 4). For example the amplitude 
that an electron and a positron found initially a t  xI and 
x, (say / I = / , )  are later found a t  x3 and x? (with 
/ z=  /x> 1 1 )  is given by the same expression 

(27) 
The first term represents the amplitude that the electron 
proceeds from 1 to 3 and the positron from 1 ti) 2 (lig. 
4(r)j,  while the second term represents the interfering 
amplitude that  the pair a t  1, 4 annihilate and what is 
found a t  3, 2 is a pair newly created in the potential. 
The generalization to sever:tl particles is clear. There is 
an additional factor K+'"' for each particle, arid anti- 
symmetric combinations are always taken. 

No account need be taken of the exclusivn priiiriplc 
in intermediate states. As an example consider again 
expression (14) for ! z > / I  antl suppose so that the 
situation represented (Fig. 2 ( c ) )  is that  a pair is made 
a t  4 with the electron proceeding to 2,  antl the positrnn 
to 3 where i t  annihilates thc electron arri\.ing from 1. 
I t  may he ol~jected that if i t  happens that the electron 
created a t  4 is in the same state as the one coming froin 
1,  then the process cannot occur tiecartsr of  the esclitsion 
principle a i d  we should not have included i t  in our 

K+lA'(3, 1)K+'"'(4, 2) -K+(")(4, l)K+cA)(3, 2 ) .  

t 'O S I T It 0 N S 755 

@ 
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FIG. 4. Sonie pr01)lenis involving two distinct charges (in atldi- 
tion to virtual pairs they may produce): P,i K+C'J(3, I )K+( "(4, 2) 
-K+(d1(4, l)K+l "(3, 2)l' is the probability that :  (a) .Electrons 
at 1 and 2 arc scattered to 3, 4 (and no pairs are formed). (h)  
Starring with an electron a t  1 a single pair is formed, positron at 2, 
rlectroiis at 3, 4. ( c )  A pair at 1,  4 is found at 3,  2, etc. The exclu- 
sion principle requires that the amplitudes for processes involving 
exchange of two electrons Ibe sulJtracted. 

term (14). We shall see, however, that  considering the 
exclusion principle also requires another change which 
reinstates the quantity. 

For we are  computing amplitudes relative to the 
amplitude that  a vacuum a t  II will still be a vacuum at 
f2. We are interested in the alteration in this amplitude 
due to the presence of an electron a t  1. Now one process 
that  can be visualized as occurring in the vacuum is the 
creation of a pair a t  4 followed by a re-annihilation bf 
the same pair a t  3 (a process which we shall call il closed 
loop path).  I lut  if a real elertron is present in  n certain 
state 1, those pairs for which the electron was created 
in state 1 in the vacuum must now be excluded. We 
must therefore subtract from our relative amplitude the 
term corresponding to this process. But this just rein- 
states the quantity which i l  wits argued shoulcl not 
have been included in (14), the necessnry minus sign 
coming automntically from tlie definition of K,. I t  is 
obviously simpler to disregard the exclusinn principle 
completely i n  the intermedinte states. 

All the amplitudes arc  relative and their squaws gi1.c 
the relative 1)rohabilities of the various phenomena. 
Absolute probabilities result i f  one multi~)lies each nf 
the prohahilities by P,,, the true probability that  if one 
has no particles present initially there will be none 
finally. This quantity P,. can he calculated by  normal- 
izing tlie relative probahilitirs such that the sum of the 
prnl~:ibilities of all mutunlly exclusive alternatives is 
unity. ( F o r  example i f  onc s ta r t s  with a vacuuni one can 
calculate the relative probal~ility that  there reniains :L 
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vacuum (unity), or one pair is created, or two pairs, etc. 
The sum is P*-l.) Put  in this form the theory is com- 
plete and there are no divergence problems. Real proc- 
esses are completely independent of what goes on in 
the vacuum. 

When we come, in the succeeding paper, to deal with 
interactions between charges, however, the situation is 
not so simple. There is the possibility that virtual elec- 
trons in the vacuum may interact electromagnetically 
with the real electrons. For that reason processes occur- 
ing in the vacuum are analyzed in the next section, in 
which an independent method of obtaining P ,  is 
discussed. 

5. VACUUM PROBLEMS 

An alternative way of obtaining absolute amplitudes 
is to multiply all amplitudes by C,, the vacuum to 
vacuum amplitude, that is, the absolute amplitude that 
there be no particles both initially and finally. We can 
assume C.=l if no potential is present during the 
interval, and otherwise we compute it as follows. I t  
differs from unity because, for example, a pair could be 
created which eventually annihilates itself again. Such 
a path would appear as a closed loop on a space-time 
diagram. The sum of the amplitudes resulting from all 
such single closed loops we call L.  To a first approxima- 
tion L is 

XK+(1, ~ ) A ( ~ ) ~ T I ~ T P .  (28) 
For a pair could be created say a t  1, the electron and 
positron could both go on to 2 and there annihilate. 
The spur, Sp, is taken since one has to sum over all 
possible spins for the pair. The factor + arises from the 
fact that the same loop could be considered as starting 
a t  either potential, and the minus sign results since the 
interactors are each -;A. The next order term would be* 

etc. The sum of all such terms gives L.lU 

*This term actually vanishes as can be seen as follows. In any 
spur the sign of all y matrices may he reversed. Reversing the 
sign of y in K+(2,  1) changes it to the transpose of K+& 2) so 
that the order of all factors and variables is reversed. Since the 
integral is taken over all TI, rs, and ra this has no effect and we are 
left with (- 1)' from changing the sign of A. Thus the spur equals 
its negative. Loops with an odd number of otential interactors 
give zero. Physically this is because for each &op the electron can 
go around one nay or in the opposite direction and we must add 
these amplitudes. But reversing the motion of an electron makes 
it behave like a positive charge thus changing the sign of each 
potential interaction, so that the sun1 is zero i f  the number of 
interactions is odd. This theorem is due to W. H. Furry, Phys. 
Rev. 51, 125 (1937). 

lo A closed ex ression for L in terms of K+'"' is hard to obtain 
because of the &,tor (l/n) in the nth term. However, the per- 
turbation in L, AL due to a small change in potential AA, is easy 
to express. The (I/#) is canceled by the fact that AA can appear 

I n  addition to these single loops we have the possi- 
bility that two independent pairs may be created and 
each pair may annihilate itself again. That is, there may 
be formed in the vacuum two closed loops, and the 
contribution in amplitude from this alternative is just 
the product of the contribution from each of the loops 
considered singly. The total contribution from all such 
pairs of loops (it is still consistent to disregard the 
exclusion principle for these virtual states) is L2/2 for 
in Lz we count every pair of loops twice. The total 
vacuum-vacuum amplitude is then 

C.= I- L+ L*/2- L3/6+ . . . = exp( - L) ,  (30) 
the successive terms representing the amplitude from 
zero, one, two, etc., loops. The fact that the contribu- 
tion to C, of single loops is - L  is a consequence of the 
Pauli principle. For example, consider a situation in 
which two pairs of particles are created. Then these 
pairs later destroy themselves so that we have two 
loops. The electrons could, a t  a given time, be inter- 
changed forming a kind of figure eight which is a single 
loop. The fact that the interchange must change the 
sign of the contribution requires that the terms in C. 
appear with alternate signs. (The exclusion principle is 
also responsible in a similar way for the fact that the 
amplitude for a pair creation is - K+ rather than +K+.) 
Symmetrical statistics would lead to 

C. = 1+ L+ Lz/2= exp(+ L).  
The quantity L has an infinite imaginary part (from 

L(", higher orders are finite). We will discuss this in 
connection with vacuum polarization in the succeeding 
paper. This has no effect on the normalization constant 
for the probability that a vacuum remain vacuum is 
given by 

P,= IC,I*=exp(-2.real part of L ) ,  
from (30). This value agrees with the one calculated 
directly by renormalizing probabilities. The real part 
of L appears to be positive as a consequence of the Dirac 
equation and properties of K+ so that P. is less than 
one. Bose statistics gives C,=exp(+L) and conse- 
quently a value of P. greater than unity which appears 
meaningless if the quantities are interpreted as we have 
done here. Our choice of K+ apparently requires the 
exclusion principle. 

Charges obeying the Klein-Gordon equation can be 
equally well treated by the methods which are dis- 
cussed here for the Dirac electrons. How this is done is 
discussed in more detail in the succeeding paper. The 
real part of L comes out negative for this equation so 
that in this case Bose statistics appear to be required 
for consistency.' 
in any of the n potentials. The result after suniming over n by 
(13), (14) and using (16) is 

The term K+(l, 1) actually integrates to zero. 
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6. ENERGY-MOMENTUM REPRESENTATION 

The practical evaluation of the matrix elements in 
some problems is often simplified by working with 
momentum and energy variables rather than space and 
time. This is because the function K+(2,  1) is fairly 
complicated but we shall find that its Fourier transform 
is very simple, namely ( i / 4 ~ ~ ) ( p - m ) - ~  that is 

K+(2,  I)=(i /4sz)  ( p - m ) - l e x p ( - - i p ~ . r z l ) d r p ,  (31) J 
where p . z21=  p .  XZ- p.xl= pLzzL- przlr, p = p,y , ,  and 
d4p means ( Z ~ ) - ~ d p ~ d p ~ d p & p r ,  the integral over all p .  
That this is true can be seen immediately from (12), 
for the representation of the operator i V - m  in energy 
(p , )  and momentum ( p l .  2 8 )  space is#-m and the trans- 
form of 6(2,1) is a constant. The reciprocal matrix 
(P-m)-' can be interpreted as (p+m)@'-m')-' for 
fiz-mz=(P-m)@+m) is a pure number not involving 
y matrices. Hence if one wishes one can write 

X + ( 2 ,  l )=i( iV*+m)I+(Z,  I), 
where 

1+(2,  1) = ( 2 ~ ) - ~ J ( p * -  m2)-l exp(- i p  , zzl)d4p, (32) 

is not a matrix operator but a function satisfying 

OzZI+(2, 1)-m22+(2, 1)=6(2, l), (33) 
where - 0 2 =  (V#= (a/axZ,)(a/axz,). 

The integrals (31) and (32) are not yet completely 
defined for there are poles in the integrand when 
p2-m2=0. We can define how these poles are to be 
evaluated by the rule that m is considered lo have an 
infinitesimal negative imaginary par!. That is m, is re- 
placed by m-ib and the limit taken as 6-0 from above. 
This can be seen by imagining that we calculate K+ by 
integrating on p r  first. If we call E=+(mS+p(2  
+pll+paz!' then the integrals involve p4 essentially as 
.f e ~ p ( - ~ p ~ ( f ~ - t ~ ) ) d p ~ ( p ~ ~ - E ) - ~  which has poles a t  
p4=+E and p4= -E. The replacement of m by m - i s  
means that E has a small negative imaginary part; the 
first pole is below, the second above the real axis. Now 
if / 2 - 1 1 > 0  the contour can be completed around the 
semicircle below the real axis thus giving a residue from 
the p , = + E  pole, or -(2E)-l exp(-iE(iZ-tl)). If 
12-t1<0 the upper semicircie must be used, and 
p,= - E  a t  the pole, so that the function varies in each 
case as required by the other definition (17). 

Other solutions of (12) result from other prescrip- 
tions. For example if p ,  in the factor (pz-mz)-' is con- 
sidered to have a positive imaginary part K +  becomes 
replaced by K O ,  the Dirac one-electron kernel, zero for 
f z < 1 1 .  Explicitly the function isIL (x, t=zZlL) 

I+(x, 1 )  = - (4~)-'6(5')+ (m/8~s)li1(~)(ms), (34) 
where s = + ( P - x z ) ~  for P>x2 and s= -i(X*-P)' for 

'I I f ( x ,  1) is (Zi)-l(D~(x, 1); iD(x ,  1 ) )  where D, and D are the 
functions defined by W. Pauli, Rev. Mod. Phys. 13, 203 (1941). 

-- 

P O S l T R O N S  75 7 

P < x ,  is the Hankel function and 6(sz) is the 
Dirac delta function of sZ. I t  behaves asymptotically 
as exp(-ims), decaying exponentially in space-like 
directions.12 

By means of such transforms the matrix elements 
like ( 2 2 ) ,  ( 2 3 )  are easily worked out.  A free particle 
wave function for an electron of momentum p, is 
UI exp(-ipl.r) where 111 is a constant spinor satisfying 
the Dirac equation p l z i ~ = m u ~  so that p ~ ~ = m ~ .  The 
matrix element ( 2 2 )  for going from a state pi, u1 to a 
state of momentum pz, spinor uz, is -4~zz(2iza(q)u1)  
where we have imagined A expanded in a Fourier 
integral 

A ( I ) =  J a ( q )  exp(-iq.xl)d4q, 

and we select the component of momentum q = p 2 - j 1 .  
The second order term (23) is the matrix element 

between u1 and uz of 

since the electron of momentum pl may pick up q from 
the potential a(q), propagate with momentum p l + q  
(factor (pl+q-m)-') until it is scattered again by the 
potential, u(p2-pl- ), picking up the remaining mo- 
mentum, p2-p1-q, to bring the total to p ~ .  Since all 
values of q are possible, one integrates over q .  

These same matrices apply directly to positron prob- 
lems, for if the time component of, say, PI is negative 
the state represents a positron of four-momentum -p,, 
and we are describing pair production if $2 is an elec- 
tron, i.e., has positive time component, etc. 

The probability of an event whose matrix element is 
(2iZMu1) is proportional to the absolute square. This 
may also be written ((i lk?u2)(ti2Mulj,  where A t  is A4 
with the operators written in opposite order and explicit 
appearance of i changed to - i (M is p times the complex 
conjugate transpose of O M ) .  For many problems we are 
not concerned about the spin of the final state. Then we 
can sum the probability over the two I I ?  corresponding 
to the two spin directions. This is not B complete set be- 
cause PZ has another eigenvalue, -m. T o  permit sum- 
ming over all states we can insert the proje_ction operator 
(2m) - l (p~+m)  and so obtain (2m)-'(cilM(P~+m)M1rl) 
for the probability of transition from pi, u1, to with 
arbitrary spin. If the incident state is unpolarized we 
can sum on its spins too, and obtain 

(Znz)-'Sp[ (#1+ nt)W(pz+ m ) M ]  (36) 
for (twice) the probability that an electron of arbitrary 
spin with momentum p, will make transition to PI. The 
expressions are all valid for positrons when 0's with 

Iz If the --id is kept with 711 here too the function I+ approaches 
zero for infinite positive and negative times. This may be useful 
in general analyses i n  avoiding complications from infinitely 
remote surfaces. 
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negative energies are inserted, and the situation inter- 
preted in accordance with the timing relations discussed 
above. (We have used functions normalized to (ziu)= 1 
instead of the conventionat (ziPu)= (u*u)= 1. On our 
scale (GPu) =energy/nt so the probabilities must be 
corrected by the appropriate factors.) 

The author has many people to thank for fruitful 
conversations about this subject, particularly H. A .  
Bethe and F. J. Dyson. 

APPENDIX 

a. Deduction from Second Quantization 
In this section we shall show the equivalence of this theory with 

the hole theory of the positron? According to the theory of second 
quantization of the electrnn field in a given potential,13 the sthte 
of this field a t  any time is represented hy a wave function x 
satisfying 

iax/aI-Hx, 
where R = J U * ( x ) ( a . ( - i V - A ) + A , + m a ) U ( x ) d S x  and U ( x )  is 
an operator annihilating an electron at  position x ,  while **(XI  is 
the corresponding creation operator. We contemplate a situation 
in which a t  l = O  we have present some electrons in states repre- 
sented by ordinary spinor functions / , ( X I ,  f i ( x ) ,  ' .  . assumed 
orthogonal, and some positrons. These are described as  holes in 
the negative energy sea, the electrons which would normally f i l l  the 
holes having wave functions p , ( x , ,  p d x ) ,  . . .  We ask, a t  time T 
what is the amplitude that we find electrons in states g l ( x ) ,  
gdx),  . . and holes at qi(x),  q d x ) ,  ' '  . .  If the initial and final state 
vectors representing this situation are x,  and 2, respectively, we 
wish to calculate the matrix element 

We assume that the potential .4 differs from zero only for times 
between 0 and T so that a vacuum can be defined at  these times. 
If xo represents the vacuum state (that is, all negative energy 
states filled, all positive energies empty), the amplitude lor having 
a vacuum at  time T, if we had one at  I = O ,  is 

c.= (XO*SXO), (38) 
writing S for exp(-i&THdt). Our problem is to evaluate R and 
show that i t  is a simple factor times C,, and that the factor involves 
the K,'"' functions in the way discussed in the previous sections. 

To do this we first express x, in terms of xo. The operator 

+* = J U * ( x ) + ( x ) d S x ,  (39) 

creates an electron with wave function + ( x ) .  Likewise 4 = J + * ( x )  
XU(x)d3x annihilates one with wave function +(x). Hence state 
x, is xI= Ft'Fl*. . P I P ? .  . ' x o  while the final state is G,*G,'. . . 
XQlQ? . ' X O  where F,. C,, P,, Q, are operators defined like 4 ,  in 
(39), hut with/,. g,, p., q8 replacing +; lor the initial state would 
result from the vacuum if we created the electrons in It, Jr, . . . 
and annihilated those i n  p l ,  p l ,  . . . ,  Hence we must find 

R = (xo'. . , Qz*Qi*. , CiGiSFi*Fi*. . Pipi ,  .,yo). (40) 
To simplify this we shall have to use commutation relations be- 

tween a +* operator and S. To this end consider exp( -iJolHdI')Q* 
Xexp(+i&'Hdf') and expand this quantity in terms of U*(x), 
giving JU*Cx)+(x ,  I)d8xx, (which defines +(x, 1 ) ) .  Now multiply 
this equation by exp(+i&Hdl'). ..exp(-i&'Hdf') and find 

J W x ) + ( x ) d ' x = J + * ( x ,  I)+(X, f ) d J x ,  (41) 
where we have defined W x ,  1)  by W x ,  I)-exp(+i&'Hdt')U(x) 

la See, for example, C. Wentzel, Einfirhrung in die Quanfen- 
fhcoric d n  WJIcnfcMn (Franz Deuticke, Leipzig, 1943). Chap. 
ter V. 

Xexp(--iJ[Hdf'). As is well known U ( x ,  I )  satisfies the Dirac 
equation, (differentiate U ( x ,  1) with respect to f and use commuta- 
tion relations of H and U) 

i J W x ,  f ) / a l=  ( a , ( - i V - A ) + A , + m g ) U ( x ,  1 ) .  (42) 
Consequently + ( x ,  1 )  must also satisfy the Dirac equation (differ- 
entiate (41) with respect to I ,  use (42) and integrate by parts). 

That  is, if * ( x ,  T) is that solution of the Dirac equation a t  time 
T which is O ( x )  a t  I = O ,  and if we define + * = & U * ( x ) + ( x ) d ~ x  and 
+'*=JU*(x)+(x, T ) d 3 x  then +'*=SQ*S-', or 

s** = Q"S. (43) 
The principle on which the proof will he based can now be 

illustrated by a simple example. Suppose we have just one electron 
initially and finally and ask for 

I =  (xa'CSF'xo). (44) 
We might try putting I;' through the operator S using (43), 
SF*=F"S, wheref' In I ; ' * = J U * ( x ) f ' ( x ) d > x  is the wave function 
a t  T arising from J ( x )  a t  0. Then 

r-(xo*CI;'*Sxa)=~g*(x)f'(x)dSx.C,-(xo'F"CS~~), (45) 

where the second expression has been obtained by use of the defi- 
nition (38) of C. and the general commutation relation 

CF*+ ~ * c = S g * ( X ) j ( x ) d ~ x ,  

which is a consequence of the properties of U(x)  (the others are 
FG= - C F  and F'C'= -G'F*). Now xogI;'* in the last term in 
(45! is the complex conjugate of F'xo. Thus if /' contained only 
positive energy components, F'xo would vanish and we would have 
reduced r to a factor times C,. But F', as  worked out here, does 
contain negative energy components created in the potential A 
and the method must be slightly modified. 

Before putting F* through the operator we shall add to it 
another operator F"' arising from a function j" (r )  containing only 
negative energy components and so chosen that the resulting f' 
has only porrlrue ones. That  is we want 

S(F,,.*+F..,"') = F,..'*S, (46) 
where the "pos" and "neg" serve as reminders of the sign of the 
energy components contained in the operators. This we can now 
use in the form 

In our one electron problem this substitution replaces r by two 
terms 

The first of these reduces to 

SF,..'=F,.."S-SF..,"'. (47) 

I = (xo*CFpo."Sxo) - (xo'CSFn.."'xo). 

r =  Jg'(x)f,..'(x)d'x. c,., 
as above, for F,,.'xo is now zero, while the second is zero since the 
creation operator F,,."* gives zero when acting on the vacuum 
state as all negative energies are full. This is the central idea of 
the demonstration. 

The problem presented by (46) is this: Given a function fD..(x) 
a t  time 0. to find the amount, J...", of negative energy component 
which must be added in order that the solution of Dirac's equa- 
tion a t  time T will have only positive energy components, fPoa'. 

This is a boundary value problem for which the kernel K,'"' is 
designed. We know the positive energy components initially, f..., 
and the negative ones finally (zero). The positive ones finally are  
therefore (using (19)) 

f p o l ) ( X d  =JK+'"'(2, l)af"..(xl)d% (48) 

where I s =  T, l l = O .  Similarly, the negative ones initially are 

j o e g , , ( X * )  =JK+'."(2, 1)8fP..(X1)d3X, -fp. .(xz),  (49) 

where t2 approaches zero from above, and h = O .  The f w d x d  is 
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subtracted to keep in j...l'(x*) only those waves which return 
from the potential and not those arr iv ing direct ly a t  t2  f rom the 
K + ( 2 ,  1) par t  of K+cA1(2,  11, as I?-0. We could also have wr i t ten 

f.r."(~?)=~'CK+'d1(2. l ) - K + ( 2 ,  1)]8fP..(xl)d3x~. (SO) 

Therefore the one-electron prol,leni, r = f g*(x)fp..'(x)dJx. C, ,  
gives by (48) 

I= C,j'g*(x2)K+'.41(2, I)Of(xl)d'xld3xz, 

as expected in accordance w i t h  the reasoning of the previous sec- 
tions (i.e., (20) w i t h  K+(Al replacing K + ) .  

The proof is  readily extended to the more general expression K, 
(M), which can be analyzed by inrluction. F i rs t  one replaces F,' 
by a relation such as (47) obtaining two terms 
R = ( ~ ~ ' . . . Q ~ ' Q I ' . - ~ C I G I F ~ ~ ~ ~ . . ~ / ~ ' ~ ' . .  . P I P ? .  . . x o )  

- ( x o * .  . .Qt'Qt*. . ~G2CI.FFIy.,"*FI'-- .PtP1...xo). 
In  the first term the order of F,,,o:* and C, is  then interchanged, 
producing an addit ional term Jnl'(x)f,,,.'(x)d3x times an expres- 
sion w i t h  one less electron in in i t ia l  and final state. N e x t  i t  is 
exchanged w i t h  Gz producing an addit ion - f ~ : ' ( ~ ) / , ~ ~ ~ ' ( x ) d ~ x  
times a similar term, etc. F ina l ly  on reaching the Ql* w i t h  which 
it anticommutes i t  can be simply moved over LO juxtaposit ion 
with xa' where it gives zero. T h e  second term is similarly handled 
by moving FI..."' through ant i  commuting I.'.*, etc., until it 
reaches P,. T h e n  it i s  exchanged w i t h  PI t o  yroduce an addi- 
tional simpler term w i t h  a factor F f pl*(x)fl..."(x)d3x o r  
7 f pI*(x2)K+'"'(2, 1~~f,(x,)d3xld5x:from (49), with12=1, = O  (the 
extra fl(x?) i n  (49) gives kero as i t  is orthogonal to p,(x2)). Th is  
describes in the expected manner the annihi lat ion of the pair, 
electron fl, positron pa.  T h e  F..."' is moved in [his way SUCCCF- 
sively through the P's u n t i l  i t  gives zero when acting on X O .  Thus 
R is reduced, wi th  the expected factors (and w i t h  alternating signs 
as required b y  the exclusion principle), to simpler terms containing 
two less operators which may i n  turn be further reduced b y  using 
FI* in a similar manner, etc. Af ter  a l l  the F' are used the Q"s 
can be reduced in a similar manner. They are moved through the 
S i n  the opposite direct ion in such a manner as t o  produce a purely 
negative energy operator a t  t ime 0, using relations analogous t o  
(46) t o  (4Y). After  a l l  this is  done we are left  simply w i t h  the ex- 
pected factor times C. (assuming the net charge is the same in 

I n  this way we have writ ten the solution t o  the general problem 
of the mot ion of electrons in given potentials. T h e  factor C. i s  
obtained b y  nornialization. However for photon fields it is desir- 
able to have an explicit form for C .  in terms of the potentials. 
This is given b y  (30) and (29) and i t  i s  readily demonstrated that 
this also is  correct according t o  second quantization. 

a1 and final state.) 

b. Analysis of the Vacuum Problem 
We shall calculate C. from second quantization b y  induction 

considering a series of problems each containing a potential dis- 
tr ibution more nearly l ike the one we wish. Suppose we know C. 
for a problem l ike the one we want and having the same potentials 
for time f between some lo  and T,  b u t  having potential zero for 
times f rom 0 t o  lo. c a l l  this C&), the corresponding Hami l ton ian 
Hto and the sum of contributions for al l  single loops, L(1d. Then 
for l o =  T we have zero potential a t  a11 times, no pairs can be 
produced, L ( T ) - 0  and C v ( T ) = l ,  For f o = O  we have the com- 
plete problem, so that  C,(O) is what is  defined as C, in (38). 
Generally we have, 

since Hto is identical to the constant vacuum Hami l ton ian H T  for 
I < l o  and x o  is an eigenfunction of H T  w i t h  an eigenvalue (energy 
of vacuum) which we can take as zero. 
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T h e  value of C u ( l o - ~ l o )  arises from the Hami l ton ian H i o - ~ i .  
which dimers from N t o  just hy having an extra potential during 
the short interval Ale. Hence, to first order in Alo, we have 

we therefore obtain for the derivative of C, the expression 

(si) 

which will be reduced t o  a simple factor times CO(lo) h y  methods 
analogous t o  those used in reducing R. T h e  operator 8 can be 
imagined to be spl i t  i n t o  two pieces Q,,,,. and Qn,e operating on 
positive and negative energy states respectively. T h e  QDos on xo  
gives zero so we are left  w i t h  two terms in the current density, 
Q.,,.*PAC,,, a n d  Q,.,'OAY,,,. T h e  latter +..,*BAQ.,, is just 
the expectation value of O A  taken over al l  negative energy states 
(minus QnLppAQnes* which gives zero acting on X O ) .  T h i s  is the 
effect of the vacuum expectation current o f  the electrons i n  the 
sea which we should have subtracted from our original H a m i l -  
tonian i n  the customary way. 

T h e  remaining term P,..*pAV.,., or i ts  equivalent q,,,,*BAQ 
can he considered as q*(x)fDo.(x) where f,,.(x) is wr i t ten for the 
positive energy component of the operator BA*(x). Now this 
operator, q*(x)fDe8(x), or more precisely just the Q*(x )  p a r t  of it, 
can be pushed through the exp(-iJioTHdl) i n  a manner exactly 
analogous t o  (47) when f is  a function. ( A n  alternative derivation 
results from the consideration that the operator Q(x, I )  which 
satisfies the Di rac equation also satisfies the linear integral equi -  
lions which are equivalent to it.) That is, (51) can be wr i t ten 
b y  (48), (SO), 

-K+(Z,  I ) 1 A ( 1 ) . l r ( x ~ ) d S x ~ d J x z x ~ ) ,  

where i n  the firsr term l r=T,  and in the second l r c l o = l l .  T h e  
( A )  in K+cAJ refers to that  p a r t  of the potential A after lo.  T h e  
first term vanishes for  i t  involves ( f rom the K,'*'(Z, 1)) only 
positive energy components of Q', which give zero operating i n t o  
XO'. I n  the second term only negntive components of Y'(x9) 
appear. If, then +*(xz) is interchanged in order w i t h  Q(xl) i t  wi l l  
give zero operating on X O ,  and only  the term, 

-dC.(h)/dfo- + i ~ S p [ ( K + ' A J ( l ,  1) 
-K+(l ,  l ) ) A ( l ) Y ' ~ x l ~  CL(~O) ,  (52) 

wi l l  remain, f rom the usual comniutat ion relation of 9' and 8.  
T h e  factor of C&) in ( 5 2 )  times -A10 is, according to (29) 

(reference lo) ,  jus t  L(lo-410) -L(lp) since this difference arises 
from the extra potential A A =  A during the short t ime interval 

Hence -dC.(lo)/dlo= +(dL(f,)/dl,)C,(lo) so that  integration 
from t o =  T t o  to=O establishes (30). 

Start ing f rom the theory of the electromagnetic field in second 
quantization, a deduction of the equations for quantum electro- 
dynamics which appear in the succeeding paper m a y  be worked 
out  using very similar principles. T h e  Pauli-Weisskopf theory of 
the Klein-Gordon equation can apparently be analyzed in essen- 
t ial ly the same way as that  used here for Dirac electrons. 
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In this paper two things are done. (1) It is shown that a con- 
Fiderable simplification can be attained in writing down matrix 
elements for complex processes i n  electrodynamics. Further, a 
1)hysical point of view is available which permits them to he 
written down directly for any specific problem. Being simply a 
restatement of conventional electrodynamics. however, the matrix 
clements diverge for complex processes. (2)  Electrodynamics is 
modified by altering the interaction of electrons a t  short distances, 
.\I1 matrix elements are now finite, with the exception of those 
relating to problems of vacuum polarization. The latter are 
evaluated in a manner suggested hy Pauli and Bethe, which gives 
finite results for these matrices also. The only effects sensitive to 
Ihe modification are changes in mass and charge of the electrons. 
Such changes could not he directly observed. Phenomena directly 
observalde, are insensitive to the details of the modification used 
(except at extreme energies). For such phenomena, a limit can 
be laken as the range of the modification goes to zero. The results 
then agree wi th  those of Schwinger. A complete, unamhiguous, 

and presumably consistent, method is therefore available for the 
calculation of all processes involving electrons and photons. 

The simplification in writing the expressions results from an 
emphasis on the over-all space-time view resulting from a study 
of the solution of the equations of electrodynamics. The relation 
of this to the more conventional Hamiltonian point of view is 
discussed. It would he very ditlicult to make the modification 
which is proposed if one insisted on having the equations in 
Hamiltonian form. 

The methods apply as well to charges obeying the Klein-Gordon 
equation, and to the various meson theories of nuclear forces. 
Illustrative examples are given. Although a modification like that 
used in electrodynamics can make all matrices finite for all of the 
meson theories, for some of the theories it is no longer true that 
all directly observable phenomena are insensitive to the details of 
the modification used. 

The actual evaluation of integrals appearing in the matrix 
elements may be facilitated, in the simpler cases, by methods 
described in the appendix. 

HIS paper should be considered as a direct con- 

motion of electrons, neglecting interaction, was ana- 
lyzed, by dealing directly with the soluliori of the 
Hamiltonian differential equations. Here the same tech- 
nique is applied to include interactions and in that way 
to express in simple terms the solution of problems in 
quantum electrodynamics. 

For most practical calculations in quantum electro- 
dynamics the solution is ordinarily expressed in terms 
of a matrix element. The matrix is worked out as an 
expansion in powers of ez/hc,  the successive terms cor- 
responding to the inclusion of an increasing number of 
virtual quanta. I t  appears that a considerable simplifi- 
cation can be achieved in writing down these matrix 
elements for complex processes. Furthermore, each term 
in the expansion can be written down and understood 
directly from a physical point of view, similar to the 
space-time view in I. I t  is the purpose of this paper to 
describe how this may be done. We shall also discuss 
methods of handling the divergent integrals which 
appear in these matrix elements. 

The simplification in the formulae results mainly from 
the fact that previous methods unnecessarily separated 
into individual terms processes that were closely related 
physically. For example, in the exchange of a quantum 
between two electrons there were two terms depending 
on which electron emitted and which absorbed the 
quantum. Yet, in the virtual states considered, timing 
relations are not significant. Olny the order of operators 
in the matrix must be maintained. We have seen (I), 
that in addition, processes in which virtual pairs are 
produced can be combined with others in which only 

I R. P. Feynman, Phys. Rev. 76, 749 (1949), hereafter called I. 

T .  tinuation . of a preceding onel ( I )  in which the 
positive energy electrons are involved. Further, the 
effects of longitudinal and transverse waves can be 
combined together. The separations previously made 
were on an unrelativistic basis (reflected in the circum- 
stance that apparently momentum but not energy is 
conserved in intermediate states). When the terms are 
combined and simplified, the relativistic invariance of 
the result is self-evident. 

We begin by discussing the solution in space and time 
of the Schrodinger equation for particles interacting 
instantaneously. The results are immediately general- 
izable to delayed interactions of relativistic electrons 
and we represent in that way the laws of quantum 
electrodynamics. We can then see how the matrix ele- 
ment for any process can be written down directly. In 
particular, the self-energy expression is written down. 

So far, nothing has been done other than a restate- 
ment of conventional electrodynamics in other terms. 
Therefore, the self-energy diverges. A modification* in 
interaction between charges is next made, and i t  is 
shown that the self-energy is made convergent and 
corresponds to a correction to the electron mass. After 
the mass correction is made, other real processes are 
finite and insensitive to the “width” of the cut-off in 
the interaction.’ 

Unfortunately, the modification proposed is not com- 
pletely satisfactory theoretically (it leads to some diffi- 
culties of conservation of energy). It does, however, 
seem consistent and satisfactory to define the matrix 

3 For a discussion of this modification in classical physics see 
R. P. Feynman, Phys. Rev. 74 939 (1948), hereafter referred 
to as A. 

8 A brief summar of the methods and results will be found in 
R. P. Feynman, Plys. Rev. 74, 1430 (1948), hereafter referred 
to as B. 
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element for all real processes as the limit of that  com- 
puted here as the cut-off width goes to zero. A similar 
technique suggested by Pauli and by Bethe can be 
applied to problems of vacuum polarization (resulting 
in a renormalization of charge) but  again a strict 
physical basis for the rules of convergence is not known. 

After mass and charge ren[irmalization, the limit of 
zero cut-off width can be taken for all real processes. 
The results are  then equivalent to those of Schwinger' 
who does not make explicit use of the convergence fac- 
tors. The method of Schwinger is to identify the terms 
corresponding to corrections in mass and charge and,  
previous to their evaluation, to remove them from the 
expressions for real processes. This has the advantage 
of showing that  the results can be strictly independent 
of particular cut-off methods. On the other hand, many 
of the properties of the integrals are analyzed using 
formal properties of invariant propagation functious. 
But one of the properties is that  the integrals are infinite 
and it is not clear to what extent this invalidates the 
demonstrations. A practical advantage of the present 
method is that  ambiguities can be more easily resolved; 
simply by direct calculation of the otherwise divergent 
integrals. Nevertheless, i t  is not a t  all clear that  the 
convergence factors do not upset the physical con- 
sistency of the theory. Although in the limit the two 
methods agree, neither method appears to be thoroughly 
satisfactory theoretically. Nevertheless, it does appear 
that  we now have available a complete and definite 
method for the calculation of physical processes to any 
order in quantum electrodynamics. 

Since we can write down the solution to any physical 
problem, we have a complete theory which could stand 
by itself. It will be theoretically incomplete, Iiowever, 
in two respects. First, although each term of increasing 
order in @/hc can be written ~ I o ~ v i i  it would be desirable 
to see some way of expressing things i n  finite form t o  
all orders in e?/ l tc  a t  once. Second, although it nil1 be 
physically evident that  the results obtained are equiva- 
lent to those obtained by conventional electrodynamics 
the mathematical proof of this is not included. Both of 
these limitations will be removed in a subsequent paper 
(see also Dyson'). 

Briefly the genesis of this theory was this. The  con- 
ventional electrodynamics was expressed in the 1.a- 
grangian form of quantum mechanics described in the 
Reviews of Modern Physics? The motion of the field 
oscillators could be integrated out (as described in Sec- 
tion 13 of that paper), the result being an expression of 
the  delayed interaction of the particles. Next the niodi- 
fication of the delta-function interaction could l ie made 
directly from the analogy to the classical case.? This 

' J ,  Schwinger, Phys. Rev. 74, 1439 (1948), Phys. Rev. 75, 651 
(1919). A proof of this equivalence is given by F. J. Dysoii, Phys. 
Rev. 75, 456 (1949). 

R.  P. Feynman, Rev. Mod Phys. 20, 367 (1948). The applica- 
tion to electrodynaniics is described in detail  by H. J .  Groeimrold, 
Koninklijke Nederlandsche Akademia van Weteschappen. Pro- 
ceedings Vol. LII, 3 (226) 1919. 

was still not complete because the Lagrangian method 
had been worked out  in detail only for particles obeying 
the non-relativistic Schrodinger equation. It was then 
modified in accordance with the requirements of the 
Dirac equation and the phenomenon of pair creation. 
This was made easier by the reinterpretation of the 
theory of holes (I). 1~'in:iIly tor practical calculations tlic 
expressions were develolml in a ixiwer serics i n  c ' /hc .  I (  
was apparent that  each term i n  the series 1i:ld :L s i n ~ p k  
physical interpretation. Since the result was easier to 
understand than the derivation, it was thought best to 
publish the results first in this paper. Considerable time 
has been spent to make these first two papers as coni- 
plete and as physically plausible as possible without 
relying on the Lagrangian method, because it is not 
generally familiar. I t  is realized that  such a description 
cannot carry the conviction of truth \vhicli \vould ac- 
compaiiy the derivation. On the other liantl, i n  the 
interest of keeping siniple things siiiilile the d v r i v ~ i t i o i i  
will appear in a separate paper. 

T h e  p s s i b l e  aplilicatirin of these nicthotls to the 
various nieson theories is discussed briefly. The  fornitr- 
las cwresponding to a charge particle of zero spin 
moving in accordance with the Klein Gordon equation 
are  also given. In  an  Appendix a method is given for 
calculating the integrals appearing in the matrix ele- 
ments for the simpler processes. 

The point of view which is taken here of the inter- 
action of charges differs from the more usual point of 
view of field theory. Furthermore, the familiar Haniil- 
tonian form of quantum mechanics niust be compared 
to the over-all space-time view used here. The  first 
section is, therefore, devoted to a discussion of the 
relations nf these viewl~riiiits. 

1.  COMPARISON WITH THE HAMILTONIAN 
METHOD 

Electrodynamics can be looked upon i n  two equiva- 
lent and complementary nays.  One is as the description 
of the behavior of a field (Maxwell's equations). The  
other is as  a description of a direct interaction a t  a 
distance (albeit delayed in time) between charges (the 
solutions of Lienard and Wiechert). From the latter 
point of view light is considered as  an  interaction of the 
charges i n  the source with those in the absorber. This is 
an  impractical point of view because many kinds of 
sources produce the same kind of effects. The field point 
of view separates these aspects into two simpler prob- 
lems, production of light, and absorption of light. On 
the other hand, the field point of view is less practical 
when dealing with close collisions of particles (or their 
action on themselves). For liere the source and absorber 
are not readily distinguishable, there is an intimate 
exchange of quanta.  The  fields are so closely determined 
by the motions of the particles that  it is just as  well not 
to separate the question into two problems but to con- 
sider the process as  a direct interaction. Roughly, the 
field point of view is most practical for problems involv- 
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ing real quanta,  while the interaction view is best for 
the discussion of the virtual quanta  involved. We shall 
eniph:isize the intcractioii viewpoint in this paper, first 
because it is less famil iu  and therefore requires innre 
discussion, and second Ixcause the important aspect in 
the problems with which we shall deal is tlie effect of 
virtual quanta.  

The Hamiltonian method is not well xdaptcd to  
represent the direct action a t  a distance between charges 
because that action is delayed. The Hamiltonian tnetliod 
represents the future as developing out of the present. 
If the values of a complete set of quantities arc known 
now, their values can be computed a t  the next instant 
in time. If particles interact through a delayed inter- 
action, however, one caiinot predict the future by  
simply knowing the present motion of the particles. 
One would also have to  know what the motions of the 
particles were in the p i s t  in view of the interaction this 
may have on the future motions. This is done in tlie 
Mamiltoni;in electrodynamics, of course, by requiring 
that  one specify besides tlie present motinti uf the 
particles, the values of a host of new vnriables (the 
coordinates of the field oscillators) to keep track of that  
aspcct of thc past motions of the particles which de- 
termines their future behavior. The  use of the Haniil- 
tonian forces one to choose the field viewpoint rather 
than the interaction viewpoint. 

In many problems, for example, the close collisions 
of particles, we are not interested in the precise tem- 
poral sequence of events. I t  is not of intercst to lie alile 
to say how the situation would look a t  each instant of 
time during a collision and how it progresses from in- 
stant to instant. Such ideas are only useful for events 
taking a long time and for which we can readily oljtain 
information during the intervening period. For collisions 
i t  is much easier to treat the process a s  a wholc.6 The  
Mrlller interaction matrix for the the collision of two elec- 
trons is not essentially more complicated than (lie non- 
relativistic Rutherford formula, yet  the inathematical 
machinery used to obtain the former from quantum 
electrodynamics is vastly more complicated than 
Schrotlinger's equation with the e2//r12 intcractioii 
needed to obtain the latter. l h c  difference is only that  
in the latter the action is instantaneous so that  the 
Hamiltonian method requires no extra vari;ihles, while 
in the former relativistic case it is delayed antl thc 
Hamiltonian method is very cumbersome. 

We shall be discussing the solutions of equations 
rather than the time differenti:d cquations from which 
they come. We shall discover that  the solutions, because 
of the over-all space-time view that  they permit, are as  
easy to understand when interactions are  delayed as  
when they are instantaneous. 

As a further point, relativistic invariance will be self- 
evident. The  II~iniiltonian form of the equations dc- 
velops the future from the instantaneous prcscnt. Uut 

'This is the viewpoint of the theory of the S matrix of lkisen- 
berg. 

~- 

for different observers in relative motion the instan- 
taneous present is different, antl corresponds to a 
different 3-tliniensional cut  of space-time. Thus  the 
tcmpornl analyses of differenL observers is different antl 
their Hamiltonian equations iire developing the process 
in  different ways. These differences are irrelevant, liow- 
ever, for the solution is the same in any space time 
frame. By forsaking the Hamiltonian method, the 
wedding of relativity and quantum mechanics can he 
accomplished most naturally. 

We illustrate these points in the nest  section by  
studying the solution of Schrotlinger's equation for non- 
relativistic particles interacting by i i n  instantaneous 
Coulomb potential (Eq. 2). When the solution is motli- 
fied to include the effects of delay in the interaction 
antl the relativistic properties of the electrons we ol)tain 
an  expression of the laws of quantum electrodynanics 
(Eq. '4). 

2. THE INTERACTION BETWEEN CHARGES 

We study by tlie same methods a s  in I ,  the interaction 
of two particles using the smie notation as I. We star t  
by considering the non-relativistic case described by the 
Schrodinger equation (I, Eq. 1). The wave function a t  
a given time is a function $(xo, XI,, I )  of the coordinates 
x,and xb of each particle. Thus call K(xa, XI,, I ;  x,, ' ,  xa', I ' )  
the aniplitude that  particle u at x,,' at time 1' will get  
to x ,  a t  I while particle 6 a t  xb) a t  1' gets t o  xb a t  1 .  If the 
particles are free and d o  not interact this is 
K(x , ,  XI,, 1 ;  X" ' ,  x i ,  ")=Ko.(x,, I ;  x:, 1')K0*(Xb, 1 ;  x ; ,  I ' )  

where KO. is the KO function for particle a considered 
as  free. In /his case we can obviously define a quantity 
like K, hut  for which the time f need not be the same 
for particles u and 6 (likewise for t ' ) ;  e.g., 

KO(3, 4; 1, 2)=Koe(3, l ) K O b ( ' 4 ,  2 )  (1) 
can be thought of as  the amplitude that particle a goes 
from x I  a t  I I  to xg a t  13 and that  particle b goes from x2  

a t  IZ to x4 a t  14 .  

When the particles do interact, one can only define 
the quantity K ( 3 ,  4; 1, 2 )  precisely if the interaction 
vanishes between I ,  and t 2  and also between L 3  and l a .  
In  a real physical system such is not the rase. There is  
such an  enormous advantage, however, to the concept 
that  we shall continue to use it, imagining that  we can 
neglect the effect of interactions hetween I I  and 12 antl 
between t 3  and l a .  For practical problems this means 
choosing such long time intervals I?-/, and 14--12 that  
the extra interactions near the end points have small 
relative effects. As an  example, in a scattering problem 
it may well be that  the particles are so well separated 
initially and finally that  tlie interaction a t  these times 
is negligible. Again energy values can be defined by the 
average rate of change of phase over such long time 
intervals that  errors initially and finally can be neg- 
lected. Inasmuch as  any physical problem can be defined 
in terms of scattering processes we do not lose much in 
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V I R T U A L  

ELECTRONS 

FIG. 1. l h e  fundameii tal i i i t r r a c t i o n  Eq. (11 L c h n i i g e  of one 
q u a n t u m  l w t i \ e e n  two electrotis. 

a general theoretical sense by  this approximation. If it 
is not made it is not easy to study interacting particles 
relativistically, for there is nothing significant in choos- 
ing t i = / 3  if xt#x3,  as absolute simultaneity of events 
at a distance cannot be defined invariantly. I t  is essen- 
tially to avoid this approximation that  the coniplicated 
structure of tlie older quantum electrotlynainics has 
bcen huilt up. \!'c wish to describe electrodynamics as 
a delayed interaction between particles. If we can make 
the approximation of assuiniiig a nieaning to K(3 ,4 ;  1, 2) 
the results of tliis interaction can l i e  expressed very 
simply. 

To see Iiow this may be done, imagine first thnt the 
interaction is simply that given by a ~ o u l o i i i l ~  potenti;rl 
C?/Y where Y is tlie distance bet\\cen the particles. If this 
be turned on only for a very short time A/, a t  time LO, 
the first order correction to K(3 ,4 ;  1, 2 )  can be worked 
out exactly as was Eq. (9) of I by an obvious general- 
ization to two particles: 

,. " 
l i ( l ) ( 3 , 1 ;  1 , 2 ) =  - i r ? J  J lin,(3, 5)k0tj(4, fijr5,-l 

XfYU"(5, 1 )K"!,(6,  2jd3nsd3xcA/o, 

where / 5 = / 6 = / o .  If tiow the potential were 011 a t  all 
times (so that strictly K is not tlefined unless / , = / 3  and 
t l=  / 2 ) ,  the first-order effect is ohtained by integrating 
on to ,  which we can write as  an  integral over both ( 5  

and /s if we include a delta-function 6( /5 - /c )  to insure 
contribution only when / 5 = / 6 .  Hence, the first-order 
effect of interaction is (calling / 5 - / 6 = / 5 6 ) :  

X 6(f~c)k-u~(5, l)Kur.(h, 2 ) d r j d r c ,  ( 2 )  

where d.i = d"xd/ .  
IVe know, Iioir-ever, in classical electrodynamics, that  

the Coulomb potential does not act instantaneously, 
but is delayed by a time r56, taking the speed of light 
as unity. This suggests simply replacing rs6- - '6( /5C)  iti 
(2) by something like r 5 6 - ' 6 ( t 5 6 - r 5 6 )  to represent the 
delay in the effect of b on a. 

This turns out to he not quite riglit,' f o r  \v l ien this 
interaction is represented by ~ h o t o n s  tliry inirst he of 
only positive energy, while the Fourier transfortn of 
6 ( / 5 C - Y 5 6 )  contains frequencies of ho[h sijitis. I t  shoultl 
instead be replaced by 6 + ( / 5 6 - y 5 6 )  where 

This is to he averaged w i t h  Y : > ~ - ' ~ + ( - / ~ ~ - Y ~ ~ I  wliicli 
arises \\lien / j < / s  : t i i d  corresponds to u eini t t i t i~  the 
quantum wliich b receives. Since 

(Zr)-'(6+(/- r ) +  6, (- f - r ) )  = r?) ,  

this means r > , ~ I 6 ( / ~ , ; )  is replacetl by 6, is,,?) u here 
s. ? -  ( ! " 
i~ - 51, -r>G- is the  square o[ tlic re1ativistic;illy iti- 

variant interval b e t w c n  points 5 a n t i  6. Siiicc i n  
classical elrctrutlyn~iniics t h e w  is also an interaction 
through the vector potenti,il, the crimlilc\c interaction 
(see A ,  Eq. (1)) should Ix ( l - ( v a . v e ) 6 + ( s j c ~ j ,  or in  the 
relativistic caw, 

( 1 - w a '  ( Y I ~ ) ~ + ( S ~ C * )  = P J 3 b y u p * i b p 6 + ( s s G ' )  

Hence we have for electrons obeying the Dirnc erlu:ttioti, 

K ( " ( 3 ,  4;  1, 2 ) =  -ic' i?,,(3, j jf i+,>(4,  f i ~ - y ~ ~ - y ! , ~  JJ 
X 6 + ( ~ ~ ~ ~ ) 1 i . , , ( j ,  l)k+,,(fi, 2 h l T j d T 6 ,  !-li 

where yap and ytjr are the Ilirac matrices npplyiiir to 
the spinor corresponding to  p:irticles ( I  and  6 ,  resl)('c- 
tively (the factor fi&, being ahsorlicd in tlie tlelinitiun, 
I Eq. ( l i ) ,  of K+). 

This is our fundaniental equation for electrod!,ii;iniii-s. 
I t  dcscrilm the effect of exchange of one qii;iiittini 
(therefure first oriler i n  r') I)etn.eon t w o  electr<iii\. I t  
will serve as a ~irototype cii:il)ling us to write tlo\\-n t l i c  
rorree~ioiitliiig quaatities involving the  exchange of tux) 
or more quanta 1)eta.eeii tuw electruns or the interaction 
of a n  electrnn wi th  itself. I t  is a coiisequenrr of con-  
ventional electrotlynamics. I<cl;itivistic inv:irintice is 
clear. Since one s u n ~ s  over p it contains t h e  cffccts I I ~  

both longitutlinal a n d  tr;uisverse a.avcs i n  ii relati- 
vistically symmctrical ~ i y ,  

11.e shal l  now interpret Eq. (4) i l l  ii nianner whicl~ 
will permit us to write tloivn the h i g h  order terms. I t  
ciiti be understood (see Fig. 1) as sayinji that  the ainiili- 
tude for ' l i t ' '  to go froin 1 to 3 nntl  "b" to go from 2 to 4 
is altered to tirst order liecause they can exc1i:tnge a 
quantum. Thus,  "u"  can go to 5 (nmplitude K+(5,  1)) 

7 I t ,  nntl n l i k e  t r r m  lur the eiicri o l  n o n  IJ, Icncls to n theory 
u hirli, i n  the classical l i m i t ,  cxh i l t i l s  iuternrtion through hall-  
a ~ I v a n c c d  and hal l - rctsrdccl  po tcn l i n l s .  Classicnlly, t h i s  i s  er lui -  
valent to purely retarded d i c c i s  w i t h i n  a cIosc(I Imx lroin nli irh 
no light escalics ( e . ~ . ,  5ee A, or J. A. \Vlieeler and I<. 1'. Feynn inn ,  
R e v .  hlod. Phys. 17, I j i  [ I N S ) ) .  Analogous theorems ?xist i n  
quantum mechnnics but i t  \ \uu ld  leatl u s  too fnr astray 10 discuss 
them now 
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enlit a quantum (longitudinal, transverse, or scalar 
7“”) and then proceed to  3 (K+(3, 5)). Meantime “b” 
goes to 6 (K+(6 ,  2)), absorbs the quantum (71 ,~)  and 
proceeds to 4 (K+(4, 6)). The quantum meanwhile pro- 
ceecls from 5 to 6, which it does with amplitude &,(ssQ‘). 
\Ve must sum over all the possihle quantum polariza- 
tions p and positions and times of emission 5, and of 
absorption 6. Actually if t 6 > / 6  it would be better to 
say that  “ J ”  absorbs and “b” emits bu t  no attention 
need he paid to these matters, as all such alternatives 
are automatically contained in (4). 

The correct terms of higher order in e’ or involving 
larger numbers of electrons (interacting with themselves 
or in pairs) can he written clown by  the same kind of 
reasoning. They will be illustrated by  examples as we 
proceed. I n  a succeeding paper they will all be deduced 
irom conventional quantum electrodynamics. 

Calculation, from (4), of the transition element be- 
tween positive energy free electron states gives the 
bloller scattering of two electrons, when account is 
taken of the Pauli principle. 

’The exclusion principle for interacting charges is 
handled in exactly the same way a s  for non-interacting 
charges ( I ) .  For example, for two charges i t  requires 
only that  one calculate K ( 3 ,  4;  1, 2)--R(4, 3;  1, 2) to 
get the net amplitude for arrival of charges a t  3 and 4. 
I t  is disregarded in intermediate states. The  inter- 
ference effects for scattering of electrons by positrons 
discussed by Bhabha will be seen to result directly in 
this formulation. The  formulcs are interpreted to apply 
to positrons in the manner discussed in I. 

As our primary concern will be for processes in which 
the quanta are virtual we shall not include here the 
detailed analysis of processes involving real quanta in 
initial or final state,  and shall content ourselves by only 
stating the rules applying to them.s The result of the 
analysis is, as  expected, that  they can be included by 
the same line of reasoning as  is used in discussing the 
virtual processes, provided the quantities are normalized 
in the usual manner to represent single quanta.  For 
example, the amplitude that  an electron in going from 1 
to 2 absorbs a quantum whose vector potential, suitably 
normalized, is c, exp(-ik.x)=C,(r)  is just the expres- 
sion (I, Eq. (13)) for scattering in n potential with 
A (3) replaced by  C (3). Each quantum interacts only 

‘Although in the expressions stemming from (4) the quanta are 
virtual, this is not actually a theoretical limitation. One way to 
deduce the correct rules for real quanta from (4) is to note that 
in a closed system all quanta can be considered as virtual (i,e., 
they have a known source and are eventually absorbed) SO that 
in such a system the present description is complete and equiva- 
lent to the conventional one. I n  particular, the relation of the 
Einstein A and B coelfcients can be deduced. A more practical 
direct deduction of the ex ressions for real quanta will be given 
in the subsequent paper. f t  might be noted that (4) can be re- 
written as describing the action on a,  K i 1 ) ( 3 ,  I )=iJK+(3,  5 )  
XA(S)K+(S,  l ) d n  of the potential A (S)=c*JK+(4,  6)6,(ssa2)y,, 
XK+(6, 2)drs arising from Maxwell’: equations - 0’.4,=4nj, 
from a “current” j ,(6)=e2K (4 6)y K (6 2) produced by par- 
ticle b in going from 2 to 4;This i: d r tde  of the fact that 6+ 
satisfies - 0 2 ’ 6 + ( ~ 2 1 ‘ )  =4*6(2, 1). ( 5 )  

once (either in emission or in absorption), terms like 
(I, Eq .  (14)) occur only when there is more than one 
quantum involved. The  Bose statistics of the quanta 
can, in all cases, be disregarded in intermediate states. 
The only cffect of the statistics is to change the weight 
of initial or final states. If there are among quanta,  in 
the initial state,  some I I  which are identical then the 
weight of the state is (l/u!) of what it would be if these 
quanta  mere considered as different (similarly for the 
final state). 

3. THE SELF-ENERGY PROBLEM 

Having a term representing the mutual interaction 
of a pair of charges, we must include similar terms to 
represent the interaction of a charge with itself. For 
under some circumstances what appears to be two dis- 
tinct electrons may, according to I, be viewed also as 
a single electron (namely in case one electron was 
created in a pair with a positron destined to  annihilate 
the other electron). Thus  to the interaction between 
such electrons must correspond the possibility of the 
action of a n  electron on itself.9 

This interaction is the heart of the self energy prob- 
lem. Consider t o  first order in ez the action of an electron 
on itself in an otherwise force free region. The amplitude 
K ( 2 ,  1) for a single particle to get from 1 to 2 differs 
from Kt(2, 1) to first order in 8 by a term 

1<‘”(2, I ) =  - - j e t  JJK,(2,4)7,K+(4,3)r,  

XK+(3, I ) d r d r d ,  (@). (6) 

It arises because the electron instead of going from 1 
directly to 2, may go (Fig. 2) first to 3, (Kt(3, l ) ) ,  emit 
a quantum (yo), proceed to  4, (K,(4, 3)),  absorb i t  
(ye), and finally arrive at  2 (K+(2,4)) .  The  quantum 
must go from 3 to 4 (&+(sd)). 

This is related to the self-energy of a free electron in 
the follou ing manner. Suppose initially, time ti, we have 
an electron in state /(l) which we imagine to be a posi- 
tive energy solution of Dirac’s equation for a free par- 
ticle. After a long time / . . - L I  the perturbation will alter 

/? ~+12,4) 

FIG. 2. Interactiun of an elec- 
tron with itself, Eq. (6). 

These considerations make it appear unlikely that the con- 
tention of J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 
17, 157 (194S), that electrons do not act on themselves, will be 8 
successful concept in quantum electrodynamics. 
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the wave function, which can then be looked upon as  
a superposition of free particle solutions (actually it 
only contains /). The amplitude that g(2) is contained 
is calculatetl as i n  (I, Eq. (21)). The diagonal element 
(g=/) is therefore 

J J , i ( 2 ) p ~ ~ 1 1 ( 2 ,  i ) ~ j ( i ) r l w 3 x ? .  ( 7 )  

The time interval T=/.-ll (antl thespatial  volume V 
over which one integrates) must be taken very large, 
for the expressions are only approximate (analogous to 
the situation for two interacting c l ~ a r g e s ) . ~ ~  This is 
because, for example, we are dealing incorrectly with 
quanta emitted just before / Z  which would normally be 
reabsorbed at  times after I?. 

If K"'(2,  1)  from (6) is actually substituted into (7) 
the surface integrals can be performed as w a s  clone in 
obtaining I,  Kq. (22) resulting in  

- i C 7 s  S f ( 4 )  YvK+(4, 3 )  Ypf(3)6+( S d d T 3 d T 1 .  (8) 

Putting for f(1) the plane wave it  exp(- ip ,xI)  where 
p r  is the energy ( p 4 )  and momentum of the electron 
(p'=m?), and TL is a constant 4-index symbol, (8) 
becomes 

Xexp(ip.  (.rl-xa))6 , i ~ ~ ; ? ! d ~ ~ d ~ ~ ,  

the integrals extending over the volume V and time 
interval T .  Since K+(4, 3 )  depends only on the difference 
of the coordinates of 4 and 3 ,  xr:13p, the integral on 4 
gives a result (except near the surfaces of the region) 
independent of 3.  When integrated on 3 ,  therefore, the 
result is of order VT.  The effect is proportional to V ,  
for the wave functions have been normalized to unit 

MOMENTUM k, 
FACTOR (p-K-m)- '  FACTOR kb2 

MOMENTUM p-k, 

INTERACTION ,% 

/ 
FIG. 3. Interaction of an electron with itself. 

Momentum space, Eq. (11). _____ 
'0 This is discussed in reference 5 in which it is pointed out that 

the concept of a wave function loses accuracy if there arc delayed 
self-action's. 

volume. If normalized to volutne V ,  the rcsult \wuld 
simply he proportional to T .  This is expected, for il the 
effect were equivalent to a change in energy A& the 
amplitude for a r r iva l  i i i  / a t  I? is altered by a factor 
cxp(-iAE(/!-/,)), or to lirst order by the difference 
- i ( A E ) T .  Hence, \ye have 

A.E= c!J(tiy,K, (4,3)y,u) eup(ip.r13)6, (ctx*)drl, (9) 

integrated over i t l l  space-timr dr4.  This expression will 
he simplified prcwntly. In  interpreting (9) we have 
tacitly assumed that  the wavc functions are normalized 
so that  fu*u)= ( t iyru)= 1.  I'hc rquntion may thcrefore 
be made intleprmlent 01 the  norm:~lization by writing 
the left side RS ( A E ) ( G ~ , I L ) ,  or since (iiyrtcl = (E /m) (? i i { )  
and mAm=EAE,  as Am(i7i i )  where Aiiz is a n  equivalent 
clilnge i n  mass of the electron. In this forin it?v:iriancc 
is ohvious. 

One can likewise ohtniii an expression fur the energy 
shift for an electron in a hydrogen atom. Simply replace 
h'+ in (8 ) ,  by K,"'. the exact kernel for an electron in 
the potential, V-I.ic"ir, of the atom, antl j by a wave 
function (of space antl time) for an  atomic state.  I n  
general the A E  which results is not real. The  imaginary 
part is negative antl i n  exp(-iAE 
ponentially tlccrcnsin:: ninplitude 
because we are asking for the amplitude that  an atom 
initially with no photon i n  the field, will still appear 
after time T wit11 no photon. If the atom is i n  n state 
which can radiate, this amplitude must decay with 
time. The imaginary par t  of AE when c:ilculated does 
indeed give the correct rate of radiation from atomic 
states. It is zero for the ground state and for a frce 
elect ro 11. 

In the lion-relativistic region the expression for AE 
can be worked out as has been done by Bethe.IL In the 
relativistic region (pnints 4 antl 3 as  close together a s  a 
Compton \ r~~ve-length)  the K+(I'] which should appear 
in (8) can be replaced tn  first order in V by K+ plus 
K+"'(2, 1) given in I, Eq. (13). The problem is then 
very similar to the ratlintionless scattering problem 
discussed below. 

4. EXPRESSION I N  MOMENTUM A N D  
ENERGY SPACE 

The evaluation of (9), as well a s  all the other more 
complicated expressions arising in these problems, is 
very much simplified by working in the momentum and 
energy variables, rather than space and time. For this 
we shall need the Fourier Transform of 6+(s2?) which is 

-6+(szI2)=n-lJ exp(-ik..vzl)k-~d'~, (10) 

which can be ohtained from ( . 3 )  and (5) or from I,  
Eq. (32) noting that  1+(2 ,  1) for m2=0 is 6+(~?1?) from 

'1 H.  A. nethc, Phys. Rev. 72, 339 (1947) 
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a. Eq 12 b E q I 3  c Eq 14 F I G .  5. Cotnpton scattering, Cq (15) 

hi. L l<, i : l i : i t i \c  ciirrrctioii to scatterinq, niot i iei i tui i i  s ix Ice.  

the h i t  as 6--to of ( k . k + i s ) - l .  Further d4k means ( e z / T i )  Yv(p2-k-v,l)-~a(pl- k- l l r ) -~y ,k-?rpkK.  (12) 
I, Eq. (34).  The k +  means ( k . k ) - '  or more precisely 

(2a)--?dk,rlkrdk3dk(. If we imagine that  quanta are m r -  

trated in Fig. 4(a), find the matrix: 

s 

( c ? / r i ) J r , ( p -  k-m)--ly, ,k-?d'k,  (11) 

where we have used the expression (I, Eq. (31)) for the 
Fourier transform of K+. This form for the self-energy 
is easier to wurk wi th  than is (9). 

The equation can I x  understood by imagining (Fig. 3 )  
that the electron of momentum p emits (ye) a quantum 
of momentum k ,  and makes its way now with mo- 
mentum p - k  to the next event (factor [ p - k - m ) - l )  
which is to absorb the quantum (another ye). The  
amplituile of propagation of quanta is k-r. (There is a 
factor e ' / r i  for each virtual quantum). One integrates 
over all quanta.  T h e  reason an electron of momentum p 
propag:ctes as  I / ( p - m )  is that this operator is the re- 
ciproc;il of the Dirac equation operator, and we are 
simply solving this equation. Likewise light goes as  
1/R2, for this is the reciprocal D'Alembertian operator 
of the wave equation of light. The  first y r  represents 
the current which generates the vector potential, while 
the second is the velocity operator by which this poten- 
t i a l  is multiplied in the Dirac equation when an external 
lield acts on an t k t r o n .  

Using tlie w i i e  l i n e  of reasoniiig, other problenis may 
he sct iq) directly in monieiittiin space. For example, 
coiisitler the sc;rttering in a potential A=.A,y,, varying 
i i i  space ; ~ n d  time as a exp(-iq,x).  An electron initially 
i n  state of momentum ~ I = P ~ ~ Y ~  will be detlected to 
state p:! wliere p ? = p l + q .  The zero-order answer is 
simply the matrix element of a between states 1 and 2. 
\ \ e  next ask for the first order (in e') radiative correc- 
tion due to virtual radiation of one quantum. There are 
several ways this can happen. First for the case illus- 

turn is reabsorbed (yJ. The quantum propagates from 
emission to absorption (k-?) and we integrate over all 
quanta (d 'k) ,  and sum on polarization p.  When this is 
integrated on k4,  the result can be shown to be exactly 
equal to the expressions (16) and ( 1 7 )  given in B for 
the same process, the various terms coming from resi- 
dues of the poles of the integrand (12). 

Or again if the quantum is both emitted and re- 
absorbed before the scattering takes place one finds 
(Fig. 4 b ) )  

( c ? / r i )  a (PI - W I ) - ~ Y , . ( P ~  - k - nr)-Iy, k-Wk, ( 13) 

or if both emission and absorption occur after the 
scattering, (Fig. 4(c)) 

These terms are discussed in detail below. 
LVe have now achieved our simplification of the form 

of writing matrix elements :irisiiig from virtual proc- 
esses. Processes in which a number of real quanta  is 
given initially a ~ i d  finally oRer no problem (assuming 
correct iiormalization). For example, consider the 
Compton effect (Fig. 5(a) )  in which an electron i n  state 
pl absorbs a quantum of momentum 41, polarization 
vector el* so that its interaction is elr-yr=el, and emits 
a second quantum of momentum -42, polarization e2 
to arrive in final state of momentum p 2 .  The matrix for 

I? First, n e x t ,  rtc., here refer not to the  order in true time but to 
the succession ol events along the trajectory of tlie electron. That 
is, niore precisely, to the order of appearance of the matrices in 
the expressions. 
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this process is e2(P1+qi-nt)-1el. T h e  total matrix for 
the Compton effect is, then, 

ez(Pl+ 41 - ?tt)-lel+ el(P,+ qz- m)-le?, ( 1 5 )  
the second term arising because the emission of e2 may 
also precede the absorption of el (Fig. S(b)). One takes 
matrix elements of this between initial and final electron 
states (p1+q1=p2-q?), to obtain the Klein Xisliina 
foimula. Pair  annihilation with emission of two quanta,  
etc., are given by the same matrix, positron states being 
those with negative time coinpoi~etit of p. Whether 
quanta are absorbed or emitted depends on whether the 
time component of q is positive or negative. 

5. THE CONVERGENCE OF PROCESSES WITH 
VIRTUAL QUANTA 

These expressions are, as has been indicated, no more 
than a re-expression of conventional quantum electro- 
dynamics. As a consequence, many of t h e m  are mean- 
ingless. For example, the self-energy expression (9) or 
(1 1) gives an inlinite result \ v l i e n  evaluated. The  infinity 
arises, apparently, from tlie coincidence of the  &function 
singularities in K,.(4, 3) and 6 + ( ~ . ~ ~ ? ) .  Only a t  this point 
is i t  necessary to make a real departure from conven- 
tional electrodynamics, a departure other than simply 
rewriting expressions in a simpler form. 

lye desire to make a modification of quantum electro- 
dynamics analogous to the modification of classical 
electrodynamics described in a previous article, A. 
There the ~(sI.") appearing in the action of interaction 
was replaced by j ( s I 2 ? )  where f(s) is a function of small 
width and great height. 

The obvious corresponding modification in the quan- 
tum theory is to replace the 6+(s?) appearing the 
quantum tnechnnical interaction by a new function 
j + ( s ? ) .  !Ye can postulate t h a t  if tlie Fourier trails- 
form of the classical f(slZn) is the integral over all k of 
F ( W )  ex!>(- i k ' ~ ~ ? ) d ' k ,  then the Fourier transform of 
j+(s?)  is the same integral taken over only positive ire- 
quencies k ,  for / 2 > / 1  and over only negative ones for 
L s < ~ I  in analogy to tlie relation of 6+(s') to 6(s2). The  
function f (?)=, f (x .x )  can be written* as 

/(x.x)= (2T)-?J-;o J Sil1(h4/Y4l) 
Xcos(K.x)dk4d'K~(k.R!, 

where g ( k . k )  is ka-' times the density of oscillators and 
may be expressed for positive k4 as (A, Eq. (16)) 

g(kz)  = lm ( 6 (  k?)  - 6 (  k' - h2))C( X)dX, 

where &"G(X)dX=l and G involves values of X large 
compared to nt. This simply means that  the amplitude 

'This relation is given incorrectly in A, equation j u s t  pre- 
ceding 16. 

for propagation of quanta of momentum k is 

-F+(k?)=  T - I ~ "  (k2- (k2-X2)-1)G(X)dh, 

rather than k-?. Tha t  is, writingF+(k')= --n-lk-?C(k'), 

- f + ( x I 2 ? ) = ~ - I ~  esl'(--i i l . .Y1?)k~2('(k?)ri(k.  (10 )  

Every integral over an intermediate quantuin which 
previously involved a factor d'k /k?  is now supplied with 
a convergence factor C(k?)  where 

C(k?)  = im - X?(k?- X?)-lG(X)(IX. 

The poles are defined by replacing k? by k?+i6 in tlie 
l imit  6-0. Tha t  is A' m;iy be assumerl to liave an  infini- 
tesimal negative iina::inary part .  

Tlie lunctioti .{+(s,i') may still have a discoiitinuity 
in value on the light coiie. This is of no influence for tlie 
Dirac electron. For a particle satisfying the Klein 
Gordon equation, however, tlie interaction involves 
grailients of the ~ ~ o t e n t i a l  which reinstates tlie 6 func- 
tion if f Iias disconrinuities. Tlie condition that 1 is to 
have no discontiiiuity i t i  value on the light cone imj)lies 
k?C(k') approaclies zero a s  k' approachcs itiiinity. In 
terms of G(X) the condition is 

(1 i )  

ln h?G(h)dh=O. (1x1 

This cotitlilioii will also lie userl i n  discussing tlic coil- 
vergence of vacuuin polariz;ition integrals. 

'l'lie e~pression for  the self-energy matrix is no\v ,. 
(e' /ri)J yu(p- k -  i i i ~ - ' y ~ & - ~ ~ i ' ~ ~ ' ( k ~ ) ,  (19 )  

which, since C(k?)  falls off a t  least as  rapidly as l/k', 
converges. For practical purposes we shall suppose 
hereafter that  C ( k ' )  is simply -X?/(k2-X2) implying 
that some average (with \veight G(X)dh) over v;ilucs of 
X may be taken afterwards. Since ill all processes the 
quantum momentuni will be contained in a t  least one 
extra factor of the form (p- k - m - l  reprc.scntin~ 
propagation of an electron while that quantum is in 
the field, we cat1 expect al l  suclt intcgrals \v i l l i  their 
con~ergence factors to cnnverge and tlint tlie result of 
all sucli Ilrocesses will now be finite and tleiitiite (ex- 
cepting the processes with closed loops, discussecl below, 
in which the diverging integrals are over the momenta 
of the electrons rather than the quanta).  

The integral of (19) with C ( P )  = - X'(k?- X')-I noting 
that p?=wZ!, X>nt and dropping terms of order m / A ,  
is (see Appendis A) 

( e ~ / 2 ~ ) [ ~ m ( l n ( X / n t ) + ~ ) - ~ ( l n ( X / i i z ) + . ~ ~ l ) ] .  (LO) 
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When applied to a state of an electron of momentum # 
satisfying pu=mu, it gives for the change in mass (as 
in B, Eq. (9)) 

Am = m(e?/2r) (3 In(A/m)+$). (21) 

6. RADIATIVE CORRECTIONS TO SCATTERING 

We can now complete the discussion of the radiative 
corrections to scattering. In the integrals we include the 
convergence factor C(k2) ,  so that they converge for 
large k. Integral (12 I is also not convergent because of 
the well-known infra-red catastrophy. For this reason 
we calculate (as discussed in B) the value of the integral 
assuming the photons to have a small mass X,,i,<m<<X. 
The integral (12) becomes 

( e* / r i )  yM(p2-k-m)- lu (pt -  k-m)-I 

x Y”( k?- A , ” i 2 ) - ‘ d 4 K (  k*- XmjL:), 

J 
which when integrated (see Appendix B) gives (e*/2r) 
times 

29 

1 4 8  +- a tanaria a 

1 

tan20 1 
f - ( q a - a q ) 7 + r a ,  (22) 
4m ~11120 

where ( # ) I =  2m sineand we have assumed the matrix to 
operate between states of momentum PI and pA=#l+q 
and have neglected terms of order Xh3,,/m, m / X ,  and 
q2/X2. Here the only dependence on the convergence 
factor is in the term ra, where 

r=ln(X/m)+9/4-2 1n(m/A,”in). (23) 
As we shall see in a moment, the other terms (13), 
(14) give contributions which just cancel the ra term. 
The remaining terms give for small q, 

which shows the change in magnetic moment and the 
Lamb shift as interpreted in more detail in B.I3 

’3Thnt the result given in B in Eq. (19) was in error was re- 
eatedly pointed out to the author, in private communication, 

6y V. F. Weisskopf and J. B. French, as their calculation, com- 
pleted simultaneously with the author’s early in 1948, gave a 
different result. French has finally shown that although the ex. 
pression tor the radiationless scattering B, Eq. (AS) or (24) above 
is correct, i t  was incorrectly joined onto Bethe’s non-relativistic 
result. Hr shows that the relation In2k,.,,.- 1 =InX,,, used by the 
author should have heen 1112k, , , , ,~-  5/6= 1nAndm. This results in 
adding a term -(l /6) to the logarilhm in B, Eq. (19) so that the 
result now agrees with that of J. B. French and V. F. LVeisskopi, 

We must now study the remaining terms (13) and 
(14). The integral on k in (13) can be performed (after 
multiplication by C ( P ) )  since it involves nothing but 
the integral (19) for the self-energy and the result i s  
allowed to operate on the initial state ut ,  (so that 
p l u t = m u l ) .  Hence the factor following a(p,-m)-‘ wilt 
be just Am. But, if one now tries to expand l/(fi1-m) 
= (P~+m)/(#?-m*) one obtains an infinite result, 
since P?=m*. This is, however, just what is expected 
physically. For the quantum can be emitted and ab- 
sorbed at any time previous to the scattering. Such a 
process has the effect of a change in mass of the electron 
in the state 1. It therefore changes the energy by AB 
and the amplitude to first order in A E  by - iAE. l  where 
I is the time it is acting, which is infinite. That is, the 
major effect of this term would he canceled by the effect 
of change of mass Am. 

The situation can be analyzed in the following 
manner. We suppose that the electron approaching the 
scattering potential a has not been free for an infinite 
time, but a t  some time far past suffered a scattering by 
a potential b. If we limit our discussion to the effects 
of Am and of the virtual radiation of one quantum be- 
tween two such scatterings each of the effects will be 
finite, though large, and their difference is determinate. 
The propagation from b to a is represented by a matrix 

a(p’-m)-‘b, (25) 
in which one is to integrate possibly over #’ (depending 
on details of the situation). (If the time is long between 
b and a, the energy is very nearly determined so that 
p” is very nearly m?.) 

We shall compare the effect on the matrix (25) of the 
virtual quanta and of the change of mass Am. The effect 
of a virtual quantum is 

n 

while that of a change of mass can be written 

a(#’- m)-’Aw(#’- m - l b ,  (27) 
and we are interested in the difference (26)-(27). A 
simple and direct method of making this comparison is 
just to evaluate the inlegral on k in (26) and subtract 
from the result the expression (27) where Am is given 
in (21). The remainder can he expressed as a multiple 
-r(#’?) of the unperturbed amplitude (25); 

-@)a@’- m)-%. (28) 
This has the same result (to this order) as replacing 
the potentials a and b in (25) by (l-ir(p’2))a and 

Phys. Rev. 75, 1240 (1949) and N. H. Kroll and W. E. Lamb, 
Phys. Rev. 75, 388 (1949). The author feels unhappily responslble 
for the very considerable delay in the publication of French’s 
result occasioned by this error. This footnote is appropriately 
numbered. 
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(l-+r(p'?))b, In the limit, then, as p'2-nn2 the net 
effect on the scattering is - $ r a  where I, the limit of 
~(p'?) as p'?+?n? (assuming the integrals have an  infra- 
red cut-off), turns out  to be just equal t o  that  given in 
(23). An equal term - arises from virtual transitions 
af ter  the scattering (14) so tha t  the entire ra term in 
(22) is canceletl. 

The reason that  r is just the value of (12) when q2=0 
can also be seen without a direct calculation as  follows: 
Let  us call p the vector of length m in the direction of 
$'so that il p'?=~n(lfr)? we have p'= ( l + r ) p  and we 
take r as very ~ i i ia l l ,  being of order T-' where T is the 
time between tlie scatterings b and a. Since ( # ' - ~ 7 ) - l  

= (p'+m),'(p'?-ni?)= ( p + m ) / 2 i i z 2 c ,  the quantity (25) 
is of order c--' or T.  IVe shall compute corrections to it 
only to its o\vn order (r - l )  i n  the limit c-0. The term 
(27) can he written approximately" as 

( e ? / r i )  J a  (p' - ni)-ly, ( p  - k - m - 1  

X y,+(fi'-m)-'b k-?dJkC'(k2), 

using the expression (19) for Am. The net of the two 
effects is therefore approximatelyt5 

- (~?/ri)Sa(p'-n,)'y,~-- k-?n)-'rp(p- k - p n - l  

X ~~(0'- vi)-1bk-2d'kC'(k2),  

a term now of order l / r  (since ( f i ' - m ) - l = ( p i - ~ t )  
Y(21n2c)-') and therefore the one desired in the limit. 
Comparison to (28) gives for r the expression 

( p l + m / 2 m )  y,.(pt- k - ~ I ~ ) - i ~ l ~ I z - l ) ~ ' - k - ? ~ ) - t  

Xy,k-2d'kC(k2).  (29) 

The integral can he immediately evaluated, since it 
is the same as the integral (12), but with q = O ,  for a 
replaced by pl/m. The result is therefore r'(p~/m) 
which when acting on the state i t ,  is just r, a s p l u l = m u l .  
For tlie same reason the term (p l+? i t ) /27 i r  in (29) is 
effectively 1 and we are left with - r  of {23).16 

In more complex problems starting with a free elec- 
The expression is not exact because the substitution of Aiit 

by the integral in (19) is valid only if p operates on a state such 
that p can be replaced by i i i .  The error, however, is of order 
u($'-iii)-l@- ni j@'- i i i ) -1 b which is a ( (  1 + e ) P + i i i )  (p- iii j 
X((lff)p+iii)p(2t+d)-'nr-~. n u t  sincepl=iii*, w e  havep@-ni) 
= -iii@-mj=@-m)P so tlie net result is approximately 
u@-m)b/4mz and is not of order 1/c I h t  snialler, so that its effect 
drops out in the limit. 

Ib  l \ e  have used, t o  first order, the general expansioii (valid for 
any  ulierators A ,  ti) 

s 

( . ~ + ~ ) ~ ~ = ~ ~ ' - . ~ ~ ' B . l ~ ' + ~ l ~ ' B . t ~ ~ B . t ~ ' -  . . . 
with A = P - R - s r  and B = P ' - p = e p  to exlmid the  dillcrence of 
@'- k-m-1  and (p- k-m-1.  

la The renornializiition terms appearing B ,  Eq5. (II), ( 1 5 )  when 
translated directly into the present notation do 1101 give twice 
(29) bui give this expression with the central  pan-' factor replaced 
by wi7r/El where E l = p t  for p=4 .  &'hexi ititegratcd i t  therefore 
gives r u ( @ ~ + i i ~ ) / 2 i i i ) ( i i , ~ , / E , )  or r a - r a ( i i i r Y ( / E L ) ( P , - i i ~ ) / 2 i i ~ .  
(Sinceply4+r4P1=2E1) \\hich gives just ru, sinceptal=iiiiil. 

trort the same type of term arises from the effects of a 
virtual emission and al)snrl~tion Imtli iBri.vi<iiis to t h e  
other processes. They, therefore, s i i i i11I~  1 r ; l r l  I ~ I  the 
sanie factor r so that  the e ~ ~ ~ r e s s i ~ t i  (2 1) i n x y  hc iised 
directly and these renornialization integrals t i red not 
be computed afresh for each ~mthlrni .  

In this problem of the radiative corrections to sc:ittrr- 
ing the net result is inscnsitive to t h e  citt-olT. This 
means, of rourse, that  by a simple r ea r r : i i i~~mt~n t  of 
terms previous t o  the ititejiration wc cotil,l II:I\T avoi,le~l 
the use of the ronve rp ice  fartnrs c r i n i ~ ~ l e t i ~ l ~ ~  (qee fnr 
example  Lewis"). The pr(1l11em was s o l \ - t 4  i n  [he 
nianiier here in order to illustrate how the us(. of such 
convergence factors, even when they are actually t ~ n -  
necessary, may facilitate analysis some\rli:tt 1)). rcninv- 
ing the eliort and amhiguities that  moy l i e  invti lvd in  
trying to rearrange the othrrwise t l i v e r ~ c n t  terms. 

The replacement of 6+ by /+ given in (161, (17)  is 
not determined by tlie analogy wit11 tlie classical p r o b  
lem. I n  the classical limit only the real part of 6, (i.e,, 
just 6) is easy to  interpret. Rut by what should the 
imaginary part ,  l/(ri$?), of 6, be replaced? The  choice 
we have made here (in defining, as  we have, the location 
of the pnles of (t7)) is arliitrary ;itid almost certainly 
incorrect. If the radiation resistance is calculated for 
an  atom, as the imaginary part of ( 8 ) .  t h e  rrsiilt de- 
pends slightly on the function /+. On the other hanrl the 
light radiated at very large distances frrim a sourre is 
inclepenclent of /+. The  total energy alisorlierl by distant 
absorbers will not check with the energy loss of the 
source. Lye are in a situation analogous to that i n  the 
classical theory if the entire / function is made to 
contain only retarded contributions (see A, Appendis). 
One desires instead the analogue of (F)rct of A .  'Iliis 
problem is being studied. 

One can say therefore, that  this attempt to find a 
consistent modification of quantum electrodynamics is 
incomplete (see also the question of closet1 loops, below). 
For it  could turn out that  any correct form of /+ which 
will guarantee energy conservation may a t  the same 
time not be able to make the self-energy integral finite. 
The desire to make the ~nethotls of simplifying the 
calculation of quantum electrodynamic processes more 
widely available has prompted this publication hefore 
an analysis of the correct form for /+ is complete. One 
might try to take the position that,  since the energy 
discrepancies discussed vanish i n  the limit A+%, the 
correct physics might be consitleretl to be that  obtained 
by letting A 4 - a  after inass renornializatioti. I have no 
proof of the matliematical consistency of this procedure, 
but  t h e  presuinptiori is very strong that  it is satistac- 
tory. ( I t  is also strong that  a satisfactory fo rm for f+ 
can be found.) 

7. THE PROBLEM OF VACUUM POLARIZATION 

In the analysis of the radiative corrections to scatter- 
ing one type of term was not considered. The potential 

17 H. W. Lewis, Phys. Rev. 73, 173 (1948). 
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which we can assume to vary as a, exp(-ip.rn) creates 
a pair of electrons (see Fig. 6), momenta p., - f i b .  This  
pair then reannihilates, emitting a quantum q = p b - p . ,  
which quantum scatters the original electron from state  
1 to state 2. The  matrix element for this process (and 
the others which can be obtained by  rearranging the 
order in time of the various events) is 

- (i/=i)(Ei,-r,rrl)~spc~~+q-m)-l 

X rp(P.- n~)- 'y , ]d 'p , r 'C(q ' ) (~" .  (30) 

This is because the potential produces the pair with 
amplitude proportional t o  a , y , ,  the electrons of mo- 
menta p. and - (P.+q)  proceed from there to annihi- 
late, producing a quantum (factor 7,) which propagates 
(factor r 2 C ( q 2 ) )  over to  the other electron, by which 
it is absorbed (matrix element of yr between states 1 
and 2 of the original electron (&yMuI)). All momenta p. 
and spin states of the virtual electron are admitted,  
which means the spur and the integral on d'p, are 
calculated. 

One can imagine that  the closed loop path of the 
positron-electron produces a current 

4aj,= Jpva., (31) 
which is the source of the quanta  which act on the 
second electron. The  quantity 

xy.(~--m)-l~,id4p, (32) 

is then characteristic for this problem of polarization 
of the vacuum. 

One sees a t  once that  J H v  diverges badly. The  modifi- 
cation of 6 to f alters the amplitude with which the 
current j ,  will aflect the scattered electron, but it can 
do nothing to prevent the divergence of the integral (32) 
and of its effects. 

One way to avoid such difficulties is apparent. From 
one point of view we are considering all routes by which 
a given electron can get from one region of space-time 
to another, i.e., from the source of electrons to the 
apparatus which measures them. From this point of 
view the closed loop path leading to (32) is unnatural. 
I t  might be assumed that the only paths of meaning are 
those which start  from the source and work their way 
in a continuous path (possibly containing many time 
reversals) to the detector. Closed loops would be ex- 
cluded. We have already found that  this may be done 
for electrons moving in a fixed potential. 

Such a suggestion must meet several questions, how- 
ever. The closed loops are a consequence of the usual 
hole theory in electrodynamics. Among other things, 
they are required to keep probability conserved. The  
probability that no pair is produced by a potential is 

FIG. 6.  Vacuum polarization ef- 
fcct on scattering, Eq. (30). t,+ 9 

not unity and its deviation from unity arises from the 
imaginary part  of J p v .  Again, with closed loops ex- 
cluded, a pair of electrons once created cannot annihi- 
late one another again, the scattering of light by light 
would be zero, etc. Although we are not experimentally 
sure of these phenomena, this does seem to indicate 
that the closed loops are  necessary. To be sure, i t  is 
always possible that  these matters of probability con- 
servation, etc., will work themselves out as simply in 
the case of interacting particles as for those in a fixed 
potential. Lacking such a demonstration the presump- 
tion is that  the difficulties of vacuum polarization are  
not so easily circumvented.'* 

An alternative procedure discussed in B is to assume 
that  the function K + ( 2 ,  1) used above is incorrect and 
is to be replaced by  a modified function K+' having no 
singularity on the light cone. The effect of this is t o  
provide a convergence factor C(p'-nr') for every inte- 
gral over electron rnomenta.lg This will multiply the 
integrand of (32) byC(p2-m2)C((p+q)2-,*), since the 
integral was originally &(p.-pb+q)d'p.dfpb and both 
p. and pb get convergence factors. The  Integral now 
converges but  the result is unsatisfactory?" 

One expects the current (31) to be conserved, that  is 
q,,j,=O or q,J,,=O. Also one expects no current if a. 
is a gradient, or a.=q. times a constant. This leads to  
the condition J,,p,=O which is equivalent t o  q,J,.=O 
since J,. is symmetrical. But when the expression (32) 
is integrated with such convergence factors it does not 
satisfy this condition. By altering the kernel from K to 
another, K' ,  which does not satisfy the Dirac equation 
we have lost the gauge invariance, its consequent cur- 
rent conservation and the general consistency of the 
theory. 

One can see this best by calculating J,.q. directly 
from (32). The  expression within the spur becomes 
(P+q-m)-lq(P-m)-ty ,  which can be written as the 
difference of two terms: (p-nt)-'y,- (P+q-m)-Ly, .  
Each of these terms would give the same result if the  
integration d'p were without a convergence factor, for 

'8 It would be very interesting t o  calculate the Lamb shift 
accurately enough to be sure that the 20 megacycles expected 
from vacuum polarization are actually present. 

19 This technique also makes self-energy and radiationless scat- 
tering integrals finite even without the modification of 6+ toft for 
the radiation (and the consequent convergence factor C ( W )  for 
the quanta). See B. 

20 Added to the terms given bclow (33) there is a term 
~ ( A 3 - 2 ~ 2 + ~ q * ) 6 F v  for C(k2)=-k2(k2-Az)-' which is not gauge 
invariant. (In addition the charge renorma1iza)tion has -7/6 added 
to the logarithm.) 
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the first can be converted into the second by a shift of 
the origin of p, namely p ' = p + q .  This  does not result 
in cancelation in (32) however, for the convergence 
factor is altered by the substitution. 

A method of making (32) convergent without spoiling 
the gauge invariance has been found by Bethe and by 
Pauli. The convergence factor for light can he looked 
upon as the result of superposition of the effects of 
quanta of various masses (some contributing nega- 
tively). Likewise if we take the factor C(pZ-774 
- - -Xl(p?-nz?-),Z)-l so that (p?-p$)-lC(p?-nil) 
- - (p?-nzz)-l- (p2-m?-X2)-I we are taking the differ- 
ence of the result for electrons of mass nz and mass 
(X?+nz')'. But we have taken this difference for c u d  
propagation between interactions with photons. Thcy 
suggest inste;itl that  once created with a certain mass 
the electron should continue to propagate wi th  this 
mass through all the potential intcractions until it 
closes its loop. Tha t  is i f  the quantity (32),  intcjiraterl 
over some finite range of p ,  is called J p r ( d )  and the 
corresponding quantity over the same range of p ,  but  
with 7 n  replaced by (iir?+X'))h is J,.(m')+X2) we should 
calculate 

J , , p =  J* [Jp,(ml)  -Jp,(ii l '+XZ~]G(X)~f)\,  ( 0 2 ' )  

the function G ( h )  satisfying J'G(X)dh= 1 and 
&'%(X)h')dh=O. Then i n  the expression for J P v p  the 
range of p integration can be extendeJ to infinity as  the 
integral no\v converges. 'The result of tlie integration 
using this method is the integral on dX over C(X) of 
(see Appendis C) 

with q?=49n2 sin%'. 
The gauge invariance is clear, since 9f l (y f i yv -q?6ev)  =O.  

Operating (as it always will) 011 a potential of zero 
divergence the (4.9.- d,,q2)n, is simply -$a,,, the 
D'Alenibertian of the potential, that  is, the current pro- 
ducing the potential. The term - j ( ln(X?/i ir ' ) ) (q ,q ,  
-q4?6,,) therefore gives a current proportional to tlic 
current producing the potential. This would have tlie 
same effect as  a change i n  charge, so that  we would have 
a difference A(?) between e? and the experimen- 
tally observed charge, $+A($), analogous to the dif- 
ference between wz and the observed mass. This charge 
depends logarithmically on the cu t-off, A (e2)/c! = 
- ( 2 e 2 / 3 r )  In(h/m). After this renormalization of charge 
is made, no effects will be sensitive to the cut-off, 

After this is done the final term remaining i n  (33), 
contains tlic usual effects?' of polarization of tlic vacuum. 

l1 E. A. Uehlitig, Phys. R e v  18, 5 5  (1935), I<. Scrber, Pliys. 
Rev. 48, 4Y (10.55). 

I t  is zero for a free light quantum ( q 2 = O ) .  For small Q' 
i t  behaves as (2/15)q? (ad:ling - +  to the logarithm in  
the Lamb effect). For q!> ( 2 ~ 2 ) ~  it is complex, the 
imaginary part  representing the loss in amplitude re- 
quired by the fact  thiit the probability that  no quanta 
are produced by a potential able to produce pairs 
((q?)i>2tiz) decreases with time. (To make the neces- 
sary analytic continuation, im:igine I ~ E  to have a small 
negative imaginary part ,  so that  (1 -q?/4m!) l  becomes 
--i(q?/4tiz!-l): as  q? goes from below to above 4m?. 
Then B= a/2+itr where sinliic=+ (q2/4nz?- l);, and 
- l / tanB= i tanhu= +i(q?-4,rz?)l(q')-t .)  

Closed loops containing a number of q i n n t a  or poten- 
tial interactions larger than two produce no trouble. 
Any loop with an o:ld numlm of inter.Lctinns gives zero 
( I ,  referencc 9).  Fnur or more pntentinl interxt ions give 
inte;rnls wh ich  are cnnvergent even \vith~)ut a con- 
v e r p i c e  factor a.i is \vet1 known,  T h e  situation is 
; in ,~ l~ i j i~ ius  to that for sclf-cncri.y. Once the siml)le 
prohleni of a single closel Iuq) is sdve.l thcre arc 
no further divergence difiicultics f o r  more C<JI l i l ) t ex  

processes." 

8. LONGITUDINAL WAVES 

I n  the usual form of quantum electrodynimic~ the 
longitudinal and transverse uxvcs tire given scp.u.ite 
treatinent. Alternately the con.lition (d.lP/'d.ta)q = I )  is 
carried along as  a supplementary con.lition. In the 
present form no such special consirler,itions are  ncces- 
wry for we are dealing with t h e  solutions of the i ~ : ~ u ; i t i ~ i ~ i  
-O!,l,.=&rj, with a current j ,  which is c i i i iwr rd  
aj.la.r,=o. Tha t  means a t  least [J '(d.l , /d.c,)=(~ a n d  
in  fact our srilu~ion also sx t i sks  d.l,/d.~,= 0. 

T o  show tli,it this is the case we consiiler tlie amlili- 
tude for emission ( r ed  or virtuirl) of a photon and show 
that  the divergence of this amplitude vitnislies. 'The 
amplitude for emission for photons p o l u i z d  i n  the f i  
direction involves matrix elenients of y.. 'Therefore 
what we have to show is that the corresponiliiig matrix 
elements of qilyc=q vanish. For example, fur ;I first 
order effect we would require the matrix element of Q 
between two states and p2=pl+q. But since 
q=p.-pI and ( t ~ 4 ? p l ~ c l ) = ~ i a ( ~ ~ 1 7 c , ) =  (1&p2rcl) the matrix 
element v;iiiishes, which proves the conteiitiim i n  this 
case. I t  also vanishes i n  niurc coinplex situiitions (essen- 
tially bcc;iuse of relation (34), bclow) (for examl)le, try 
putting ex=* in tlie niatris (1.5) for tlic Coinpton 
Effect). 

To prove this in gcneral, suppose a,, i =  1 to .V are a 
set of ~ ~ l a i i e  wave disturl,ing potentials arryi i ig  mo- 
menta qt (e.g., soiiie may be emissions or a lmrpt ions of 
the same or tlilfercnt qumita) and consider a in.rtrix for 
the transition from a state of niomentu~n pu to p,v such 

2J Tlierc arc loups conii,lctcly w i t h o u t  c x t e r n d  i n l c m c i i n n s .  F o r  
exanil,lr, n imir i s  c rca tcd  virtually  long \v i l l i  a pliotwi. Ncxt they 
nnn ih i l a t v ,  d>;orl,i~ig th i s  I)lirituti. Such loops a rc  i l ivcgnri led on 
thc gri,uncls 111at I h v v  d t j  not i n l e rac t  w i t h  onvl l i i i i :  and are 
t he reby  c t q > l c t c l y  i ~ ~ ~ ~ ~ l m r v ~ r l ~ l ~ .  Any incl i rect  eii'ccts thcy may 
have v i a  t l i c  cxcluziun pr inc ip le  have a l r cady  beeu iiicludcd. 
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as  aNn ,= lN- '  (P,-vz)-k, whereP,=Pi-l+q, (and in the 
product, terms with larger i are  written to the left). 
The  most general matrix element is simply a linear 
combination of these. Next consider the matrix be- 
tween states PO and P N + q  in a situation in which not 
only are the a; acting but  also another potential 
aexp(- iq .x)wherea=q.  This may act previoustoalla,, 
in which case it gives ~ ~ ~ ( ~ , + q - m ) - ~ a , ( ~ ~ + p - m ) - ~ q  
which is equivalent t o  + a N n ( @ , + q -  m)-'a, since 
+(po+q-vz)-lq is equivalent to (p?+q-m)-l 
x ( p o + q - m )  as  PO is equivalent t o  m acting on the 
initial state. Likewise if i t  acts after all the potentials 
it gives q(PN-m)-'aNn(P,-T~)-'a, which is equivalent 
to - a N n ( p , - m ) - ' a ,  since PN+q-m gives zero on the 
final state. Or again i t  may act between the potential 
aB and ah+l for each k. This gives 

.v-l \'-I 

(IN n (P ,+q-m) - ' o ,~~+q-m) - '  
L-I I A i i l  

&--I 

xq( j i -n i ) - lar  fl ( j I -m) - 'a j .  
1-1 

However, 

(PL+ q- fn)-'q(pk-m)-' 
=(p*- tn) - ' -  (Pt+q-m)-', (34) 

so that  the sum breaks into the difference of two sums, 
the first of which may be converted to the other by the 
replacement of k by k -  1. There remain only the terms 
from the ends of the range of summation, 

These cancel the two terms originally discussed so that  
the entire efTect is zero. Hence any wave emitted will 
satisfy a A , / a s , = O .  Likewise longitudinal waves (that 
is, waves for which A , = a @ / d x , ,  or a = q )  cannot be 
absorbed and will have no effect, for the matrix ele- 
ments for emission and absorption are similar. (We 
have said little more than that  a potential A , = a q / a x ,  
has no effect on a Dirac electron since a transformation 
$'=exp(-i@)$ removes it. I t  is also easy to see in 
coordinate representation using integrations by parts.) 

This has a useful practical consequence in that  in 
computing probabilities for transition for unpolarized 
light one can sum the squared matrix over all four 
directions rather than just the two special polarization 
vectors. Thus suppose the matrix element for some 
process for light polarized in direction ep is e,M,. If the 
light has wave vector q,, we know from the argument 
above that  qeM,=O. For unpolarized light progress- 
ing in the z direction we would ordinarily calculate 
M?+M,*, But we can as  well sum M?+M;+Mf-M,? 
for q,M, implies M l = M ,  since ql=q. for free quanta.  
This shows that  unpolarized light is a relativistically 
invariant concept, and permits some simplification in 
computing cross sections for such light. 

Incldentally, the virtual quanta interact through 
terms like yp '  . .y,k-Wk. Real processes correspond to 
poles in the formulae for virtual processes. The pole 
occurs when k 2 = 0 ,  but it looks a t  first as though in the 
sum on all four values of p,  of yu' . ' y r  we would have 
four kinds of polarization instead of two. Now it is clear 
that  only two perpendicular to k are effective. 

The  usual elimination of longitudinal and scalar vir- 
tual photons (leading to  an  instantaneous Coulomb 
potential) can of course be performed here too (although 
it is not particularly useful). A typical term in a virtual 
transition is ye' . . ~ , k - ~ d ' k  where the . . . represent 
some intervening matrices. Let us choose for the values 
of M, the time 1, the direction of vector par t  K ,  of k ,  
and two perpendicular directions 1, 2. We shall not 
change the expression for these two 1, 2 for these are  
represented by transverse quanta.  But we must find 
(71. . . y o -  ( Y K .  . . y ~ ) .  Now k =  kry l -Kyr ( ,  where 
K =  ( K .  K) i ,  and we have shown above that  k replacing 
the y r  gives Hence KyK is equivalent to kry,  and  

( r i . . . r i ) - ( y g . . . ~ ~ ) = ( ( K I - k r ' ) / K ' ) ( y i . . . y ~ ) ,  

so that  on multiplying by  k-2d'k=d4k(kr'--K2)-1 the net 
effect is - ( - y 1 . . . y l ) d 4 k / K ? .  The y1  means just scalar 
waves, that  is, potentials produced by charge density. 
The  fact that  1/K2 does not contain kr means that k4 
can be integrated first, resulting in an  instantaneous 
interaction, and the d 3 K / K ?  is just the momentum 
representation of the Coulomb potential, l /r.  

9. KLEIN GORDON EQUATION 

The methods may be readily extended to particles of 
spin zero satisfying the Klein Gordon equation;" 
0'J.- m2$= ia(A,$)/a.z,+ iA,,a$//a.z, - A,A,$. (35) 

13 A little more care is required when both yp's act on the same 
article. Define x=krrt+KrK, and consider ( k . ' . X ) + ( X .  " k ) .  

gxactly this term would arise ii a system, acted on by potential X 
carrying momentum - k ,  is disturbed by ail added potential k of 
momentum + k  (the reversed sign of the momenta in the inter- 
mediate factors i n  the second term x . .  ' k has no effect since we 
will later integrate over all k) .  Hence as shown above the result is 
zero but since ( k . ,  .x)+(x, ' k)=k, ' (rr . .  . r t ) - W r ~ .  .YK) 
we h n  still conclude (YK...rK)=kr'~-'(yi...rr) . 

2' The equations discussed in this section were deduced from the 
formulation of the Klein Gordon equation given in reference 5, 
Section 14. The function J.  in this section has only one component 
and is not a spinor. An alternative formal method of making the 
equations valid for spin zero and also for spin 1 is (presumably) 
by use of the Kemmer-Dulhn matrices Or, satisfying thc commu- 
tarion relation 

P,P,Po+PoP.P,= 6&+ ~ P w  
If we interpret a to mean a 0 rather than arYr,  for any a@, all 
of the equations in momentuh :pace will remain formally identical 
to those for the spin 1/2. with the exception of those in which a 
denominator (J-m-1 h i s  been rationalized to ( p f ~ ~ t ) ( P ' -  IIZ?-' 
since pz is no longer equal to a number,,p.p. But p3 does equal 
(p.p)p so that @-in)-' may now he interpreted as (~ltp+sl' 
+ p T - p . p ) ( p . p _ m z ) - ' n r - * .  This implies that equatiorls in Co- 
ordinate space will be valid of the function K+(2, 1 )  is pivcn as 
K+(2, 1 )  = [(iv,+,i) -nl-*(v22+ C I ? ) ] d + ( Z ,  1) Kith Vr=P,d.i 
This is all in virtue of the fact that the many componeilt 
function + ( 5  components for spin 0, 10 for w in  1)  S:L~  
( i V - n l ) J . = A J .  which is formally identical to the 1)irnc EtiualiUll. 
See W. Pauli, Rev. Mod. Phys. 13, 203 (1940). 
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The  important kernel is now 1+(2 ,  1) defined in (I, Eq .  
(32)). For a free particle, the wave function +(2) satisfies 
+~*$-m*$=O. At a point, 2, inside a space time region 
it is given by 

n 

$ ( 2 ) = ]  [$(l)dr+(2, 1 ) i d . r 1 ~  

- ( d&/d.Lir) I + (  2,  1 )]A',, 1 Irl' I I, 

(as is readily shown by the usual method of tlemon- 
strating Green's theorem) the integral being over an  
entire 3-surface boundary of the region (with normal 
vector NJ. Only the positive frequency components of 
$ contribute from the surface preceding the time corre- 
sponding to 2 ,  and only negntive frequencies from the 
surface future to 2. These can be interpreted as  electrons 
and positrons in direct analogy to the Dirac case. 

The right-hand side of ( 3 5 )  can be considered as a 
source of new waves and a series of terms written down 
to represent matrix elements for processes of increasing 
order. There is only one new point here, the term in  
A , A ,  by which two quanta can act  a t  the same time. 
As an  example, suppose three quanta or potentials, 
a" e x p ( - i q , . x ) ,  b, exp(-iyb.x), and c, exp(-iq,.x) are 
to act in that  ordcr on a particle of original momentuni 
pop so that  p n = p o + q .  and P b = P , . + q b ;  the final mo- 
mentum being p c = P t 2 + q r .  The  matrix element is the 
sum of three ternis (p*= p , , p p )  (illustrated in Fig. 7) 

(p.'Cfpb'C)(pb2-711?)-'(pb'b+p~'b) 

- ( p c .  C+ p b ' C ) ( p b * -  ?n')-'(b. a )  
- (6. b)  

x (pl-m')-Yp.' n+po. a) (36)  

mz)-'(,OO, afpu. a). 

The first comes when each potential acts through the 
perturbation i a ( A  .$) /dx,+iA ,,d$/ds,,. These gradient 
operators in momentum space mean respectively the 
momentum after and before the potential ~ 4 p  operates. 
The second term comes from b, and ap acting a t  the 
same instant and arises from the A u , l M  term in (a). 
Together b ,  and a" carry monientuni q b p + q a p  so that  
after b.a  operates the momentum is P o + q , + q b  or p b .  

l'lie final term comes from cp and b, operating together 
in a similar manner. The  term /lvA,, thus permits a new 
type of process in which two quanta can be emitted (or 
absorbed, or one absorbed, one emitted) a t  the same 
time. There is no a.c term for the order a, b,  G we have 
assumed. In an actual problem there would be other 
terms like (36) but  with alterations in the order in 
which the quanta a ,  b ,  c act. In these terms a ' c  would 
appear. 

As a further example the self-energy of a particle of 
momentum p r  is 

( e z / 2 a i ? , r ) S  [ (2p - k )  "( (p - k)*-  ?ti2)-! 

X (2) - k )  - a,,,]d'k k-'C( k'), 

where the 6,,=4 comes from the A J ,  term and repre- 

sents the possibility of the simultaneous emission and 
absorption of the same virtual quantum. This integral 
without the C(k?)  diverges quadratically and would not 
converge i f  C(k')= -X*/(k'-X?). Since the interaction 
occurs through the gradients of the potential, we must 
use a stronger ronvergcnce factor, for example C(k*)  
- - kl(& X?)-2 , or i n  general (17) with &"X?G(X)dX=O. 
In this case the self-energy converges but  depends 
quadratically on the cut-off A and is not necessarily 
sinall compared to 7n. The  radiative corrections to 
srattering after mass renormalization are insensitive to 
the cut-off just as for the Ilirnc equation. 

\\'lien there are several particles one can obtain Rose 
statistics by the rule that  if  two ~inicesses lead to the 
same state but with two electrons exchanged, their 
amplitudes are to be added (rather than subtracted as 
for Permi statistics). In this case equivalence to the 
second quantization treatment of h u l i  and Weisskopf 
should be tlemonstrable i n  a way very much like that  
given i n  I (appendix) for Ihrac electrons. The  Ilose 
statistics mean that  the sign of contribution of a closed 
loop to the vacuum polariz:rtion is the opposite of what 
i t  is for the Fernii case (see I). I t  is (P t ,=# .+q)  

c2 

2 7 r i l l l  
.I""=--- ~Ccr,.,+r..lcr,~.tp,,"i(#.,'- I d )  -I 

X(P,,'- , , , ? ) - I -  6 ( p  !- , l f 2 )  - 1  I." n 

- 6,,,(pf,l- nl?)- l ]d 'p,  

giving, 

1 A? 1 -ki)r"-q? 

- In-+------- I - -  - 
lr 6 ~ I I ?  9 3 q ?  ( t:L:lO)l~ 

e? 

the notation as in ( 3 3 ) .  The imaginary part for ( @ ) I >  2m  
is again positive representing the loss i n  the probability 
of finding the final state to he a v:icuuiii, associated w i t h  
the possibilities of pair production. I:ermi statistics 
would give p gain in prohal)ility (and also a charge 
renormalizatior~ of opposite s i p  10 tlmt erpected). 

0. 
b. C. 
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10. APPLICATION TO MESON THEORIES 

T h e  theories which have been developed to describe 
mesons and the interaction of nucleons can be easily 
expressed in the language used here. Calculations, t o  
lowest order in the interactions can be made very easily 
for the various theories, but  agreement with experi- 
mental results is not obtained. Most likely all of our 
present formulations are quantitatively unsatisfactory. 
We shall content ourselves therefore with a brief sum- 
mary of the methods which can be used. 

The nucleons are usually assumed to satisfy Dirac’s 
equation so that the factor for propagation of a nucleon 
of momentum p is ( p - M ) - I  where M is the mass of the 
nucleon (which implies that  nucleons can be created in 
pairs). The nucleon is then assumed to interact with 
mesons, the various theories differing in the form as- 
sumed for this interaction. 

First, we consider the case of neutral mesons. The 
theory closest to electrodynamics is the theory of vector 
mesons with vector coupling. Here the factor for emis- 
sion or absorption of a meson is gyp when this meson is 
“polarized” in the p direction. The  factor g, the 
“mesonic charge,” replaces the electric charge e. The  
amplitude for propagation of a meson of momentum q 
in intermediate states is (q2 -pz ) - I  (rather t h a n , q ’ a s  it 
is for light) where p is the mass of the meson. The neces- 
sary integrals are made finite by convergence factors 
C(q?-$ )  as  in electrodynamics. For scalar mesons with 
scalar coupling the only change is that  one replaces the 
y,, by 1 in emission and absorption. There is no longer 
a direction of polarization, p ,  to sum upon. For pseudo- 
scalar mesons, pseudoscalar coupling replace y,, by 
y5=iy.yuy.y,. For example, the self-energy matrix of 
a nucleon of momentum p in this theory is 

(,f?/ri) Jy5(b- k -  M)-1y5d4k(k*- p?)-IC(k?- p?).  

Other types of meson theory result from the replace- 
ment of y,, by other expressions (for example by 
$ ( y , , y v - y v y p )  with a subsequent sum over all p and Y 
for virtual mesons). Scalar mesons with vector coupling 
result from the replacement of y,, by p-lq where q is the 
final momentum of the nucleon minus its initial mo- 
mentum, that is, it is the momentum of the meson if 
absorbed, or the negative of the momentum of a meson 
emitted. As is well known, this theory with neutral 
mesons gives zero for all processes, as is proved by our 
discussion on longitudinal waves in electrodynamics. 
Pseudoscalar mesons with pseudo-vector coupling corre- 
sponds to y,, being replaced by  p-lysq while vector 
mesons with tensor coupling correspond to using 
(2p)- l (y, ,q-qy,,) .  These extra gradients involve the 
danger of producing higher divergencies for real proc- 
esses. For example, ysq gives a logarithmically divergent 
interaction of neutron and Although these 
divergencies can be held by strong enough convergence 

zJ M. Slotnick and W. Heitler, Phys. Rev. 75, 1645 (1949). 

factors, the results then are sensitive to the method used 
for convergence and the size of the cut-off values of A. 
For low order processes p P y S q  is equivalent to the 
pseudoscalar interaction 2 M p - l y 5  because if taken be- 
tween free particle wave functions of the nucleon of 
momenta PI and p 2 = p l + q ,  we have 

(a2?’5quI) = (a?yh(p?-bI)Idl) = - (a!p?ySul) 
- (?Z?ysp1uk)= -2h‘f(a?Y&Idl) 

since y s  anticommutes with p:! and p:! operatins on the 
state 2 equivalent to M as is PI on the state 1 .  This  
shows that  the ys interaction is unusually weak in the 
non-relativistic limit (for example the expected value 
of ys for a free nucleon is zero), but since y f =  1 is not 
small, pseudoscalar theory gives a more important inter- 
action in second order than it does in first. Thus  the 
pseudoscalar coupling constant should be chosen to fit 
nuclear forces including these important second order 
processes.26 The equivalence of pseudoscalar and pseudo- 
vector coupling which holds for low order processes 
therefore does not hold when the pseudoscalar theory 
is giving its most important effects. These theories will 
therefore give quite different results in the majority of 
practical problems. 

I n  calculating the corrections to scattering of a nu- 
cleon by a neutral vector meson field (y,.) due to the 
effects of virtual mesons, the situation is just as in 
electrodynamics, in that  the result converges without 
need for a cut-off and depends only on gradients of the 
meson potential. With scalar ( 1 )  or pseudoscalar (ys) 
neutral mesons the result diverges logarithmically and 
so must be cut  off.  he part  sensitive to the cut-off, 
however, is directly proportional to the meson poten- 
tial. I t  may thereby be removed by a renormalization 
of mesonic charge g. After this renormalization the re- 
sults depend only on gradients of the meson potential 
and are essentially independent of cut-off. This  is in 
addition to the mesonic charge renormalization coming 
from the production of virtual nucleon pairs by a meson, 
analogous to the vacuum polarization in electro- 
dynamics. Rut here there is a further difference from 
electrodynamics for scalar or pseudoscalar mesons in 
that the polarization also gives a term in the induced 
current proportional to the meson potential representing 
therefore an additional renormalization of the muss of 
the meso!t which usually depends quadratically on the 
cut-off. 

Next consider charged mesons in the absence of a n  
electromagnetic field. One can introduce isotopic spin 
operators in a n  obvious way. (Specifically replace the 
neutral 7 5 ,  say, by r ,ys  and sum over i = l ,  2 where 
T ~ = T + + T - ,  T * = ~ ( T + - T - )  and T+ changes neutron to 
proton (T+ on proton=O) and T- changes proton to 
neutron.) I t  is just as easy for practical problems simply 
to keep track of whether the particle is a proton or a 
neutron on a diagram drawn to help write down the 

?6H. A. Bethc, Bull. Am. Phys. SOC. 24, 3, 23 (Washington, 
1949). 
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matrix element. l h i s  excludes certain processes. For 
example in the scattering of a negative meson from ql 
to q? liy a neutron, the nicson q, must Ix emitter1 first 
(in orcler of opmrtors,  not time) for the neutriin cniinr,t 
almrl) the negative niesnn ql until i t  IJeconies :I liriitoti. 
7'hat is,in conipcirison to the Klcin Nisliina forniula ( l 5 ) ,  
only the aiinlopue of second tcrni (see rig.  .5(li)) ~vou l i l  
appear in the scattering of negative mesons Iiy neu- 
trons, and only the lirst term (Fig. .;(a)) in the neutron 
scattering of positive mesons. 

The source of mesons [if a given charge is not con- 
served, for a neutron capahle of emitting negative me- 
sons may (on emitting one, say) become a proton no 
longer able to do so. The proof tliat a perturl)atioii q 
Rives zero, (liscussed for longitutlinal electromaqiictic 
waves, fails. This h a s  the co~isec~itcnce tliat w r t o r  me- 
sons, if rrpresrnte~l hy tlie intcractirin yr \vnul[l not 
satisfy the con~ l i t im  t l n t  the ( l i \  
tial is zera  l 'hc  interaction is to I)c taken?' as yY-p-?/,,q 
in emission and as y p  i n  alisorption if  the real cmission 
of mesons with a noti-zero divergence of potential is to 
be avoided. (The correction term p-'quq gives zero i n  
the neutral case.) The :isymmetry in emission antl ab- 
sorption is only apparent. as this is clearly the same 
thing as subtracting from the original yo'  . 'yr,, a term 
p-?q. " 9 .  That is, if  the term -p-:y,,q is omitted the 
resulting theory describes a comhin:ttion of mesons of 
spin one antl spin zero. The spin zero mesons, coupled 
by vector coupling q, are removed by subtracting the 
term p - ? q . .  ' q .  

The two extra gradients 4.. .q  ninke the prolilcm of 
diverging integrals still more serious (for exanilile the 
interaction between two protons corresponding to the 
exchange of two charged vector mesons depends quatl- 
ratically on the cut-off i f  calculated in a straightforward 
way). One is tempted in this fwniul;ition to choose 
simply yu' 'y,, and accept the admixture of spin zero 
mesons. Uut it appe:irs that  this leads in the conven- 
tional formalism to negative energies for the spin zcro 
component. 'This sho\vs one of the advantages of the 

Tlte vectnr tiiesnti fie111 Ipntentiiils pu satisfy 
- J,I<l.X"( I? qp Id V" - n #&!<I.Y") - p ?  +or = - &s9, 

ivlwrc sP, tiic s w r c e  lnr sucli iite5oris, is thc nintrix elemeiit of 
y u  l ~ t w e ~ i i  states d nrut ron  ait,l 11ruimi. n y  tnl<ing the  divcrgeitce 
J/Jr, oi lmth sicks, c ~ ) i i ~ l u d e  thnl d q p / ~ I x p  =4*p-'ds,/Jr, so tha t  
the original equalinti can IIC rcwrittcn its 

m q r -  fl'2py= -~a(,,+p-"l/J.v,(Os,/a l.")). 

l h e  right h a n d  side gives in tiiumcntuni rcprcsenlntion yp 
-fi-?,qpqryv [ l i e  l c f t  yields the  (q?-p?)-'nnrl finnli?. IIte intcraction 
s p q p  i n  the Lagr;ingian givcs the ye on alisnrptioii. 

I'roccctlitt~ iri  this way lin<l generally I l ia( irarticles ol spin one 
ciin Iic reprcsentrd lby n iour-vector II, ,  (which, for a free particle 
of monicntum q satisfies q .  i i = ( l ) .  Tlic prnpaqation of virtual 
particles of rnniiictitutn q f r m  s ta te  Y to p is represented by 
niiiltil>licntinn Iiy t he  4-4 matrix (or tensor) P S v =  (6,,-u-~q,q,) 
X,fq2-/r?).- ' .  T h e  lirst-order iiiteriictioii (from the Proca equation) 
with an  elcctrnmnqnetir pntential a e x p ( - i k . . s )  corrrspnnds to 
niultiplimtion I>? the  matrix E,,= (qa.n+-qj ~o)6,,-qr.o,-q~,a, 
where q! an11 qr=y,+k are the momenta Iirforr and  after the  
in t rmct inn  l:i!inll>-, two Imtentials n ,  h may act simultaneously, 
wi th  I I I : L ~ ~ I X  I?,,= - ( ~ z . t ~ ) 6 ~ ~ + b ~ n ~ .  

metliotl of second quantimtion of meson Ctelds ovcr the 
Imseiit formulation. There such errors of sifin are cilivi- 
niis ivhile lrrre we scem to tic able to write seemingly 
ittiincent eupressinns which c:in give absurd results. 
l 'seu~l~ivector mesons with pseitdnvector roupling corre- 
s l i w i d  to usin:: +yb(yr-  p-'q,,q) fur al)srirptinn and ysyp 
for e n i i s s i o n  for Iioth charged atid neutral mesons. 
III t h e  presence of an elcctromngnetic lieltl, whenever 

the nideoii is a proton it interacts with the field i n  the 
n a y  tlcscrilied for electrons. The meson interxcts in the 
sctilar or pseudoscalar case :is a particlc obeying the 
Klciii-( ;ordon equation. It is important here to use the 
tnethoJ of calculation of Uethe ;ind I'auli, t h a t  is, a 
vir[u:il meson is assume(l to hove the sanic "tilass" tlur- 
itig ;ill its interactions with the c1ectromn:netic field. 
'Tilr result for inass p i i n d  for ( p 2 + X 1 ) !  :Ire subtracted 
an i l  tlic ilirfereiicc integr:itcil ovcr thr function G(h)dX. 
A sqi;ir.itc con\ ergence fartc~r is not 1 v i i i ~ i c l ~ , l  bir each 
tnesoti priip:ig:itim 1)etwecn electr(,m:ignrtic interac- 
tions, otherwise gauge invariance iq  not insurc:l. \Vhcn 
the c~)uliling involves a gradient, such as yaq \diere q is 
the iinal minus the initial monientum of the nucleon, 
the vector potential A must be subtracted from t h e  
momentum of the proton. That is, tlicrc is an additional 
coupling &ysA (plus when going from proton to neu- 
tron, minus for the reverse) representing the new possi- 
hility of a simultaneous emission (or absorption) of 
meson  and photon. 

Emission of positive or absorption of negative virtual 
mesons :ire represented i n  the same term, the sign of the 
cliarge Iieing tietcriniiied hy teinpiral relations as for 
electrviis and  positrons. 

(';ilculations are very easily carried out i n  this way 
to lowest order i n  g' for the various theories for nucleon 
internctioii, scattering of mesons by nttcleons, meson 
production by nuclear collisions and Iiy Gamma-rays, 
nuclear magtictic. moments, neutron electron scattering, 
etc., IIowever, no goo:l agreement with experiinent re- 
sults, wlien these are available, is obtained. 1'rol):thly 
all of the formulations are incorrect. An uncertainty 
arises since the calculations are only to first order in  f:, 
and are not valid if f / h r  is large. 

Thc author is particul~irlp indebted to Professor H. 
A. Uethe for his explanation of a method of obtaining 
fni te  aiitl gauge invariant results for the lirohlem of 
vacuum polarimtion. H e  is also grateful for Professor 
Uetlie's criticisms of the  nianuscript, antl for innumer- 
able discussions during the develoliment of this work. 
H e  wishes to thank Professor J. Aslikin for his careful 
reading of the manuscript. 

APPENDIX 
I n  this appendix a method wi l l  Ije illustrated by  which the  

simpler integrals appearing in liroblen1s in electrotlyiiamics can  
l i e  directly evaluakci T h e  integrals arising in niure complex 
processes lead to rather coniplicnted functions, litit the  s tudy  of 
the  relations of one intcgral tu another and their expression in 
tcrms of simpler intcgrnls m a y  be  facilitated Iiy the  methuds 
given here. 
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As a typical problem consider the integral (12) appearing in 

~ r , ( p ~ - k - m ) ~ ' a ( p ~ - k - m ) - ~ y , k a d ~ k C ( k z ) ,  ( la)  

where wc shall take C ( k 2 )  to he typically - A 2 ( P - A z ) - 1  and 
d'k means ( 2 n ) - U k , d k d k d k c  We first rationalize the factors 
(p- k -  m)-'= (p - k+ m ) ( ( p -  k)'- m2)-l obtaining, 

Sy,,(P.- k+ w)a(p1 - h i m )  y,k-*d'kC( k2) 

the first order radiationless scattering problem: 

X ((PI - k ) l -  iti*)-'((P*- k ) * -  m2)-'. (Za) 
The matrix expression may he simplified. It appears to be best to 
do so aJ1e-r the integrations are performed. Since AB= 2A B -  B A  
where A B =  .4,B, is a numher commuting with all matrices, find, 
if R is  any expression, and A a vector, since r ,A=  -Ayp+ZA, ,  

r,ARu,= -ArrRv,+2RA. (3a) 

Expressions between two r p ' s  can be thereby reduced by induc- 
tion. Particularly useful are 

YPYP=4 
(4a) r r A r r =  - 2 A  

?,ABCy.= -2CBA 
r ,ABy ,=  Z(AB+BA) =4A .B  

where A,  B ,  C are any three vector-matrices (i.e., linear com- 
binations uf the four 7 ' s ) .  

In onler to calculate the integral in (2a) the integral may be 
written as  the sum of three terms (since k = k * r @ ) ,  

r,(p~+m)a(Pl+iii)r,Jt -C-rp-r..a(Pl+m)y, 

where 

J ~ I ; z : J  = 1 ( 1 ;  k.; f i ,k , )k-WkC(@) 

+7,(Pz+m)ar.r,Yz+rrroaY,YrJt, (5a) 

X ( (pi -  &)'- ~ ~ ' ) - ' ( ( p t -  k)'-mt)-l.  ( 6 4  

That is  for J I  the (1; k.; k.k,) is  replaced by 1, for J z  hy k., and 
for J ,  by k.k,. 

More complex processes of the first order involve more factors 
like ( ( p a -  kP-w2)-' arid a corresponding increase in the number 
of k's which may appear in the numerator, as  k.k.k,. . .. Higher 
orcler processes involving two or more virtual quanta involve 
similar integrals but with factors possihly involving k+k' instead 
of just k ,  and the integral extending on k-V'kC(k')k'-~d'k'C(k'~). 
They can be simplified by methods analogous to  those used on 
the first order integrals. 

The factors ( p - k ) * - m a  may be written 

(P -&)~-mZ-~-2p .k -A,  ( la)  

where A=m'-jF, Al=mlz-p,t, etc., and we can consider dealing 
with cases of greater generality in that the different denominators 
need not have the same value of the mass m. In  our specific prob- 
lem ( b a ) . p ~ ~ = m ~ s o  that AI=O, but wedesire towork withgreater 
generality. 

Ncw for the factor C ( k 2 ) / V  we shall use -A t (P -A2) - '& - ' .  
This can Ire written as  

- A'/(k*- As) k'= &-*C(ka) - - J ; ' d L ( k y -  L)-. (8a) 

Thus we can replace k-'C(ka) by (k'-L)-a and a t  the end inte- 
grate the result with respect to L from zero to k2. We can for 
many practical purposes consider A' very large relative to m2 orpa. 
When the original integral converges even without the con- 
vergence factor, it  will be obvious since the L integration will then 
be convergent to intinity. If an infra-red catastrophe exists in the 
integral one can simply assume quanta have a small mass A,i. 
and extend the integral on L from Aamln to A', rather than from 
zero to A'. 

We then have to do integrals of the form 

l ( 1 ;  k,; k . k , ) d ' R ( Y - L ) ~ ( k ~ - 2 p l . R - A I ) - ~  L:- ': ti " 8 ,  

(9a) 
where by (1; k,; k,k,) we mean that in the place of this symliol 
either 1, or k,, or k,k, may stand in different cases. In  more 
complicated problems there may he more factors (k2-2p8.  k-&)-L 
or other powers of these factors (the (kz-L)-a may be considered 
as a special case of such a factor with p.=O, A n =  L )  and further 
factors like k,k,k,. ' in the numerator. The poles in all the factors 
are made definite by the assumption that L ,  and the A's have 
infinitesimal negative imaginary parts. 

We shall do the integrals of successive complexity by induction. 
We start with the simplest convergent one, and show 

X ( ka- 2pa. k - 

J'dlk(ka-L)-J= (8iL)-1. (10a) 

For this integral is  f (2a)-2dk,dJK(k,*-K.  K - L p  where the 
vector K ,  of magnitude K - ( K .  K ) i  is  k I ,  k?, k I .  The integral on 
k, shows thirdorder polesat k , = + ( P + L ) t a n d  k , = - ( K ' + L ) i .  
Imagining, in accordance with our definitions, that L has a small 
negative imaginary part only the first is below the real axis. The 
contour can be clused by an  infinite semi-circle helow this axis, 
without change of the value of the integral since the contribution 
from the semi-circle vanishes in the limit. Thus the contour can 
be shrunk about the pole k,=+(IC*+L)l  and the resulting k, inre- 
gral is - 2 a i  times the residueat this pole. Writing k 4 =  (Ka+L)b+e 
and expantling (k4*-K2-L)-3= 0 ( ' + 2 ( K * + L ) b ) - *  in powers of 
6,  the rrziduc, being the coefficient of the term (-1, i s  seen to he 
6(2(K*+L)i)-s  so our integral is 

- ( 3 i / 3 2 a ) J r  41R2dl((K2+L)~L'2=(3/8i)(1/3L) 

establishing (100). 

k space. We w i t e  these results as  
We also have fk.d4kR:ka-L)-3=0 from the symmetry in the 

(8' I )  J' (1; ke)d'h(k2-l)-- l= ( I ;  0) L-1, (114 

where in thc Iirackets (1; k.) and (1; 0) corresponding entries are 
to he used. 

Suhstituting k=k'-Pin(l la) ,andcal l ing L-$*-Ashowsthat 

( S i ) J ' (  1; k,)d'k( k'-2p. k-A)-'= (1; p o ) ~ + A ) - l .  ( IZa) 

By differentiating both sides of (12a) with respect to A, or with 
respect to  p, there follows directly 

(24' I )  J' (I; k.; k .k , )dr(ka-2p.k-A)- '  

= - ( I ;  pc; P.P7-16e,W+A))W+A)-1. ( W  

Further differentialions give directly successive integrals in- 
cluding more k factors in the numerator and higher powers of 
( k 2 - 2 p . k - A )  in  the denominator. 

The integrals so far only contain one factor in the denominator. 
To  obtain results for two factors we make use of the identity 

a - l b - ' = l  dx(as+b(l -x ) ) - ' ,  (14a) 

(suggested by some work of Schwinger's involving Gaussian inte- 
grals). This represents the product of two reciprocals as a para- 
metric integral over one and will therefore permit integrals with 
two factors to he expressed in terms of one. For other powers of 
a, b, we make use of all of the identities, such as  

a-'b-l=J; 2xdx(ax+b(l -x))-a, ( W  

deducilde from (14a) hy successive differentiations with respect 
to a or b. 

To perform an  integral, such as 

(8 '  I )  J' (1; k,)d'k(k'- Zp1. k -  At)-'( &'-2pa. k-Az)-', (164  
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write, using (lSa), 

( k 2 - 2 p i . b - A i ) l ( k 2 - 2 ~ z ~  k-Az) - '=  2 . d x ( k 2 - 2 p ,  .k-A,)-' ,  x 
where 

P z  = x p ~ +  (1 - x ) p ~  and A , = x A l +  (1 - x ) A * ,  (17a) 
(note that A* is not equal to ni2-p.2) so that the expression (16a) 
is (8i)fo'Pxdxf(l; k , ) d ~ k ( R z - 2 p , . k - A , ) - r  which may now be 
evaluated by (12a) and is 

( 1 6 a ) = x  (1; p r o ) 2 r d . ~ ( P . * + A P ,  ( 18a) 

wherep., Ax aregiven in (17a). The integral in ( 1 8 ~ )  is elementary, 
being the integral of ratio of polynomials, the denominator of 
second degree in x.  The general expression although readily oh- 
tained is a rather complicated combination of roots and logarithms. 

Other integrals can be ohtained again by parametric differentia- 
tion. For example differentiation of (16a), (18a) with respect to 
A2 or p z ,  gives 

( S i l l (  I ;  k,; k .k , )d 'k(k2-2pl~  k-Al)*(k2-Zpp. k-Az)\z 

= -l (1;P=.;P..P=,-f6,,(p,2+A,)) 
XZx(1 - X ) ~ ~ ( P ~ ~ + A ~ ) * ,  (19a) 

again leading to elementary integrals. 
As an example, consider the case that the second factor is just 

(R2-L)- '  and in the first put  p ~ = p ,  A , = A .  Then p.=r#,  
A z = x A + ( l - x ) L .  There results 

( 8 i ) s ( 1 ;  k.; k,k,)d'k(kz- I . ) -2 (&2-2p .  k - A ) - 2  

= -1 ( I ;  zP.; ~ZPnP,-~6nA~aP+3x))  
X 2 r ( l  -z)dx(.rzpz+Az)-~. (2Oa) 

Integrals with three factors can he reduced to those involving 
two by using (14a) again. They, therefore, lead to integrals with 
two parameters (e.g., see application to radiative correction to 
scattering below). 

The methods of calculation given in this paper are deceptively 
simple when applied to the lower order processes. For processes 
of increasingly higher orders the complexity and difliculty in- 
creases rapidly, and these methods soon become impractical in 
their present form. 

A. Self-Energy 
The self-energv integral (19) is 

( e a / r i ) j y , ( p  - R - ni)-1r,k-2d4kC( k y ) ,  (19) 

so that It requires that n.e find (using the principle of (8a)) the 
integral on L from 0 to'A2 of 

Jy,@- k+tn)r,d'k(!4- L)-2(&'-Zp,  k)-I, 

since ( P - R ) 2 - m 2 = k 2 - 2 p ~ k ,  asp2=iti2. This is of the form (16a) 
with A I = L ,  p l = O ,  Az=O, j z = p  so that (18a) gives, since 
).= (1 - x ) P ,  A== xL, 

(8 i )1 (1 ;  k.)d'k(&Z- L)'(k*- 2p.k)-'  

= 6' ( 1 ; (1 - x)p , )2xdx(L l  - x)'>>,'+%L)-', 

or pcrforming the integral on L, as  in (8) ,  

(8i).f( I ;  k. )d4kk- 'C(k~)(k*-2p .  k)-1 
= ~ ( l ; ( l - x ) p . ) z d x I I l  xX2+(1 -x)*m2. 

(1 - x ) W  
Assuming now that V>>d we neglect (l-x)2ni2 relative to 
x i 2  in the argument of the logarithm, which then becomes 
(A'/my)(x/(l-x)2). Then since SQ'dx ln(x(l-x)*)=l and 

so that suhstitution into (19) (after the @-&-m)-' in (19) is 
replaced by ( p - - R f m ) ( k ' - - P p . k ) - ' )  gives 
(19) = (e2/8r) y e [ @ +  m) (2  ln(A2/!n*) + 2) 

(20) 

using (4a) to reniove the y,,'s. Thisagrees with Eq. (20) of the text, 
and gives the self-energy (21) when p is replaced by m. 

-P(h(A'/m') - 4117" 
= (e2/8*)[8nr(ln(X2/r~r2)+ 1) -p(2 ln(A2/?n2)+5)], 

B. Corrections to Scattering 
The term (12) in the radiationless scattering, after rationalizing 

the matrix denominators and using p12=.bfl=m2 requires the 
integrals (9a), as  we have discussed. This IS an integral with 
three denominators which we do in two stages. First the factors 
( k z - 2 p l . k )  and (k2 -2pz .k )  are combined by a parameter y ;  

( k Z - 2 p ~ ,  k ) - - l ( k 2 - 2 p 2 .  k ) - l = l  d y ( k 2 - 2 ~ ~ .  k) -y ,  
from (14a) where 

We thcrcfore need the integrals 
h= yP1+(1-y)Pz .  (214  

(8i)I(l; k.; k , k , ) d ' k ( k z - L ) - 2 ( & * - 2 p y . k ) ~ ,  (22a) 

which we will then integrate with respect to y from 0 to 1. Next 
wedo theintegrals (22a) immediatelyfrom ( 2 0 4  withP=Pv,  A = O :  

-f607(*lg,l+(l - x ) L ) ) Z x ( l  -x)dx(9ju2+L(1 - ~ ) ) - ' d y .  
We now turn to the integrals on L as required in (8a). The first 
term, (I), in (1; k.; k#k.)  gives no trouble for large L, but if I. 
is put  equal to zero there results x-2pu-2which leads to a diverging 
integral on x as x-0. This infra-red catastrophe is analyzed lip 
using A m i n Z  for the lower limit of the I. integral. For the last term 
the upper limit of L must be kept as  P. Assuming A.,,n2<<p,z<<V 
the x integrals which remain are trivial, as in the self-energy case. 
One finds 

- (8i)S(k1--,i.2)-'d'kC(k1- A,,.2)(&2-2p,~k)-'(kz-22p~~k)-' 

=11 Pu-'dy ln@~2/An,in2) (23a) 

- (Xi )~k .&-2d'kC(&2)  (RZ- Zpl.  k)-I (R2-2p~.k) -I  

=2J' PU..Pv*dy, (24a) 

=s,' Pu.pu,Pu-2dy-46., ,~' d y  w ~ ~ P ~ - ~ )  + IS.,. (2Sa) 

- (8i)~k,k,k~'d'kC(k')(&2-2p~~k)~1(&2- 2 p 2 . k ) F 1  

The integrals on y give, 

.l' pv-zdy In(p,*X,i.-z) = 4 ~  sin2e)-fe ln(mAmjn-t) 
- I  

- L o n  tanoldor], ( 2 6 ~ )  
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These integrals on  y were performed as follows. Since p2=pl+q 
where q is the ~iionientuni ciirrird by the  potential, i t  fo l loa~s  from 
pI1=p,z=d tha t  2 p , . y =  -qz so tha t  since pg=p>+q( l -y ) ,  
p,~=nt~-q*y( l -yj .  'llie aulistitution 2y--l=l;rrinjtnirR \vhcrt: 8 
is delinecl l ~ y  4td sin28-qs is usclul f a r  i t  nic:~nsp~2=- m? scc%r;sccv 
and pU-2Jy=(m2 sin?@) 'dn where n aoes from - 8  to +8. 

These results iarr sulist i tutcd i n t o  the  original scattcriiig iorinula 
(Za), giving (22). I t  has  been siiiiplificd by frequcnl use o f  t h e  
fac t  t h a t  p,  operating on  the initial s ta te  i s  in, and likewise pz 
when it  appears a t  the  left is replacable by WI. (Thus,  to siniplify: 

yIIptap-p17,,= -2p,ap~ I JY  ( 4 4 ,  
= -Z(Pz-q)o(Pl+q) = -2(m-q)o(ni+q). 

A term like gag= -qza+2(~.y)q is equivalent to jus t  -y2a since 
q=p2-pI=in-m has  zero matrix element.) T h e  renormalization 
term requires t h e  corresponding integrals for the  special case 
q=o.  

C. Vacuum Polarization 
'The cxlwrssims (32) anrl (32') For I , ,  i n  the v i i c u i ~ t i i  jrolariza- 

tion I)rol,leni rcquirc the calculatimi of the intcgrnl 

J, , (m*)= - ~ , ~ ' . s P c 7 " ( P - ~ q + ~ ~ i ) ~ " ( P + ~ q + ~ l l ) l d ' p  

X((p- +qjz-  ~ ~ ~ ' ) - ' ( ( P + ~ q ) ~ - J ~ l * ) ~ ' ,  (32) 
wherc i < c  liave rrplaccrl p by p - d q  to simplify the cillciilatioii 
snniewliat. W c  shall indicate the nirthod of calculation by studying 
the  integral, 

I ( i n Z )  J 'p .p ,ddp( (p -  157)~- rn*)-'(w+ iq)*- i i i z ) - - ~ .  

T h e  factors i n  the  ilenoniinator, pz-p.q-inz+fqz ;ind p 2 + p . q  
- r f P +  : q 2  are cnmliirted as usual liy (8a) but  for symmetry  we 
sulritittite . s = 4 ( l + v j ,  ( I - x j = i ( l - q )  and integrate q from 
- I  to + I :  

I(t,12j=.c p l p , d ' p ( p i - q p . ~ - ~ l r l + t Q 1 ) - 2 d n i Z .  (30~) 

n u t  the intrgral on p will not he found in our list for i t  is badly 
divurjieni. However, as ilisciisscd in Section 7, Er;. (32') w e  do not 
wish I(v12j h u t  rather ~ u " [ I ( ~ ~ ~ a ) - l ( ~ ~ P + h 2 ) ] C ( X ) ~ X .  \Ve can  
calculate the difference I ( n r 9 ) -  I (n i '+X' )  by tirst cxlcolating the  
derivative I ' ( d + L )  of I with respect to ?ii2 at &+L and later 
integrating L froin zero to Xz. B y  diflerentiating (30a), u i t h  
respect to ~II' find, 

Z'(,nz+ L ) = , c  p.p,d4p(P1-qp.q-tn1- L+!qz)-'dv. 

This still diverges, bu t  we can  differentiate again to get 

X " ( d +  L )  = 3 A i  p , p , d ' p ( p ' - v p . q - m z - ~ + ~ q * ) - ' J v  
(31al 

= - (8i)-Ir1 '  ( ~ q * q 0 q , D 2 -  46 . , ,P1)d7  

(where D =  !(?*- I)q*+n?+L), which now convergesand hns hren 
evaluated by (13a) w i t h p = i q q  and  A=inz+L-iq'. Now to get 
I' we niny integrate I" with respect to L as a n  inilelinite integral 
and we i w y  choose u i iy  cuimetiienl u r b i l r n r y  consl i i~rt .  This is bemuse 
a constant C i n  I' nil1 mean a term -Cia  i n  I ( i n 9 j - l ( v S + A 2 j  
which vanishes since \ye wil l  integrate the  resiilts t imes C(X)dX 
ant1 J?A2C(X)dX=0. T h i s  i i icans tha t  the  logarilhni appcariiig on 
integrating I. in (31a) presents no problem. W e  m a y  take 

l ' ( n P t L )  = (8WC Cf?q&D-l+ta.T lnDld?+C6,,, 

a subsequent integral on L and finally o n  v presents no new 
problems. There  results 

- (8 '  L) .f p p d ' p ~ ( p - ~ q ) ~ - l l l ~ ) - ~ ~ ~ + ~ q ~ ' - l l l * ) - '  

where we assunie X2>>in2 and have  put snnie ternis in to  thc arhi-  
t r w y  constant C' whirh is indelmxlent u l  A2 (but  i n  1)rincilile m u b l  
delrcnci on 42) and which Omps o u t  III  he integral on C(X)dX. \\Je 
have  set q'= 4uP sin'8. 

I n  a very similar wny llir intcgrxl wit l i  PN? in l l i c  nunirrxlur can  
I J ~  worhed out .  I t  is, of coursc. ncressal-y to ililTcrciihLr this wt2 
also when calculating I' a n d  I". 'Thcre rcsults 

- ( 8 i ) S n d d ' p ( ( p -  $ q p  I I&~) - ' ( (P+ $q)*-!ii*)-' 

(33a) 
with another unimportant constant C". l h e  complete problem re- 
quires the  further integral, 

- (Si)J'(l; p.)d4p(@- 4q)l- inz)- ' (@+ 4qP- 
= ( I ,  0 ) 1 4 ( 1 - ~ r t 1 1 s ~ + 2  I n ( A 2 , c 2 ) )  (34a) 

l ' l i c  \,:~Iuc ,of tlir intcjiral (.WL! tiiiics w? diifcrs l r o m  (33n). d 
course, I ~ w a u ~ c  l h c  results 011 IIW right :arc ii<,t ar.lually the intc- 
gmls on t h e  lclt, t,iit rather eqii31 Ilwir : i c tu i i l  V . I I I I C  minus tlicir 
valuc lor )ti2= M +  A'. 

Cnml>itiing thcsr cluantities, as rctluire<l I,y (32),  <lrqq>iirg the 
c u n s t m t s  C', C" anil cvaluating t h r  51)iir gives (33). l h c  q m r s  a re  
ev;rlu;itcrl in the  usual !ray, iic>ting that the  spur of a n y  odd 
nunilier of y matrices vaiiislieb atiil Spi.1 B )  =Sp(B.I)  for arbi- 
trary .I, 8. T h e  S p ( l ) = l  nnil we alsn have  

= 4iiiZ(1- B ctnb') - q2/3 f 2(h* +m*)ln(Kti~-* + 1) - C'XZ), 

?spC(p,+"',)(P*- I l l d l  = p , .  p*-  l l l , I I i Z ,  

= (PI ' p2 - tll,m2)(p, ' p , -  llt31tI,rc) 

- ( ~ ~ . 8 3 - i i i ~ i n ~ ) ( p ~ . p ~ - m ~ i n ~ )  

( 3 5 4  
fsP[(P!+lJt~) ( p z -  m)(grt- J l l d  ( p 4 - V l 4 )  1 

+ ( P ~ . P , - i n ~ ~ i r , ) ( p ~ . p 3 - m 2 , n l ) ,  ( 3 6 4  
where p., in. are a rh i t ra ry  four-vcctc,rs and cnns tmts .  

I t  is interesting tlint the  tcrnis of orclcr X2 1nX2 go nut,  so t h a t  
the charge reiinrnializatioii ~ l q m i ~ l s  only lo.g.irithmiciilly on  X1. 
This is not t rue  for some of the incson thcvries. Elrctrudyiianiics 
is suspiciously unique in the  mildness of its divergence. 

D. More Complex Problems 
Matrix elements for coniplcx p r o l h n s  can be set  u p  in a 

manner analogous to t h a t  used for  t h e  siiiipler cases. N'e give 
threc illustrations; higher order corrections to l l ie  ;2l$llcr scatter-  

H; 
a. 



118 

788 I < .  P .  F E Y N h l A N  

itig, t o  tlir Comptun scattering, and the interaction 01 R tieuirrm 
>\i l l1 iiti elcctroinagnetic iielrl. 

l o r  the My(1lcr scattering, consider two electrons, one it, state 
I(, o f  niot i ict i tum PI and the other i n  state ti2 of monieniuni p2. 
Later thry arc found in states ti3,  ps arid u,, p,,  T h i s  may happcn 
f l i t s !  nt i lcr i n  c.?/hc)  because they exchange a quantum 01 nionieti- 
tun1 ~ = P I - $ , ~ = P I - P ~  i n  the manncr of I q .  (4) and Fig. I .  l l i e  
ni i i t r ix elct i ient  for this process is proport iot ial  t o  (translat ing (4) 
to momentum space) 

( ti4yFwj (iiJyptiJq-? (378) 
We sltiill discuss cnrrections to (37a) to the  next order iri ~ / R c .  
(There is also the possil>ility that i t  is the  elcctrnti a t  2 uhirh 
fiii:illy iirriYcs ;it 3, the electron at 1 going t o  4 through the ex- 
change of cluantuni o l  nionicntuni PJ-P... The aiiil,litucle for t h i s  
I I r t w s s .  ( i i , , ~ ~ i ~ ) ( i i ~ . , ~ i ~ ~ ) @ ~ - p : ) ~ ~ ,  niust Ire sul,tracted froni 
(370) ill accoriiancc n i i h  thr rxclusion Ipriiirililc. A siniili ir sititii- 
t iw i  exists t u  rach order so t l m t  IYC need crlnsider in r lvtai l  otily 
l l i c  c o t r v c l i o i i s  10 ( 3 i a ) ,  rcservinx to  t h e  last the sul i i ract ion 111 
IIN \ :11tw tcrtns will, 3 ,  4 rnclnnj icd. j  

Otir rrnson that ( 3 7 ~ )  is niorlifierl is that two quanl;i niny IK 
cscIi:insc<I, in t h e  niant icr  of Fig. an. l l i e  total matr ix  elc inet i t  
Icir all cxclianges o[ l h i s  type is 

(eZ / r i j j ' (  tiJyv(p,- k - t i t ) - l y " , i , ) ( i i , y " ( p z t  k - i i i ) - 'yp i i2)  

k-z(q-  kJ-Zd'k, (38aj 
as i s  clcxr Irnm t h c  figure and the general r u l e  tliat electrons of 
niotiieiiLuni p cnntr i l~utc. i t t  at i ipl i t i idc @- ni)-' Iretween i t i tcr- 
actions yIl ,  anil  t l iat quanta of nwmct i1u t i i  k contr i lmte k-?. In 
integrating on d'k ancl summing over and Y .  we add a l l  altcrna- 
t i w s  o l  tlic t ! ] ~ !  u l  Tip. Ra. I1 the t i m e  of almxli t ion, y r ,  01 ~ h c  
qii i intui i i  k I I ~  elfclron 2 is later than the al)horptioii, 7 " ,  01 q - k ,  
t h i s  corrcspmi'ls to tlie \.irtuRl state pI+k Iicing a positroti (so 
tha t  (38a) coiitii ins over th i r ty  tcriiis of t h e  ronventiot inl mct l io i l  
d analysis). 

In integrating over all these altertialives we have considered al l  
possilile distartioiis o l  Fig. 8a n h i c h  1)reserve the order oi events 
along t h e  trajectories. \Ve have not included the possil)ilities 
corrcslinnding to Fig. 811, however. T l ic i r  contr i l iut ion is 

(c2/ri)j '(tilyI(pi- k- i i i )- 'yUti , j  

X (iio.@z+q- k -  ~ r i ) - ~ y , t i ~ )  k - z ( q -  k )  -2d'k, (39a) 
as is readily verified by hl ic l i t ig  the dingrani. The contrihulions o f  
nll I m s s i l i l e  uxys that an event can occur are to h e  added. This 

/ / 

0 

-7' h 
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momentum PI before the collision to that  characteristic of an 
electron moving in a new direction p z  after the collision. 

The complete expression for the correction is a very complicated 
expression involving transcendental integrals. 

As a final example we consider the interaction of a neutron with 
an electromagnetic field in virtue of the fact that  the neutron may 
emit a virtual negative meson. We choose the example of pseudo- 
scalar mesons with pseudovector coupling. The change in ampli- 
tude due to an electromagnetic field A = a  exp(-iq.s) determines 
the scattering of a neutron by such a field. In  the limit of small q 
it  will vary as 9 s - a q  which represents the interaction of a par- 
ticle possessing a magnetic moment. The first-order interaction 
between an electron and a neutron isgiven by the same calculation 
by considering the exchange of a quantum between the electron 
and the nucleon. In  this case a" is 4 - 1  times the matrix element of 
rp between the initial and final states of the electron, the states 
differing in momentum hy q. 

The interaction may occur because the neutron of momentum 
P I  emits a negative meson becoming a proton which proton inter- 
acts with the field and then reabsorbs the meson (Fig. 10a). The 
matrix far this process is &==p1+q),  

Alternatively i t  may he the meson which interacts with the Beld. 
We assume that  it does this in the manner of a scalar potential 
satisfying the Klein Cordon Eq. (3S), (Fig. 10h) 

- l ( r s k d ( p , -  k ~ - ~ ) - l ( r ~ k , ) ( k * l - ~ a ) - l  

X ( k z . a + h .  a)(k?- ul)-'d4kl, (42a) 
where we have put ha- kl+q.  The  change in sign arises because 
the virtual meson is negative. Finally there are two terms arising 
from the y b a  part of the pseudovector coupling (Figs. I&, 10d) 

J'(Y&) (pl- k-  M P ( y 5 a ) ( k a -  $)-ld4k, (43a) 
and 

Using convergence factors in the manner discussed in the section 
on meson theories each integral can he evaluated and the results 
combined. Expanded in powers of q the first term gives the mag- 
netic moment of the neutron and is insensitive to the cut-off, the 
next gives the scattering amplitude of slow electrons on neutrons, 
and depends logarithmically on the cut-off. 

The expressions may he simplified and combined somewhat 
hefore integration. This makes the integrals a little easier and also 
shows the relation to the case of psoudorcalar coupling. For 
example in (4la) the final yb& can be written as  ys(k-pt+.K) 
since pl-M when operating on the initial neutron state. This is 

NEUTRON, 

/I 

/NEUTRON I 
I !I a. /!I b. 
I .  I 

FIG. 10. According to  the meson theory a neutron interacts with 
an electromagnetic potential a by first emitting a virtual charged 
meson. The figure illustrates the case for a pseudoscalar meson 
with pseudovector coupling. Appendix D. 

(p~-k--M)rsCZMys since rn anticommutes with P I  and k.  The 
Brst term cancels the ( P t - R - M ) - l  and gives a term which just 
cancels (43a). In  a like manner the leading factor yak in (41a) is 
written as  -2Mrt.-rb@z-k-M), the second term leading to a 
simpler tcrm containing no (p*-k-M)-' factor and comhining 
with a similar one from (44a). One simplifies the y ,k ,  and rrka 
in (42a) in an  analogous way. There finally results terms like 
(41a), (42a) hut  with pseudoscalar coupling 2Mya instead of 
ysh, no terms like (43a) or (44a) and a remainder, representing 
the difference in effects of pseudovector and pseudoscalar coupling. 
The pseudoscalar terms do not depend sensitively on the cut-off, 
hut the difference term depends on it logarithmically. The differ- 
ence term affects the electron-neutron interaction hut not the 
magnetic moment of the neutron. 

Interaction of a proton with an electromagnetic potential can 
he similarly analyzed. There is an effect of virtual mewns on the 
electromagnetic properties of the proton even in the case that the 
mesons are neutral. I t  is analogous to the radiative corrections to 
the scattering of electrons due to  virtual photons. The sum of the 
magnetic moments of neutron and proton for charged mesons is 
the same as  the proton moment calculated for the corresponding 
neutral mesons. In  fact i t  is readily seen by comparing diagrams, 
that for arbitrary q ,  the scattering matrix to jrsl order in llw 
declromagndic polenrial for a proton according to neutral meson 
theory is equal, if the mesons were charged, to the sum 01 the 
matrix for a neutron and the matrix for a proton. This is true, for 
any type or mixtures of meson coupling, to all orders in the 
coupling (neglecting the mass difference of neutron and proton). 
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Radiative Corrections to Compton Scattering 
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Corrections of order e6 to the differential cross section for Compton scattering of unpolarized radiation 
by electrons are computed. The results for corrections ascribable to virtual photons are finite, relativistically 
invariant, and valid a t  all energies, but contain a term which depends logarithmically on an assumed small 
photon mass A. A cross section of the same order has also been obtained for double Compton scattering in 
which one of the emitted photons has an energy small compared to the rest mass of the electron (with the 
electron initially a t  rest). This contains a term depending on 1nX which exactly compensates the similar 
term arising from virtual quanta in all observable cases. Approximations for low and high energies, as 
well as numerical results, are given. These disagree with results obtained previously by Schafroth. 

HE object of this paper is to obtain the correction T to the differential cross section for Compton 
scattering (Klein-Nishina formula) arising from the 
possibility that the electron may emit and reabsorb a 
virtual photon in connection with the scattering process. 
\\.e shall apply the methods developed by one of us1 to 
obtain an explicit cross section to order e6 for unpolar- 
;zed radiation, valid (in so far as the theory is valid) at 
;d energies. 

Previous workers have shown that the high frequency 
divergences which enter in the straightforward appli- 
cation of perturbation theory to this problem can be 
removed by charge and mass renormalization. Schaf- 
r ~ t h ~ , ~  has obtained a finite &order matrix element in 
relativistic and gauge invariant form. He also showed, 
following the treatment of the analogous problem for 
scalar particles by Corinaldesi and Jost,' that the 
infrared divergence which occurs can be removed by 
addition of the double Compton cross section in which 
the incoming photon produces two photons on inter- 
acting with the electron, and he made explicit evalua- 
tion of the cross section (but not of the double scat- 
tering) in the nonrelativistic and extreme relativistic 
approximations. His results, however, disagree with 
ours in both limits. 

Since the interpretation of any experiment to measure 
the radiative corrections requires a knowledge of the 
double Compton cross section, we have computed this 
also, for the case that one of the emitted photons has 
an energy in the laboratory system which is small 
compared to the electron rest energy. 

After a brief introduction, we shall in Sec. I1 write 
down and discuss the matrix element for the corrections. 

- 
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Section I11 will detail the evaluation of the differential 
cross section. Section IV will be concerned with the 
infrared catastrophe and the double Compton effect. 
Sections V and VI will discuss limiting cases and some 
numerical results. Mathematical details will be reserved 
for the appendices. 

The method of calculating this effect is given by 
F e ~ n m a n , ~  and for brevity we will not repeat the 
discussion here but will simply carry out the explicit 
evaluation of the matrix elements involved. Our nota- 
tion is that of reference 1. 

Some improvement has been made in the method of 
computing matrix elements given in reference l(b). 
This is described here in detail in Appendix Y. 

I. THE KLEIN-NISHINA FORMULA FOR 
UNPOLARIZED RADIATION 

The direct Compton effect, in which a photon of 
momentum q1, polarization el, impinges on an electron 
of initial momentum el, to be scattered as a new photon 
of momentum 42, polarization e2, is represented by a 
matrix element 

with 
W=R+S (14 

R= e2(PI+q1-m)-1el, S= e1(pl-q2-m)-'ez. (Ib) 
The final momentum of the electron is, of course, 

p2= Pltq1-qz. The terms correspond to the diagrams 
of Fig. 1. 

We shall call 

p 3 =  pl+ql= p z + q z ,  p4=pI -  q 2 =  p 2 -  41, ( 2 )  
and define the important invariants K ,  7 by 

m2K= mz-pa2= - 2 p J .  ql= - 292.92, 
m%=m2-p42= 2pI .q2= 2pz .q1 .  (3)  

I n  the laboratory system, with w1 and w2 the energies 
of the incoming and outgoing photons, K is -2wl/m 
and 7 is 2w2/m. I n  terms of the quantities defined in 

6 This problem is discussed in reference 1, Appendix D, p. 788. 
23 1 
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(2) and (3) we have 
m 2 d =  - ez(p3+m)el, m%S= -el(fi4+m)ez. (4) 

The differential cross section for the final photon to  
go into solid angle d0, if the initial electron is at rest 
(laboratory system, P1=myt) is 

d r =  e4d0(w$/Wl2)F (5 )  

F= Iz(W)i12. (6)  

u=t SpC(Pz+rn)W~l+rn)W]. (7) 

where F is the square of the matrix element of W(la), 

If we are uninterested in the spin states of the elec- 
tron, F may be replaced by (2mZ)-'U where 

If, in addition, unpolarized radiation is used and the 
sum over polarization directions is required, el can be 
replaced by and ez by y p  in the spur and half the 
sum over a, P taken (reference l(b), Sec. 8). Then the 
term in (7) which is second order in R is 

t ( 2 m z ~ > d  SpC(Pz+ m) r&,+m) ra(h+m) Y ,, 

The reduction can be accomplished by Eqs. (4a) and 
(36a) of reference l(b). The term of second order in S 
is (8) with K ,  r interchanged, since S is obtained from 
R by replacing P 3  by PC after the average is taken on 
photon polarization. The cross term is 

(2m2~)- ' (2m2~)- '  SpC (Pz+ m) YB ( h +  m) Y a 

x (Ps+m)ra]=4/K2-T/K-2/K. (8) 

x(pl+m)Ya(P4+m)Ya]=8/~r-2/r-2/~. (9)  
The sum gives for U = m z ~ . p i ,  Cpol12(W)11z: 

U=4(~-l+~-1)2-4(K-1+ 7 -1 ) - ( K / r + T / K )  (10) 
and for the Klein-Nishina formula in terms of X ,  T we 
have : 

In  the laboratory system, in view of 
T=  2wz/m and the Compton relation 

wIwz(l-cos(p) =m(wl-w2), 

(11) can be written in the usual way 

du= (e4/2m2)d0(w~2/w,2) ( ~ I / ~ z + o $ w ~ -  sin2 9). (13) 
II. THE e4-ORDER MATRIX ELEMENT 

The diagrams of the first radiative corrections to term 
R of the Compton effect are given in Fig. 2. (See 
reference 1 (b), Fig. 9.) The terms containing the 
analogous modifications of S can be obtained through- 

out by the interchange of el and ez, of 41 and -qz, and 
of P3 and P4. In  the final result this means simply an 
interchange of K and T .  Hence we need study only 3, 
the S terms being obtained from the R terms immedi- 
ately. 

Terms N' and N"- give zero since there are no 
vacuum polarization effects for free photons. 

Terms M' and M" together give a factora r /2 i  times 
R, where 

r = In( A/m) + 9/4- 2 In(m/h) (14) 
as shown in reference l(b), Sec. 6. The quantity A is a 
temporary high frequency cutoff, introduced so that 
each diagram can be separately evaluated. The final 
result will become independent of A as A-m. The 
"infrared catastrophe" discussed in Sec. N is treated, 
a t  this point, by assuming the photons to  have a small 
rest mass A. 

The term L is 

L= ez(p3-m)-1yp(#3- k-m)-' 

X ~ , ( $ ~ - m ) - ~ e ~ k - ~ d ~ k C ( k ~ ) .  (15) 
From this must be subtracted the mass correction for 
an electron travelling between the absorption and 
emission of the virtual quantum. Since (to order Am) 

(P-m-Am)-'= (P-m)-'+(P-m)-'Am($-m)-', 

this gives just the expression for L except that Am 
replaces 

syp(p3- k-m)-'yrk-zd4KC(k2), 

where Am is the mass correction for cutoff A [reference 

S 

l(b), Eq. (21)l: 
Am=im[$+% ln(A/m)]. (16) 

Since this diagram occurs for problems other than the 
one we consider here, we give the result in a general 
way. Each (P-nz-1 propagation factor has, as a 
consequence of diagrams like L, a correction to the 
first order in 8 given by 

(p- m)-'S-y,,(P- k- m)-'yCk-2d4kC(k2) ($- m)-' 

-Am($- m)-z 

= (4i)-l ($-m)-' ln(Az/m2) " 

where m 2 q = m 2 - ~ .  

reserved a factor 8/n-i for later inclusion. 
The factor obtained in reference 1 (b) is - (e3/27r)r, but we have 
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Terms K' and K" again possess a feature common to 
several problems, and we will therefore first discuss it 
in a general way. I n  all problems in which an electron 
interacts with a potential or a free or virtual photon 
there will be a piece of the diagram like Fig. 3. That  is, 
there will be a partial factor in one of the matrix 
elements: 

T= r,(p+q-k-m)-le@-k-m)-l 

X y, k+d4 kC ( k2). (1 8) 

I t  Jvould be most convenient to have this evaluated in 
the general case of arbitrary P and q. However, we 
]lave evaluated it only in the special case that q2=0, 
~ = " 2 ,  with the matrix operating on a state u such 
that pu=mu. Calling m2K= -2p.q it  is (Appendix z) : 

s i r = 4 K - I ~ ~ z e + 2 K - l ( e . p ) q , ~ '  ln( l - -v)du/u 

J 

1-' 

+X(2m2+PP- qP)e 
+ 2 K - I  ( e .  p )  (q+mK) (3 K - 2) ( K  - I)-'] ( K  - h K  

+[2 ln(mz/Az)- l]mze 

- 4(e ' 9) [(q+ m) ( K  - 1 )-I+ QK-']. (19) 

If the final, rather than the initial, state is a free 
electron, the matrix required is p, so the result is 
obtained directly from (19). For term K', this T for 
the case P = $ I ,  q=q1, e=e, is to be multiplied on the 
left by ez(pl+q,-m)-l= ez(Pa-m)-l. Therefore, K' 
xnd the corresponding term K" together give 

K= K'+K"= (8i)-1[ez(P3-m)-1T(P1, ql, el)  
+T' (P~ ,  qz, e d ( ~ 3 - m ) - ~ e ~ l .  (20) 

If we now examine the coefficients of the term 
lll(mz/Az) in K,  L, and M ,  that is in (20), (17), and 

J K' K" L 

M' M" N' N" 
FIG. 2. Corrections to term R of Cornpton scattering. 

FIG. 3. Diagram for the 
expression T.  

(14), we observe that K gives (4m2/8i)R, L gives 
(- 2m2/8i)R, and M gives (- 2m2/8i)R. Therefore the 
terms dependent on A vanish. Since we shall find that 
the. J integral is finite without cutoff, we note that the 
complete result is insensitive to A. 

The term J is given by  

J =  yr@S-k-m)-1e2(P3- k-m)-' 

Xel(P1- k-m) -1y ,k -2d4k .  (21) 

For large K the factors in the integrand vary as k - n  
with nE5 and the integration over K-space therefore 
converges. If we had included the convergence factor 
C(kz),  the result would be independent of A as A-m. 

When the reciprocals are rationalized (e.g., 
(PZ-k-m)-'= ( P z - k + m ) . [ ( ~ 2 -  k)2-m2]-l), powers 
of k ,  up to the third appear in the numerator of the 
integrand. Therefore we shall have to evaluate integrals 
of the form: 

S 

J(0;  m: rr; m.) 

= J(1; k,; k,k,; k,K,k,)[(p2-k)Y-ntZ1-1 

X [ ( p ~ - k ) ~ -  m2]-'[(P1- k)'- fn2]-'k-2d4k. (22) 

That is, for J O  the factor (1; k , ;  . . .  etc.) is replaced 
by unity, for J ,  by k,, for J,, by k,k,, and for J s T v  by 
k,k,k,. The manner in which J can be expressed in 
terms of these integrals is illustrated, for the case of 
matrix T in Appendix Z. 

The J integrals can be worked out by the parametric 
methods described in reference l(b) (Appendix). They 
involve integrals having four factors in the denominator 
and will lead, therefore, to integrals over three param- 
eters. ( Jo  is integrated in this manner in Appendix Y . )  
Generally these are very diflicult to evaluate, although 
J o  is particularly simple. This fact makes it possible 
to circumvent some of the difficulties of J,, J,,, and 
J,,". 

I t  is possible to express these other J integrals as 
linear combinations of the integral J O  and of other 
integrals, all of which involve only three quadratic 
factors in the denominator. These latter, in parametric 
form, require only two parameters (and are much more 
easily evaluated than a direct attack on J,, say, would 
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indicate). This technique is useful in other problems 
also7 and is described in detail in Appendix Y. 

111. CROSS SECTION FOR UNPOLARIZED LIGHT 

If we call the sum J+K+L+M=R('), then 
($/ni)R(') will be the correction to the matrix R of the 
direct effect (1). If the corresponding correction to the 
term S is called (8 / '~ i )S ( l ) ,  the corrected matrix for the 
Compton effect is 

W'= W+(8/ni)W(')=R+S+ (8,''~i)(R(l)+P). (23) 

The absolute square of the matrix element of W', taken 
between the initial and final electron states, gives the 
probability of transition correct to one order in 8 higher 
than (6). We shall calculate in this paper only the cross 
section averaged over spin directions of the electron 
and polarization directions of the photons. 

We need the spur : 

a SpC(Pz+m>W'(Pl+m)WI] (24) 
as in (7). Considering terms up to the first order in e2 
(which are all that are valid), (24) is 

~ - t {  (e2/ni) s ~ C ( P ~ + ~ ) W ( P ~ + ~ ) V ( ~ ) I  

In evaluating (25) for unpolarized light we have re- 
placed el by y n  and e2 by yo and taken one-half of the 
resulting sum as discussed in connection with (8). 
Some algebraic details are discussed in Appendix Z.8 

The last two spurs in (25) are complex conjugates, 
so that the correction to U is - e2/n times the real part 
of 

- (e"/'~i) spC(pz+m)~( l ) (~ ,+m)W1) .  (25) 

U(')= - (49-l S P [ ( P ~ + ~ ) W " ' ( P ~ + ~ ) ~ ] .  (26) 

That is, U is to be replaced in (11) by 

If we let 
U'= U -  (S/n)R.P.U('). (27) 

P(K, T ) =  - (4i)-' Sp[(p~+m)R(l)(P1+m)V] (28) 
then 

U(')=P(K, 7)fP(T, K) (29) 

since the S(l) diagrams are obtained from the R(') 
diagrams (for unpolarized light) by the interchange of 
p3 and p4 and of q1 and -q2;  hence the final result, 
simply by interchange of K and r. 

7 I t  has been applied by G. R. Lomanitz to completely evaluate 
the ee corrections to the Moller scattering cross section of electrons 
in his thesis Second Order Eff t ts  in the Electron-Electron Inter- 
aclia,  Cornell, 1950. Again, in the problem of scattering of light 
by light, the integral with unit numerator is easily done, and the 
other integrals can be reduced to it and simpler integrals alge- 
braically. But here the algebraic complexity makes the problem 
extremely tedious. 

& I n  actual evaluation it was found easier to take the spur first 
and perform the integrals later. Thus, in place of the expression 
T (Eq. 18), the expression T (Eq. A41) was substituted and the 
values of the integrals from Appendix X substituted after taking 
the spur. This has the advantage that some of the integrals do 
not appear, or appear only in simpler combinations. 

The final result obtained in this way is : 

P(K, T ) =  (1-zy Ctnh2y) hlx. u 
- 2y ctnh2y[2h(y)-h(2y)]U 

+[-4y Sinh2Y(KT)-'(2- c0sh2y) 

+2y ctnhy]h(y)+in~) 4y ctnh2y - cosh2y 
[K: 

K2 K 2K 7 

K T  37 37 3 7 8 8 2K-r2- 

2K2 2K 7 K T  K K2 2K2T(K-1) 

K-6 +- sech2y+-------- 1 
2 r  

+-+-+-+ 1 --+---+ 
2 7  3 

27 (K-1)' 

-4y tanhy --- +4 -+- (: 5 )  (: 3>' 
12 3 K  K ___---  

T K  

+terms antisymmetric in K, T ,  (30) 
where 

4 sinh2y= - (K+T) (304 

h (  1 - U)du/u. (304 

This is to be added to the same expression with K and 7 

interchanged (29) and the real part taken to get the 
correction to the Klein-Nishina formula (1 1). 
discuss this result in the following sections. 

We might note here, however, that the real part Of 
P(K,  T )  is obtained by writing In1 K I  for InK and b!' 
writing for GO(K) expression (30c) with h ( l - u )  replacd 
by h(u-1). Since T is always positive, on the other 
hand, P(T, K )  is always real. This is discussed furthe' 
in Appendix W. 

The imaginary part of P(K,  T )  is not without interest* 
as we shall show. This is given by 'A times the coefficien' 
of lnx in (30) plus 'A ln(1-K) times the coefficient 
Go(K) .  

The loss of total intensity of a beam of photons is 
course proportional to the total cross section for .3 

photon to be scattered out of the beam. But t'''' 
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tiecrease in forward intensity is the result of a n  inter- 
ference between the incident photon and a photon 

exactly in the forward direction. Therefore, 
is well known, the imaginary part of the forward 

amplitude is proportional to the total cross 
section (formally this is referred to as the unitary 
p p e r t y  of the S-matrix). We can use this relation to 
clleck the imaginary part of P(K, T )  for the case of 
zero scattering angle (for which, of course, p l = p z ,  
g,=Qz, K = - T ) .  

We write P(K, T) again as a sum 

P(K,  T )  = (4m2i)tCspin Cpoi i(R('))z z ( ~ ) I ,  (31) 
lllld can show easily that z(W),=i/m if there is no spin 
change and no polarization change, and zero otherwise. 
'rhis can be seen, aside from the phase factor i, from 
the fact that for small scattering angles the Klein- 
Sishina formula (13) is du=ro2dQ in the laboratory 
svstem. Since t(R('))z also vanishes when 2(W)l does, 

Hut, including all factors, the complete e4-order matrix 
clement of R(') is (according to reference l(b)) : 

:\lid from the unitary property referred to above, it 
lollows that the total cross section for Compton scat- 
tering to order e4 is just twice the real part of X. 
Therefore, 

(34) 
since 9) has no imaginary part. That (30) satisfies 
this identity can be readily ~ e r i f i e d . ~  

atOt,l(to order e4) = 2R.P.X= ( ~ ~ O ~ / T ) I . P . P ( K ,  T )  

IV. THE INFRARED CASTASTROPHE AND THE 
DOUBLE COMPTON EFFECT 

In Sec. I1 we have derived the differential cross 
section for Compton scattering for unpolarized light, 
including radiative corrections, to order e6. The cross 
section took the form 

with 
du=duX.N.C1+(e2/n)61 (35)  

6 =  - U("/U.  (35a) 
There are two reasons why this result cannot be 

compared directly with experiment. I n  the first place 
L'(') depends on the quantity X to which no experimental 
significance has been attached. In  the second place, it  
is impossible in principle to design an experiment which 
will guarantee that one and only one photon is emitted 
I)Y the electron in the scattering process. The best one 
ran do in an experiment is to require that if a second 
[)hoton is emitted, its energy is less than some value 

W. Heitler, The Quantum Theory of Radiation (Oxford Uni- 
versity Press, London, 1944), p. 157, Eq. (53). Our Eq. (33) agrees 
'vith this result with 7 replacing Heitler's 2r. 

\ 

k,,,. This can be done, for example, by measuring the 
energies of the final electron and photon to some 
specified accuracy, the sum of the errors in the meas- 
urement being less than k,,,. I n  such an experiment 
one would be measuring the cross section (35) plus the 
cross section for the double Compton effect, duo, 
integrated over all possible directions of the second 
quantum and over its energy up to k,,,. 

These two difficulties, both related to quanta of low 
energy (if k,,, is small), in one case virtual, in the 
other real, are actually related. That  this should be so, 
can be seen physically from the fact that it  is difficult 
to distinguish between virtual and real quanta of 
extremely low energy since, by the uncertainty princi- 
ple, a measurement made during a finite time interval 
will introduce an uncertainty in the energy of the 
quantum, which may enable a virtual quantum to be 
detected as a real one. It turns out in fact that duo, 
integrated to k,,,, also contains an infrared divergence 
which just cancels the similar divergence in the radiative 
corrections. We are computing, of course, only to order 
e6, but the multiple Compton scattering of a given 
higher order will also cancel all the radiative infrared 
catastrophes of the same order. 

The problem is analogous to the perturbation theory 
treatment of the scattering of an electron by a potential, 
which has been considered by many workers, except 
that in our case the primary process is the Compton 
scattering considered in Sec. I. The cross section for 
emission of an additional photon Q of energy w goes for 
small w as (d3q/w)  ($z/$z. q - f q / $ l .  q)' times the Klein- 
Nishina formula. Since this diverges as w approaches 
zero, the probability of a single Compton process 
unaccompanied by such emission is zero. What is 
experimentally measured, however, is the probability 
that a Compton process occurs and that no other free 
photon is emitted except for a class of photons inacces- 
sible to the experiment. This is equal, to our order of 
calculation, to the probability of the single process plus 
the probability of a double process in which one of the 
photons emitted is in the inaccessible class. This class 
is, of course, determined by the design of the experiment 
and a single calculation cannot suffice for all experi- 
ments. However, one feature common to all experiments 
will be a finite energy resolution, so that a part of the 
excluded class must consist of photons whose energy is 
less than some energy k,,,. 

We will first therefore find that part of the differential 
cross section for double Compton scattering which gives 
rise to a n  infrared divergence. This will be integrated 
over all the directions of one of the photons, and over 
its energy from zero to a value k,,,, which we shall 
assume is small compared to the electron mass, and 
added to the previously obtained corrected cross section 
for single Compton scattering. I t  has already been 
pointed out that Schafroth2 has demonstrated that a 
cancellation of the infrared divergence occurs in order 
e6 when the double Compton cross section is added to 
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4 -43 I_ PI -43 

I m 

AP2 p4 -43 

4-q3F 4 

+ p4 773 

II: Ip 

1 p2 +43 

P + p2 +43 

42 

FIG. 4. Diagrams for the double Compton effect. Here pa=pl+ql,  
p4=p1-qz; the momentum condition is pl+ql=p2+q2+q3. 

the single scattering cross section, but  we must obtain 
at  least the zero order term in k,,, (for k,,,<<m) to  
obtain a useful result. The completely differential cross 
section for the double scattering has been computed by 
Eliezer,'O but since we wish to make approximations 
and carry out an integration, i t  is simpler for us to 
obtain the desired cross section from the beginning. 

Figure 4 gives the diagrams necessary for computing 
the cross section for double Compton scattering. The 
photon momentum q 3 =  ( W Q ,  q3) is assumed to be small 
in the following (wa<<m). This, of course, implies a 
definite coordinate system. To obtain a finite result we 
assume the photon has a small rest mass A, so that 
$=A'. Keeping terms only to order w 3 ' ,  we neglect 93 
occurring in the numerator of the (rationalized) matrix 
element terms, and terms of order w3 compared to 
p32-m2 and p42-m2 in the denominators. 

We find that terms 111 and IV are not of the desired 
order. In view of the fact that we are to make matrix 
elements between the free electron states u1, and u2, a 
factor (p,+rn)e3 (with e3 the polarization vector of 9 3 )  

operating on the left of u1, is equivalent to 2pl.e3 and 
a factor e3&+m) operating on the right of u2 is 

1oC. J. Eliezer, Proc. Roy. SOC. (London) A187, 210 (1946). 
When the class of photons inaccessible to  the experiment does 
not consist simply of those below a given very small energy kmax 
(but consists, for example, of those in a given solid angle, or with 
a limited momentum component, or having energies too large to 
permit the approximations we have made) the contribution which 
these events make to the measured cross section can be obtained 
from Eliezer's formula. Explicitly, one must add to our result 
(39) the cross section for the double process given by Eliezer, 
integrated over all the photons in the class inaccessible to the 
experiment but which also exceed some arbitrary very small 
energy kmax. The sum, of course, will not depend on k,. .. 

equivalent to 2p2-e,. Thus, with pa small, we get 

Adding these we find the matrix for the double 
Compton process: 

Taking the absolute square of (37) and averaging over 
polarizations and spins in the usual manner, it  is clear 
that we obtain the Klein-Nishina cross section duR,K, 
(Eq. (11)) multiplied by  the following factors: (a) 
d3q3/(2a)3, the density of states for q3 (neglecting its 
effect on the momentum balance, and therefore as- 
suming it is emitted independently of qz), (b) e2, from 
the additional interaction vertex, (c) h / w 3 ,  the 
normalization factor for the photon 43, (d) 

xpo,(---) pz.e3 pl.er =-(---). P2 P I  

P 2 . 4 3  P1.43 pZ.93 p1.43 
We collect these factors and integrate the photon 
momentum over all angles and from q3=0 to the 
sphere [ 43 [ = k,,,, where k,,,C<m. Thus," 

e2 

P z  Pl d3q3 
x J ' q " = k m a x  (F---) . (38) 

1911 =o 2 ' 9 3  P1.43 (q2fA2)$ 
Observe that if we replace d u K . N .  by the cross sectiori 

duo for an arbitrary process of one electron, the result 
(37) is valid for that process with one additional photon 
of small energy in the final state. For if the "small" 
photon 43 is emitted from a n  electron line of momentum 
P where P2#m2, its effect will be negligible. The onl! 
diagrams contributing to the process with q emittcd 
will be those of the original process, modified by the 
emission of q either before or after the original process. 
Thus the factor of (R+S) in (37) will always be the 
factor modifying the original matrix element (for s n d  
q)  and the result (38) is the general result for an ahi. 
trary process of one electron, duo replacing dUK.N.. 

It is most convenient to  impose our restriction 
k,,,<<m in the laboratory system.12 I n  this case, th.e 
result of integrating (38) (expressed in terms of invarl- 
ants) is 

duo= - ( G / * ) ~ u K . N . { ~ ( I - ~ ~  ctnh2y)[1n(2km,,/X) 

with y and h(y) defined in (30). 
-$]+4y ctnh2y[h(2y)- l]), (JY1 

This expression (with X = O )  has been obtained previous'!'. 
See, for example, R. Jost, Phys. Rev. 72,815 (1947), and F. B1OCb 
and A. Nordsieck, Phys. Rev. 52, 54 (1937). 

l2 J. Schwinger, Phys. Rev. 76, 790 (1949) has integrated (@' 
for the case of the scattering of an electron in a potential. 
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When (39) is added to (35) the effect is to replace 

(2(1-2y ctnh2y) Ink-4y ctnh2y[2h(y)-h(2y)]] U 
the quantity 

in U(' )  by 
(2(1-2y ctnh2y)Cln(2km,,)-41 

+Q ctnh2y[h(2y)-h(y)-i]) U. (40) 
We have now arrived at a physically understandable 

result as the quantity kmax which replaces X in U(I) is 
the sum of the experimental uncertainties in the 
measurement of the final energies of the Compton 
scattered photon and electron. Our result can be com- 
pared with an experiment providing the energy resolu- 
tion10 is known and k,,, is sufficiently small. 

Under the limits of validity of our formula, the term 
in (40) containing k,,, is positive, and thus makes a 
negative contribution to the cross section. As the 
energy resolution of a n  experiment improves, it is thus 
found that the measured Compton cross section gets 
smaller. This is reasonable since we are eliminating 
from our observations more double Compton events. 

The expression (35a) for 6 with U(') given by (29) 
and U given by (10) is valid also for the correction to 
the two-quantum pair annihilation and the two- 
quantum pair production processes, provided that for 
the former problem we replace K by - K  and for the 
latter r by -7. This occurs because in writing down 
the matrix element we represent the emission of a 
photon by - q  and its absorption by +q, and because 
B matrix p representing a n  electron also represents a 
positron of four-momentum - p .  However, the infrared 
divergences in these problems are not compensated by 
the corresponding three-quantum proces~es'~ (which 
are not divergent) but by the effect of Coulomb inter- 
action. This will not be discussed further in this paper. 

V. EXTREME RELATNISTIC LIMIT 
The Compton formula (12) can be written in the 

laboratory system, with scattering angle p, as 

We assume I K I > > ~  and consider the three cases listed 
in Table I. This table also lists the approximations 
made in obtaining the formulas for U and U(I) for the 
three cases and the corresponding conditions on the 
laboratory and center-of-mass scattering angles. The 
energies (in units of mcz) of the incoming and outgoing 
quanta are represented in the laboratory system by 
W I  and w2, respectively, and in the c.m. system by V. 
The results are as follows : 
Case I. 

u= 2 
u(')=4(1- 2y ctnh2y) 1nX-8y ctnh2y[2h(y)-h(2y)] 

+4yh(y)  ctnhy+lnl K [  (4y tanhy- 1) 
-- -29-4y tanhy+3-(1nI K[)'-7?/6. (42) 

(K+ 7 ) / r  = + K (  1 - COS Ip) . (41) 

"Note that the two quantum pair processes are symmetric 
uith respect to interchange of P I  and p~ so that (37) vanishes. 

-In I+- -In - +r2 . (43) ( 1) 111 1 
Case 111. 

u= - K / 7  

The corrected cross sections, in the relativistic limit 

(45) 

are given in the laboratory system by 

du= (r02/2)dQ(72/~2)[ u- ( e 2 / r )  u(')] 
and in the c.m. system by 

du= ( ~ , ~ / 8 v ~ ) d Q [ U -  ( e 2 / a ) W ) ]  (46) 
with ro=8/mc2. 

As we have explained in the previous section, for 
actual comparison with experiment one must add to 
(45) the cross section for double Compton scattering 
(35) which is valid, of course, only in the laboratory 
system with kmax<<m. If we write (39) as 

d u ~ =  ( - e ' / ~ ) ( r 0 ~ / 2 ) d ~ ( ~ ~ / ~ ~ )  UD (47) 
then we must replace U(') in (45) and (46) by U(')+ UD. 
For our three cases, we get: 

TABLE I. Approximation made in obtaining the extreme 
relativistic limit of (30), expressed in invariants, laboratory 
system quantities, and c.m. system quantities. 

Lab system 
Case Defined by Leads to conditions c.m. conditions 
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FIG. 5. Plot of 6'= - W)/U-2(1-2y ctnh2y) I n X  for 2.62 Mev 
and 17.6 Mev as calculated from the exact expressions (29) and 
(30) (solid curve). The dotted curves are calculated from the 
extreme relativistic formulas (42), (43), and (44), and are num- 
bered accordingly. 

Case I. 
Same as (39). 

Cases I1 and 111. 

U D =  U(2(1-22y)[ln(2K,.,/h)--] 
+ ~ A ~ + ( ~ / 2 4 ~ ) - - 1 1 ~ .  (48) 

In  Fig. 5 we have plotted a comparison of the exact 
expression for - U( ' ) /U  (leaving out the term propor- 
tional to InX) with the limiting cases expressed by (42), 
(43), and (44). That is, if we write U(l)=a InX+b, we 
have plotted - b /U.  Especially simple formulas result 
forb in the extreme relativistic limit for the cases p = O  
and (p= 180". At zero angle (where incidentally, the 
double Compton effect and the 1nX term in U(') vanish) : 

b(Oo)  = -ln~(l+lnr)+1.355. (49) 

(50) 
A t  180 degrees, 

b(180") = - 4.225 U. 

Another simple case results from the condition 
K= - 27, in the extreme relativistic limit. This corre- 
sponds to 90" scattering in the c.m. system. Here we 
get U=5/2  and 

b(90", c.m.)= (29-33y-2.29)U. (51) 

TABLE 11. Percent correction to the Compton cross section for 
unpolarized light arising from Eq. (30), excluding the term 
proportional to lnX, a t  zero degrees and a t  ninety degrees in the 
c.m. system; computed as a function of the laboratory energy of 
the incident photon from the special equations (49) and (51). 

Laboratory energy -(ex/*) b(Oo)/U - (c2/*) b(90O. c.m.)/o 
Mev Dercent Dercent 

50 3.80 -0.32 
150 5.26 -0.87 
300 6.41 -2.13 
lo00 8.80 -4.35 

A few results for high energies computed from (49) 
and (51) are given in Table 11. At 180", the quantity 
- (e2/7r)b/U is +0.98 percent. 

VI. NONRELATIVISTIC LIMIT 

In  the nonrelativistic or Thompson limit our results 
will be equally valid in the laboratory and c.m. systems, 
since we will keep only the first nonvanishing terms. 
In the c.m. system, we let the scattering angle be p and 
/ q , / = / q , ( = w . T h e n  

K =  -291.571~ -2[(1+W2)'C0+U2] 
T =  2pl .  pz= 2[(1+ W 2 ) t W + U 2  COSp], 

(52) 

so that for w<<l : 

K=-2w(l+w+W2/2+. ..) 
7=2w(l+w coscp+w2/2+...) . (5.3) 

Since K depends only on w and d7=w2dC2/x, Eq. (11) 
becomes 

au=(e4/2m2)dR(1-22w+2w*+. . .)[u-(e2/1r)u(1)]. (5-1) 

In  Table 111 we give the nonrelativistic limits of 
functions occurring in U(" (Eq. 30). A straightforward 
calculation then yields : 

u= l+cos2cp+O(w) (55) 

+(l+coscp+cos2cp-$ C O S ~ ~ ) ~ W ~  1 1 1 ~ + 0 ( ~ ~ ) .  (56) 

The angular dependence of the 4w2 Inw term is plotted 
as f(p) in Fig. 6. Expression (56) disagrees with the 
result of Schafroth., 

Since ( 1 / ~ ) +  ( 1 / ~ )  = $( 1 -cosp)- ( 4 2 )  sin2(p in the 
c.m. system and the same invariant is $(l-cos6') in 
the laboratory system, with 6' the laboratory scattering 
angle, it  is clear that cosS=coscp+O(w) for given K ,  7. 

Also, since K + T =  - 2wlw2(l -cos6') = - 2w2( 1 - cosp) 
and wl=w2+0(w12), we get that w l = w + O ( w 2 ) = w ~  and 
therefore (56) is valid with p interpreted as the labora- 
tory scattering angle and w the incident photon energy. 
Equation (5.5) is valid, with this interpretation, to 
order w2. 

The double Compton effect (39) gives in this limit 
(with U D  defined as in (47)) 

U(1) = - (4/3)w2( 1 - coscp) U 1nX 

uD= - (4/3)w2(1-~0sp)U ln(2k,,,/~)+0(w2). (57) 

I t  will be observed that all the corrections vanish in 
the zero energy limit. 

APPENDIX W. O N  T H E  TRANSCENDENTAL 
FUNCTIONS G g ( ~ )  A N D  h ( y )  

The complete expression for the radiative correction 
(29) is expressed in terms of the relatively unfamiliar 
transcendental integrals G ~ ( K )  and h(y ) .  These call 

both be expressed, however, in terms of one of the 
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so-called Spence functions,14 namely 

L(x)= ln(l-u)du/u (Al) I= 
which we shall consider briefly. 

It is well known that L(- 1) = ?r2/12, L(1) = - =2/6. 
If x < l ,  

J n  

where 

i (x)=J ' lnl  l -ujdulu.  

For computational convenience, we can also write for 
z > l :  

i (z)=L(l)+J1 in(--)- 1-v  dv 

11. 

= -)r2-L(l/x)++(lnx)2, 644) 

and in a similar manner 

L( - x) = ( r 2 / 6 )  - L( - l/x)+f(lnx)2. (AS) 

Since K =  (m2--p32) is always negative, GO(K) 
=2K-'[L(1-K)-L(1)] has an imaginary part whose 
sign is not determined by  (A3). T o  fm the sign we must 
recall that according to the scheme of reference l(b), 
all photons and electrons are considered to have a 
small additional negative imaginary mass. Thus K has 
a small positive imaginary part, i.e., K= - I K /  +is with 
6 vanishingly small. Therefore 

G ~ ( K )  = 2~-'[i(1- ~) -L( l ) ]+ i r2~- '  h ( 1 -  K ) .  (A6) 

(Similarly, the term InK in (30) is equal to In I K I  +ir.) 
We might also note that since 7 is always positive, 
Go(T) has no imaginary part. 

Thus if - ~>>1, 7>>1 (from A4, AS) : 

Go(K)h.2K-'[f(hlI K1)'-(T2/6)+iT ltll K I ]  (A7) 

Go(7)5=27-1[4(ln7)2+ (r2/3)]. (AS) 

l4 For references see Fletcher, Miller, and Rosenhead, A n  
Index of Mathmatical Tables (Scientific Computing Service, Ltd., 
London, 1946), p. 343. 

.'t 
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FIG. 6. Angular dependence of nonrelativistic limit of U(1) 
(without Ink term). 

Our other transcendental function 

h(y)= y - ' ~ ' . d .  ctnhu 

can also be expressed in terms of L(x) .  Integration by 
parts gives 

h(y)  = In(sinhy) - y-' In(sinhu)du. (A9) 

Letting t = c Z u  yields In(sinhu)=ln(l-t)-ln21 and the 
integral is obtained directly: 

h(y)  =ln(2 sinhy)-y/2+(2y)-1[?r2/6+L(e-2u)]. (A10) 

If y is sufficiently large that we can neglect c 2 u  com- 
pared to unity, we get 

0 

JV 

h ( y k ( r / 2 ) +  (r2/1 2y). (Al l )  

APPENDIX X. TABLE OF INTEGRALS 

In this appendix we will simply list the integrals 
which enter this problem, reserving for Appendix Y a 
discussion of the methods used. To simplify the presen- 
tation of the integrals (which occur also in other 
problems) we introduce the following definitions : 

For factors of the denominator we write k2-2p1.k 
=( I ) ,  k2-2p2.k=(2), k2-2p3.k-~=(~) ,  k 2 = ( 0 ) .  We 
write for frequently occurring vectors 

P3=pl+ql, p4= pl- q2, 

2po= PI+P2, 2qo= 41+42, 
2Q=Pi-pz=qz--~i. 

TABLE 111. Nonrelativistic limits of functions occurring in 
Eq. (30). These expressions are valid in either the c.m. or labo- 
ratory system with c the scattering angle and w the incident 
photon energy. 
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A=8i d%/(l)(2), P = 8 i  d%/(l)(~) S S 
D = 8i d4~/(0) S with 

CC1)=8i d4k/(l)(0), S 
F=8i  d4k/(l)(2)(~), G(l)= 8i d4k/(l)(~)(0) Z= Ho+KJo= 2d[-ln~+h(y)] 

F,,= F,po,+[(Fo- 2b/p)po,+ (Po+ Yo- 2blp)qo,lqo, 

H = 8i d4k/( 1) (2) (0), J =  8i d4k/( 1) (2) ( K )  (0). - YoQ,Qr+[~Yo+&+Sls.r 

S S 
S S with 

Integrals B@), C@), G@) are defined as P I ) ,  C(l), GQ) 
but with (2) replacing (1). Their values.are obtained 

qz, and Q by -Q. We use the notation, as in reference 

Yo= (F0-2b- I)/% 

from those of B('), C(l), G(') by replacing PI by Pz, q1 by G,,(I)= plcpl, 
K - 1  K K - 1  

3 2 2 - 9 ~ + 6 ~  6--5~1 

K K(K-1) -+--I K K-1 K 

Let : 6 K3+4K2- 18Kf12 C 

P ? ( K - l )  K 

- 
p= Q= - si&z ~ = $ ( K + T ) ,  (y  is real as Q < O )  
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APPENDIX Y. O N  T H E  INTEGRALS I N  THE 
CORRECTED CROSS SECTION 

In this section we will describe the methods by which 
the integrations occurring in the e4-order matrix element 
have been performed and will give some examples of 
the calculations. 

Those integrals which are scalars (those with no K 
in the numerator) have been done by the parametric 
method discussed in the appendix to reference l(b). 
Those which are tensors (having one or more k's in the 
numerator) can be done either by the parametric 
method, or can be derived by an algebraic procedure 
described below from those of lower tensor order. 

We now do several examples of the integrals to 
indicate the methods employed. 

(a) The Two-Denominator Integrals 

These all have the form x(Az) (where we need only 
the case of A much greater than any of the momenta 
involved in the problem), with 

x=8i (1; k,)(k2-2p1.K-A1)-1 s 
X (P-2Pz.K- Az)-L(-A2)(P-A2)-1d4k. (A12) 

To reduce this integral and those considered below we 
use the methods of reference l(b). 

In the first place we combine the denominators by 
making use of the relation 

l/ab= dy[~y+b( 1 - y)]" (A131 I' 
and similar expressions for l/ab2, l/aba, etc., obtainable 
from (A13) by differentiation. Thus x becomes 

X= 8 i l l 1 S ( 1 ;  ke)dy2zdz(- A2)d4K 

X [k3-  274,. k - 2AV- (1 - z)A']-~ (A14) 
with py=pIy+p2(1-y); Au=A1yfA2(1-y). Using 
(12a) of reference l(b), we get 

TO facilitate the work we observe that in the limit of 
very large A' (with 6<<1) 

' (I-z)"~z(-A*) 

P(z)+A2(1-z) 
1-6 (I -2) " d ~ (  - A') 

S- l /n,  n>O 

Sln[P(l)/A*], n=O. (A161 
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Writing 

(1 ; zp,.) = (1- (1 -2) ; C(l-z)2---2(1-z)+ l l p v n ) ,  
(A15) becomes 

The second term gives (2; 3 ( p l , + p ~ , ) ) .  I n  the first term 

xa= l 1 - 2 W 1 ;  pus)  ln[(P,"+Au)/A'l, (A18) 

notice that with 2Q= ( p l - p 2 ) ,  
P,Z= $22+Q'~'+ 2fz. (pi-pz)~, 

A1 = m2- p?,  A2 = m2- pZ2  
so that 

p,"+A,=m2+4Q2(y2-y) =d+Q2[(2y- 1)'- 11. 

Now let m= 1, Qz= sin20, and 2y- 1 = tana/tanO, 
so that dy(sec2a/2tanO)dcu. We get 

so that 

x.= f(secza/tanO)da(l; p,.(a)) 

p:+ A# = coszO se9a  

-a 
Xln(cos20 sec2a/Az). (A19) 

This integral can be done easily. For example, 

1; segada In(sec2a) = S t a n 8 d y  ln(1S-Y) 
-tane 

= 4 tanOCln(sec8)- i]+4e, 

the last integral being performed by parts. In  this 
manner we obtain integrals A ,  B, C, D. 

(b) The Intregal Go(1) 
As an example of the three denominator integrals we 

integrate The parameterization method gives 

Go(1)=8i d 4 K ( k 2 - ~ ~ l . k ) - i ( K 2 - 2 p 3 ~ k - ~ ) - 1 ( k Z ) - - l  S 
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Since 

L'dx(ox+b)-l=o-l ln(b+a)/b, 

In  the last step we have let v = l - ~ y .  We 
finally : 

Go(') = GO(') = Go= (2/K)[L(1- K)-L(l)]. 

(c) The Integrals H 

These are the same as those done in the radiationless 
scattering problem. They are given in reference l(b), 
appendix. Equations (23a), (24a), and (25a) should 
have the signs of their left-hand sides changed. 

(d) The Integral Jo 

Jo=8i d 4 k ( k 2 - 2 p 1 . k ) - ' ( k 2 - 2 P 3 . k - ~ ) - 1  

X(k'-2pz.k)-'(KZ-X2)-1. (A24) 

S 
We have given the photon k a small mass X as an 
infrared cutoff. When this integral is parameterized it 
becomes 

Jo = 8 i J 1 l  'L's 6dxdydz (1 - x)zZ&K 

X[k'- 2Zp,.k-XZK-XZ(1-1;)]-'. (A25) 

By (13a) of reference l(b), 

8i d4K(k2 - 2p. k - A)-( = - *(p2+ A)-2 S 
so that 

Jo= - ~ ' ~ ' ~ ' 2 d x d y d z ( l - x ) z 2  

x [Z2fJ2+XZK+X2(1 - Z) ] -2  (A26) 

with pz= (l-x)pV+xp,, p,=  ypl+(l-y)p?. 
We break the x integration into two regions (€<<I) : 

l ' d x f i y L ' d z =  ~ ' d y ~ ' d x ~ ' d z + ~ ' d y ~  'dxl'dz. 

(1) 01)  

In  (I) we let X+O, getting 

(I)= ~ ' d y ~ ' d x ~ ' 2 d z ~ l - x ) ( z p ~ + x ~ ) ~ ~  
O r 0  

' (1-x)dxdy 

= 2 l J  KX(#2+ KX) 
6427) 

In  region (11), since x is small, we neglect x2 compared 
to x: 

(11) = s ' d  y JldzJ '2zzdx[z2p,2+2xz2a 
0 0 0  

+ Z K X + h 2 ( 1  - Z)]-' 

X [Zz~~+2€ZzU+ZKE+~'(1- Z) ] - '  (A28) 

with a = p , . ( p 3 - p Y ) .  
In  (11) we now break the z integration into two 

regions; O<z<zc and z,<z< 1 such that X2<<z?p,? 
<<z,KE. Thus for z<z ,  we neglect z relative to unity 
and z2p,2 relative to Z K E .  For z>zc we neglect A. There 
results : 

2edzdy 2 K E  -- - ln- 
l:);z[Z(p2+2Ea)+KE] K p y "  Zep;'  

zc 2ez2dzdy 

0 ( Z ' p y ' f  A') ( Z K €+  A') 

z c  2edz P- K G  

s 
1 zC2p2 -- - In-(neglecting terms of order A). 

up; A2 

Adding these together we get 

We can now use the same substitution for y as that 
leading to (A8). Notice that in this case A.,=O. We get 
dy/~p,2yda/sin20, py2= cos20/cos2a so that (11) be- 
comes : 

1 
=- 
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We have still to finish evaluating (I), Eq. (A27). 
First investigate the denominator ~ , * + K x .  Since 
p l = l - K  and 2p3.py=2-KK, 

p2= (1 - X)'py2+XZ( 1 - K)+X(  1 - X) (2- K )  

p 2 + K X =  (l-X)'(p;- 1)+1. 

Letting 1-X= sin+/sin8, 2y- 1 = tana/tan+ with Q2 
=sin2@, we get 

py2= sin28[(tan2a/tan2+)- 11, 
~ ? + K x =  sin2+ ctn2+(sec2a-sec2+)+ 1 = cosz+ sec2+, 

-dx= cos+d+/sind, dy= sec2ada/2 tan+. 

The integrand of (I) becomes 

sin8 

1 d+da 

K sin8 sine- sin4 
=- 

and 

d a  

. (A31) 
K sin@(sinB-sin+) 

Integrate (A31) by parts, using No. 436, Dwight's 
Tables of Integrals, to get 

413 E tan8 

~ s i n 2 8  2cosS 
(I)= -- in(-) 

which can be put in the form 

48 €sine 
(I)= -- ln(cosa) 

+J'* ln(tana) 
sin28 

and can now be added to (A19). 
This gives the result, 

6' 1 Jo=- ln-+W dv ln(tanv) . (A33) 

Another integration by parts and the substitution 
O= iY gives the result in the table : 
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(e) The Integrals J,,  J, , ,  J,,, 
From the preceding work on JO it may be supposed 

that to attempt these more complicated integrals by 
the parametric method would involve great labor. 
Fortunately there is a way to reduce these integrals to 
a combination of integrals of a lower tensor order, and 
those of a smaller number of denominators. We will do 
J ,  as a n  example but it should be clear from this how 
J,, and J,,, are done. This method can of course, be 
applied also to G,, Go,,  etc. We shall be able to express 
J ,  in terms of .To and the integrals F ,  G having only 
three denominators. 

Using the notation indicated in Appendix X for the 
denominators, (1)= k2-2p1. k, etc., we write 

a, j3, .y being scalar functions of $1, p z ,  and p3. The 
vectors PI, p 2 ,  p 3  will in general define a three-space. 
It is clear that  the vector J, cannot have a component 
in the direction P which is perpendicular to this three- 
space, since for k, in the P direction, the integrand is 
an odd function and therefore J ,  must vanish. 

If we now take the scalar products of J ,  with PI,  p 2 ,  $3, 

since 2pl.k=(0)-(1), etc., we get 

2p1. J =  8 i s  ( 1 ~ ~ ~ ~ ~ ~ ~ )  

d4k d'k 
=8i  ~- Fo-Go 

L ( 2 )  (4  

2P2. J =  8 i s ( 1 ~ ~ ; ~ ~ ~ 0 )  

d4k d4k 

(A36) 

d4k d'k 

= 8 i S s - g i J &  
Kd'k 

1) (2)(K) (6 
= Fo- Ho- KJO. 

Taking also the scalar products with the right-hand 
side of (A35), we get the set of linear equations: 

Fo-Go= 2afj3( 1 - 3.- $T)+ y(2 - K )  

Fo - Go= a( 1 - * K  - 37) f 2p+ y (2- K) (A3 7) 
J o =  (2d/~)[2h(y) - h(2y) - ln(~/X)]. (A34) Fo- Ho- KJO= (a+ p) (2 - K )  f 2Y( 1 - K )  . 
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J, can now be readily obtained by  solving these 
equations for a, 8, and y. 

To  obtain J,, we write 

k,k,d4k 
J*,= %is 

(1)(2)(K)(O) 

= f f . ~ i r + B ~ ~ z ~ + y ~ ~ a ~ + t ~ ~ ~ ,  (A38) 

am, pc, y. being vector functions of p1, p 2 ,  93, and t a 
scalar function of the same variables. The tensor e6,, 
now occurs on the right-hand side as i t  is possible for 
J,, to have nonzero components depending on P. (If 
k,=k,=kp, J,, need not vanish.) If we take inner 
products with P I ,  $2, and p3 now we get 

for 2pl,J,, and similar equations for $2 and p3. This 
gives us three equations for the four quantities an, &,, 
yo, e. However, there is the additional independent 
result obtained by summing J,, over u: 

J,,= 8 ; s  
k,kJ4k 

(1)(2)(K)(O) 

= Fo= ff.pi~+P.pzs+Y~p3~+4€. (A39) 

Solving these four equations we obtain J,, algebrai- 
cally in terms of simpler integrals. In  a similar manner 
J,,, can be expressed in the form given in Appendix X .  

APPENDIX Z. EXAMPLES OF THE CALCULATIONS 

We shall here illustrate by two examples the method 

The matrix T (18) can be written, if we rationalize 
of evaluation of the transition amplitude. 

the denominator, as (p2=m2, q 2 = O )  

T =  (k2-  2p. k -  2q. k -  K)-' (k2- 2p * k)-' 

Xd4kk-2C(k2) T (A40) 

T=r,(P+q- k+m)e(P-k+m)r,. (-441) 

s 
with 

T can now be split into terms involving no k,  one k,  
and two k's, and the results of the integrations over 
k-space inserted from Appendix Y. Thus, 

T= r,@+q+m)e@+m)r,- r,ke@+m)r, 
-Y,@+ q+m) e h , +  rwkekrp 

=2P(p+q+m)e-2pke+2ke(p+q) 
- 4 4 e . k ) -  2kek, 

where we have used Eq. (4a) of reference l(b) and the 
fact that the matrix T operates from the left on a state 
u such that &=mu. Inserting the integrals and 

grouping terms we now have, 

8iT= 2P@+ q+m)  GO- 2(pySe- y,e@+ q)+ 2me,)Gu 
--2y0ey,Gn,. (A42) 

This expression can now be further simplified. For 
example, the term in G, is (using Appendix X) 

-2CGo- (2c/~>ICp"e-pe(P+q)+2m(e.p)I 
- (~/K)CGO- (2--/~)~-21CPqe--e(~+q)l 

with K =  -2p.q. Since p2=m2, Q=O, e.q=O, and quite 
generally ab+ba= 2a. b,  this term becomes finally 

- 2[G0- (2~/~)](2m~e--peq) 
+(4/~)[Go- (2- K/K)G-2]'[2(e.P)q+Ke]. 

Combining this with the terms in Go and G,,  in (A42) 
(expanded in the same manner) we obtain the expression 
for T given in the text (19). 

T o  illustrate the simplification that occurs upon 
taking the spur, for unpolarized light, consider the 
term J (21). This may be decomposed, as was T above, 
into a sum of terms involving various numbers of k's 
in the numerator. For example, the term involving 
three k's is 

- sr ,ke~kelkr ,~~R/(1) (2) (~) (0)  (A431 

using the notation of Appendix X. If we replace el, by 
ye and e2 by yp, this gives a contribution to the spur 
P(K,  T ) ,  Eq. (28), of a numerical factor times 

Jn(a)a4k/(1) (2) (4  (0) (A441 

with 

g(k )  = SpC(~z+m)r,krskr,kr,(~1+m)WI 
= K-' { 4(pi. k) (pz  ' k )  (p3 .  k )  + k2[$m2~(p~+p2)  . k - (p1*p2+2m2) ($3- k)] 1 + T- '{  4($1. k )  (pz. k )  (p4. k )  

-m2k2(pl+pz+pa).k].  (A451 

I t  will now be seen that the factor k2 will cancel the 
factor (0) in the denominator of (A44) leading to the 
integral F ,  (Appendix X). Also, we can write 

2p1.k= -(k2-2 9 1 *k)+k2=-(1)+(0) 

leading to integrals G,,(2) and Fu,. Thus it is not 
necessary, for unpolarized light, to  use integral J,,,. 
(A44) can now be written 

2(K-1#2~p3r+ T-lpzrP4r) (Fgr-Gr,")) 
+[$m2@i~+pz~)- K-'(pi'$z+2m2)P3~ 

-m2T-'(piu+pz,+p30)]F,. (A461 
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THE PRESENT STATUS 
OF QUANTUM ELECTRODYNAMICS 

by Richard P. FEYNMAN 
California Institute of Technology, Pasadena, California. 

Fifty years ago at this Conference one of the problems most 
energetically discussed was the apparent quantum nature of the 
interaction of light and matter. It is a privilege to be able, after 
half a century, to give a report on the progress that has been made 
in its solution. No problem can be solved without it dragging in 
its wake new problems to be solved. But the incompleteness of 
our present view of quantum electrodynamics, although presenting 
us with the most interesting challenges, should not blind us to the 
enormous progress that has been made. With the exception of 
gravitation and radioactivity, all of the phenomena known to physi- 
cists and chemists in 1911 have their ultimate explanation in the 
laws of quantum electrodynamics. 

Stricktly speaking, " quantum electrodynamics " might be expected 
to deal only with the quantum theory of the electromagnetic field, 
and not with the theory of the motion of the matter which generates 
it or reacts to it. But conventionally, the motion of that matter 
whose motion is understood, namely electrons and possibly muons, 
is included, while the motion of baryons and mesons is not. I will 
use the term in the conventional sense here. If I wish to refer to 
the narrower field I will call it simply the " quantum theory of the 
electromagnetic field ". 

Lorentz (1) showed in his 1911 report at this conference that 
beside an instantaneous coulomb interaction the electromagnetic 
field could be represented as a set of harmonic oscillators, each 
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driven by the transverse component of the current produced by 
matter in the corresponding mode. That the quantum theory of 
electromagnetic interaction results directly from the simple assump- 
tion that these oscillators are quantum oscillators obeying a 
Schrodinger equation was noted by Dirac (2). Since that time a 
bewildering variety of mathematically equivalent formulations of 
that idea have been made. These are published ( 3 )  in many articles 
and text books and I will assume that you are familiar with some 
of them, and will not discuss them further. Here I shall simply 
report first on the comparison of quantum electrodynamic calcul- 
ations with experiment, and second on some of the unanswered 
theoretical questions in this field. 

COMPARISON TO EXPERIMENT 

General remarks. 

Considerable evidence for the general validity of Q.E.D. is, of 
course, provided by the enormous variety of ordinary phenomena 
which, under rough calculation, are seen to be consistent with it. 
The superfluidity of helium and the superconductivity of metals 
having recently been explained, there are to my knowledge no 
phenomena occuring under known conditions, where quantum 
electrodynamics should provide an explanation, and where at least 
a qualitative explanation in these terms has not been found. The 
search for discrepancies has turned from looking for gross deviations 
in complex situations to looking either for large discrepancies at 
very high energies, or by looking for tiny deviations from the theory 
in very simple, but very accurately measured situations. 

High energy experiments. 

The experiments at high energy which are most significant for 
us here are those of the elastic scattering of energetic electrons 
(up to 1 Gev) by protons at appreciable angles (4). The scattering 
is very different from what it would be for an unstructured proton. 
The proton should have some structure, however, as a result of the 
unknown strong interactions between mesons and baryons. One 
usually interprets all the deviation as due to this structure. On the 
other hand some of it may be a failure of quantum electrodynamics. 
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According to quantum electrodynamics the scattering amplitude 
should be 

where q is the momentum transferred by the virtual photon, u1 and 
242 are electron spinors in and out and J is the matrix element of 
electric current between the nucleon states of four momentum PI 
and Pz. From relativistic invariance arguments J must have the 
form 

i.1. 

i.1. 

taken between proton spinors, where F1 and F2 are unknown 
functions of 42. For a point particle F2 = 0, F1 = 1. 

It is difficult to say what would happen if electrodynamics failed, 
as long as the exact manner of a supposed failure is not specified. 
A conventional way to assume the failure is to suppose that the 
propagator is altered from l/q2 to 

l/q2 (1 - 4 2 / w  (3) 
and to tell how large A would have to be for such a modification 
to remain undetected in a given experiment. 

In the proton scattering the effective F1(q2) is found to fall, for 
smaller 42, as 1 + q2/(560 Mev)2 (42 is negative). If F1 did not fall 
at all, but the altered propagator were responsible A would be 
560 MeV. If A is much less than this the proton would look much 
softer and extended than it does. We can probably safely conclude 
from this experiment that A exceeds 500Mev. 

According to (1)  the scattering for different angle and energies, 
providing they correspond to the same q should all be related via 
just two unknown numbers F1, F2. This will fail to be exactly so 
because of corrections, probably not large, due to the exchange 
of two or more photons. These corrections may be computed, 
although with some uncertainty due to proton structure. If a large 
deviation still persists it would mean that Q.E.D. fails in a very 
peculiar way - for example, that another virtual object of higher 
spin is exchanged, or that there is a new coupling of proton and 
electron so that they may combine to form a neutral heavy particle 
which disintegrates back again to proton and electron, etc. 
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So far most physicists believe that the general behavior of the 
functions F1 and F2 is understandable as a proton structure effect 
and therefore that Q.E.D. can be trusted to perhaps at least as high 
as 1 Gev. 

Clearly these uncertainties of proton structure would not arise 
if electrons or positrons were scattered from electrons. For example, 
there are measurements to 5 %  accuracy of the cross section for 
annihilation of positrons in flight (5) up to laboratory energies of 
nearly 10 Gev. In the center of gravity system, however, the positron 
momentum is only 50 Mev and the virtual state momenta of im- 
portance are much lower still. The experiments agree with theory 
but this does not put a very great lower limit on A. The same 
comment applies to p-, e- collisions measured ( 6 )  up to 8 Gev, 
also in agreement with theory. 

On the other hand, these experiments must not be treated too 
lightly. They are only uninteresting if they agree with theory. 
Although they do not yet involve nearly as high virtual energies 
as the proton scattering experiment, they test different things, 
such as the electron propagator, or the muon structure. 

The types of experiments at high energy which would more 
effectively test the predictions of Q.E.D. are discussed by J. Bjorken 
and S. Drell, P. R., 114, 1368 (1959). 

Energy levels in hydrogen. 

Turning now to precision low energy experiments, the classic 
experiment (7) is the direct measure of the 2s112 and 2pli2 energy 
separation in hydrogen, deuterium and ionized helium. It was the 
analysis of this experiment by Weisskopf and by Bethe which led 
them to discover a way to circumvent the divergent self-energy 
which, up to then, had bedeviled any attempt to compute higher 
order effects from Q.E.D. The need to put their ideas into a relativ- 
istically invariant form led to the formulations of Schwinger and 
of the author. The Lamb effect still remains one of the most delicate 
tests of Q.E.D. A comparison (8)  of theory and experiment is given 
in Table I (after Peterman (9)). 

Contributions to the Lamb shift arise from several sources : 
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(a) Virtual emission and readsorption of one virtual photon. 

Here in the initial state an electron is in a definite state (2s1/2 
or 2p1/2) in the nuclear Coulomb potential. In the intermediate 
state it is in some other exact state of the Coulomb potential. The 
wave function for these states should be found by the Dirac equa- 
tion. The labor in doing this has been too great, so far, even for 
computing machines, because for each intermediate state n, matrix 
elements of the current times exp. i K  - X must be found for every 
K and a double integral on K and n is involved. However for low 
energy photons the dipole approximation and Schrodinger wave 
functions can be used and the sums performed. This determines (10) 
the constants K,(2,0) and K0(2,1). For higher intermediate energy 
it is usual to make an expansion of the intermediate wave functions 
as plane waves, perturbed by the Coulomb potential (hence an 
expansion in orders of Za). Combining the first term with the low 
energy contribution gives the largest part of the Lamb shift, items 
1 plus 2. Item 2 is separated here, for it is easy to understand as 
the correction to fine structure due to the apparent anomalous 
moment of the electron. 

+ +  

+ 

The correction to include two potential scatterings is included (11) 
in item 4. To include three scatterings is very difficult, but Layzer (12) 

has shown that it is a quadratic form in ln(Zu) and has computed 
everything but the constant term. This makes an uncertainty in 
the total effect from one virtual photon. It is unlikely that the part 
marked " ? " exceeds i 10, so we may take this as a kind of limit 
of error. Terms of higher order in the potential are probably too 
small to be significant. 

(b) Emission and reabsorption of two virtual photons. 

This is of order one higher in u, and no large logarithm from 
low energy photons arises, so the effect is very small indeed. Al- 
though the magnetic moment part, item 7, has been worked out 
exactly (13), the potential spreading effect, item 6, has only been 
partially evaluated, in such a way that limits of error can be 
given (14). This work should be completed because the uncertainty 
here is the largest contributor to the theoretical uncertainty in the 
Lamb shift. 
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(c) Vacuum polarization. 

The effective potential from the nucleus is altered by the existence 
of virtual pairs of electrons and positrons created by the potential. 
This has the main effect given in item 3. A correction of relative 
order cr has also been calculated (Is), item 8. Corrections of order 
Zcr to the vacuum polarization are included in item 4 (the term 
5/192). In fact the vacuum polarization has been calculated (16) 

for arbitrarily strong fields (arbitrary Zcr), but additional correc- 
tions to the term first order in Zcr are small even for Pb. 

(d) Finite nuclear mass. 
The biggest correction resulting from the finite nuclear mass is 

the correction to the probability of finding the electron at the 
nucleus due to use of the reduced mass p rather than the electron 
mass m in the Schrodinger equation. Beside this the mass appears 
in the logarithms for item (1) and in the fine structure correction 
item (2) in a way that is readily evaluated. There are, however, 
additional corrections of order Zm/M from two photon exchanges 
between the electron and the recoiling nucleus. They are given 
by (17) 1 8 )  

83 3 7 4  
ZcrKo(2,0) 24 2 4 3  2Ko(2,1) + - + - [ln zO: + - + - (1 - 1n2)l) Z - L (21n m 

M 
and are included in item 9. (My figures seem to differ slightly from 
those of Peterman.) 

(e) Nuclear structure. 

If the nucleus is not a point charge the potential near the nucleus 
is slightly altered, perturbing the s state but not the p state in first 
approximation. This is an effect calculated by elementary perturb- 
ation theory if the mean square radius of the nuclear charge 
density <R2>nuc. is known. This can be got directly from scat- 
tering experiments and the effect evaluated. The error is just a 
reflection of experimental error. 

(f) Higher order terms. 

Terms in next order in cr should probably contribute at most 
a few hundredths of a M c  to H and D and perhaps up to 1 M c  
to He+. 

6 7  



141 

The last three columns give the shift calculated in megacycles 
from each of these terms for H, D, and He+. They are calculated 
using 1/a = 137.0389. If l/a is larger than this by E the correction 
to the theoretical value for H and D is - 2 2 ~  Mc which is almost 
certainly less than rt .02 Mc (the present uncertainty (8)  in 1/a is 
E = f .0006). 

The agreement between theory and experiment exhibited in the 
last line is excellent. The errors quoted should be considered more 
as limits of error than probable errors. Th,e error in the theoretical 
estimate could probably be reduced by a factor nearly 10 by a more 
detailed calculation of item 6, and, what might prove even harder, 
an estimate within 1 unit of the constant term “ ? ” in the 
expression for item 5. [It might also be possible to compute the 
total for one virtual photon to all orders in Za exactly, as described 
in part (a) above.] It may be very hard to reduce the experimental 
error, however, for the position of a line is being measured to about 
one-thousandth part of its width. 

What is the significance of this agreement, let us say, to i- 0.1 Mc 
in the hydrogen Lamb shift ? Again, an evaluation depends on 
how you expect Q.E.D. to fail. If it is expected that the failure 
appears only at high momentum transfer, say in the photon pro- 
pagator, very little is checked here that is not already involved in 
the electron-proton scattering experiments. In the hydrogen atom 
the electron is successively scattered by the proton and if this, at 
very short distances, is not the ideal point charge scattering it can 
be corrected by using the directly measured scattering, without 
regard for the reason for the difference from the ideal scattering. 
For example, in the very unlikely event that Q.E.D. and proton 
structure effects are compensating each other in the proton scatter- 
ing experiments, they will compensate here too; the correct net 
effect being still given in item 9. 

On the other hand, one might contemplate a failure involving a 
modification of the propagator extending out to very large distances 
(compared to lO-13cm), but having a very small coefficient. For 
example, suppose it is suggested that Coulomb’s law is altered so 
that the potential from a charge can be approximated by the form 
I/r( l  + E ,  in the range of r of order 10-8 cm. We can conclude 
from the Lamb experiment that E is less than 10-10. This is because 
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the close coincidence of the 2~112 and 2p112 ievels, each of which 
has an energy of the order of 109 Mc, is a kind of accident involving 
the perfection of the Coulomb law. The Lamb experiment tells us 
that any modification that perturbs the 2s energy level (in a sub- 
stantially different manner than it disturbs the 2p level) must 
disturb it by less than one part in 1010. 

But perhaps the most satisfying aspect of the agreement of theory 
and experiment here is that it checks the general theoretical view- 
point. There cannot be much argument that the effects which we 
ascribe to virtual photons or virtual pairs acting in various orders 
do exist (although the philosophical ideas used to describe them 
may someday be altered drastically, of course). 

The analogous Lamb shift in other states, such as 3.~112 - 3~112, 
etc. have also been measured (7)  and agree in a satisfying way with 
theory, although the test here is not quite as stringent as for the 
2~112 - 2~112 because of the somewhat larger experimental error. 

The 2s1/2 - 2~312 separation is also measured so, as a byproduct, 
we have a measurement ( 2 0 )  of the fine structure separation 
2p3/2 - 2p112 in deuterium. The formula for this separation 
is ( 2 0 )  18) 1 2 )  

3 m  
x 

This formula can be derived by the usual complete Q.E.D. analysis, 
but its terms are easy to understand. The first is the energy of inter- 
action of the electron’s magnetic moment with the nucleus revolving 
about it, considering the electron at rest. I t  involves the anomalous 
magnetic moment of the electron, calculated ( 1 3 )  to be 

gel = 2 [l + U / ~ X  - 0.328 ( u / x ) ~ ]  = 2 (1.00115961) (4) 
and a factor m/p = 1 + m/M, where M is the deuteron mass, to 
correctly represent the velocity, relative to the electron, of the nucleus 
generating the magnetic field. The factor in front of the [ ] is 
obtained by averaging the interaction over the Schrodinger wave 
function for the p state. The next term, - 1, is the Thomas preces- 
sion correction. The relativistic correction to these two terms 
combined is to order a2 just - u2, in accordance with the fine struc- 
ture formula of the Dirac theory of hydrogen. Because the electron 
can emit and absorb virtual photons its effective location is smeared 

5 
8 
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over a range (the main source of the Lamb shift of the 2s state), 
so the fine structure interaction is corrected in order a3. The 
biggest part of this is a term in In a whose coefficient is easily under- 
stood, but a more complete evaluation of the a3 term, up to the 
constant ‘‘ ? ”, has not been carried out. Since the a3 In a term 
only amounts to one ppm (part per million) and the experimental 
result 

A = 10971.58 f . 2 0 M ~  
is available only to 20 ppm (limit of error) there is no great need 
to evaluate the a3 term more completely than at present. Aside 
from the small terms a3 In a, if an experimental value for gel is used, 
this formula contains no subtle virtual state effects of Q.E.D. that 
cannot be understood from the Dirac equation and semi-classical 
arguments. It has been used to obtain a value for a, or as one of 
the equations in a general evaluation of the fundamental constants. 

Anomalous magnetic moment of electron and muon. 

From the emission of virtual photons the predicted value 2 for 
the gyromagnetic ratio of the electron is altered to the expression (4) 
valid to order a2. The first term is from one virtual photon. The 
second term contains two effects : (a) the effect of two virtual 
photons, and (b) the vacuum polarization correction to the pro- 
pagator of the first virtual photon. They have been calculated by 
Peterman. For the muon, supposing it to satisfy the Dirac equation 
but with a different mass, all the terms are, of course, the same 
except term (b). In the vacuum polarization for the muon there 
are terms for virtual electron pairs as well as muon pairs, and the 
predicted (21) g value for the muon is 

(5) g = 2 [l + a/2x + 0.75 (a/n)2] = 2 (1.001165) 
A value for gel has been obtained by Hardy and Purcell by 

combining a measurement of Gardner and Purcell (see reference (24)) 

of the cyclotron frequency of the electron to a magnetic moment 
measurement of Beringer and Heald (22) to get 

gel = 2(1.0011552 i 8) .  
However, an independent measurement of the cyclotron frequency 
by Franken and Liebes (23) gave somewhat different results, and 
leads to a g value of 

gel = 2 (1.001168 i 7) . 
70 
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A direct measurement of Schupp, Pidd and Crane (24)  gives 
ge l  = 2(1.0011609 i 24). 

These results are in fair agreement with the theoretical result (4). 
The result of Schupp et al. implies that the coefficient of the u 2 / x 2  

is - 0.1 i 0.4. 
The theoretical result should probably be accurate to one part 

in about 10-8 guessing that the next term in the series is roughly 
f (u/x)3. If the photon propagator is modified as (3), the correc- 
tion to g/2 is -- ( - )z so an agreement to I ppm means only 
that A exceeds 15 MeV. More information comes from the measure- 
ment of gP - 2 for the muon. The experimental result (25)  for gP 
is 2 (1.001145 f 22) agreeing with the theory within its error of 
22ppm. In this case a propagator like (3) would correct g/2 by 
- - (y)” where m p  is the meson mass of 105 MeV. If this is 
not to exceed 22 ppm, A must exceed 630 MeV. This is therefore 
at least as good a test as is provided by the proton-scattering exper- 
iments. It is remarkable in that it tests at the same time that the 
heretofore unfamiliar particle, muon, satisfies the Dirac equation 
with no appreciable structure comparable to its own Compton 
wave length. 

3x A 

U 

3x A 

Hyperfine interaction. 
The hyperfine splitting in the ground state of hydrogen resulting 

from interaction of the nuclear moment and the electron has been 
measured (26) very accurately for the three isotopes of H, and for 
the He3 ion. The theoretical formula (27) for this splitting is 

“1 16u2c PP Pel 3 5 Rydm( 7] [ $r [ 1 + $ Z u ) 2  - (- - Zn2)Zu* - X - 2 M 
AV = - 3 

(6) 
where p p ,  Pel  are the magnetic moments of proton and electron 

m -1 and po is the Bohr magneton, p/m = (1 + -) where M is the M 
mass of the nucleus. The terms in front of the bracket gives the 
value expect from a non-relativistic analysis, given by Fermi. In 
the bracket the - ( Z a ) 2  is a Breit correction resulting from the use 
of the Dirac equation instead of the Schrodinger equation. The 
next term is a correction from virtual photons in Q.E.D. 

The last term is a correction for recoil and finite size of the 

3 
2 
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nucleus. A direct calculation assuming a point charge and dipole, 
leads to a result which diverges logarithmically (28). It is sensitive 
to the electromagnetic structure of the nucleus. It arises from the 
exchange of two virtual photons with the proton (in H). If the 
amplitude for this exchange at high energy were known, the term 
could be evaluated. Data could come from the forward spin flip 
Compton scattering from a proton. It cannot come directly from 
proton-electron scattering experiments for these only give the form 
factor for a one photon interaction with the proton. Assuming that 
each of the two interactions has the same form factor as does a 
single photon, C. Iddings and P. Platzmann, P. R., 113, 192 (1959) 
evaluated X as 8.7, corresponding to a correction of - 35 ppm. 
However, I think uncertainties in the assumption relating one and 
two photon structure factors, as well as uncertainties of the one 
photon structure factor itself for high energy may make the error 
in X as high as - 2 or + 10 ppm. [There is a relative insensitivity 
to these assumptions because a major part of X involves the large 

Unfortunately, therefore, we cannot use these high precision 
measurements directly to test Q.E.D. independent of our un- 
certainties in the electrical properties of the nucleus *. Never- 
theless, there may be a discrepancy here for the measurement of 
Lambe and Dicke (19) corrected by 27.5 ppm for a diamagnetic 
correction gives, with 1/a = 137.0389 i .0006, a result for the X 
term of + 0.7 i 8.8 ppm instead of - 35 ppm, but terms in (6) 
of order a3 may be unusually large **. 

wV4.1 

* The hyperfine splitting for deuterium is still more dependent upon the 
nuclear structure, this time of the deuteron. The ratio u&, divided by the 
ratio of the magnetic moment of D and H and by the reduced mass factors 
cubed is one minus 1.703 x 10-4 experimentally. An attempt to estimate this 
from nuclear theory by Low and Salpeter, P. R., 83, 478 (1951) gave 
1.98 & .20 x 10-4, but this calculation could probably be improved today. 

D.E. Zwanziger has just informed me of calculations of corrections of order 
d(Ina)2 and a3 ha to the hypedine separation in hydrogen made by him and 
A.J. Layzer independently. They find a contribution of - 9 ppm so the total 
predicted term is - 44 ppm. Thus, a real discrepency to the ‘‘ measured ” + 0.7 &- 8.8 ppm seems to be developing here. However, the trouble might 
lie instead in the measurement of the fine structure separation in deuterium, 
for E. Richard Cohen has kindly informed me that if this fine-structure measure- 
ment is omitted from a least-square reduction of the fundamental constants 
the value of l /a is 137.0417 & .0025. The “ measured ” value of the hyperfine 
separation term would then be -40 f 36ppm (instead of + 0.7) which would 
be consonant with the theoretical value. 

**NOTE ADDED IN PROOF : 
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Zwanziger has noted that these uncertainties disappear if one 
compares, in the same atom, the hyperfine structure in the 2s state 
to that in the Is state. Measurements of the hyperfine shift in the 
2s state have been made by Heberle, Reich and Kusch, P. R., 101, 
612 (1956), 104, 1585 (1956). According to the Fermi formula the 
ratio should, in first approximation, be as the probability of finding 
the electron at the nucleus, (1/8), but the actual measurements lead 
to a result 

8 v2s/vls = 1 + d where d = 34.6 f 0.3 ppm for H 
= 34.2 f- 0.6ppm for D (7 )  

The formula (6) is not adequate to calculate d to this accuracy, 
for the expression in brackets has not been carried to a high enough 
order. It might be expected that if divergences arise already in this 
order they should be still worse for higher order, but Zwanziger 
shows that this is not true if the ratio v2s/vls is calculated. The 
term d has several contributions. The electron magnetic moment is 
spread by vacuum polarization, and by the form factor in the theory 
of this moment. In addtion the interaction of the electron with 
the nucleus is altered because the wave function of the electron is 
altered. This is because, just as in the usual Lamb shift, the electron 
sees a modified potential since it emits and readsorbs photons 
[giving a term in ln(rn/Ryd)] and further, the potential is actually 
modified by the vacuum polarization. This calculation is similar 
to the first order Lamb calculation. Terms of order a2rn/M have 
been calculated by Schwartz (see reference (27)). The theoretical 
result for d is 

d = 34.5 0.2ppm 
which agrees excellently with the experiments (7). The Breit term 
alone gives - a2 or 33.3 ppm so that we do not here have any sharp 
test of Q.E.D. at short distances. But it does confirm our general 
ideas and checks again, but less accurately, that there are no small 
deviations at larger distances. 

5 
8 

There is a measurement of the hyperfine structure of the meta- 
stable triplet state of He3 by White et al., P.R.L., 3, 428. If this 
is compared to the He3 ion hyperfine separation, the dependence 
on nuclear structure cancels out. For the ratio of frequencies they 
get 6.2211384 12. To calculate this it is necessary to know the 
wave function for the triplet state to find the probability (times 6)  
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that one electron is at the nucleus. The non-relativistic theory with 
the best known wave function gives 6.222030 for this. Relativistic 
corrections reduce this to the theoretical prediction 6.221199 i 6 
for the frequency ratio. The remaining deviation is likely to be a 
slight inadequacy (only 10 ppm) of the variational wave functions. 
There is no evidence that Q.E.D. is any less adequate in handling 
systems with two electrons than it is for one. 

Positronium. 

The " atom " formed from an electron and a positron presents 
none of the uncertainties of nucleon structure that the hydrogen 
atom does. It is therefore an interesting object for calculation, 
although the experiments are much more difficult because of its 
transient nature. A still better object would be muonium but the 
experiments here have not yet been performed. 

Just after the newer methods of Q.E.D. were developed, since they 
were so readily applied to perturbation theory of free systems, it 
was supposed by many that bound state problems presented some 
special difficulty. That this was not so was noted by W.E. Lamb, 
P. R., 85, 259 (1952) and E.E. Salpeter, 87, 328 (1952). Evidently 
one cannot analyze the bound state by starting a perturbation series 
from non-interacting particles. But one very effective way is to 
use, as a starting point, the system held together by instantaneous 
Coulomb potentials. This system can be analyzed by an ordinary 
differential equation in time, like the Schrodinger equation, because 
of the instantaneous nature of the interaction. The perturbation 
then consists of adding the effect of virtual transverse photons in 
various orders. Of course, any other unperturbed system, held 
together by some approximation to the true interaction, will serve 
as well; the perturbation being the difference between the true inter- 
action of Q.E.D. and the approximate interaction assumed. The 
instantaneous Coulomb potential is a good starting point because 
its initial approximation is so good. 

The most complete analysis of the hydrogen-like atom with 
arbitrary mass ratio of the two charges has been given by T. Fulton 
and P. Martin (18), where references to earlier work will be found. 
They have used their equations to compute the energies up to the 
first order Lamb effect (i.e., to order u3 Ryd) of many states in 

74  



148 

positronium. The most delicate test is the separation between the 
singlet and triplet Is  states of positronium measured by Weinstein, 
Deutsch and Brown, P. R., 98,223 (1955) to be 2.0338 i 4 x 105 Mc. 

The theoretical value (29) for this shift is 

$Ryd c [i + = 2.0337 x 105 Mc 
m 

the first term represents the first order interaction of the spins and 
the second the amplitude for virtual annihilation into a photon 
with re-creation of the positron again. It is clear experimentally 
that such a term exists, once again confirming our general view of 
what virtual processes go on. The last term is the first order Lamb 
correction for this system; it amounts to 0.0100 Mc. 

General conclusions. 

There are many other calculations and experiments in which 
some aspect of Q.E.D. is involved (such as vacuum polarization 
effects in mu-mesic atoms, or relativistic corrections to the computed 
helium ground state energy, etc.). We shall not go on to describe 
them for, although confirming Q.E.D., they do not provide sharper 
tests than the examples already given. 

All this may be summarized by saying that no error in the predic- 
tions of quantum electrodynamics has yet been found. The 
contributions expected from the various virtual processes envisaged 
have been found again and again, and there is very little doubt 
that in the low energy region, at least, our methods of calculation 
seem adequate today. The region of energy (of virtual states) that 
has not yet been explored even for gross errors exceeds 600 Mev 
(the Compton wave length corresponding to this is 2n times 
3 x lO-14cm). There are no experimental indications that the 
laws of Q.E.D. cannot be exact. Are there any theoretical reasons 
to expect a failure ? I will discuss such questions in the next few 
sections. 

Before we do this I should like to make a remark on the character 
of these calculations. I t  seems that very little physical intuition 
has yet been developed in this subject. In nearly every case we are 
reduced to computing exactly the coefficient of some specific term. 
We have no way to get a general idea of the result to be expected. 
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To make my view clearer, consider, for example, the anomalous 
electron moment given in (4). We have no physical picture by 
which we can easily see that the correction is roughly u/2x, in fact, 
we do not even know why the sign is positive (other than by 
computing it). In another field we would not be content with the 
calculation of the second order term to three significant figures 
without enough understanding to get a rational estimate of the 
order of magnitude of the third. We have been computing terms 
like a blind man exploring a new room, but soon we must develop 
some concept of this room as a whole, and to have some general 
idea of what is contained in it. As a specific challenge, is there any 
method of computing the anamalous moment of the electron which, 
on first rough approximation, gives a fair approximation to the u 
term and a crude one to u2; and when improved, increases the 
accuracy of the u2 term, yielding a rough estimate to u3 and 
beyond ? 

THEORETICAL QUESTIONS 

Self-energy . 
The first difficulty which arises if one assumes that each of the 

transverse electromagnetic modes in a box is a quantized oscillator 
is that each should have a zero point energy 4 2 .  Since there are 
an infinite number of modes this zero point energy is infinite. It is 
easy to get around this difficulty, however, by supposing that 
absolute energy cannot be measured (leaving a question for the 
theory of gravitation) so that all the zero point energy is subtracted. 
But now suppose we put atoms or other objects in the box at a 
small density N per unit volume, so that the index of refraction 
is changed from I to 1 + 2x N f l / o 2  where fi is the real part of 
the forward scattering amplitude of the object for light of mode K. 
The wave lengths which fit into the box are still the same, but the 
frequency of the modes is changed by 2x: N f z / w  so the total zero 
point energy is changed, per object, by 

This shift in energy we would associate with the object and would 
call it the self-energy of the object. There are higher terms from 
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the effect of scattering two photons at once, but we shall just go 
to the first order in a. In addition, we have the positron-electron 
Dirac field and will have to add a contribution for the shift in 
energy of the electrons in the negative energy sea. This will involve 
fr the amplitude for the object to scatter forward a positron 
in state N. It is better to deal with electrons and positrons symme- 
trically and we find the following formula for the self-energy of 
an object : 

where f is the real part of the amplitude for the object to scatter 
forward an electron in state n, fr that for scattering a positron 
in state N, andfz that for scattering a photon in state K (K specify- 
ing momentum and polarization), everything to first order in cx *. 

Applied to a free electron, however, (8) still gives a divergent 
result. It might be thought that this could also be subtracted away, 
and only differences taken for the electron in different states i, but 
these differences are also infinite. This is most easily seen if one 
compares the energy of two photons with the energy of the pair 
one expects to create from them. No completely satisfactory way 
has been found out of these difficulties. 

Electron mass. 

In making actual calculations, one way to handle the difficulty 
is this : temporarily stop the divergent integrals at some high 
energy and note that the self-energy effect, at least insofar as it 
depends (logarithmically) on the cut-off is equivalent to changing 
the mass of the electron from m, to m, + Am in every process (of 
energy well below the cut-off). If we write m = m, + Am, interpret 
it as the experimentally observed mass, and write all results in 

* To be more explicit if the object is an H atom with an electron in state i 
this formula gives the correct level shift to order a if n and N are states in the 
nuclear potential Z ,  but the interaction of the electron in i and the electron n 
is calculated only to first order in a. That this is true can be easily demonstrated 
by writing out each amplitude by diagrams, adding the results, and comparing 
with the unusual diagram for the virtual photon level shift. Actually, only the 
exchange scattering in f and the annihilation scattering in f POs need be taken. 
The rest cancels out. If the object is charged, like a free electron, there is no 
true forward scattering f el as it goes, by the Rutherford law, as 0-2 but f PO* 
does likewise and, in (8), they cancel out to a finite limit as 0 + 0. 
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terms of m, then the limit can be taken as the cut-off energy goes 
to infinity. Expressing everything in terms of m is called renormal- 
izing the mass, and a theory for which results are then independent 
of the cut-off as it goes to infinity are called renormalizable. Q.E.D. 
is renormalizable if the electron mass, and the charge, are both 
renormalized (it is, I think, not necessary to renormalize the mass 
ratio of muon and electron). 

What is the meaning of this ability to renormalize the mass ? 
From one point of view it is no problem at all. After all, only m 
is observable, not m, so the ino is a construct which should be got 
rid of anyhow. Only the renormalized theory should have been 
written in the first place. Two questions arise, however. 

The first question is whether the renormalized theory is, in fact, 
a logically consistent theory. With any finite cut-off the theory is 
not consistent, slight deviations from unitarity (the principle that 
the sum of probabilities for all alternatives should be unity) occur. 
These get smaller as the cut-off energy A goes to infinity. But the 
mass mo that may be needed to get a finite m for very large A may 
be negative. That is, the theory may contain hidden difficulties if 
we computed processes for energies E such that cc /n(E/m) 2 1 .  
This is such an extreme energy that such matters are of no apparent 
concern to calculation of lower energy phenomena. However, 
from a strictly theoretical view it would be nice to know whether 
renormalized Q.E.D. is a consistent theory, or whether difficulties 
may not arise of relative magnitude e-137. The great difficulty in 
answering such questions is our limited mathematical ability to 
deal with situations where some kind of perturbation theory does 
not suffice. I do not know if it has even ever been proved that Am 
still diverges if all orders of perturbation theory are included. 
[The perturbation result for Am is m, (3cr/27c)Zn A/m,].  

The second question concerning the renormalization idea is that 
renormalization of a quantity A gives up any possibility of calcul- 
ating that quantity. Now it may be that the " electromagnetic part 
of the electron mass " is unobservable, but this is not true of other 
particles. The difference in mass of proton and neutron, or of TC+ 

and no, or of K +  and KO, etc. are almost certainly electromagnetic 
in origin. They cannot be computed with a renormalized theory, 
for in such a theory any constant can be added to the masses of 
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each particle. It should be objected that these baryons and mesons 
are complicated systems, in virtue of the strong interactions, and 
we therefore do not know the correct laws of coupling to calculate 
this mass difference. If we knew them, perhaps the mass differences 
would converge without any modification of Q.E.D. itself. This 
is indeed possible, in principle, but so far it has not been demon- 
strated to be true in fact. Any complete field theory yet written 
for strongly interacting particles and electromagnetic interactions, 
has always appeared to be unrenormalizable unless these mass 
differences are renormalized as well. It seems odd to try to put 
the complete burden of the divergences of Q.E.D. on special pro- 
perties of the strong couplings, but on the other hand, that is where 
they may indeed lie. At any rate, close study of these mass differ- 
ences would probably teach something; either of the breakdown of 
Q.E.D. or of the electromagnetic characteristics of the particles. 

If it is assumed that the nucleon and meson structure is not solely 
responsible for the convergence of the mass differences, and that it 
is a failure of Q.E.D. instead, then the numerical values of these 
differences suggest that the failure of Q.E.D. should begin to show 
up strongly at virtual energies around 1 Gev. 

Finally, we should remark on the possibility that all of the mass 
of the electron is electromagnetic in origin. First, of course, the 
correction seems to be too small to do that (yet how can something 
that is infinite appear to be too small ?). But disregarding that, 
there is the argument that, if the electron mass is zero, the change 
of the electron field operator from + to y5+ will not alter things. 
Put otherwise, a state of right helicity will never be converted to 
one of left helicity, no matter how often it interacts with real or 
virtual photons. But an electron with mass does not have this 
property, so it has been believed that mass cannot come from no 
mass. But recently several physicists (Heisenberg, Nambu, 
Schwinger, for example) have argued that this is, in fact, not true. 
In a ferromagnet the original system has the symmetry that all 
space directions are equal; but in fact the interaction can produce 
a polarized background state in which any excited state has an 
energy depending on its alignment to an axis. That is, if we go 
beyond perturbation theory such symmetry arguments may fail. 

On the other hand, pure Q.E.D. with only zero mass electrons 
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and photons interacting with no other particles and having no cut- 
off energy probably cannot produce a finite electron mass. This is 
because the system is also invariant to a change of scale, there is no 
parameter to determine a length. Yet an electron with a mass 
involves such a length. 1 am not certain, but it appears to me impos- 
sible to generate a specific length from no scale whatsoever. 

However, in fact, there are two places in Nature from which 
such a length could come. One is the theory of gravitation, the 
gravitational constant involves length dimensions and light inter- 
acts with gravitons. Further, Machs’ principle in quantum mechanics 
is equivalent to the statement that the surrounding nebulae deter- 
mine the atomic scale of length in a local vicinity. However, these 
theories are not developed far enough for us to compute the electron 
mass starting only with zero mass electron, photons and gravitons 
in interaction. 

A more practical point to notice is that, in fact, photons do 
interact with nucleons and mesons, and to allow that there is, in 
that system, an independent scale of length, say the nucleon mass. 
This would serve as the small length-determining perturbation, 
which works its way back to determine the mass of the electron. 
It is always possible that the equation determining the electron mass 
has more than one solution, and that a second solution is the muon, 
but we are engaged in pure speculation here. 

One way to find out about this is to study more seriously Q.E.D. 
with electron mass exactly zero. On the one hand, it may be useful 
for getting a better understanding of Q.E.D. when electron energies 
are high, but most particularly, it would be interesting to see if 
such a theory is consistent at all. For example, a charge entering 
a magnetic field presents problems; it seems to radiate at  an infinite 
rate. Perhaps a careful study of this problem, and the effect of a 
small length-determining perturbation on the result, would lead us 
to an understanding of the ratio of electron mass to nucleon mass. 

Electric charge. 

Q.E.D. contains two constants which must be determined by 
experiment. One is the electron mass, which we have just discussed. 
The second is the electric charge, or the dimensionless combination 
a = fic/e2 = 137.039. For both of these the renormalization process 
must be applied, so we have foregone computing a also. 

80 



154 

It is interesting that all the ,, fundamental ( (  particles which are 
charged have the same charge, but we have no remarks to make 
on that point. 

The way that the charge becomes renormalized is via the polar- 
ization of the vacuum. A virtual pair produced by a photon (also 
virtual) annihilates again to re-create the photon. In first approxim- 
ation the correction to a from virtual electrons is Aa = (2/3x) In( A/rn). 
That is to say, it is divergent, so we have this time to cut-off the 
electron propagator at some energy A (this is in addition and 
different than the photon propagator cut-off discussed above - but 
they may ultimately have the same origin). Virtual pairs of other 
particles such as muons simply add their contribution to Aa in 
first order. 

At first it may be argued that here, at least, the philosophy of 
renormalization is unassailable. The " free charge " must be un- 
observable (although Gell-Mann has suggested that this may not 
be so, but high energy interactions may determine it). Only the 
total corrected a can be measured. Unlike the case of mass where 
we have charged and uncharged particles, like neutron and proton, 
to compare, here we have nothing but the single measured a. 

This is true, but are you willing to give up, forever, the possibility 
of computing this remarkable constant a ? If in some ultimate 
future theory a is to be computed, will we find ourselves correcting 
some value a. for virtual pairs ? One can hardly begin to speculate 
from our present position, but the question of how a can be computed 
at all has always been intriguing, and I should like to make a few 
remarks about it. 

The quantum theory of electromagnetic interaction can be formul- 
ated roughly as follows. Let So be the S-matrix operator for the 
system of particles not interacting with the electromagnetic field, 
let jp be the current density operator of this matter omitting 
the charge factor, and Ap be the electromagnetic potential operator 
times the charge. Then the S-matrix including the field is some- 
thing like (I am merely outlining here, the precise definitions are 
assumed to be familiar) 

i J j,A,dr i Lo(A) S = S o e  e 
where 

U Lo(A) = -2 S F,, F,, dT 
8x 

(9) 
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a, = fic/eo2 is the unrenormalized a and F,, 7 3,A, - JYA,. 
Note that we are using somewhat unfamiliar notation since neither 
j ,  nor A, require knowledge of the charge in their definition, it 
appears only in Lo. 

Now if we take expectation values between states of the vacuum 
for matter (to get at the vacuum polarization and other effects of 
virtual pairs) we shall have to calculate the expectation 

i s j  A dr i L(A) 
< S o e  , CL > = e  

it being sufficient to consider A, as a c-number function and L(A) 
defined here is simply a functional of A,. The completion of a 
problem requires that we integrate 

over all potential functions A, satisfying the boundary conditions 
of the problems. 

In a way of speaking, then, if we were not aware of the pairs 
we would say that electrodynamics has the effective Lagrangian 
L(A) + Lo(A). 

The L(A) defined in (11) can be expanded in powers of A, and 
in powers of its derivatives assuming in some situation that A is 
smoothly varying and small. A constant A, has no effect, assuming 
3,j, = 0, the conservation of charge, or guage invariance, so the 
expansion begins : 
L(A) = c J F,, F,, dz + C' J (F,,, J* dr + C" S (F,,)4dz + ... (13) 

where, except for the first term, only the type of term is meant to 
be indicated, two F's and two derivatives in the second term, four 
F's in the third, etc. The c, c', C" ... are constants. The first term 
can be combined with Lo in (12) to form 3 J F,, F,, dr with 
a1 = a, + 8xc and this is the origin of part (34) of the charge 
renormalization. For electron pairs c = (l/l27r2) In(A/rn) (as we 
have said), which is very small (although infinite !) compared to a. 

8x 

The other terms in the effective Lagrangian Lo + L generate 
modifications of Coulomb's law, the scattering of light by light, 
etc. Had these phenomena been discovered before Q.E.D., they 
would have been representable in classical theory as just such 
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modifications of Maxwell’s Lagrangian, so that the complete 
Lagrangian would be considered to be a complicated, non-linear 
and partly unknown affair. With the advent of Q.E.D. explaining 
the origin of the non-linearities, etc. the natural reaction would be 
to try to explain the complete Lagrangian in this way. The fact that 
c is infinite, although discouragingly small, would be exciting. It is, 
in fact, possible that c is not so small; perhaps the cut-off is 
controlled by gravitation, or, perhaps, some other modification of 
the laws of matter replaces the logarithm with a less convergent 
expression, or the cut-off may not be necessary if perturbation 
theory could be avoided. Finally, every charged particle makes a 
nearly equal contribution (although not to c’ or C” which vary 
inversely as the mass squared, or fourth power). So we must add 
contributions from muons, nucleons and mesons. We do not know 
how many nor how much each contributes and, although difficult, 
it is not impossible that a complete future calculation would give 
a value near 137 to 8xc so that no a, is required at all ! 

If that is the case, quantum electrodynamics takes a very simple 
form. In (9) L,(A) must be omitted. Then the functional integral on 
A , which must be taken, gives, since Jexp. (iJj A dr)DAP = 6[ j P ] ,  
a functional delta function of j It says therefore simply that all 
amplitude and expectations of So must be taken subject to the condition 
that the total current density is everywhere and always zero. 

If a real charge exists it 
must generate its own four-current (charge density, if at rest). Since 
total current vanishes this must be compensated by an opposite 
current in the vacuum sea of charged particles. Because of the 
dynamics of these particles the compensation cannot occur just 
locally, but another counter current is generated nearby, compen- 
sated by vacuum current again, etc. until this effect is propagated 
out to infinity. The energy associated with these compensating 
currents is the electromagnetic self-energy of the charge. Another 
charge placed in the vicinity adds its system of compensating currents 
so there is an energy of interaction between these charges. At any 
rate something like that is implied by these unsupported speculations. 

P P E L  
EL- 

What is electromagnetic interaction ? 

Interaction of other particles. 

which it must be wrong; it is incomplete. 
Although Q.E.D. is very accurate, there is of course one way in 

There are not only 
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photons, electrons, and muons in the world, but charged baryons 
and mesons as well. It will not do to say that Q.E.D. is exactly 
right as it stands in a limited situation where only electrons and 
muons are present, because virtual states of charged baryons must 
have an influence. Two sufficiently energetic photons, colliding, 
will not do just what Q.E.D. in that limited sense supposes; they 
also produce pions. Or, more subtly, a sufficiently accurate analysis 
of the energy levels of positronium would fail, for the vacuum 
polarization from mesons and nucleons would have been omitted. 

On the other hand, we use that theory as best we can to discuss 
the Coulomb potential from the nucleus, the nuclear emission of 
y-rays, the Bremstrahlung expected from pions, the chance that 
y-rays will be found in the disintegration of the K+, etc. How do 
we do it ? 

We expect that the principles of Q.E.D. will extend to these 
particles too, and replace our incomplete knowledge of them by a 
set of constants (charge, magnetic moment, etc.) which will suffice 
for low energy analysis. 

Yet we use the tool of electrodynamics for much more than that. 
We make some hypothesis about how the photons are “ ultimately ” 
coupled to the new particles. We suppose for example, that the 
anamolous magnetic moment of the proton has its ultimate origin, 
not in an extra PauIi term - IS Fpv in the “ original Lagrangian ” 
but in the currents of virtual mesons which surround the nucleon. 
That is, we assume that the coupling is in some sense ultimately 
as simple as possible, and all apparent anamolous effects have their 
origin in complexities of the strongly interacting particles themselves. 
This .hypothesis is universally used, permitting us to use electro- 
magnetic interaction to learn something ‘about the strange particles. 
Yet it has never been formulated in a completely precise manner. 
Its importance was first emphasized by Gell-Mann who called it 
the principle of minimal electromagnetic interaction, but following 
a suggestion of Telegdi, I shall call it Amperes-hypothesis (the 
assumption that all magnetism comes from currents). 

i.1 
4M i.1’ 

There is one exception already known to this principle; photons 
interact with the gravitational field without a charged intermediary. 
But this interaction can be viewed the other way about, that gravity 

8 4  



158 

interacts with all energy, photon energy included. We shall there- 
fore disregard this counter-example for the present. 

The simplest suggestion for defining Amperes-hypothesis would 
be to say that in the " fundamental Lagrangian " (the exact form 
of which, at present, unknown) all gradient operators 3 on charged 
fields are to be replaced by 3 -A and no other coupling to Ap P P  
is to be assumed. There are two objections to this formulation. 
First, we do not know the form of the future theory; no Lagrangian 
may exist. Is there not some formulation closer to the observed 
properties of the particles ? The second objection is possibly 
academic; if the Lagrangian were before us, we would probably 
know exactly what to do. Yet a term like 0~,,3~,3, which is evidently 
zero could be added, but when JP is changed to JP -AP it is no 
longer zero but is a Pauli term o F instead. Such an ambiguity P.v PV 
would arise, say, if the Lagrangian contained second derivatives, 
and it was not clear whether to write (y 3 )2 or 3 3 at some point. 

One of the effects of terms like a Pauli moment is that certain 
processes in Q.E.D. become uncalculable. For example, if the muon 
carried a true Pauli moment the hyperfine split of muonium could 
not be computed, as the term " X " in (6) is divergent in that case. In 
other words, the theory would not be renormalizable. Perhaps 
then Amperes-hypothesis is equivalent to the assumption that the 
theory is renormalizable. On the other hand, the proton-neutron 
mass difference may not be one of those computable quantities. 
We must understand renormalizability, then, as the hypothesis that 
only a finite number of unknown quantities must be attached, before 
everything else can be computed. 

P 

P P  P P  

Another effect of a term like a Pauli moment is to drastically alter 
the behavior of cross-sections at high energy. From the dispersion 
point of view, discussed below, constants such as the charge, 
anamalous moments, etc. appear in the form of subtraction constants 
required to ensure the convergence of the dispersion integrals in- 
volved. More constants are needed if the high energy cross-sections 
remain large, or increase, with rising energy. Thus Amperes- 
hypothesis in this viewpoint would take the form of a statement 
that a certain minimum number of subtraction constants are required. 

What amounts to the same thing, but is more readily available to 
experiment is to try to replace Amperes-hypothesis by a statement 
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that the size of high energy photon cross-sections are limited in 
some specific way. 

As a last remark, if the current j comes from the Lagrangian 
so easily, might the structure of this current not tell us something 
about that Lagrangian (or whatever more fundamentally replaces 
it) ? This possibility is discussed at this conference by Gell-Mann. 

P 

Dispersion theory (31). 

In the lowest order in which any process occurs, there are no 
integrals over virtual states (closed loops), and no divergences will 
arise. The Q.E.D. difficulties arise on integrating over invisible 
virtual processes. This generates a feeling that such virtual state 
integrations are unreal, or at least are not handled quite correctly, 
and that all of the formulas should be put in terms of directly 
measurable quantities. This can be done because of the analytic 
character of the functions involved. Their real parts can be expressed 
in terms of their imaginary parts. The imaginary parts can be 
expressed as the rate for real processes of lower order. Thus a 
diagram involving one virtual momentum integral can be expressed 
as a dispersion integral over a function determined from processes 
without a virtual integral at all. Put in this way, it sounds trivial, 
one integral is replaced by another, almost identical, and in fact 
from a practical calculational point of view there is often little to 
gain. But it is hoped that this viewpoint gives a clearer insight into 
the virtual state integrals and a closer relation to experiment. (The 
greatest utility of this method results, of course, in the analysis of 
strong coupling where the fundamental equations are unknown, 
for here one experimental result can be related to another.) 

We can illustrate by the simplest example, the second order 
vacuum polarization effect of electrons. The amplitude that a virtual 
photon of momentum q2 makes a pair and annihilates again is 
written q2f(q2), so that the entire dependence of L(A) on A expanded 
to second order is J f ( q 2 )  FPv(q) FPv(q) d4q written in momentum 
space. 

Now the imaginary part of q2fis the rate that a (virtual) photon 
makes real pairs. It only exists, writing q2  = 4m2x for x > 1. 
Choose the time axis in the direction of q and the photon polariz- 
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ation in the z direction and we require the probability that a vector 
potential of frequency 2 m d x  constant in space, produces a pair 
of electrons each of energy E = m d x ,  of momentump = m d x  - 1. 
This is one of the simplest elementary problems in Q.E.D. The 
amplitude for this is (Z2yzu1), squared and summed on polariz- 

- 
-. 

ations it is - sp [(i;z+m) yZ(&+m)yzI = - (p2 PI- m2) - 2 ~ 2 2 ~ 1  z 

or averaging over directions, E2 + - p2 + m2 = - (1 + 2x). 
The phase space factor is pE/(2E)2 so, dividing by 42, we find for 
the imaginary part off  (times (4x00-1) 

1 2 m2 
3 3 

fi - 1 + 2x 1”; 1 ) 1 / 2 .  
3x 

The real part is now given by a dispersion integral from Cauchy’s 
theorem as 

03 1 1 + 2 y y - 1  
f+) = - J - - 

3Y ( y Y ’ x d Y y  
- 

x 1 

The integral, however, is divergent (so the Cauchy theorem is not 
strictly true, there is a contribution from the contour at infinity). 
This can be handled in the following way. We can assumef, for 
some x is known experimentally or by definition. In this casefR(0) 
is the renormalization of the charge, so in the spirit of renormaliz- 
ation we can take it to be zero. Then we can use the Cauchy relation 
for the more convergent expression [ f ( x )  - f (O) ] /x .  What it leads 
to is the same as if we subtract from (14) the same equation with 
x = o :  

an integral which is now convergent and whose integrated value 
(2/3x) [(2x + 1) (1 - p ctn p) - x /3 ] ,  where sin2 p = x ,  is exactly 
the finite part of the vacuum polarization effect obtained by the 
usual integral over a closed loop (30). 

It is clear that Q.E.D. in its renormalized form may have its 
simplest expression in this mathematical scheme. We need merely 
say that fR(0) vanishes, for we wish to work with the constants 
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already renormalized. Several authors have discussed Q.E.D. from 
this point of view (32). 

If the integral (15) were still divergent we could perform another 
subtraction, but generate another uncalculable constant (analogous, 
in a different problem, to a Pauli anamalous moment). Amperes- 
hypothesis is that this is not necessary. 

It must be admitted, however, that no fundamental change in 
position on the renormalization question is really involved. If the 
integral (14) did converge we certainly would compute it, and call 
its value at x = 0 the change Aa in a, induced by pairs. In the 
usual loop integral method the integral is completed by subtracting 
the effect that the pairs would have if the mass of the electron were 
changed from m to A. The same method here makes (14) convergent 
and gives the same value for fR(0) = Au = (2/3x) ln(A/m). 

It might be hoped, therefore, that such dispersion relations in- 
volving the entire system of strange particles and Q.E.D. may be a 
satisfactory way of representing nature. It has much to recommend 
it; its close relation to experiment, the possibility of interdetermining 
coupling constants, the avoidance of the possibly meaningless 
question of which particles are fundamental and which compound, 
etc. These points have been emphasized by Chew in a remarkable 
speech at the conference in La Jolla, California this year. One 
serious question appears, however. Integrals over all energies are 
still required and at high energies the real processes involve all 
kinds of particles in considerable numbers. Thus the set of inter- 
connected equations becomes enormously elaborate just when it 
becomes interesting. It is not clear how to get started grappling 
with this complexity. 

On the other hand, the experimentally observed extreme energy 
phenomena suggest that they may have certain regularities. If this 
is so, a central theoretical problem is to formulate these regular- 
ities (33). Only then may it be possible to close in an intelligent 
way the wide-open hierachy of dispersion relations. 

It is in the spirit that all quantities should be reexpressed in 
terms of others, in principle, observable that the formula (8) for 
the Lamb shift self-energy was developed. Dispersion theory will 
probably also permit its being simplified still further. The real 
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part of the forward photon scattering cross-section fKY can, of 
course, be immediately expressed as an integral on the imaginary 
part, and a similar reduction can likely be made for the other 
terms. If this can be done the calculation of the Lamb shift for H 
(to first order in u, all orders in Zcc) will only involve true rates of 
real photon absorption or of pair annihilation. Thus, for each 
state n a definite K value is associated (so oK = En - Ei), so that 
the computation may be possible on machines. In fact, many of 
the matrix elements, useful in calculating internal conversion coef- 
ficients, etc. have been already calculated. 

The formula (8) is not valid directly for calculating such things 
as the proton-neutron mass difference, because other virtual fields, 
like the meson field, must be included. The necessary generaliz- 
ations of (8) can be written, but we shall have to see how useful 
they are and if the necessary experimental quantities are available. 

Conclusion. 

In writing this report on the present state of quantum electro- 
dynamics, I have been converted from a long-held strong prejudice 
that it must fail significantly (other than by simply being incomplete) 
at around 1 Gev virtual energy. The origin of this feeling was the 
belief that the mass of the electron (relative to the nucleon, say) 
and its charge, must be ultimately computable and that Q.E.D. 
must play some part in this future analysis. I still hold this belief, 
and do not subscribe to the philosophy of renormalization. But I 
now realize that there is much to be said for considering theoretically 
the possibility that Q.E.D. is exact, although incomplete. This 
assumption may be wrong, but it is precise and definite, and suggests 
many things to study theoretically, while the other negative assump- 
tion, (that it fails somehow) is not enough to suggest definite 
theoretical research. This is Wheeler’s principle of “ radical 
conservatism ”. 

Things are, of course, quite the other way for experimental 
research. One should look very hard for an “ expected ” failure. 
I have probably been converted from my prejudice, that it must 
fail, just in time to be caught off base by an experiment next month 
showing that indeed it does. 
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Discussion des rapports de Heitler et Feynman 

W. Heisenberg. - From Heitler’s lecture we have learned that 
Lorentz-invariance and local interaction seem not to be compatible 
in the conventional quantum-theory. On the other hand Feynman 
explained to us that quantum electrodynamics gives very accurate 
results on a very wide range of phenomena. These facts suggest, 
as has often been discussed, that in Qu. E. Dyn. we might meet a 
situation very similar to the Lee model with local interaction. Let 
me specify this assumption somewhat further : it would mean that 
by the process of infinite renormalization we have unconsciously 
introduced ‘‘ ghost-states ” of very high energy, i.e. an indefinite 
metric in Hilbert space. If this was true it would easily explain why 
for all low energy phenomena Qu. E. Dyn. gives excellent results 
and is a perfectly “ closed theory ”. At higher energies in realistic 
physics some modifications of Qu. E. Dyn. will occur since there 
will be the possibility of creating pairs of nucleons, x-mesons, etc. 
It may in fact be that the ghost states could be identified to some 
extend with the baryons, since the norm of baryon-states may have 
opposite sign to the norm of the electron-states. (That would not 
in itself interfere with the unitarity of the S-matrix, since we have 
baryon and lepton-conservation.) At the same time the indefinite 
metric would explain why it has not been possible to formulate 
Qu. E. Dyn. without these divergences and limiting processes. 
Because if, like in the Lee-model, the renormalized operators com- 
mute or anti-commute everywhere for a given time, then these 
operators at a given time are not sufficient to define the complete 
Hilbert space and we would need the operators in some arbitrarily 
small but finite time interval in order to define it. This would be 
equivalent to an infinite renormalization. Quite generally, and 
independently of Qu. E. Dyn. it seems natural to assume that a 
local interaction will have the tendency to eliminate the &functions 
on the light cone in the commutators and replace them by a minor 
singularity - which would be equivalent to an indefinite metric in 
Hilbert space. Certainly we have no general proof, that we can in 
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such a formalism always avoid the well known difficulties with the 
probability interpretation. On the other hand several cases are 
known in which an indefinite metric in Hilbert space is compatible 
with a unitary S-matrix. Therefore we should investigate this pos- 
sibility for reconciling local interaction and Lorentz-invariance, 
unless some better solution can be suggested. 

P.A.M. Dirac. - I would like to give briefly my point of view 
with regard to field theory. The foundation of atomic physics is 
the superposition principle, which says that states are of such a 
character that they can be added together to give other quantities 
of the same nature. The states must be pictured as embedded in 
space-time; so that if one is given a state, one can apply to it various 
operations of rotation and translation to get other states. These 
operations form a group, the inhomogeneous Lorentz group. It 
follows that the states provide a representation of the inhomogeneous 
Lorentz group. The problem of setting up a quantum theory thus 
becomes the problem of finding a certain representation of the 
inhomogeneous Lorentz group. 

One could attack the problem by looking for all the represent- 
ations of the inhomogeneous Lorentz group. This method was 
followed by Wigner in 1939. He expressed the representations in 
terms of the irreducible representations. The irreducible represent- 
ations correspond to particles by themselves. Particles in interaction 
also correspond to representations, but reducible ones. All the 
work that has been done on quantum field theory may be looked 
upon as attempts to set up a suitable representation of the inhomo- 
geneous Lorentz group corresponding to physical reality. The 
attempts fail because of the infinities and produce nothing of 
mathematical significance. 

I think it would be worth while to work on the problem from a 
more general mathematical basis, in which one does not necessarily 
build up the representation in terms of field quantities suggested 
by existing physical theories. The task of primary importance is to 
get the mathematical relations right. One can then afterwards look 
for the physical interpretation of the various quantities that enter 
into the mathematical scheme. 

W. Heitler. - I would have no objection to the use of indefinite 
When metric provided it can be done without inconsistencies. 

9 3  
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Heisenberg suggests that quantum-electrodynamics is a “ closed 
theory ”, this surely can apply to electrons only and implies that 
the self mass remains infinite. This would not permit a treatment 
of the electrodynamics of bosons and would not permit a calculation 
of the mass differences. 

W. Heisenberg. - For x-mesons and nucleons it is more reason- 
able to start not from Qu. E. Dyn., but from an entirely different 
scheme. 

A.S. Wightman. - I should like to comment on Heitler’s non- 
invariant theory. Such theories are of interest from a point of view 
quite different from that which Heitler considered. They can be 
studied for the light which they may throw on the theory without 
cut-off. For this purpose one must examine the dependence on the 
cut-off of the various quantities occuring in theory. Normally, one 
considers two cut-offs in this connection, an ultra violet cut-off 
and a box. In Heitler’s theory there is no box and the theory appears 
Euclidean invariant. This gives rise to phenomena which, I believe, 
could strongly affect Heitler ’s conclusions, whatever the purpose 
for which the theory is studied. What I have in mind is the Haag 
theorem which says that in a Euclidean invariant theory in which 
there are canonical variables, the no particle state is necessarily 
Euclidean invariant. Now the only Euclidean invariant state which 
admits a reasonable physical interpretation is the physical vacuum. 
Since in any theory where there is non-trivial pair creation (as in 
Heitler’s) the no particle state is not stationary, there is no reason- 
able vacuum state. The only way out of this difficulty is to use one 
of the so-called strange representations of the commutation relations, 
but in that case the evaluation of the physical quantities of the 
theory will certainly require some better technique than perturbation 
theory. 

G .  KiillBn. - Perhaps I may be allowed to formulate what 
Wightman has just said in a slightly different way. In any ordinary 
field theory you have the interacting field A(x) and the asymptotic 
incoming field A(tn)(x). Further you have a Hamiltonian 
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Especially in the old times one often introduced states, mathematical 
states, as eigenstates of H,(A) 

H,(A) I n, math> = En I n, math>. 

In contradistinction to this we have the physical states which are 
eigenstates of the total Hamiltonian or, which is practically the 
same thing, H,(A(I")) # Ho(A) 

Many times one tries to write expansions of the form 

1 n, phys.> = [c Cnn' 1 n', math.>. 

The so-called " Haag theorem " says that the transformation CnYn' 
is indeed, very singular from the mathematical point of view. I agree 
that that is certainly so also for the theory Heitler discussed yester- 
day. However, I also believe that this fact is not really very serious. 
If one computes more physical quantities like scattering amplitudes 
or even self-masses, they can very well exist even if Cnn' is singular. 
Therefore, I believe that this particular argument against the Heitler 
model is not very relevant. 

n I  

A S .  Wightman. - The problem stated by Professor Dirac can 
be regarded as half-solved. I believe that we know up to unitary 
equivalence the reducible unitary representation of the inhomo- 
geneous Lorentz group which belongs to a physical theory with 
given stable particles. I t  may be displayed as the representation of 
the free field theory of particles of the same masses. 

To go further one must specify the physical observables of the 
theory. For the theory of a scalar field, for example, one has 

U(U, A) @(x) U(U, A)-1 = @(AX + a), 

[CD(x), @(y)] = 0 (x2 - y2) spacelike. 

Here U(a, A) is the unitary representation of the Lorentz group. 
I believe that the problem of finding the CD with these properties is 
a well posed one mathematically and the solutions would give a 
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natural expression for the basic ideas of field theory put forward 
thirty some years ago by Dirac, Heisenberg and Pauli. Unfortunately, 
it is as yet unsolved. Until we understand its solutions or lack of 
them I feel there will be no physical paradox in the foundations of 
field theory, just a muddle. 

L. Van Hove. - I would like to ask a question to Heisenberg 
concerning his remarks at the opening of this discussion. If, as you 
suggest, the baryons regularize the leptons and vice versa, don’t 
you expect that the vacuum polarization effects of the baryons which 
become important in high energy electrodynamics may come out 
to be different, for example in sign, from what conventional theory 
predicts ? 

W. Heisenberg. - If the baryons have opposite norm to that 
of the leptons, this should certainly have some inffuence on vacuum 
polarization effects of the baryons. Whether it would change the 
sign of these effects could probably be answered only by a careful 
investigation; at least I don’t know the answer. 

G .  Chew. - If none of the strongly interacting particles is 
elementary, there should be no divergences in calculating electro- 
magnetic mass splittings of isotopic multiplets, even with existing 
rules of electrodynamics. (Think, for example, of the Coulomb 
splittings of He3 and H3.) The principle that none of the strongly 
interacting particles is elementary is a feature of Heisenberg’s theory 
and can be incorporated into the S-matrix theory - even though 
the notion is awkward in conventional (Lagrangian) field theory. 
One may hope therefore, not to need cut-offs when such mass 
calculations are finally carried out. 

W. Heisenberg. - With regard to Wightman’s remark, I would 
like to emphasize, that in my opinion wellknown difficulties of 
divergences, etc. are not primarily mathematical problems. Quantum 
field theory is in two respects essentially different in its physical 
content from quantum mechanics : 

(1) In field theory the interactions are local while in quantum 
mechanics they are non local. 

(2) In field theory we have three boundary conditions while in 
quantum mechanics we have only two (at infinitely small and in- 
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finitely large distances of particles). The third boundary condition 
in field theory refers to an infinite number of particles. 

It is a problem of physics and not only of mathematics to see 
how such a profound change as the replacement of non local inter- 
actions by local ones will affect the mathematical representation. 
We cannot expect that such a change could be represented without 
radical changes in the formalism of quantum theory. 

With respect to the problem of the third boundary we should 
try to get some information from the experiments on multiple 
production of particles. 

Concerning the views expressed by Chew, I think I can agree in 
principle with most of his points. It perhaps should be possible 
in principle to construct the S-matrix simply by considering the 
group structure of the system of elementary particles and adding 
the postulate of unitarity and analyticity (except at points represent- 
ing physical states) in order to represent causality. All this could 
probably be done without the use of an indefinite metric. On the 
other hand I cannot see how from a practical point of view one 
could deal with the enormous complexity of the analytic behaviour 
of S-matrix elements, without deriving them from some kind of 
“local interaction ”. One should also keep in mind that by the 
postulate of analyticity one goes already away from the energy-shell 
into the more “ local ” regions; and discussing these regions with- 
out indefinite metric may be just as complicated as for instance a 
discussion of the fundamental laws of algebra without introducing 
- 1 .  But aside from these practical points I would approve of 

the views expressed by Chew. 

L. Van Hove. - At center of mass energies of the order of 1 Gev 
and higher the vacuum polarization effects of strongly interacting 
particles become a more important part of radiative corrections 
than at low energies. Could Feynman comment on the implications 
of this fact if quantum electrodynamics would be “ exact, although 
incomplete ” ? 

R.P. Feynman. - I do not want to give a precise answer to this 
question. It might be possible to write electrodynamics with e and p7 
which would be complete but incorrect. 

9 7  
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R. Peierls. - Even if there exists a modified form of electro- 
dynamics in which there are no infinities it may not be easy to dis- 
cover this from the study of electrodynamics by itself, because the 
modifications are likely to relate to extremely high energies (small 
distances) and their discussion becomes very academic. The similar 
difficulties in the theory of strong interactions are very substantial 
in the region of practical interest. It therefore seems likely that 
we may first discover the remedy (if it exists) in the strong inter- 
actions, and then recognize how to remove the troubles of electro- 
dynamics by similar means. 

A. Salam. - I would like to come back to Heitler’s formula 
connecting energy and momentum for an electron and the violation 
of Lorentz invariance. If so perhaps we could have a discussion of 
the experimental situation. 

W. Heitler. - Concerning the variation of mass with velocity : 
the formula given in my report for the self mass 6rn(p) refers to free 
electrons only (not to bound electrons). The coefficients depend 
very much on the choice of the form factor and it may even be that 
a form factor exists for which 6m is independent of p.  Personnally, 
of course, I do not believe that any departure of this sort from in- 
variance exists, this was merely meant to show what kind of results 
arise when one insists on the finiteness of the theory, and to suggest 
that such fundamental relation as Einstein’s mass-velocity relation, 
should be checked as accurately as possible by experiments. 

R.P. Feynman. - If the relativity formula is wrong, there are 
two masses that can be defined : the rest mass or self energy, and 
the coefficient of v2/2 in the energy for small velocities or the 
‘‘ kinetic mass ”. If gravity acts on energy, or, therefore rest mass, 
and “ kinetic mass ” represents inertia then we know from the 
experiment of Eotvos that they differ by less than one part in 10-8. 
Therefore the electromagnetic part of the proton mass, being of 
order 10-3 must have the right coefficient of v2 to order 10-5. 
I pointed out yesterday that if the electron energy had a velocity 
dependence of the form m,( 1 + y2 v2/c2 + a I 4 1 ~ 4 )  the Lamb exper- 
iment shows that a = 3/8 to one part in 10- 6 so that if a fractional 
part of the mass of order 0.1 % is electromagnetic and varies in a 
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new way with velocity, then it must have the right coefficient of ~4 

correct to one part in 10- 3. 

L. Van Hove. - Present mass determination of the particles at 
ultrarelativistic energies are, I think, of an order of accuracy of a 
few percent. Is this sufficient for the question you raised ? 

W. Heitler. - I think that an accuracy of 1 % would not be 
good enough. 

H.A. Bethe. - I want to draw your attention to two experiments, 
the first of which may be legitimate, in Heitler’s sense, and the 
second may not be. The first experiment compares directly the rest 
energy of an electron to the kinetic mass of the electron; the kinetic 
mass is known with absolute accuracy; the rest energy can be 
measured by determining the energy necessary to produce an electron 
and a positron from radioactivity; this is known in some cases to 
a few parts in ten thousand and therefore the equality of rest mass 
and kinetic mass is established to a few parts in ten thousand. An 
even more direct and accurate way to measure the rest energy is 
by means of the wave length of annihilation radiation which has 
been measured by Dumond at Cal. Tech., also to an accuracy of 
a few parts in 10,OOO. The second experiment, I want to mention, 
refers to high energy; one can measure the total energy of the 
particle and measure the difference between the velocity of the 
particle and the velocity of light. This difference for synchrotrons 
giving electrons of 1 Gev is something like one part in 107, and 
one can measure this difference very accurately by measuring the 
total intensity of the light emitted in synchrotron radiation. One 
can measure this difference to something like 1 % by measuring the 
intensity of the light; this has been done at 300Mev and there is 
a project for 1 Gev but I am sure it would give the right result. This 
would give the velocity of the particle to one part in 109. Thus it 
is established with phenomenal accuracy that the velocity of an 
electron actually approaches that of light. The rest mass of a fast 
electron is measured by the difference 1 - and is therefore known, 
for 300 Mev electrons, to an accuracy of about 1 %. It  is of course 
equal to the familiar kinetic mass. All the experiments I mentioned 
refer to free electrons. 
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111. Path Integrals and Operator Calculus: QED and Other Applications 

The Feynman path integral approach to quantum mechanics stands presently on a par, both 
esthetically and practically, with the original formulations of 1925-26.’ The path integral 
formulation of the quantum gauge theories which lie at the heart of the Standard Model 
of elementary particle interactions turned out to be critical in the VeItman-’t Hooft proof 
that these theories are renormalizable. However, it has an even wider range of applications 
than to quantum field theories. Feynman’s book of 1965 with Albert R. Hibbs [64] uses path 
integrals to treat problems other than quantum mechanics and quantum electrodynamics, 
including statistical mechanics, the variational principle, the polaron problem, Brownian 
motion, and noise. Other applications have been made to quantum liquids and solids, to 
macromolecules and polymers, and to problems of propagation in dissipative media. The 
approach is important to various forms of semiclassical approximations in chemical, atomic, 
and nuclear problems and basic to the instanton problem (barrier penetration between differ- 
ent vacuum ground states). It can be extended to optics and even to the motion of particles 
in the strong gravitational fields near a black hole. 

As Feynman related in his Nobel Lecture [73], he developed the path integral formulation 
of quantum mechanics in order to quantize the action-at-a-distance theory of classical elec- 
trodynamics and thus avoid problems arising in field theory from the self-interaction of the 
electron. The methods of quantization associated with the names of Heisenberg, Schrodinger, 
and Dirac all begin with the Hamiltonian function as the generator of the evolution of the 
system with time, while the classical action-at-a-distance theory used a classical action prin- 
ciple based on the Lagrangian. This involved the interaction of two currents, each a function 
of an independent spacetime variable. In [73] Feynman described how he discovered (with 
the help of Herbert Jehle) an infinitesimal time development operator of Dirac that involved 
the classical Lagrangian. Successive applications of this operator to the initial wave function 
generated the wave function at any later time, and was equivalent to finding the solution of 
Schrodinger’s equation. To obtain the wave function after a finite elapsed time, however, one 
had to integrate over all possible paths connecting two arbitrary space-time points. This is 
the path integral approach of Feynman. 

Although it is possible to begin with the Hamiltonian and arrive at a “manifestly covari- 
ant” relativistic QED, as shown by Julian Schwinger and Sin-itiro Tomonaga, with whom 
Feynman shared the Nobel Prize, the overall spacetime point of view of Feynman lends 
itself to a relativistic formulation in a more natural way because the action, i.e. the time 
integral of the classical Lagrangian, is a relativistic invariant, while the Hamiltonian function 
is not. 

Before leaving for Los Alamos in the spring of 1942, Feynman wrote his doctoral disser- 
tation on the path integral method. The essential parts of his thesis were published in 1948 
in paper [7]. In it, the electrons are treated nonrelativistically and the electromagnetic field 
is described by its Fourier transform, i.e. by the so-called field oscillators. Fermi’s version of 
QED represented the electromagnetic field this way, and then quantized the classical oscilla- 
tors. Feynman, instead, eliminated the field oscillators, integrating out their coordinates and 

“One cannot fail to observe that Feynman’s principle in particular - and this is no hyperbole - expresses 
the laws of quantum mechanics in an exemplary neat and elegant manner, notwithstanding the fact that it 
employs somewhat unconventional mathematics.” - W. Yourgrau and S. Mandelstam, Variational Principles 
in Dynamics and Quantum Theory (Philadelphia 1968), p. 128. 
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leaving only the “source current” and the “test current.” (We use the quotation marks be- 
cause the two currents are interchangeable.) All the oscillators were eliminated. In previous 
treatments the electromagnetic longitudinal and timelike degrees of freedom were combined 
to yield the Coulomb interaction, while the transverse degrees of freedom were retained as 
field oscillators. 

In the following year, 1949, Feynman published papers [12] and [13], which are included 
in Part II.C, using the rules that he had derived for &ED by applying the path integral 
method. In 1950, he wrote paper [14], which establishes the validity of the rules, i.e. the 
Feynman diagram methods. This paper starts with Fermi’s formulation of the field as a 
set of oscillators and completely eliminates them, as Feynman had done already in paper 
[7]. Here, however, the charges are treated in a completely relativistic manner, using either 
the Dirac electron-positron field or, for spinless particles, the relativistic Klein-Gordon (or 
Pauli-Weisskopf) field. All virtual photons are eliminated; and Feynman shows how real 
photons can be either introduced ab initio or derived from the general formulae for virtual 
processes. 

In 1951, Feynman completed his work on QED in paper [15], describing and applying 
a new operator calculus for operators dependent on a continuous parameter (such as the 
time), which describes the ordering of application of the generally noncommuting operators. 
Using the ordering parameter, the ordinary methods of calculus (integration and power series 
expansions, for example) can be carried through without regard to the ordering until the 
final result, which is then appropriately reordered. In this paper, Feynman applied this 
method to QED and pointed out that while it did not lead to any new results, it made it 
easier to relate the path integral formulation of QED to the more conventional approaches 
of Schwinger and Tomonaga. An advantage of the ordered operator calculus over the path 
integral method is that it can deal more easily with half-integral spin.2 Evidently Feynman 
hoped that his new method for dealing with operators would have a wider application, but 
that does not seem to have been the case (at least so far!). 

Among the applications of the path integral method treated by Feynman and Hibbs, 
we find statistical  mechanic^,^ a new variational principle, Brownian motion, and “other 
problems in probability.” This is only a small subset of the many applications which have 
been found for the method, especially in condensed matter p h y ~ i c s . ~  Papers [28] and [49] 
develop the new variational principle and apply it to the polaron problem, which Feynman 
describes in [28] as follows: 

An electron in an ionic crystal polarizes the lattice in its neighborhood. This inter- 
action changes the energy of the electron. Furthermore, when the electron moves 
the polarization state must move with it. An electron moving with its accompanying 
distortion of the lattice has sometimes been called a polaron. It has an effective mass 
higher than that of the electron. We wish to compute the energy and effective mass 
of such an electron. 

Feynman developed the new variational principle and used it to obtain a lower bound 
for the polaron self-energy that was lower than that obtained in five other papers published 

’See [64], Feynman and Hibbs, p. 355. 
3See also [88]. 
4See, e.g., Martin C. Gutzwiller, “Resource letter ICQM-1: the interplay between classical and quantum 
mechanics,” Am. J .  Phys. 66 (1998): 304-324. Among items dealing explicitly with Feynman path integrals 
are 71-73 and 158-168. 



175 

in the early 1950s. Paper [49] employs a similar method to calculate the polaron’s mobility. 
It is a collaboration between Feynman, Robert W. Hellworth (of the Hughes Research Lab- 
oratory, where Feynman was a part-time consultant), and two Caltech graduate students: 
Carl K. Iddings and Phillip M. Platzman. 

Paper [55] is part of the doctoral thesis of Frank L. Vernon, Jr., supervised by Feynman. 
It was not Feynman’s usual practice for his name to appear in publications of his students’ 
dissertations, so we can assume he was closely involved in the ~ u b j e c t . ~  It deals with a 
general quantum-mechanical system (e.g. an atom or molecule) interacting with a linear 
dissipative system. The latter is represented by a collection of harmonic oscillators. In 
that sense it resembles QED and, as in that case, the oscillators’ coordinates are integrated 
out so that their total effect is replaced by that of an “influence functional.” According to 
the abstract, “In addition, a fluctuation-dissipation theorem is derived relating temperature 
and dissipation of the linear system to a fluctuating classical potential acting on the system 
of interest which reduces to the Nyquist-Johnson relation for noise in the case of electric 
circuits.” 

Selected Papers 
[7] Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20 

[14] Mathematical formulation of the quantum theory of electromagnetic interaction. Phys. 
Rev. 80 (1950): 440-457. 
[15] An operator calculus having application in quantum electrodynamics. Phys. Rev. 84 

[28] Slow electrons in a polar crystal. Phys. Rev. 97 (1955): 660-665. 
[49] With R.W. Hellwarth, C.K. Iddings, and R.M. Platzman. Mobility of slow electrons in 
a polar crystal. Phys. Rev. 127 (1962): 1004-1017. 
[55] With F.L. Vernon, Jr.. The theory of a general quantum mechanical system interacting 
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’According to Frank Vernon (private communication), “I asked [Feynman] if he would coauthor the paper. 
He seemed surprised but agreed.” 
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Space-Time Approach to Non-Relativistic 
Quantum Mechanics 

R. P. FEYNMAN 

Cornell University, Ithaca, Neu, York 

Non-relativistic quantum mechanics is formulated here in a different way. I t  is, however, 
mathematically equivalent to the familiar formulation. In quantum mechanics the probability 
of an event which can happen in several different ways is the absolute square of a sum of 
complex contributions, one from each alternative way. The probability that a particle will be 
found to have a path x ( t )  lying somewhere within a region of space time is the square of a sum 
of contributions, one from each path in the region. The contribution from a single path is 
postulated to be an exponential whose (imaginary) phase is the classical action (in units of A )  
for the path in question. The total contribution from all paths reaching x ,  f from the past is the 
wave function +(x, t ) .  This is shown to satisfy Schroedinger's equation. The relation to matrix 
and operator algebra is discussed. Applications are indicated, in particular to eliminate the 
coordinates of the field oscillators from the equations of quantum electrodynamics. 

1. INTRODUCTION 

is a curious historical fact that modern 

different mathematical formulations : the differ- 
ential equation of Schroedinger, and the matrix 
algebra of Heisenberg. The two, apparently dis- 
similar approaches, were proved to be mathe- 
matically equivalent. These two points of view 
were destined to complement one another and 
to be ultimately synthesized in Dirac's trans- 
formation theory. 

This paper will describe what is essentially a 
third formulation of non-relativistic quantum 
theory. This formulation was suggested by some 
of Dirac's'C2 remarks concerning the relation of 

IT quantum mechanics began with two quite 

1 P. A. M. Dirac, The Principles of uanfum Mechanics 
C h ?  Clarendon Press, Oxford, 1938,  second edition, 

chon 33; also, Physik. Zeits. Sowjetunion 3,64 (1933). 
'P, A, M. Dirar, Rev. Mod. Phys. 17, 195 (1945). 

classical actions to quantum mechanics A proba- 
bility amplitude is associated with an entire 
motion of a particle as a function of time, rather 
than simply with a position of the particle a t  a 
particular time. 

The formulation is mathematically equivalent 
to  the more usual formulations. There are, 
therefore, no fundamentally new results. How- 
ever, there is a pleasure in recognizing old things 
from a new point of view. Also, there are prob- 
lems for which the new point of view offers a 
distinct advantage. For example, if two systems 
A and B interact, the coordinates of one of the 
systems, say B ,  may be eliminated from the 
equations describing the motion of A .  The inter- 

a Throughout this paper the term "action" will be used 
for the time integral of the Lagrangian along a path. 
When this path is the one actually taken by a particle, 
movin classically, the integral should more properly be 
called ffamilton's first principle function. 

367 
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action with B is represented by a change in the 
formula for the probability amplitude associated 
with a motion of A .  I t  is analogous to the classical 
situation in which the effect of B can be repre- 
sented by a change in the equations of motion 
of A (by the introduction of terms representing 
forces acting on A ) .  In this way the coordinates 
of the transverse, as well as of the longitudinal 
field oscillators, may be eliminated from the 
equations of quantum electrodynamics. 

In  additiori, there is always t h e  hope that  the 
new point of view will inspire an idea for the 
modification of present theories, a modification 
necessary t o  encompass present experiments. 

We first discuss the general concept of the 
superposition of probability amplitudes in quan- 
tum mechanics. We then show how this concept 
can be directly extended to  define a probability 
amplitude for any motion or path (position vs. 
time) in space-time. The ordinary quantum 
mechanics is shown to result from the postulate 
that this probability amplitude has a phase pro- 
portional to the action, computed classically, for 
this path. This is true when the action is the time 
integral of a quadratic function of velocity. The 
relation to matrix and operator algebra is dis- 
cussed in a way that stays as close to  the language 
of the new formulation as possible. There is no 
practical advantage to this, but the formulae are 
very suggestive if a generalization to  a wider 
class of action functionals is contemplated. 
Finally, we discuss applications of the formula- 
tion. As a particular illustration, we show how 
the coordinates of a harmonic oscillator may be 
eliminated from the equations of motion of a 
system with which i t  interacts. This can be ex- 
tended directly for application to  quantum elec- 
trodynamics. A formal extension which includes 
the effects of spin and relativity is described. 

2. THE SUPERPOSITION OF PROBABILITY 
AMPLITUDES 

The formulation to  be presented contains as 
its essential idea the concept of a probability 
amplitude associated with a completely specified 
motion as a function of time. I t  is, therefore, 
worthwhile to  review in detail the  quantum- 
mechanical concept of the superposition of proba- 
bility amplitudes. We shall examine the essential 

changes in physical outlook required by the 
transition from classical to  quantum physics. 

For this purpose, consider an imaginary experi- 
ment in which we can make three measurements 
successive in time: first of a quantity A ,  then 
of B ,  and then of C. There is really no need for 
these to  be of different quantities, and it will do 
just as well if the example of three successive 
position measurements is kept in mind. Suppose 
that a is one of a number of possible results which 
could come from measurement A ,  b is a result 
that could arise from B ,  and G is a result possible 
from the third measurement C.4 We shall assume 
that the measurements A ,  B ,  and C are the type 
of measurements that completely specify a state 
in the quantum-mechanical case. That  is, for 
example, the state for which B has the value b is 
not degenerate. 

I t  is well known that  quantum mechanics deals 
with probabilities, but naturally this is not the 
whole picture. In order to  exhibit, even more 
clearly, the relationship between classical and 
quantum theory, we could suppose that  classi- 
cally we are also dealing with probabilities but 
that  all probabilities either are zero or one. 
A better alternative is to imagine in the classical 
case that  the probabilities are in the sense of 
classical statistical mechanics (where, possibly, 
internal coordinates are not completely specified). 

We define P.b as the probability that  if meas- 
urement A gave the result a, then measurement B 
will give the result b. Similarly, Pbc is the proba- 
bility that if measurement B gives the result b, 
then measurement C gives c. Further, let P,, be 
the chance that if A gives a, then C gives C. 
Finally, denote by Pdc the probability of all 
three, i.e., if A gives a, then B gives b, and C 
gives G. If the events between a and b are inde- 
pendent of those between b and c, then 

POSC = P g b o .  (1) 

This is true according to  quantum mechanics 
when the statement that  B is b is a complete 
specification of the state. 

‘For our discussion it is not important that certain 
values of a, b,  or G might be excluded by quantum me- 
chanics but not by classical mechani&. For simplicity, 
assume the values are the same for both but that the 
probability of certain values may be zero. 
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In any event, we expect the relation 

p a =  P o b c .  (2) 
b 

l h i s  is because, i f  initially measurement A gives 
a and the system is later found to give the result 
c to measurement C, the  quantity B must have 
had some value at the time intermediate to A 
and C. The probability that  i t  was b is P&. 
We sum, or integrate, over all the  mutually 
exclusive alternatives for b (symbolized by x b ) .  

Now, the essential difference between classical 
and quantum physics lies in Eq. (2). In classical 
mechanics it is always true. In quantum me- 
chanics i t  is often false. We  shall denote the 
quanturn-mechanical probability that  a nieasure- 
nient of C results in c when it follows a measure- 
ment of A giving a by P,,*. Equation ( 2 )  is 
replaced in quantum mechanics by this remark- 
able law ? There exist complex numbers %b,  V b c ,  

qac such that  

The classical law, obtained by combining (1) 
and (2), 

p m  = c PiibPbr (4) 

%e = c VobVbc. (5) 

b 

is replaced by 

b 

If (5) is correct, ordinarily (4) is incorrect. The 
logical error made in deducing (4) consisted, of 
course, in assuming that  t o  get from a t o  c the 
system had to  go through a condition such that  
B had to have some definite value, b.  

If an attempt is made to  verify this, i.e., if B 
is measured between the experiments A and C, 
then formula (4) is, in fact, correct. More pre- 
cisely, if the apparatus to measure B is set t i p  
and used, but  no at tempt  is made t o  utilize thc 
results of the B measurement in the sense that 
only the A t o  C correlation is recorded and 
studied, then (4) is correct. This is because the B 
measuring machine has done its job: i f  we wish, 
we could read the meters at any time without 

We have assumed b is a non-degenerate state, and that 
therefore (1) is true. Presumably, if  in some generalization 
of quantum mechanics (1) were not true, even for pure 
states b,  (2) could be expected to be replaced by: There 
are complex numbers v s b c  such that Pab, = I ‘pob. I *. The ana- 
log of ( 5 )  is then ‘pol = 21, me. 

disturbing the situation any further. ’The experi- 
ments which gave a and G can, therefore, be 
separated into groups depending on the value 
of b. 

Looking at probability from a frequency point 
of view (4) simply results from the statement 
that  in each experiment giving a and c, B had 
some value. ’I‘he only way (4) could be wrong is 
the statement,  “B had some value,” must some- 
times be meaningless. Noting tha t  ( 5 )  replaces 
(4) only under the circumstance that  we make 
no at tempt  to  measure B ,  we are led to  say tha t  
the statement, “B had some value,” may be 
meaningless whenever we make no at tempt  to  
measure B.B 

Hence, we have different results for the corre- 
lation of a and c, namely, Eq. (4) or 13q. (5) ,  
depending upon whether we do or do not a t tempt  
t o  measure B .  No matter how subtly one tries, 
the at tempt  to measure B must disturb the  
system, at least enough to  change the results 
from those given by ( 5 )  t o  those of (4).’ T h a t  
measurements do, in fact ,  cause the necessary 
disturbances. and that ,  essentially, (4) could be 
false was first clearly enunciated by Heisenberg 
in his uncertainty principle. The law (5) is a 
result of the work of Schroedinger, the statistical 
interpretation of Born and Jordan, and the 
transformation theory of Dirac.B 

Equation (5) is a typical representation of the 
wave nature of matter. Here, the chance of 
finding a particle going from a to G through 
several different routes (values of b) may, if no 
attempt is made t o  determine the route, be 
represented as the square of a sum of several 
complex quantities-one for each available route. 

‘ I t  does not help to  point out that  we could have 
measured B had we wished. The fact is that  we did not. ’ How (4) actually rcsrilts from ( 5 )  when measurements 
disturb the system has been studied particularly by J. VOII  
Neumann (dfaalhematasche Gtundlogen der Quatttemnechantk 
(Dover Publications, New York, 1943)). The effect of 
perturbation of the measuring equipment is effectively to  
change the phase of the interfering components, by o b ,  say, 
so that ( 5 )  becomes +%c’& t?’bb%bpbc. However, as  von 
Neumann shows, the phase shifts must remain unknown 
if  B is measured so that the resulting probability Pa, is 
the square of qac averaged over all phases, Bb. This results 
in (4). 

8 If A and B are the operators corresponding to measure- 
ments A and B ,  and if $a and $a are 5olutions of A&.=a&. 
and B X b = b x b ,  then ‘Pot,= fxb*&.dX=(xi*,  +u). Thus, ‘Pab IS 
an element ( a l b )  of the transformation matrix for the 
transformation from a representation i n  which A is 
diagonal to one in which B is diagonal. 
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Probability can show the typical phenomena 
of interference, usually associated with waves, 
whose intensity is given by the square of the 
sum of contributions from different sources. The 
electron acts as a wave, (S), so to  speak, as long 
as no  attempt is made to  verify that  it is a 
particle; yet one can determine, if one wishes, 
by what route it travels just as though i t  were a 
particle ; but when one does that, (4) applies and 
it  does act like a particle. 

These things are, of course, well known. They 
have already been explained many times.g How- 
ever, it seems worth while t o  emphasize the fact 
that  they are all simply direct consequences of 
Eq. (S), for i t  is essentially Eq. ( 5 )  that  is funda- 
mental in my formulation of quantum mechanics. 

The generalization of Eqs. (4) and (5) t o  a 
large number of measurements, say A ,  B, C, D, 
. . , K ,  is, of course, that the probability of the 

sequence a, b ,  6 ,  d ,  . . a ,  k is 

P o b e d . . * k =  1 % b e d * . * k l  ** 

The probability of the result a, t, k, for example, 
if b ,  d ,  . * . are measured, is the classical formula: 

p o c k =  * ‘ . P a b c d , . , k ,  ( 6 )  
b 

while the probability of the same sequence a, c, k 
if no measurements are made between A and C 
and between C and K is 

p o c k q  = I c c * ’ ’ ‘Pabcd...& I ’* (7) 
b d  

The quantity If&,bcd...h we can call the probability 
amplitude for the condition A =a, B = b,  C = c ,  
D-d ,  * ,  K = k. ( I t  is, of course, expressible as 
a product P o b ( P b c 9 e d ‘  * Pjb) 

3. THE FROBABILITY AMPLITUDE FOR A 
SPACE-TIME PATH 

The physical ideas of the last section may be 
readily extended to  define a probability ampli- 
tude for a particular completely specified space- 
time path. To  explain how this may be done, we 
shall limit ourselves to  a one-dimensional prob- 
lem, as the generalization to several dimensions 
is obvious. 

* See, for example, W. Heisenberg, Thc Physical Prin- 
ci k s  of the Quantum Theory University of Chicago Press, 
Cfkgo, 1930), particularly ihapter IV. 

Assume that we have a particle which can 
take up various values of a coordinate x .  Imagine 
that we make an enormous number of successive 
position measurements, let us say separated by a 
small time interval c. Then a succession of 
measurements such as A ,  B, C, . . . might be the 
succession of measurements of the coordinate x 
a t  successive times t l ,  f 2 ,  t s ,  . . 3 ,  where f ,+ l  =t ,+ t .  
Let the value, which might result from measure- 
ment of the coordinate at time t , ,  be x,. Thus, 
if A is a measurement of x at t l  then x1 is what 
we previously denoted by a. From a classical 
point of view, the successive values, X I ,  22, xa, * * 

of the coordinate practically define a path x ( t ) .  
Eventually, we expect to  go the limit c+O. 

The probability of such a path is a function 
of XI, X Z ,  1 . ., x,, . . . , say P ( .  . ex,, %,+I, * * *). 
The probability that the path lies in a particular 
region R of space-time is obtained classically by 
integrating P over that region. Thus, the proba- 
bility that  x ,  lies between a, and b,, and xi+1 lies 
between and b,+l, etc., is 

* . . JrJ-;;;. . .P(. . . r,, X,+l, ’ * .). . .dx,dx,+, . . * 

=l P(...x,,x,+I, . . . ) . . . d ~ , d x , + ~ . . . ,  (8) 

the symbol fR meaning that the integration is 
to  be taken over those ranges of the variables 
which lie within the region R. This is simply 
Eq. (6)  with a, b, - - replaced by XI, X Z ,  * and 
integration replacing summation. 

In quantum mechanics this is the correct 
formula for the case that XI, X Z ,  * * ,  x,, - * * were 
actually all measured, and then only those paths 
lying within R were taken. We would expect the 
result t o  be different if no such detailed measure- 
ments had been performed. Suppose a nieasure- 
ment is made which is capable only of deter- 
mining that the path lies somewhere within R. 

The measurement is to  be what we might call 
an “ideal measurement.” We suppose that  no 
further details could be obtained from the same 
measurement without further disturbance to  the 
system. I have not been able to find a precise 
definition. We are trying to avoid the extra 
uncertainties that must be averaged over if, for 
example, more information were measured but 
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not utilized. We wish to  use Eq. (5) or (7 )  for 
all x ,  and have no residual part  t o  sum over in 
the manner of Eq. (4). 

We expect that  the probability that  the par- 
ticle is found by our “ideal measurement” to  be, 
indeed. i n  the region R is the square of a complex 
number 1 p(R))2. ’The number p ( R ) ,  which w e  
may call the probability amplitude for region K 
is given by Eq. (7 )  with a ,  b ,  . . .  replaced by 
s,, x,+l,  . . * and sunimation replaced by in- 
tegration : 

xq. .  .x,, X i + l ’  ” ) .  . . d X , d X , + , .  ”. ( 0 )  

The  complex number a(. . . x ; ,  xi+l’ . .) is a func- 
tion of the variables s, defining the path. 
Actually, we imagine tha t  the time spacing t ap- 
proaches zero so that  + essentially depends 0 1 1  

the entire path x ( t )  rather than only on j u s t  the 
values of xi  a t  the particular times t i ,  x ;=x( t i ) .  
We might call 0 the probability amplitude func- 
tional of paths x( t ) .  

We may summarize these ideas in our first 
postulate : 

I .  If an  ideal measurement is performed to 
determine whether a particle has a path lying in a 
region of space-time, then the probability that the 
result will be afirmative i s  the absolute square of a 
sum of complex contributions, one f rom each path 
in the region. 

The  statement of the postulate is incomplete. 
The meaning of a sum of terms one for “each” 
path is ambiguous. The  precise meaning given 
in Eq. (9) is this:  A path is first defined only by 
the positions x i  through which i t  goes at a 
sequence of equally spaced times,lD ti=ti-l+ t. 

Then all values of the coordinates within R have 
an equal weight. The  actual magnitude of the 
weight depends upon 6 and can be so chosen 
that  the probability of an  event which is certain 

10 There are very interesting mathematical problems 
involved in the attempt to avoid the subdivision and 
limiting processes. Some sort of complex measure is being 
associated with the space of functions z(t). Finite results 
can be obtained under unexpected circumstances because 
the measure is not ositive everywhere, but the contiibu- 
tions from most o?the paths largely cancel out. These 
curious mathematical problems are sidestepped by the sub- 
division process. However, one feels as Cavalieri must 
have felt calculating the volume of a pyramid before the 
invention of calculus. 

shall be normalized t o  unity. I t  may not be best 
t o  do  so, bu t  we have left this weight factor in a 
proportionality constant in the second postulate. 
The  limit c+O must be taken at the end of a 
calculation. 

When the system has several degrees of free- 
dom the coordinate space x has several dimen- 
sions so that  the symbol n will represent a set of 
coordinates ( ~ ( ‘ 1 ,  I-(?), . . . , dk)) for a system with 
k degrees of freedom. A path is a sequence 
of configurations for successive times and is 
described by giving the configuration x i  or 
(xl(l), x, (2 ) ,  . . . , x , ( & ) ) ,  i.e., the value of each of 
the k coordinates for each time 1;.  The  symbol d x i  
will be understood to  mean the volume element 
in k dimensional configuration space (at time t i ) .  
The  statement of the postulates is independent 
of the coordinate system which is used. 

The  postulate is limited t o  defining the results 
of position measurements. I t  does not say what 
must he done to  define the result of a momentum 
measurement, for example. This is not a real 
limitation, however, because in principle the 
measurement of momentum of one particle can 
be performed in terms of position measurements 
of other particles, e.g., meter indicators. Thus,  
an analysis of such an experiment will determine 
what it is about the first particle which deter- 
mines its momentum. 

4. THE CALCULATION OF THE PROBABILITY 
AMPLITUDE FOR A PATH 

’The first postulate prescribes the type of 
mathematical framework required by quantum 
mechanics for the calculation of probabilities. 
The  second postulate gives a particular content 
t o  this framework by prescribing how to compute 
the important quantity Q, for each path:  

I I .  The  paths contribute equally in magnitude, 
but the phase of their contribution i s  the classical 
action (in units of A) ;  i.e., the time integral of the 
Lagrangian taken along the path. 
T h a t  is t o  s?y, the contribution @[x(t)] from a 
given path x ( t )  is proportional to  exp(i/h)S[x(t)], 
where the action S [ x ( t ) ]  = JL(*(t) ,  x ( t ) ) d t  is the 
time integral of the classical Lagrangian L ( 2 ,  r) 
taken along the path in question. The  Lagrangian, 
which may be an explicit function of the time, 
is a function of position and velocity. If we 
suppose it to be a quadratic function of t he  
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velocities, we can show the mathematical equiva- 
lence of the postulates here and the more usual 
formulation of quantum mechanics. 

To  interpret the first postulate i t  was necessary 
to  define a path by giving only the succession of 
points x ,  through which the path passes a t  
successive times t,. T o  compute S= J L ( f ,  x)dt 
we need t o  know the path at all points, not just 
a t  x, .  We shall assume that  the function x ( f )  in 
the interval between 1 ,  and t , + l  is the path fol- 
lowed by a classical particle, with the Lagrangian 
L, which starting from x ,  a t  t ,  reaches x.+1 at 
ti+,. This assumption is required to  interpret the 
second postulate for discontinuous paths. The 
quantity a(. . ’ x , ,  x,+1, . . .) can be normalized 
(for various e) if desired, so that the probability 
of an event which is certain is normalized to 
unity as €4 0 .  

There is no difficulty in carrying out the action 
integral because of the sudden changes of velocity 
encountered a t  the times t ,  as long as L does not 
depend upon any higher time derivatives of the 
position than the first. Furthermore, unless L is 
restricted in this way the end points are not 
sufficient to  define the classical path. Since the 
classical path is the one which makes the action 
a minimum, we can write 

S= c S(x,+1, x , ) ,  (10) 
I 

where 
t , + I  

S(x,+I, x,) = M i n . l ,  L( i ( t ) ,  x(t))dt .  (11) 

Written in this way, the only appeal to classical 
mechanics is to  supply us with a 1,agrangian 
function. Indeed, one could consider postulate 
two as simply saying, “Q is the exponential of i 
times the integral of a real function of x ( t )  and 
its first t h e  derivative.” ‘Then the classical 
equations of motion might be derived later as 
the limit for large dimensions. The function of x 
and i then could be shown to be the classical 
Lagrangian within a constant factor. 

Actually, the sum in (lo), even for finite e, is 
infinite and hence meaningless (because of the 
infinite extent of time). This reflects a further 
incompleteness of the postulates. We shall have 
to restrict ourselves to  a finite, but arbitrarily 
long, time interval. 

Combining the two postulates and using Eq, 
( lo) ,  we find 

p(R) =\? 
r i  1 d . ~ , + t d ~ ,  

Xexp - C S(xatl, I’ \ I . .  . l n  i , ,.-, ”“1 A A  

where we have let the normalization factor bc 
split into a factor 1/A (whose exact value we 
shall presently determine) for each instant of 
time. The integration is just over those values 
x , ,  x,+~, . .  . which lie in the region R. This 
equation, the definition (11) of S(x,+,, x , ) ,  and 
the physical interpretation of I p(R) I * as the 
probability that the particle will be found in R, 
coniplete our formulation of quantum mechanics. 

5. DEFINITION OF THE WAVE FUNCTION 

We now proceed to show the equivalence of 
these postulates to  the ordinary formulation of 
quantum mechanics. This we do in two steps. 
We show in this section how the wave function 
may be defined from the new point of view. i n  
the next section we shall show that t h i s  func- 
tion satisfies Schroedinger’s differential wave 
equation. 

We shall see that it is the possibility, (lo), of 
expressing S as a sum, and hence as a product, 
of contributions from successive sections of the 
path, which leads to the possibility of defining 
a quantity having the properties of a wave 
function. 

T o  make this clear, let u s  imagine that we 
choose a particular time t and divide the region R 
in Eq. (12) into pieces, future and past relative 
to  1. We imagine that R can be split into: (a) it 
region R‘, restricted in  any way in space, but 
lying entirely earlier in time than some t ’ ,  such 
that  t ’ < t ;  (b) a region R” arbitrarily restricted 
in space but lying entirely later in time than t ” ,  
such that t”>t; ( c )  the region between t’ and 1’’ 
in which all the values of x coordinates are un- 
restricted, i.e., all of space-time between t’ and t”. 
The region (c) is not absolutely necessary. I t  can 
be taken as narrow in time as desired. However, 
it is convenient i n  letting us consider varying 1 a 
little without having to  redefine R‘ and R“. 
Then 1 p(R’, R”) 1 2  is the probability that the 
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path occupies R' and R". Because R' is entirely 
previous to R", considering the time t as tlie 
present, we can express this as the probability 
that the path had been in region R' and will be 
in region R". I f  we divide by a factor, the proba- 
bility that  the path is in R', to renormalize the 
probability we find: I rp(R', R") 1 )  is the (relative) 
probability tha t  if the system were in region R' 
it will be found later in R". 

'I'his is, of course, the important quantity in 
predicting the results of many experiments. We  
prcpare tlie system in a certain way (e.g., it was 
i n  region K') ant1 then ineasure some other 
iwnperty (e.g., will it l ie found i n  region R"?) .  
What tloes ( 1 2 )  say about computing this 
quantity, or rather the quantity q(R' ,  R") of 
which it is the square? 

Let us suppose in Eq. (12) t ha t  the time t 
corresponds to  one particular point k of the sub- 
tlivisioii of time into steps t, i.e., assiinie l = t k ,  
the index k ,  of course, clcpending up011 the 
subdivision c. 'l'lieii, the exponential bviiig the 
exponential of a suni m a y  be split into n i)rotluc.t 
of t w o  factors 

The first factor contains only coordinates with 
index k or higher, while the second contains only 
coordinates with index k or lower. This split is 
possible because of Eq. ( lo ) ,  which results essen- 
tially from the fact that tlie 1,agrangian is a 
function only of positions and velocities. First, 
the integratiori on all variables T ;  for i > k  can 
be performed on the first factor resulting in a 
function of xk (times the second factor). Next, 
the integration on all variables x ,  for i<K can 
be performed on the second factor also, giving a 
function of xb. Finally, the integration on x k  can 
be performed. 'That is, rp(R', R") can bc written 
as the integral over xk of the product of two 
factors. We will call these x* (xb ,  1 )  and $(Q, 1 )  : 

dR', R") = s x * ( x ,  t )$(x,  t )dx ,  (14) 

and 

1 d.ca+, d X k  + 2 

. (16) _ _  ~- ~~~ . . . 
A A  A 

, I  I tic svrnliol R' is placcrl o n  thc integral for $ 
t o  indicate that  tlie coordinates are integrated 
over the region R', and, for t i  between t' and t ,  
over all space. In like nianner, the integral for x* 
is over K" aiitl over all space for those coordinates 
correspoiiding to  times between t and 1". The 
asterisk on x* denotes complex conjugate, as it 
will be found inore cotivtlnient t o  define (16) as 
the  complex conjugate of some quantity. x. 

'The quantity + depends only upon the region 
R' previous to t ,  and is completely defiiied if 
t ha t  region is known. I t  does not tlcpeiid, in 
any way, upon what will be done to  the systelii 
after time t. 'This latter information is contained 
in x. Thus, with # and x we have separatcd the 
past history from the future experiences of the 
system. This permits us  t o  speak of the relation 
of past and future in the conventional manner. 
Thus, if a particle has been in a region of space- 
time R' it may a t  time t be said to be in a certain 
condition, or state,  determined only by its past 
and described by the so-called wave function 
$(x, 1). T h i s  function contains all t ha t  is needed 
to predict' futnrc probabilities. For, suppose, i n  
another situation. the region R' were different, 
say r', and possibly the Lagrangian for times 
before t were also altered. But,  nevertheless, 
suppose the quantity from Eq. (15)  turned out 
to be the same. Then,  ;iwortling to (14) the 
probability of eliding in  ;my region R" is the 
same for R' as for r'. 'l'hercforc, future ineasure- 
nients will not distinguish whether the system 
had occupied R' or r'. T h u s ,  the wave function 
$ ( x ,  t )  is sufficient t o  define those attributes 
which are left from past history which determine 
future behavior. 



184 

374 R .  P .  F E Y N h l A N  

Likewise, the function x* (x ,  t )  characterizes 
the experience, or, let us say, experiment to 
which the system is to  be subjected. If a different 
region, Y” and different Lagrangian after t ,  were 
to give the same x * ( x , t )  via Eq. (16), as does 
region R“, then no matter what the preparation, 
$, Eq. (14) says that the chance of finding the 
system in R” is always the same as finding i t  
in Y”. The two “experiments” R” and Y“ are 
equivalent, as they yield the same results. We 
shall say loosely that these experiments are to  
determine with what probability the system is 
in state x .  Actually, this terminology is poor. 
The system is really in state $. The reason we 
can associate a state with an experiment is, of 
course, that for an ideal experiment there turns 
out to be a unique state (whose wave function is 
x ( x ,  1 ) )  for which the experiment succeeds with 
certainty. 

Thus, we can say: the probability that a 
system in state $ will be found by an  experiment 
whose characteristic state is x (or, more loosely, 
the chance that a system in state $ will appear 
to be in x )  is 

These results agree, of course, with 
ciples of ordinary quantum niechanics. 

(17) 

the prin- 
l h e y  are 

a csnsequence of the fact that  the Lagrangian 
is a function of position, velocity, and time only. 

6. THE WAVE EQUATION 

To complete the proof of the equivalence with 
the ordinary formulation we shall have to  show 
that the wave function defined in the previous sec- 
tion by Eq. (15) actually satisfies theschroedinger 
wave equation. Actually, we shall only succeed 
in doing this when the Lagrangian L in (11) is a 
quadratic, but perhaps inhomogeneous, form in 
the velocities z(t). This is not a limitation, how- 
ever, as it includes all the cases for which the 
Schroedinger equation has been verified by ex- 
periment. 

The wave equation describes the development 
of the wave function with time. We may expect 
to  approach it by noting that, for finite c, Eq. (15) 
permits a simple recursive relation to  be de- 
veloped. Consider the appearance of Eq. (15) if 

we were to  compute + a t  the next instant of t h e  : 

d X k  dZk-1 x--. . . . (IS‘) 
A A  

This is similar to (15) except for the integration 
over the additional variable xk and the extra 
term in the sum in the exponent. This term 
means that the integral of (15’) is the same 
as the integral of (15) except for the factor 
(1/A) exp(i/h)S(xk+l, xk).  Since this does not 
contain any of the variables x i  for i less than k, 
all of the integrations on dx ,  up to  dxk-1 can be 
performed with this factor left out. However, 
the result of these integrations is by (15) simply 
$ f ( x ~ ,  t ) .  Hence, we find from (15’) the relation 

$f(XA+Iv l + c )  

=s exp[tS(xk+l, x.4) 1 $f (xr ,  1)dxdA.  (18) 

‘This relation giving the development of $f with 
time will be shown, for siniple examples, with 
suitable choice of A ,  to be equivalent to  
Schroedinger’s equation. Actually, Eq. (18) is not 
exact, but is only true in the limit r+O and we 
shall derive the Schroedinger equation by assuni- 
ing (18) is valid to  first order in 6. The Eq. (18) 
need only be true for small c to  the first order in c. 
For if we consider the factors in (15) which carry 
us over a finite interval of time, T, the number 
of factors is T/c.  If an error of order d is made in 
each, the resulting error will not accumulate 
beyond the order e2(T/e) or T I ,  which vanishes 
in the limit. 

We shall illustrate the relation of (18) to 
Schroedinger’s equation by applying i t  t o  the 
simple case of a particle moving in one dimension 
in a potential V ( x ) .  Before we do this, however, 
we would like to  discuss some approximations to  
the value S(xi+,, xi) given in (11) which will be 
sufficient for expression (18). 

The expression defined in (11) for S(x i+ l ,  xi) is 
difficult t o  calculate exactly for arbitrary e from 
classical mechanics. Actually, it is only necessary 
that an approximate expression for S(x i+ l ,  xi) be 
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used in (18), provided the error of the approxi- 
mation be of an order smaller than the first in c. 
We limit ourselves to  the case tha t  the Lagrangian 
is a quadratic, but perhaps inhomogeneous, form 
in the velocities i ( t ) .  .4s we shall see later. the  
paths which are important are those for which 
S ~ + ~ - X ~  is of order e l ,  Under these circumstances, 
it is sufficient t o  calculate the integral in (11) 
over the classical path taken by afree particle." 

In Cartesian coordinates'* the path of a free 
particle is a straight line so the integral of (11) 
can be taken along a straight line. Under these 
circumstances it is sufficiently accurate t o  replace 
the integral by the trapezoidal rule 

) 2 (x(+le-x' S(3C,~l, x,) = - L  - -- 1 N,+l 

or, i f  it proves more convenient, 

These are not valid i n  ;L general coordinate 
systern, e.g., spliericnl. .4n even simpler approxi- 
mation may be used i f ,  in addition, there is no 
vector potential or other terms linear in the  
velocity (see page 376) : 

Thus .  for the simple example of a particle of 
mass ni moving in one dimension under a poten- 
~ i a l  V(x), we can set 

It  is assrimed th.it (lie "fotce5" enter through r( scalai. 
;ind vector potential and not i n  terms involving the square 
of the velocity. More peneraliy. w h a t  is meant by a free 
particle is one for which the Lngrangian is altered by 
omission of the terms linear in, and those independent of, 
the velocities. 

1' More generally, coordinates for which the terms 
quadratic in the velocity in  L ( i ,  x )  appear with constant 
coefficients. 

For this example, then, Eq. (18) becomes 

Let u s  call XI+I=X and X A + I - X L = ~  so tha t  
X L  = .t'- t .  Then (23) becomes 

The  integral on ( will converge if $ ( x ,  t )  
falls off sufficiently for large 1: (certainly if 
J $ * ( x ) $ ( x ) d x =  1). I n  the integration on [, since 
c is very small, the exponential of imt2 /2hc  oscil- 
lates extremely rapidly except in the region 
about t = O  ([ of order (ht /m)*) .  Since the  func- 
tion + ( x - E ,  t )  is a relatively smooth function 
of 4 (since e may be taken as small a s  desired), 
the region where theexponential oscillates rapidly 
will contribute very little because of the almost 
coniplete caricelation of positive and negative 
contributions. Since only small t are effective, 
+(x- c, t )  m a y  be expanded as *i Taylor series. 
Hence, 

#(N, t + c )  =exp ___ <-i3 

while the integral containing t3 is zero, for like 
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the one with [ it possesses an odd integrand, 
and the ones with E4 are of at least the order e 
smaller than the ones kept here.I3 If we expand 
the left-hand side to  first order in c. (25) becomes 

w ( . T ,  1 )  
$ . ( x , O  + e-- 

at 

= e x p ( - y - ) T -  - - i eV(x )  (2nheiim)’ 

In order that  both sides may agree to  zero order 
in e ,  we must set 

A = (2nhei/m)t. (28) 
Then expanding the exponential contnining V( r ) ,  
we pet 

Canceling $ ( x ,  t )  from both sides, and com- 
paring terms to  first order in E and multiplying 
by -h / i  one obtains 

h a $  1 h a  * 
i at 2riz i as 

_--=- (--) $+ V(x)+, (30) 

which is Schroedinger’s equation for the problem 
in question. 

The  equation for x* can be developed in the 
same way, bu t  adding a factor decreases the time 
by one step, i.e., x* satisfies an  equation like (30) 
but with the sign of the time reversed. By taking 
complex conjugates we can conclude tha t  x 
satisfies the same equation as $, i.e., an experi- 
ment can be defined by the particular state x t o  
which i t  corresponds.“ 

1’ Really, these integrals are oscillatory and not defined, 
but they may be defined by using a convergence factor. 
Such a factor is automatically provided by $(x-[, t )  in 
(24). If a more formal procedure is desired replace Ir by 
A ( I  -i6), for example, where 6 is a small positive number, 
and then let 6-0. 

14 Dr. Hartland Snyder has pointed out  to me, in privatc 
conversation, the very interesting possibility that there 
may be a generalization of quantum mechanics in  which the 
states measured by experiment cannot be prepared; that 

This example shows that  most of the contribu- 
tion to +(xk+], t + c )  comes from values of xk in 
$(st, 1 )  which are quite close to xk+l (distant of 
order e l )  so tha t  the integral equation (23) can, in 
the limit, be replaced by a differential equation. 
T h e  “velocities,” (xk+l - x b ) / e  which are im- 
portant are very high, being of order (h /me) i  
which diverges as c+O. The paths involved are, 
therefore, continuous but possess no derivative. 
They are of a type familiar from study of 
Brownian motion. 

I t  is these large velocities which make it 
so necessary to  be careful in approximating 
S(xk+l, xk) from Eq. ( l l ) . 1 5  T o  replace V ( X ~ + ~ )  
by V(xk)  would, of course, change the exponent 
in (18) by i e [  V ( x J  - V ( x b + t ) ] / h  which is of order 
~(xt+l-xk),  and thus lead t o  unimportant terms 
of higher order than e on the right-hand side 
of (29). I t  is for this reason tha t  (20) and (21) are 
equally satisfactory approximations to  S(.t,+ 1, x,) 
when there is no vector potential. .4 term, linear 
i n  velocity, however, arising from a vector 
potential, as A i d  must be handled more care- 
fully. Here a term in S(xk+l, x t )  such as A (xk+l) 

x(xk+l-xk) differs from A ( x ~ ) ( x I + ~ - x ~ )  by  a 
term of order (?Ck+l-xk)*, and, therefore, of 
order e. Such a term would lead to  a cliaiige in 
the resulting wave equation. For this reason the 
approximation (21) is not a sufficiently accurate 
approximation to (11) and one like (20), (or (19) 
from which (20) differs by terms of order higher 
than e) must be used. If A represents the vector 
potential and p =  (h / i )V ,  the  momentum oper- 
ator, then (20) gives, in the Hamiltonian operator, 
a term (1/2m)(p-(e/c)A).(p-(e/c)A), while 
(21) gives (1/2m) (p . p - (2e/c)A. p+ (e2/c*)A . A ) .  
These two expressions differ by  (he/2imc)V.A 

is, there would be no state into which a system may be pu t  
for which a particular experiment gives certaint for a 
result. The class of functions x is not identical to tge class 
of available states +. This would result if, for example, 
x satisfied a different equation than $. 

1) Equation (18) is actually exact when (11) is used for 
S(xi+l, x, )  for arbitrary t for cases in which the potential 
does not involve x to higher powers than the second 
(e.g., free particle, harmonic oscillator). I t  is necessary, 
however, to use a more accurate value of A .  One can 
define A in this way. Assume classical particles with k 
degrees of freedom start from the point xi, t i  with uniform 
density in momentum space. Write the number of particles 
having a given component of momentum in range d p  as  
dp/ o with p o  constant. Then A = ( 2 r h i / P 0 ) ~ ’ % - ~ ,  where p 
is t f e  density in k dimensional coordinate space X;+I of 
these particles at time &+I. 
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which may not be zero. The  question is still 
more important in the coefficient of terms which 
are quadratic in the velocities. In these terms 
(19) and (20) are not sufliciently accurate repre- 
sentations of (11) in general. I t  is when the 
coefticients are constant that  (19) or (20) can be 
substituted for (11). I f  an expression such as 
(1Y) is used, say for spherical coordinates, when 
it is not a valid approximation to  ( l l ) ,  one 
obtains a Schroedinger equation in which the 
Haniiltonian operator has some of the momentum 
operators and coordinates in the wrong order. 
Equation (1 1) then resolves the ambiguity in the 
usual rule to replace p and p by the non-com- 
muting quantities (h/i)(a/ap) and q in the classi- 
cal Haniiltonian H ( p ,  a ) .  

I t  is clear that  the statement (11) is inde- 
pendent of the coordinate system. ‘Therefore, t o  
find the differential wave equation it gives in 
any coordinate system, the easiest procedure is 
first t o  find the equations in Cartesian coordinates 
and then t o  transform the coordinate system to 
Lhe one desired. I t  suffices, therefore, to show the 
relation of the postulates and Schroedinger’s 
equation in rectangular coordinates. 

The derivation given here for one dimension 
can be extended directly to the case of three- 
dimensional Cartesian coordinates for any num- 
ber, K ,  of particles interacting through potentials 
with one another, and in a magnetic field, 
described by a vector potential. The  terms in 
the vector potential require completing the square 
in the exponent in the usual way for Gaussian 
integrals. ‘Hie variable x must be replaced by 
the set s(’) t o  x ( 3 K )  where x ( ~ ) ,  are the 
coordinates of the first particle of mass ml, d4), 
d6), x(‘) of the second of mass mz, etc. T h e  
symbol dx is replaced by dx( ’ )dx(2) .  . . d ~ ( ~ ~ ) ,  and 
the integration over dx  is replaced by a 3K-fold 
integral. The constant A has, in this case, the 
value A = (2~hei/rn,)’(Z~hei/rn,),. . . ( 2 ~ h e i / m ~ ) I .  
The Lagrangian is the classical Lagrangian for 
the same problem, and the Schroedinger equation 
resulting will be tha t  which corresponds to  
the classical Hamiltonian, derived from this 
Lagrangian. The equations in any other coordi- 
nate system may be obtained by transformation. 
Since this includes all cases for which Schroed- 
inger’s equation has been checked with experi- 
ment, we may say our postulates are able to 

describe what can be described by non-relativistic 
quantum mechanics, neglecting spin. 

7. DISCUSSION OF THE WAVE EQUATION 

The Classical Limit 
This completes the demonstration of the equiv- 

alence of the new and old formulations. We  
should like to include in this section a few re- 
marks about the important equation (18). 

This equation gives the development of the 
wave function during a sinall time interval. I t  is 
easily interpreted physically as the expression of 
Huygens’ principle for matter waves: In geo- 
metrical optics the rays in an inhomogeneous 
medium satisfy Fermat’s principle of least time. 
We may state Huygens’ principle in wave optics 
in this way:  If the amplitude of the wave is 
known on a given surface, the amplitude at  a 
near by point can be considered as a sum of con- 
tributions from all points of the surface. Each 
contribution is delayed in phase by an  amount 
proportional to the time it would take the light t o  
get from the surface to  the point along the ray of 
least t ime of geometrical optics. We can consider 
(22)  in an analogous manner starting with 
Hamilton’s first principle of least action for 
classical or “geometrical” mechanics. If the 
amplitude of the wave 4 is known on a given 
“surface,” in particular the “surface” consisting 
of all x a t  time t ,  its value at a particular nearby 
point at time t + c ,  is a sum of contributions from 
all points of the surface at t .  Each contribution is 
delayed in phase by an amount proportional to 
the action it would require to get from the surface 
to  the point along the path of least actimt of 
classical  mechanic^.'^ 

Actually Huygens’ principle is not correct in 
optics. I t  is replaced by Kirchoff’s modification 
which requires that both the amplitude and i ts  
derivative must be known on the adjacent sur- 
face. This is a consequence of the fact t ha t  the 
wave equation in optics is second order in the 
time. The wave equation of quantum mechanics 
is first order in the t ime; therefore, Huygens’ 
principle is correct for matter waves, action re- 
placing time. 

’$See in this connection the very interesting remarks of 
Schroedinger, Ann. d .  Physik 79, 489 (1926). 
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The equation can also be compared mathe- 
matically to quantities appearing in the usual 
formulations. In Schroedinger’s method the de- 
velopment of the wave function with time is 
given by 

a+ 
i at 

- -  -=H+, (31) 

which has the solution (for any s i f  H is time 
independent) 

+(x ,  t + e )  =exp(-i&I/h)+(x, 1) .  (32) 

Therefore, Eq. (18) expresses the operator 
exp( -i&/h) by an approximate integral oper- 
ator for small e. 

From the point of view of Heisenberg one con- 
siders the position at  time t ,  for example, as an 
operator x. The position x’ a t  a later time t+ L can 
be expressed in terms of that a t  time t by the 
operator equation 

x’=exp(itH/h)xexp - (itH/h). (33) 

The transformation theory of Dirac allows us to 
consider thewave functionat timet+e,+(x’,t+e), 
as representing a state in a representation i n  
which I” is diagonal, while # ( x ,  t )  represents the 
same state in a representation in which x is 
diagonal. They are, therefore, related through the 
transformation function ( r ’ l x ) .  which relates 
these representations: 

+(x’,  t + e )  =J(x ’ Ix ) .+ (x , t )  ax.  

Therefore, the content of Eq. (18) is to show that 
for small e we can set 

( x ’ l x ) . =  (1 /A)  exp(iS(x’, x ) / A )  (34) 

with S(x‘, x )  defined as in (11). 
The clsse analogy between ( x ’ l x ) .  and the 

quantity exp(iS(x’, x ) / h )  has been pointed out on 
several occasions by Dirac.’ In fact, we now see 
that to sufficient approximations the two quanti- 
ties may be taken to be proportional to each 
other. Dirac’s remarks were the starting point of 
the present development. The points he makes 
concerning the passage to the classical limit A-0 
are very beautiful, and I may perhaps be excused 
for briefly reviewing them here. 

First we note that the wave function a t  x” a t  
time t” can be obtained from that at x‘ a t  time 
t’ by 

n n  

where we put xo=x’ and x j ~ x ’ ’  where je=t”-t’ 
(between the times t’ and t” we assume no re- 
striction is being put on the region of integration). 
This can be seen either by repeated applications 
of (18) or directly from Eq. (15). Now we ask, as 
h-0 what values of the intermediate coordinates 
x, contribute most strongly to the integral? These 
will be the values most likely to be found by ex- 
periment and therefore will determine, in the 
limit, the classical path. If h is very small, the 
exponent will be a very rapidly varying function 
of any of its variables x , .  As x ,  varies, the positive 
and negative contributions of the exponent 
nearly cancel. l h e  region a t  which xi contributes 
most strongly is that a t  which the phase of the 
exponent varies least rapidly with x ,  (method of 
stationary phase). Call the sum in the ex- 
ponent S ;  

i-1 

i-0 
s= x S ( X , + l ,  4.  (36) 

Then the classical orbit passes, approximately, 
through those points xi at which the rate of 
change of S with x i  is small, or in the limit of 
small A, zero, i.e., the classical orbit passes 
through the points at which aS/dxi=O for all xi. 
Taking the limit 6-0, (36) becomes in view 
of (11) 

1” 

s=J, L(Z(t), x ( t ) ) d t .  (37) 

We see then that the classical path is that for 
which the integral (37) suffers no first-order 
change on varying the path. This is Hamilton’s 
principle and leads directly to the Lagrangian 
equations of motion. 
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8. OPERATOR ALGEBRA 

Matrix Elements 
Given the wave function and Schroedinger’s 

equation, of course all of the machinery of 
operator or matrix algebra can be developed. I t  
is, however, rather interesting to express these 
concepts in a somewhat different language more 
closely related to that  used in stating the postu- 
lates. Little will be gained by this in elucidating 
operator algebra. In fact, the results are simply a 
translation of simple operator equations into a 
somewhat more cumbersome notation. On the 
other hand, the new notation and point of view 
are very useful in certain applications described 
in the introduction. Furthermore, the form of the 
equations permits natural extension to a wider 
class of operators than is usually considered 
(e.g., ones involving quantities referring to  two or 
more different times). If any  generalization to a 
wider class of action functionals is possible, the 
formulae to be developed will play an  important 
role. 

We discuss these points in the next three 
sections. This section is concerned mainly with 
definitions. We shall define a quantity which we 
call a transition element between two states. I t  
is essentially a matrix element. But  instead of 
being the matrix element between a state t+b and 
another x corresponding to  the 5ame time, these 
two states will refer to different times. In the 
following section a fundamental relation between 
transition elements will be developed from which 
the usual commutation rules between coordinate 
and momentum may be deduced. The  same 
relation also yields Newton’s equation of motion 
in matrix form. Finally, in Section 10 we discuss 
the relation of the Hamiltonian to the operation 
of displacement in time. 

We begin by defining a transition element in 
terms of the probability of transition from one 
state t o  another. More precisely, suppose we have 
a situation similar to that  described in deriving 
(17). The region R consists of a region R’ previous 
to t’, all space between t’ and 1’’ and the region R” 
after t”. We shall study the probability that  a 
system in region R’ is later found in region R”. 
This is given by ( 1 7 ) .  We shall discuss in this 
section how i t  changes with changes in the form 
of the Lagrangian between t’and t”, In Section 10 

we discuss how i t  changes with changes in ‘the 
preparation R’ or the experiment R”. 

The  state at time 1’ is defined completely by the 
preparation R‘. I t  can be specified by a wave 
function $(d, 1‘ )  obtained as in (15), but  con- 
taining only integrals up  to the time 1‘. Likewise, 
the state characteristic of the experinlent (region 
R”) can be defined by  a function ~ ( x ” ,  t ” )  ob- 
tained from ( 1 6 )  with integrals only beyond t”. 
The  wave funrtion $(x”, t ” )  a t  time t” can, of 
course, also be gotten by appropriate use of (15). 
I t  can also be gotten from $(x’, t’) by (35). Ac- 
cording to (17)  with t” used instead of t ,  the 
probability of being found in x if prepared in $ is 
the square of what we shall call the transition 
amplitude J x * ( x ” ,  t”)t+b(x”, t”)dx”. We wish to 
express this in terms of x at t” and t+b a t  t’. This we 
can do with the aid of ( 3 5 ) .  Thus, the chance tha t  
a system prepared in state $ 1 .  a t  time i’ will be 
found after t” to be in a state xl,, is the square of 
the transition amplitude 

where we have used the abbreviation ( 3 6 ) .  
In the language of ordinary quantum me- 

chanics if the Hamiltonian, H, is constant, 
$ ( x ,  t ” )  =exp[-i(t“--t’)H/h]$(x, t’) so that  (38) 
is the matrix element of expc-i(t“-t‘)H/h] be- 
tween states xl” and $ 1 2 .  

If F is any function of the coordinates xi  for 
t’<t,<t”, we shall define the transition element 
of F between the states $ at t’ and x at 1’’ for the 
action S as (x”=xj, ~ ’ 1 x 0 ) :  

X X * ( X ” ,  t” )F(xo ,  XI, . ‘ .XI) 

In thelimit c+0, F i s  a functional of the path x ( t ) .  
We shall see presently why such quantities are 

important. I t  will be easier to understand if we 
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stop for a moment to find out  what the quantities 
correspond to in conventional notation. Suppose 
F is simply x h  where k corresponds to, some time 
l = t ~ .  Then on the right-hand side of (39) the 
integrals from s o  to xk-, may be performed to 
produce $(xr<, 1 )  or e~p[-i(t- t’)H/h]+~..  I n  like 
manner the integrals on x i  for j >  i > k  give 
X * ( X L ,  1 )  or (esl~[-i(t”-f)H/h]xl,.J *. ’l‘hus, the 
transition eleirient of m r ,  

= ~xl,,*e-Li/n)HIf”-f)~e-(~/b’H(l-~’)+ 1 x  ,d . 

= s x * ( x ,  t )x$(s ,  t)d.x (40) 

is the matrix element of x at time t = t r  between 
the state which would develop a t  time f from + p  

at t’ and the state which will develop from time t 
to x t - 8  at t ” .  I t  isj therefore, the matrix element 
of x ( t )  between these states. 

Likewise, according to (39) with F=xa+l ,  the 
transition element of  XI+^ is the matrix element nf 
x( t+c) .  The transition element of F =  ( x k + l  - x r ) / e  
is the matrix element of ( x ( t + e ) - x ( t ) ) / e  or of 
i(Hx-xH)/A, as is easily shown from (40). We 
can call this the matrix element of velocity z(t).  

Suppose we consider a second problem which 
differs from the first because, for example, the 
potential isaugmented by a small amount U ( ,  xf). 
Then in the new problem the quantity replacing 
S is S’=S+xi  cU(xi ,  t i ) .  Substitution into (38) 
leads directly to 

( X P  I 1 I +‘,)S, 

Thus, transition elenients such as (39) are im- 
portant insofar as F may arise in some way from 
a change 6s in an action expression. We denote, 
by observable functionals, those functionals F 
which can be defined, (possibly indirectly) i n  
terms of the changes which are produced by 
possible changes in the action S. The  condition 
that  a functional be observable is somewhat 
similar to the condition that  an operator be 
Hermitian. The observable functionals are a 

restricted class because the action must remain a 
quadratic function of velocities. From one ob- 
servable functional others may be derived, for 
example, by 

( X f - l  FI$‘.)S. 

which is obtained from (39). 
Incidentally, (41) leads directly to  an im- 

portant perturbation formula. If the effect of I/ 
is small the exponential can be expanded to first 
order in U and we find 

( x t ~ ~ l l l \ l . , ~ ) s ~ = ( X l ~ ~ l 1 I ~ r ~ s  

Of particular importance is the case that  x l , ,  is a 
state in which would not be found at  all were 
it not for the disturbance, U (i.e., ( x p  11 I ,bl,)d 

=0) Then  
4 

is the probability of transition as induced to fir:,( 
order by the perturbation. In  ordin>rv notatinn, 

so that  (44) reduces to the usual expression” for 
time dependent perturbations. 

9. NEWTON’S EQUATIOI’IS 

The Commutation Relation 
In this section we find that  different func- 

t i ona l~  may give identical results when taken 
between any two states. This equivalence be- 
tween functionals is the statement of operator 
equations in the new language. 

If F depends on the various coordinates, we 
can, of course, define a new functional d F / d x k  

1’ P. A. M.  Dirdc, The Principles of Quantum Mechanics 
(The Clarendon Press, Oxford, 1935), second edition, 
Section 47, Eq. (20). 
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by differentiating i t  with respect to one of its 
variables, say Xk(O<k<j). If we calculate 
(xrtr  I aF/axkI#r,)s by (39) the integral on the 
right-hand side will contain aF/dxk. The only 
other place that  the variable XI. appears is in S. 
Thus, the integration on xk can be performed 
by parts. The integrated part  vanishes (as- 
suming wave functions vanish at infinity) and we 
are left with the quantity - F(d/axr.) exp(iS/h) 
in the integral. However, (a/&,) exp( iS /h)  
= ( i /h ) (aS/&k)  exp(iS/h), so the right side repre- 
sents the transition element of - ( i /h )F(aS/axk) ,  
i.e., 

This very important relation shows that two 
different functionals may give the same result for 
the transition element between any two states. 
We say they are equivalent and symbolize the 
relation by 

h a F  as 
t-1 F-, (46) 

i axk a x k  

the symbol t--) emphasizing the fact that  func- 

tionals equivalent under one action may not be 
equivalent under another. ‘The quantities in (46) 
need not be observable. The equivalence is, 
nevertheless, true. Making use of (36)  one can 
write 

-- - 

S 

h aF  as(rk+I, xk)  as(%,, T ~ - ~ )  

i ax, s ax, 
---+ +- axk 1. (47) 

This equation is true to zero and first order. in f 

and has as consequences the commutation rela- 
tions of momentum and coordinate, as well as the 
Newtonian equations of motion in matrix form. 

In the case of our simple one-dimensional 
problem, S(x;+l, xi) is given by the expression 
(15), so that  

as(x,,, ,  x s ) /axk= - m ( x k + l - x d / f ,  

as(x, ,  xk - l ) /a rk=  +m(xk-~~_~) /B- - t ’ (Xk) ;  

where we write V‘(x)  for the derivative of the 

and 

potential, or force. Then (47) becomes 

Xk+ I - .v/, 

i ax, e 

2,. - NA-1 

I f  F does not depend on the variable xk, this gives 
Newton’s equations of motion. For example, if F 
is constant, say unity, (48) j u s t  gives (dividing 
bY €1 

- 1;‘ (XL) . 
€ 

?I? .L’k+l-Nk .v!,-xk-I 

e 

Thus, the transition element of mass times accel- 
eration [(xk+l-x,)/€ - (xk-xk--l)/e]/~ between 
any two states is equal t o  the transition element 
of force - V’(XL) between the same states. This 
is the matrix expression of Newton’s law which 
holds in  quantum niechanics. 

What happens i f  F does depend u ~ ~ o n  X L ?  For 
example, let F=xL.  Then (48) gives, since 
aF/aXk=l,  

or, neglecting terms of order E ,  

I n  order to trmsfer an equation sudi ‘IS (49) into 
conventional notation, we shall have to discover 
what matrix corresponds to a quantity such as 
Xkxk+l. I t  is clear from a study of (39) that  if F is 
set equal to, say, f(xk)g(xh+l), the corresponding 
operator in (40) is 

~ ~ - ( ~ l ~ ) ( [ ’ ‘ - f - ~ ) H ~ ( ~ ) ~ - ( , / / , )  ~ H f ( x ) ~  -(t/h)(I-I‘)H 

the matrix element being taken between the 
states x r , ,  and Gr, .  The operators corresponding 
to functions of x1+1 will appear to the left of the 
operators corresponding to functions of X k ,  i.e., 
the order of terms in a matrix operator product 
rorrerpondy to an order in  t i m e  of Ihe corresponding 
factors in afunct ional .  Thus,  if  the functional can 
and is written in such a way that in each term 
factors corresponding to later times appear to the 
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left of factors corresponding to earlier terms, the 
corresponding operator can immediately be 
written down if the order of the operators is kept 
the same as in the functional.I8 Obviously, the 
order of factors in a functional is of no conse- 
quence. The ordering just facilitates translation 
into conventional operator notation. To write 
Eq. (49) in the way desired for easy translation 
would require the factors in the second term on 
the left to be reversed in order. We see, therefore, 
that i t  corresponds to 

p x - r p = h / i  

where we have written p for the operator mx. 
The relation between functionals and the 

corresponding operators is defined above in terms 
of the order of the factors in time. I t  should be 
remarked that this rule must be especially care- 
fully adhered to when quantities involving veloci- 
ties or higher derivatives are involved. The cor- 
rect functional to represent the operator (k)2 is 
actually ( x b + l - x b ) / e .  ( x b - x k J ) / e  rather than 
[ ( % k + l - x k ) / e ] * .  The latter quantity diverges as 
l / e  as c-+O. This may be seen by replacing the 
second term in (49) by itsvalueXI+1.m(xr+l--xr)/e 
calculated an instant c later in time. This does 
not change the equation to zero order in e. We 
then obtain (dividing by e) 

h (25) I++--. 8 imc (50) 

This gives the result expressed earlier that the 
root mean square of the "velocity" ( X k + l - X b ) / €  

between two successive positions of the path is 
of order 6 4 .  

I t  will not do then to write the functional for 
kinetic energy, say, simply as 

4mC(xk+l- X b ) / C l 9  (51) 
for this quantity is infinite as 6-0. In fact, i t  is 
not an observable functional. 

One can obtain the kinetic energy as an ob- 
servable functional by considering the first-order 
change in transition amplitude occasioned by a 
change in the mass of the particle. Let m be 
changed to m(1 +6) for a short time, say c, around 
tk. The change in the action is f 6 e m [ ( x ~ + l  - ~ k ) / e ] ~  

I' Dirac has also studied o rators containing quantities 
referring to different times. g e  reference 2. 

the derivative of which gives an expression like 
(51). But the change in m changes the normaliza- 
tion constant 1/A corresponding to dxk as 
well as the action. The constant is changed 
from (27rhei/m)-* to  (2rhci/m(l+6))-4 or by 
46(2ahei/m)-4 to first order in 6. The total effect 
of the change in mass in Eq. (38) to the first 
order in 6 is 

(x P I W i m C ( z k + l -  xd / e I* /h  + t 6  I !b v ) .  

We expect rhe change of order 6 lasting for a time 
c to be of order 6c. Hence, dividing by 6ei/h, we 
can define the kinetic energy functional as 

K.E. =Bm[(xk+l -xk ) / c ]*+h/2c i .  (52)  

This is finite as c-0 in view of (SO). By making 
use of an equation which results from substituting 
m ( ~ ~ + ~ - x ~ ) / e  for F i n  (48) we can also show that 
the expression (52) is equal (to order c) to 

That  is, the easiest way to produce observable 
functionals involving powers of the velocities is 
to replace these powers by a product of velocities, 
each factor of which is taken at a slightly different 
time. 

10. THE HAMILTONUN 

Momentum 
The Hamiltonian operator is of central im- 

portance in the usual formulation of quantum 
mechanics. We shall study in this section the 
functional corresponding to this operator. We 
could immediately define the Hamiltonian func- 
tional by adding the kinetic energy functional 
(52)  or (53) to the potential energy. This method 
is artificial and does not exhibit the important 
relationship of the Hamiltonian to time. We shall 
define the Hamiltonian functional by the changes 
made in a state when it is displaced in time. 

To  do this we shall have to digress a momen t to 
point out that the subdivision of time into equal 
intervals is not necessary. Clearly, any subdivi- 
sion into instants t i  will be satisfactory; the 
limits are to be taken as the largest spacing, 
ti+l-ti, approaches zero. The total action S must 
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now be represented as a sum 

s=c S ( X , + l ,  L+1; x, ,  t J ,  (54) 

where 

S ( X , + l ,  t , + 1 ;  x , ,  t J  =(+I L ( W ,  x(t))dl ,  (55) 

the integral being taken along the classical path 
between xi at t ,  and x,+1 at t,+1. For the simple 
one-dimensional example this becomes, with 
sufficient accuracy, 

S ( X , + l ,  t , + 1 ;  x,, 1 , )  

the corresponding normalization constant for 
integration on dx i  is A = (277hi( t ,+1-~i) /rn)-+.  

The relation of H to the change in a state with 
displacement in time can now be studied. Con- 
sider a state J.(t) defined by a space-time region 
R'. Now imagine that  we consider another state 
at time 1 ,  J.a(t), defined by another region Ra'. 
Suppose the region Ra' is exactly the same as R' 
except that  i t  is earlier by a time 6, i.e., displaced 
bodily toward the past by a time 6. All the 
apparatus to prepare the system for Ra' is 
identical to that  for R' but is operated a time 8 
sooner. I f  L depends explicitly on time, it, too, is 
to be displaced, i.e., the state $4 is obtained from 
the L used for state 4 except that  the time t in La 
is replaced by t+ 6. We ask how does the state $8 

differ from J.? In any measurement the chance of 
finding the system in a fixed region R"is different 
for R' and Ra'. Consider the change in the 
transition element ( X I  1 IJ.a)sa produced by  the 
shift 6. We can consider this shift as effected by  
decreasing all values o f t ,  by 6 for i<  kand leaving 
all f ;  fixed for i > k ,  where the time t lies in the 
interval between t k + l  and t r . 19  This change will 
have no effect on S ( x i + ~ ,  t i + l ;  x i ,  t i )  as defined by 
(55) as long as both t i+ l  and t i  are changed by the 
same amount. On the other hand, S(xk+l,  t k + l ;  xk, t k )  

19 From the point of view of mathematical rigor, i f  6 is 
finite, as e 0  one gets into difficulty in that, for example, 
the interval f b + i - f *  is kept fi?ite. This can be straightened 
out by assuming 6 to var with time and to be turned on 
smoothly before l = h  anxturned off smoothly after f = h .  
Then keeping the time variation of 6 fixed let -0. Then 
seek the first-order change as 6-0. The resht is essentially 
the same as that of the crude procedure used above. 

is changed to S ( X ~ + ~ ,  t k + l ;  x k ,  l k -  6 ) .  The  constant 
1/A for the integration on dxr is also altered to  
(2xhi ( t r+l - t1kfB) /rn) - ' .  The  effect of these 
changes on the transition element is given to the 
first order in 6 by 

here the Harniltonian functional is defined 
by 

a s ( X k + l ,  h + l ;  xk!  l k )  h 
HI = + . (58) 

a t k  2 i ( f k + l  -tk) 

The  last term is due to the change in 1/A and 
serves to keep H k  finite as a+O. For example, for 
the expression (56) this becomes 

which is just  the sum of the kinetic energy func- 
tional (52) and that  of the potential energy 

'The wave function +a(x ,  t )  represents, of course, 
the same state as $ ( x ,  t )  will be after time 6, i.e., 
J.(x, t+8) .  Hence, (57) is intimately related to the 
operator equation (31). 

One could also consider changes occasioned by 
a time shift in the final state x. Of course, nothing 
new results in this way for it is only the relative 
shift of x and J. which counts. One obtains an  
alternative expression 

v ( x k + l ) .  

a S ( x k + l ,  X I ,  t k )  h 
ITk= . (59 )  

atAcl 2 i ( l k +  L - t k )  

'This differs from (58 )  only by terms of order c. 
The time rate of change of a functional can be 

computed by considering the effect of shifting 
both initial and final state together. This has the 
same effect as calculating the transition element 
of the functional referring to a later time. What  
results is the analog of the operator equation 

h 
-f = Hf - fH. 
i 

'The monientum functional p k  can be defined in 
an analagous way by considering the changes 
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made by displacements of position : 

The state $A is prepared from a region RA' which 
is identical to region R' except that  i t  is moved a 
distance A in space. (The Lagrangian, i f  it de- 
pends explicitly on .q must be altered to 
LA = L ( i ,  x-A) for times previous to t .) Che  
finds2" 

dS(x,+,, XI) d S ( X k + l ,  X k )  
. (60) p k = - - = - - -  

axs+ axs 
Since $A(x, t )  is equal to $(x-A, t ) ,  the close con- 
nection between p k  and the x-derivative of the 
wave function is established. 

Angular momentum operators are related in an 
analogous way to rotations. 

The derivative with respect to t,,.l of 
S ( x i + ~ ,  1i+1; x,, 1;) appears in the definition of N;. 
T h e  derivative with respect to xic1 defines pi. 
But the derivative with respect to t i + l  of 
S(xi+l ,  t ; + l ;  xi ,  t i )  is related to the tlcrivative 
with respect to xi+l ,  for the function S(ri+l, t i t l ;  

x i ,  t , )  defined by (55) satisfies the Haniilton- 
Jacobi equation. Thus,  the Hamilton-Jacobi 
equation is an equation expressing Hi in terms of 
the p i .  In other words, i t  expresses the fact that  
time displacements of states are related to space 
displacements of the same states. This idea leads 
directly to a derivation of the Schrocrlinger 
equation which is far more elegant thav ' ill: *me 
exhibited in deriving Eq. (30). 

11. INADEQUACIES OF THE FORMULATION 

The formulation given here suffers from a seri- 
ous drawback. The  mathematical concepts needed 
are new. At  present, it requires an unnatural and 
cumbersonie subdivision of the time interval to 
make the meaning of the equations clear. Con- 
siderable improvement can be made through the 
use of the notation and concepts of the mathe- 
matics of functionals. However, it was thought 
best to avoid this in a first presentation. One 

needs, in addition, an  appropriate measure for 
the space of the argument functions x ( t )  of the 
functionals.I0 

I t  is also incomplete from the physical stand- 
point. One of the most important characteristics 
of quantum mechanics is its invariance under 
unitary transformations, These correspond to the 
canonical transforniritions o f  classical rnechanics. 
Of course, the present formulation, being equiva- 
lent to ordinary formulations, can be mathe- 
matically demonstrated to  be invariant under 
these transformations. However, i t  has not been 
formulated in w c h  a way that  it is physically 
obvious that  i t  is invariant. This incompleteness 
shows itself in a definite way. No direct procedure 
has been outlined to describe measurements of 
quantities other than position. Measurements of 
momentum, for example, of one particle, can be 
defined in terms of measurements of positions of 
other particles. The  result of the analysis of such 
ii situation does show the connection of mo- 
mentum measurements to the Fourier transform 
of the wave function. But  this is a rather rountla- 
bout method to obtain such an important 
physical result. I t  is to  be expected that  the 
postulates can be generalized by the replacement 
of the idea of "paths in a region of space-time R" 
to "paths of class R," or "paths having property 
R." But which properties correspond to which 
physical measurements lias not been formulated 
in a general way. 

12. A POSSIBLE GENERALIZATION 

The  formulation suggests an obvious generali- 
zation. There are interesting classical problems 
which satisfy a principle of least action but  for 
which the action cannot be written as an integral 
of a function of positions and velocities. The  
action may involve accelerations, for example. 
Or, again, if interactions are not instantaneous, it 
may involve the product of coordinates at two 
different times, such as J x ( t ) x ( t +  T ) d t .  The  
action, then, cannot be broken up into a Sun1 of 
small contributions as in (10). As a consequence, 
no wave function is available to describe a state. 
Nevertheless, a transition probability can be de- 
fined for getting from a region R' into another 
R". Most of the theory of the transition elements 
(xL,, I FI $ 1 , ) ~  can be carried over. One simply 

*0We did not immediately substitute pi  from (60) into 
(47) because (47) would then no longer have been valid to 
both zero order and the first order in 6. We could derive 
the commutation relations, but not the equations of 
motion. The two expressions in (60) represent the momenta 
a t  each end of the interval I ,  tot,+*. They differ tv ~ " ( x ~ + l )  
because of the force acting during the time i invents a symbol, such as (R"IFIR')s by an 



195 

N 0 N - I <  E L A T  I V 1 S T  I C Q U A N T U R.1 M E C H A N I C S  385 

equation such as (39) but with the expressions 
(19) and (20) for + and x substituted, and 
the more general action substituted for S. 
Haniiltonian and momentum functionals can be 
detined as i n  section (10). Further details may be 
found in 3 thesis by the author." 

13. APPLICATION TO ELIMINATE 
FIELD OSCILLATORS 

One characteristic of the present formulation is 
that it can give one a sort of bird's-eye view of 
the space-time relationships in a given situation. 
Before the integrations on the x i  are performed in 
an expression such as (39) one has a sort of 
format into which various F functionals may be 
inserted. One can study how what goes on in the 
quantum-mechanical system a t  different times is 
interrelated. T o  make these vague remarks some- 
what more definite, we discuss an example. 

I n  classical electrodynamics the fields de- 
scribing, for instance, the interaction of two 
particles can be represented as a set of osrillators. 
The equations of motion of these oscillators may 
be solved and the oscillators essentially elimi- 
nated (Lienard and Wiechert potentials). 'The 
interactions which result involve relationships of 
the motion of one particle at one time, and of the 
other particle at another time. In quantum 
electrodynamics the field is again represented as a 
set of oscillators. But  the motion of the oscillators 
cannot be worked out and the oscillators elirni- 
nated. I t  is true that  the osci1:ators representing 
longitudinal waves may be eliminated. The result 
is instantaneous electrostatic interaction. The 
electrostatic elimination is very instructive as it 
shows up the difficulty of self-interaction very 
distinctly. In fact, i t  shows it up so clearly that  
there is no ambiguity in deciding what term is 
incorrect and should be omitted. This entire 
process is not relativistically invariant, nor is the 
omitted term. I t  would seem to be very desirable 
if the oscillators, representing transverse waves, 

"The theory of electromagnetism described by J. A. 
Wheeler and K. P. Feynman, Rev. Mod. Phys. 17, 157 
(1945) can be expressed in a principle of least action in- 
volving the coordinates of particles alone. I t  was an 
attempt to quantize this theory, without reference to the 
fields, which led the author to study the formulation of 
quantum mechanics given here. The extension of the 
ideas to cover the case of more general action functions 
was developed in his Ph.D. thesis, "The principle of least 
action in  quantum mechanics" submitted to Princeton 
University, 1942. 

could also he eliminated. This presents an almost 
insurmountable problem in the conventional 
quantum mechanics. We expect that  the motion 
of a particle a a t  one time depends upon the 
motion of b a t  a previous time, and vice verso. .4 
wave furiction +(xa, se; t ) ,  however, can only 
describe the behavior of both particles at  one 
time. 'There is no way to keep track of what b did 
in the past in order to determine the behavior of 
a. The only way is to specify the state of the set 
of oscillators at 1 ,  which serve to  "remember" 
what b (and a) had been doing. 

The present formulation permits the solution 
of the motion of all the oscillators and their com- 
plete elimination from the equations describing 
the particles. This is easily done. One must 
simply solve for the motion of the oscillators be- 
fore one integrates over the var ims variables s, 
for the particles. I t  is the integration over x i  
which tries to condense the past history into a 
single state function. This we wish to  avoid. Of 
course, the result depends upon the initial and 
final states of the oscillator. If  they are specified, 
the result is an equation for (xt , ,  11 like (38), 
but  containing as a factor, besides exp(iS/h) 
another functional G depending only on the 
coordinates describing the paths of the particles. 

We illustrate briefly how this is done in a very 
simple case. Suppose a particle, coordinate x ( l ) ,  
Lagrangian L ( i ,  x )  interacts with an oscillator, 
coordinate q ( l ) ,  Lagrangian +(Qz-wzyn2), through 
a term y(x, l ) q ( l )  in the Lagrangian for the 
system. Here y(x, 1 )  is any function of the 
coordinate x ( t )  of the particle and the time.** 
Suppose we desire the probability of a transition 
from a state at time t ' ,  in which the particle's 
wave function is # t ,  and the oscillator is in energy 
level n, to a state at t" with the particle in xt" 

and oscillator in level m. This is the square of 

(x t ,  3 c o r n  I 1 I +L, Pds,+sa+sr 

22 The generalization to the case that y depends on the 
velocity, i, of the particle presents no problem. 
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Here rp,:lj is the wave function for the oscillator 
in state n, S ,  is the action 

cdcu~a ted  for the particle ;IS though the oscillatur 
were absent, 

that  of the oscillator alone, and 

,- 1 

,-U 
Sf = x 74% 

(where y , = y ( x , ,  t ,))  is the action of interaction 
between the particle and the oscillator. The  
normalizing constant, a,  for the oscillator is 
(2rti/h)-r. Now the exponential depends quad- 
ratically upon all the q,. Hence, the integrations 
over all the variables q ,  for 0 < i  < j can easily be 
performed. One is integrating a sequence of 
Gaussian integrals. 

The  result of these integrations is, writing 
T= t"-t', (2rih sinwT/w)-) expi(S,.t Q(p,, qo)) /h ,  
where Q(q,, q o )  turns out to be just the classical 
action for the forced harmonic oscillator (see 
reference 15). Explicitly it is 

w J , ,  

Xsinw(s-- t ' )dsdt  . 3 
I t  has been written as though y ( t )  were a continu- 
ous function of time. The integrals really should 

be split into Riemann sums and the quantity 
y ( x , ,  t , )  substituted for y(t , ) .  Thus,  Q depends on 
the coordinates of the particle at all times through 
the y(x., t , )  and on that of the oscillator at times 
1' and t" only. T h t i ~ ,  the quaiitity (61) becomes 

which now contains the coordinates of the 
particle ouly, the quantity G,",, being given by 

Proceeding in an analogous manner one finds 
that  all of the oscillators of the electromagnetic 
field can be eliminated from a description of the 
motion of the charges. 

14. STATISTICAL MECHANICS 

Spin and Relativity 
Problems in the theory of measurement and 

statistical quantum mechanics are often simpli- 
fied when set up from the point of view described 
here. For example, the influence of a perturbing 
measuring instrument can be integrated out  in 
principle as we did in detail for the oscillator. The  
statistical density matrix has a fairly obvious and 
useful generalization. I t  results from considering 
the square of (38). I t  is an  expression similar to 
(38) but  containing integrations over two sets of 
variables dx i  and dx,'. The  exponential is re- 
placed by expi(S-S')/h, where S' is the same 
function of the x,' as S is of x i .  I t  is required, for 
example, to describe the result of the elimination 
of the field oscillators where, say, the final state of 
the oscillators is unspecified and a le  desires only 
the sum over all final states m. 

Spin may be included in a formal way. The  
Pauli spin equation can be obtained in this way: 
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One replaces the vector potential interaction 
term in S(X,+I, x i ) ,  

e e 

arising froni ex,pressiuri (13) by the rxpressiu~l 

e 

2c 
f - ( m .  A(x,+ 1)) (u. (x,+ I -x.)). 

Here A is the vector potential, x.+I and x, the 
vector positions of a particle a t  times 1,+1 and t ,  
and D is Pauli’s spin vector matrix. ’The quantity 
+mus t  now be expressed as n, expiS(x,+,, x , ) / h  
for this differs from the exponential of the sum of 
S(x,+l ,  x , ) .  Thus, Q, is now a spin matrix. 

l‘he Klein Gordon relativistic equation can 
also be obtained formally by adding a fourth 
coordinate to  specify a path. One considers a 
“path” as being specified by four functions 
&)(r )  of a parameter r. ‘The parameter r now 
goes in steps t as the variable 1 went previously. 
The quantities x ( I ) ( t ) ,  x ( * ) ( t ) ,  dS)(1) are the space 
coordinates of a particle and d 4 ) ( t )  is a corrc- 

sponding time. The Lagrangian used is 

4 

2’ [ (dxp/dT)2+ (e/c) (dxp/dr)A, ] ,  

where A, ,  is the 4-vector potential and the ternis 
i i i  the sum for p =  1, 2,  3 are taken with reversed 
sign. I f  oiir seeks a wave function which depends 
u p w  T periodically, oiie can show this must 
satisfy the Klein Gordon equation. ’l‘he Dirac 
equatioii results from il modificatioii of the 
Lagrangian used for the Klein Gordon equation, 
which is analagous to the modification of the 
xion-relativistic Lagrangian required for the 
Pauli equatioii. What  results directly is the 
square of the usual Dirac operator. 

These results for spin and relativity are purely 
formal and add nothing to the understanding of 
these equations. There are other ways of ob- 
taining the Dirac equation which offer some 
promise of giving a clearer physical interpretation 
to that  important and beautiful equation. 
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Mathematical Formulation of the Quantum Theory of Ekctromagnetic Interaction 
R P. F C Y N Y ~ N .  

Depnrtiirenl a/ Physics, Coriirll Unioersily, Ilhucn, A'mo York 
(Rcccivcd June 8 ,  1950) 

T h c  validity of the rules givcn in previous papers for thc solution of I)rnldems in quantum elcctro<Iynnwics 
is established. Stxrting with Fernii's formulation of t he  Rcld as a set of h a r ~ n o n i c  oscillators, t l ~ c  cflcci of 
the osciII:mrs is inlcgratcrl o u t  i n  the Lagrangian form of (Iu:uiLuni inec1i:inics. Therc  rcsults i l l1 C X I ~ ~ C S S ~ O I I  
for the effcct  of all virtual photons valid to all n d c r s  in e2/hc. It  is shown t h a t  evaluation of this cxprcssioo 
as a p o w r  series in e?/hc givcs just thc  ternis cxpeclcil Iiy the aforcnicntioncil rules. 

I n  addition, a relation is cstablisherl between the  amplitude for a given proccss in an a r l i t r a r y  unilu;intized 
potential a n d  in a quantum clcctrodynamical~field.  This  relation permits a sirnplc general elatenlent of 
the laws of quantuni electrodynamics. 

A description, in I,ngrangian quantum-mechnnical form, of particles satisfying thc Klciii-Gordon equation 
is given in an Appendix. It involves the use of a n  extra parameter  analogous to pmpcr  t ime to dcscril>p 
the  trajectory of the particle in four dimcnsions. 

A second Alqxndix iliscusscs, in thc  special case of photons,  the  prol,lem of findinp what real processrs 
a re  implied Iiy the  formula for virtu21 proccsscs. 

ProRlcms of the divergenccs of elcclrodynatnics arc not discussed. 

1 .  INTRODUCTION 

N two previous papers' rules were given for the I calculation of the matrix element for any  process in 
electrodynamics, to each order in e2/hc. No complete 
proof of the equivalence of these rules to the conven- 
tional electrodynamics was given in these papers. 
Secondly, no closed expression was given valid to all 
orders in e?/hc. In this paper these formal omissions 
will be remedied? 

In paper I1 it was pointed out that  for many proli- 
lems in electrotlynamics the Ilamiltonian metliotl is not 
advantageous, and might be replaced Iiy the over-all 
space-time point of view of a direct particle interaction. 
It was also mentioned that  the Lagrangian form of 
quantum mechanics3 was useful in this connection. The 
rules given in paper I1 were, in fact, first deduced in  
this form of quantum mechanics. We shall give this 
derivation here. 

The advantage of a Lagrangian form of quantum 
mechanics is that  in a system with interacting parts it 
permits a separation of the problem such that  the 
motion of any part  can be analyzed or solved first, and 
the results of this solution may then be used in the 
solution of the motion of the other parts. This separa- 
tion is especially useful in quantum electrodynamics 
which represents the interaction of matter with the 
electromagnetic field. The electromagnetic field is an  
especially simple system antl its behavior can be 
analyzed completely. What  we shall show is that  the 

'Now at the California Insti lute of Technology, Pasadena, 
California. 

1 R .  P. Feynninn Phys.  Rcv. 76 749 (1949), hercafter called I, 
and Phys.  Kcv. 76,'769 (1919), he;eafter called I1 

1 Sce in this connection also the papers of S. Tonionaga, Phys .  
Rev. 71, 224 (1948); S. Kirnesawa and S. Tomonaga, Prog, 
Thcoret.  Phys. 3, 101 (IY.18); J.  Schivingcr, Phys.  Rcv. 76, 7YO 
(1949); F. Dyson, Phys.  Rev 75, 1736 (19491; W. Pauli and  
F. Villars, Rev. Mod. Phys. 21, 434 (1949). T h e  papers cited 
give r e l c r e n w  to previous work. 

a R. P. Feynman, Rev. Mod. Phys.  20, 367 (19481, hereafter 
called C. 

net effect of the field is a tlelayed interaction of tlie 
particles. I t  is possible to do  this easily only if it is not 
necessary a t  the same time to analyze coml)letely the 
motion of the particles. The only advantage in our 
problems of the form of quantum mcchanics i n  C is to 
permit one to separate these aspects of the problem. 
1 here are a number of disatlvant:tgrs, however, such as 
a lack of familiarity, the q)[)arerit (but not real) 
necessity for dealing with matter in non-relativistic 
approximation, and a t  times a cumbersome mathe- 
matical notation and metliotl, as  w e l l  as the fact that  
a great deal of useful inforniation that  is known about 
oi)erators cannot be directly applied. 

I t  is also possible t o  separate the field and particle 
aspects of a problem in a manner which uses operators 
and Hamiltoniaiis in a way that  is much more familiar. 
One abnndons the notation that  the order of action of 
operators depends on their written position on the paper 
and subslitutes some other convention (such that  the 
order of operators is that  of the time to which they 
refer). 'The increase in manipulative facility which 
accompanies this change in notation makes i t  easier to 
represent and to analyze the formal problems i n  electro- 
dynamics. The method requires some discussion, how- 
ever, and will be described i n  a succeeding paper. I11 
this paper we shall give tlie derivations of the formulas 
of I1 by means of Llie form of quantum mechanics 
given in C. 

The problem of internction of matter and held will be 
analyzed by first solving for the behavior of the field in 
terms of the coordinates of the matter,  antl tinally 
discussing the behavior of the matter (hy matter  is 
actually meant the electrons and positrons). Tha t  is to 
say, we shall first eliminate the field variahles from the 
equations of motion of the electrons antl then discuss 
the behavior of the electrons. In  this way all of the 
rules given in the paper 11 will be derived. 

Actually, the straightforward elimination of the field 

,. 
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variables will lead at first to an  expression for the 
behavior of an  arbitrary number of Dirac electrons. 
Since the number of electrons might be infinite, this 
can be used directly to find the behavior of the electrons 
according to hole theory by imagining that  nearly all 
the negative energy states are occupied by  electrons. 
But,  a t  least in the case of motion in a fixed potential, 
it has been shown that  this hole theory picture is 
equivalent to one in which a positron is represented as 
an  electron whose space-time trajectory has had its 
time direction reversed. T o  show that  this same picture 
may be used in quantum electrodynamics when the 
potentials a r e  not fixed, a special argument is made 
based on a study of the relationship of quantum electro- 
dynamics to motion in a fixed potential. Finally, it is 
pointed out  that  this relationship is quite general and 
might be used for a general statement of the laws of 
quantum electrodynamics. 

Charges obeying the Klein-Gordon equation can be 
analyzed by a special formalism given in Appendix A. 
A fifth parameter is used to specify the four-dimensional 
trajectory so that  the Lagrangian form of quantum 
mechanics can be used. Appendix B discusses in more 
detail the relation of real antl virtual photon emission. 
An equation for the propagation of a self-interacting 
electron is given in Appendix C. 

In  the demonstration which follows we shall restrict 
ourselves temporarily to cases in which 'the particle's 
motion is non-relativistic, but the transition of the final 
formulas to the relativistic case is direct, and the proof 
could have been kept relativistic throughout. 

The transverse par t  of the electromagnetic field will 
be reprcsented as an  assemblage of independent har- 
monic oscillators each interactiiig with the particles, 
as suggested by Vetmi." We use the notation of Heitler.L 

2. QUANTUM ELECTRODYNAMICS IN 
LAGRANGIAN FORM 

The Hamiltonian for a set of non-relativistic particles 
interacting with r;itliation is, classically, H= I€ , + N I  
+II ,+  II ,, where Up+ III = ,, 3m -j(p,, - en A rr(xn))? 
is the Hamiltonian of the particles of mass m,, charge 
e,,, coordinate x,, and momentum p,, and their inter- 
action will1 the transverse par t  of the electromagnetic 
field. This field can be expanded into plane waves 

Al'(X) = ( 8 r ) i x K [ e 1 ( f , J K " 1  COS( K . X ) + ( I K ' ~ '  sin( K.x) )  
+ep(qK(zJ cos( K ,  x)+f,J~'" sin( K.x))] (1) 

where el and e3 are two orthogonal polarization vectors 
a t  right angles to the propagation vector K ,  magnitude 
k. The sum over K means, if  normalized to unit volume, 
f J d I K / 8 ~ 3 ,  antl each qK(" can be considered as the 
coordinate of a harmonic oscillator. (The factor a arises 
for the mode corresponding to K and to - K  is the 

4 E. Fermi Rev. Mod. I'hys. I ,  8i  (1032). 
6 W. Hcillkr, The Qaoitlrrii i  Tkcury u/ Radioliun, sccimd edition 

(Oxford University Press, Londoii, 1'944). 

same ) The  Hamiltonian of the transverse field repre- 
sented as oscillators is 

where ~ J K ( ' )  is the momentum conjugate to I&('). The 
longitudinal part  of the field has been replaced by the 
Coulomb 

[I,= En En, e,8eJr,L,n 

where ~ , , , , ? = ( X ~ , - X ~ ) ~ .  As is well known,' when this 
Hamiltonian is quantized one arrives a t  the usual 
theory of quantum electrodynamics. T o  express these 
laws of quantum electrodynamics one can equally well 
use the Lagrangian form of quantum mechanics to 
describe this set of oscillators antl particles. The 
classical Lagrangian equivalent to this Hamiltonian is 
L= L,+Lr+L,+L,, where 

L,=+C,, m,,x'nz (2a) 
LI  = xa e.x', , ALr(x,,) (2b) 

L(r= f E K  r((dK(r))2-  k''(9K"))') (2c) 

I*,= -fc,, x,,, evLe,v,/rm,,. ( 2 4  
When this Lagrangian is used in the Lagrangian 

forms of quantum mechanics of C, what it leads to is, 
of course, mathematically equivalent to the result of 
using the Hamiltonian I€ in the ordinary way, and  is 
therefore equivalent to the more usual forms of quantum 
electrodynamics (at least for non-relativistic particles). 
We may, therefore, proceed by using this Lagrangian 
form 01 quantum electrodynamics, wi th  the assurance 
that the results obtained must agree with those obtained 
from the more usual Hamiltonian form. 

The Lagrangian enters through the statement that  
the functional which carries the system from one state 
to another is exp(iS) where 

S= Ldl=Sp+Sr+Sc+Sir .  (3) s 
The time integrals must be written as Riemann sums 
with some care; for example, 

Sr= zJe.x.,,(t) ALr(x,(t))dt (4) 

becomes according to c, Eq. (19) 

S r = x : .  X, M x , .  i+i-xs. J. (Air(xn. i+J+A"(xn, i)) (5) 
so that  the velocity x ' ~ , ,  which multiplies Af'(xn,,) is 

~ ' . . i = f e - ~ ( ~ . . i + i - ~ , i ) + f s - ' ( ~ . ,  i - x n . . - i ) .  (6 )  

*The  term in the sum for n = m  is obviously infinite b u t  must 
be included for relativistic invariance. Our problem here is LO 
re-express the usual (and divergent) form of electrodynamics in 
the form given in 11. Modifications for denling with the diver- 
gences are discussed in I1 and we shall not discuss them further 
here. 
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In  tlie Lagrangian form i t  is possible to eliminate the 
transverse osci1I:ttors a s  is discussed in C, Section 13. 
One must specify, I i o ~ ~ c v c r ,  tlie initial and final s ta te  of 
all oscillators. \\re shall first choose the special, simple 
case that all oscillators are in their ground states initially 
and finally, so that  all photons are  virtual. Later we 
do the more gcncral case in which real quanta  are 
present initially or finally. I V e  ask, then, for the an+ 
t i d e  for lin(1ing no quanta  prcscnt and the particles in 
state x , , ,  a t  tinic i”, i f  a t  time 1’ the particles were in 
state +,, and tin quanta were present. 

l h e  method of eliminating field oscillators is dc- 
scribed in Scction 13 of C. \Ve shall simply carry out the 
elimination liere using the notation and equations of C. 
To do this, for simplicity, we Iirst consider in the nest  
section the case of a particle or a system of particles 
interacting with a single oscillator, rather than the 
entire assemblage of the electromagnetic field. 

3. FORCED HARMONIC OSCILLATOR 

\!’e consider a liarinonic oscillator, coordinate 9 ,  
Lagranginn I-= f(i?-w?q’) interacting with a particle 
or systcin of Iiarticles, action S,, through a term in the 
1,agr;tngian y ( l ) y ( f )  where y ( l )  is a function of the 
coordinates (symlmlized a5 +) of tlie particle. The 
precise form of y(1) for each oscillator of the electro- 
magnetic field is given in the nest  section. We ask for 
the amplitude that  a t  some time f” tlie particles are in 
state x l > ,  and tlie oscillator is in, say,  an  eigenstate nt 
of energy ~ ( v z f f )  (units are choseii such that h=c= 1)  
wlieii it is given that  a t  a previous time 1’ the particles 
were in state $1,  and tlic oscillator in  $1. The amplitude 
for this is the transition amplitutle [see c, Eq. (61)] 

( X I , ,  v,,, I 1 I + I .  pnbp +,TO -t sr 

= SSx~,,*(:r~,,),,“*(y~,,) espi(S,+So+.yr) 

~ . (q l ’ )$~ . (r , . )dr l . .dx l .dq l~ .dq~~a)r( l )a)g( l )  (7) 

where x represents tlie variables describing the particle, 
S, is the action calculated classically for the particles 
for a given path going from coordinate x l ,  at 1’ to xi,, 
a t  t” ,  So is the action J+(Q’-w*q?)dI for any path of 
the oscillator going from q l ,  at 1’ to q L , ,  a t  I”, while 

the action of interaction, is a functional of both 9 ( ~ )  
and x ( I ) ,  the paths of oscillator and particles. T h e  
symbols 5).v(l) and D9(/) represent a summation over 
all possible paths of particles and oscillator which go 
between the given end points in the sense defined in C, 
Eq. (9). (That  is, assuming time to proceed in infini- 
tesimal steps, e ,  an  integral over all values of the 
coordinates x and q corresponding to each instant in 
time, suitably normalized.) 

The problem may he broken i n  two. The result call 
be written as  an integral over all paths of the particles 
only, of (expiS,).G,,: 

(XL.,PPml 1 I ~l,rp.)~%+so+sr= ( X P  I &“I +r.)s,  (9) 
where G,,, is a functional of the path of the particles 
alone (since it dcpencls on y(t)) given by 

n 

where k(q,, t ” ;  9”, t ’ )  is tlie kernel [as i n  I,  Eq. ( 2 ) ]  for 
a forced harmonic oscillator giving the amplitude for 
arrival at q, a t  time I” i f  a t  time 1’ it was known to be 
a t  p,, According to c it is given by 

k(9j ,  t ” ;  qo, L ‘ ) =  (27riw-1 sinu(t’-t‘))-b 

where Q ( o ,  1”; qo,  1 ’ )  i s  thr  action calculated along the 
classical path between the end points q,, I ” ;  qo, I ’ ,  and 
is given explicitly in C.7 It is 

XeupiQ(q,, t ” ;  yo, 1’1 (12) 

'Thai ( 1 2 )  is correct, at le.ist insofar as i t  i l q i c i i i l s  on qn. cat, 
b c  eceu r l t r r c ~ l y  as fol lows,  I.et q ( 0  I>c tlic clxssiciil l p i ~ i l i  nhicll 
satislice the Ihunrlnry coniliiion 4( / ’ )  = 9 n ,  q ( t ” )  = q ,  ’l‘licn i n  t h c  
integral clcfining 6 rrp1:lcc ciicli of the vari:ilhs q, by q.=q,+y, ,  
( q 8 = q ( 1 , ) ) ,  tha t  i5, usc l l i c  ~lislilacenicnt y. f rom ihc c1:issical 
path q, as thc  coord inak  ralhcr l l inn tlic absolute posiiirrn. 
Wi th  thc  s u b s t i h t i o n  9,=r),+y. in the aclinti 

t h e  terms linear in y drop  out I)y integrations Iiy par t s  usinfi i l l c  
equation of molion q = - d q + y ( l )  lor the cliissical path, and the 
houndary coiidilioris y ( l ’ ) = y ( L ” )  = O .  T h a t  this should occur 
should occasion n o  surprise, f o r  tlie action functional is  an  cx-  
treniuiii a t  q ( l ) = q ( / )  so tha t  i t  wil l  only depend to sccond ordcr 
in lhc ilisplaccmenis y lmm this cxtrcmal orhii  q ! / ) .  Furtl,cr. 
since the action l u n c t i m u l  IS qimlraiic L O  Iicgin with, i t  C B I I ~ O L  
dcpcnd on y more than qundmlically.  Hcnce 

So+Si =Q+J‘($i?- fdy2)dt 

k(9,, I “ ;  qo ,  I‘)=cxp(iQ) f erp(i f!($-wzyz)dl)Dy(l) 

The factor following the expi@ i5 tlic ampl i tude  for n irce o~ci l ln tor  
to proceed froni y = O  a t  I = t ’  to y=O a t  l = I ” a n d  does not there- 

50 t h a t  since dq;=dyi, 

. 2  
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- z l , " ' l f y  (I) y (s) sinw (6"- I )  
w? f 

Xsinw(s-t')dsdt . (13) 

The solution of the motion of the oscillator can now 
be completed by substituting (12) and (13) into (11) 
and performing the integrals. The simplest case is for 
m, n = O  for which caseJ 

po(qo)= ( w / r ) J  exp(- iqo2)  exp(-&d) 

so that the intcgrals on qo,  q, are just Gaussian integrals. 
There results 

1 

a result of fundamental importance in the succeeding 
developments. By replacing 1 - 5  by its absolute value 
[ t - s l  we may integrate both variables over the entire 
range and divide by 2. We will henceforth make the 
results more general by extending the limits on the 
integrals from - m to + m .  Thus if one wishes to 
study the effect on a particle of interaction with an 
oscillator for just the period I' to 1" one may use 

X exp( - i w  I 1 - s I ) y ( t )  y (s)dtds ) (14) 

imagining in this case that the interaction y ( t )  is zero 
outside these limits. We defer to a later section the 
discussion of other values of m, 11. 

Since Goo is simply an exponential, we can write it as 
exp(il), consider that the complete "action" for the 
system of particles is S=S,+I and that one computes 
transition elements with this "action" instead of S, 

fore depend on go, q,, or y ( l ) ,  being a function only of I"-1'. 
[That i t  is actually (2riw-1 sinwW'-l'))-+ can be dcmonstrated 
either by direct integration of the y variahles or by using some 
normalizing property of the kernels k. for example that Goo for 
the case y = O  must equal unity.] The expression for Q given in 
C on page 386 is in error, the quantities q o  and q, should be 
interchanged. 

8 It is most convenient to define the stale 'po with the phase 
factor ex [ i w ( n + t ) / '  and the final state with the factor 
exp[-iw&)mTt)r"] so t la t  Lhe results will not depend on the 
particular times l', 1" chosen. 

(see Sec. 12). The functional I ,  which is given by 

is complex, however; we shall speak of it as the complex 
action. I t  describes the fact that the system a t  one 
time can affect itself a t  a different time by means of a 
temporary storage of energy in the oscillator. When 
there are several independent oscillators with different 
interactions, the effect, if they are all in the lowest state 
a t  I' and I",  is the product of their separate Goo contri- 
butions. T h u s  the complex action is additive, being 
the sum of contributions like (15) for each of the 
several oscillators. 

4. VIRTUAL TRANSITIONS I N  THE 
ELECTROMAGNETIC FIELD 

We can now apply these results to eliminate the 
transverse field oscillators of the Lagrangian ( 2 ) .  At 
first we can limit ourselves to the case of purely virtual 
transitions i n  the electromagnetic field, so that there is 
no photon in the field a t  t' and 1". That is, all of the 
field oscillators are making transitions from ground 
state to ground state. 

The 7 ~ ~ ' )  corresponding to each oscillator 9~(') is 
found from the interaction term Lr [Eq. (2b)], substi- 
tuting the value of Afr(x) given in (1). There results, 
for example, 

YK(l) = (8r)!Zn e.(er.x..) cos(K.x.) 
(16) yK'3' = (Sr) !xn e.(ei. x' ,,) sin( K . x.) 

the corresponding results for y ~ ( ? ) .  y=c4) replace el by ez. 
The complex action resulting from oscillator of 

coordinate qKCi) is therefore 

X (el. x.,(s)) , cos(K. x,(t)) cos(K. x,(s))dsd1. 

The term 1KI3) exchanges the cosines for sines, so in 
the sum IK(~)+IK'~) the product of the two cosines, 
cosA.cosB is replaced by ( c o d  cosB+sinA sinB) or 
cos(A-B). The terms ~ K ( ~ ) + I K ( ~ )  give the same 
result with ez replacing el. The sum (el.V)(el.V') 
+(eZ.V)(e2.Y)) is (V.V')-k-2(K.V)(K.V') since i t  is 
the sum of the products of vector components in two 
orthogonal directions, so that if we add the product in 
the third direction (that of K) we construct the com- 
plete scalar product. Summing over all K then, since 
~ u = ~ ~ d 3 K / 8 r 3  we find for the total complex action 
of all of the transverse oscillators, 

I f . = ~ = x ~ , l ' ; l ~ , f ' ~ ~ ~ ~ " ~ m  n m  exp(--iklt-sl) 

X [ ~ ' ~ ( t )  .x.~(.s) - k2( K .  x.,,(t)) (K. x '~(s ) ) ]  
.cos(K. (x.(t) -~,(s)))d~KK/8r~k. (17) 
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This is to be added to S,+Sc t o  obtain the complete 
action of the system with the oscillators removed. 

The term in (K.x.,(1))(K.x',(s)) can be simplified 
by integration by  parts with respect t o  1 and with 
respect to s [note that  exp(-ik)l--sl)  has a discon- 
tinuous slope a t  t = s ,  or break the integration up into 
two regions]. One finds 

where 
It,= R- I ,+  Itransient (18) 

.cosK. (x.(L) - x , ( s ) ) d 3 K / 8 A  (19) 
and 

- 1 "  .. 

XCOSK. (x"(1)-x,,(t))n3K/4n'k* (20) 

comesfrom the discontinuity in slope of e x p ( - - i k l t - s l )  
at t = s .  Since 

cos(K.R)d3K/4n?k?= ( b - 1  sin(kr)dk/n= (2r)- l  

this term I .  just cancels the Coulomb interaction term 
S,= JL,d l .  The term 

Im 

is one wliich comes from the limits of integration a t  t' 
and  I" ,  and involves the coordinates of the particle at  
either one of these times or the other. If t' and 1'' are 
considered to be exceedingly far in  the past and future, 
there is no correlation to be expected between these 
temporally distant coordinates and the present ones, 
so the effects of Itralisient will cancel out  quantum 
mechanically by interference. This transient was pro- 
duced by the sudden turning on of the interaction of 
field and particles a t  t' and its sudden removal a t  t". 
Alternatively we can imagine the charges to he turned 
on after I' adiabatically and turned off slowly before 1'' 
(in this case, in the term L,, the charges should also be 

considered as varying with time). In  this case, in the 
limit, It,,.,i,,, is zero.g Hereafter we shall drop the 
transient term and consider the range of integration of 
t to be from - m t o  +a, imagining, if one needs a 
definition, t ha t  the charges vary with time and vanish 
in the direction of either limit. 

T o  simplify R we need the integral 
n 

J =  J exp( - ikl t I ) cos( K .  R)d3K/8& 

= f m  exp(-ikltl) sin(kr)dk/znr (22) 
' 0  

where Y is the length of the vector R. Now 

J m  exp(-iiRs)dk= lini ( - i ( x - i e ) - l )  

where the equation serves to define 6+(x) [as in 11, 
Eq. (3)]. Hence, expanding sin(kr) in exponentials find 

J = - (4nr)-l( ( 1 1 I - Y ) - L  - ( 1 I I + r)-l) 

= - ( 2 ~ ) - ~ ( t ~ - - ~ * ) - ~ +  (2i)-L6(t9-r*) 

e -0 

= -ix--' + d ( r )  = "6+(2)  

+ (4ir)-1(6(l~I -1) - 8( 1 1 1  +r))  

= -$i6+(t?-r?) (23) 

where we have used the fact that  

6 ( P -  Y') = (2r)-l(s( 1 t l  - Y)+ 6( 1 I 1 + r)) 

and that  6 ( 1 t / + r ) = 0  since both IIl and I are neces- 
sarily positive. 

Substitution of these results into (19) gives finally, 
+w +m 1 

R= --ex [, 1, e"e,,(l-x.,(t).x.,,,(s)) 

X 6 + ( ( 1 - ~ ) ' -  (x,(t)-~~(s))*)dIds.  (24) 

The  total complex action of the system is then'0 
S,+R. Or, what amounts to the same thing; lo  obtain 

9One can  ohtain the  final result ,  t h a t  t h e  total interaction is 
jus t  R ,  in a fornial manner s ta r t ing  from the  Haniil tonian from 
which the  longituilinal oscillators have not y e t  heen climinated. 
There  a re  [or each K and cos or sin, lour oscillalnrs qPK corre- 
sponding 10 the  three components of the vector potential  (a== 1, 
2,  3) and the  scalar potenl ial (r=4) .  I t  must then be assumed 
tha t  the wave functions of the  initial and final s l a t e  of the  K 
oscillators is lhefunct ion  ( k h )  exp[- ) ~ ( ~ , K ' + ~ ~ ~ 2 + q ~ K 2 - ~ , K * ) l .  
T h e  wave function suggested here has only lornial significance, 
of course, because the  dependence 011 9,K is not square  integrable, 
and  cannot be normalized. If each oscillator were assumed 
actually in the ground s ta te ,  the  sign of the  q r K  term would be 
changed to positive, and  the  sign of thc  frequency in the  contri-  
bution of these oscillators would be reversed ( they  would have  
negative energy).  

10 T h c  classical action lor this prohlein is just  S p +  R' wlicre R' 
is the  real par t  of the  expression (24). I n  view of the  geiieralizalion 
of the  Lagrangian formulation of q u a n t u m  mechanics suggeslcd 
in Section 12 of C. one might hove anticilintcd t h a t  R \vould have 
been simiily R'. T h i s  corresponds. hon-ever, 10 Ihounrlary condi- 
tions other than no  q u a n t a  present in past and lulure.  I t  is 
harder 10 intcrpret  physically. For a system enclosed in a light 
tight hox, however, i t  appears  likely t h a t  both R a n d  R' lead to 
the sanie results. 
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transition amplitudes including the effects of the field 
we must calculate the transition element of exp(iR): 

( x f , ,  I expiR I !bf,)s, ( 2 5 )  
under the action S, of the particles, excluding inter- 
action. Expression (24) for R must be considered t o  be 
written in the usual manner as  a Riemann sum and the 
expression (25) interpreted a s  defined in C [Eq. (39) ] .  
Expression (6) must be used for x', at time 1.  

Expression (25), with (24), then contains all the  
effects of virtual quanta on a (at  least non-relativistic) 
system according to quantum electrodynamics. I t  con- 
tains the effects to all orders in ez/hc in a single expres- 
sion. If expanded in a power series in e2/hc, the various 
terms give the expressions to  the corresponding order 
obtained by the diagrams and methods of 11. We 
illustrate this by  an  example in the next section. 

5. EXAMPLE OF APPLICATION OF EXPRESSION (25) 

We shall not be much concerned with the non- 
relativistic case here, as the relativistic case given below 
is as  simple and more interesting. I t  is, however, very 
similar and a t  this stage it is worth giving an  example 
to show how expressions resulting from (25) are to be 
interpreted according to the rules of C. For example, 
consider the case of a single electron, coordinate x, 
either free or in an  external given potential (contained 
for simplicity in S,, not in1] R).  I t s  interaction with 
the field produces a reaction back on itself given by R 
as in (24) hut in which we keep only a single term 
corresponding to m=a. Assume the effect of R to be 
small and expand exp(iR) as l+iR. Let us find the 
amplitude a t  time t" of finding the electroii in a s ta te  
$ with no quanta emitted, if a t  time 1' i t  was in the 
same state.  I t  is 

($,,,I l+ iRI$t , ) . s ,=($t ,~  I1 I $ l ~ ) s , + i ( $ l ~ ~ l R I $ l ~ ~ ~ p  

where ( $ t , . I  1 I$,~).sp=exp-iE(t"-t')] if E is the 
energy of the state,  and 

Here x.=x(5), etc. In  (26) we shall limit the rang? of 
integrations by assuming 5 < l ,  and double the result. 

The expression within the brackets ( )sp on the 
right-hand side of (26) can be evaluated by the methods 
described in C [Eq. (29)]. An expression such as (26) 

'1 One can show from (25) how the correlated effect of many 
atoms a t  a distance produces on a given system the effects of an 
external potential. Formula (24) yields the result that this 
potential is  that obtained from LiCnard and Wiechert by retarded 
waves arising from the charges and currents resulting from the 
distant atoms making transitions. Assume the wave functions 
x and + can be split into products of wave functions for system 
and distant atoms and expand c x p ( i R )  assuming the effect of any 
individual distant atom is small. Coulomh potentials arise even 
from nearby particles il they are moving slowly. 

can.also be evaluated directly in terms of the propaga- 
tion' kernel K(2 ,  1) [see I, Eq. (2)] for a n  electron 
moving in the given potential. 

The  term x'..x'f in the non-relativistic case produces 
a n  interesting complication which does not have an  
analog for the relativistic case with the Dirac equation. 
We discuss i t  below, but  for a moment consider in 
further detail expression (26) but  with the factor 
( l -x' . .x 'J  replaced simply by  unity. 

The  kernel K(2, 1) is defined and discussed in I. 
From its definition as  the amplitude that  the electron 
be found a t  xz at time Lz, if a t  f I  i t  was a t  xI,  we have 

K(Xz, l z ;  XI,  II)=(B(X-XZ)(~~ 1 I S(x-Xi)ti)s, (27) 
that  is, more simply K(2,  1) is the sum of exp(iS,) over 
all paths which go from space time point 1 to 2. 

In  the integrations over all paths implied by the 
symbol in (26) we can first integrate over all the x, 
variables corresponding to  times t ,  from 1' to 5 ,  not 
inclusive, the result being a factor K(x,, 5 ;  x fp ,  t ' )  ac- 
cording to (27). Next we integrate on the variables be- 
tween 5 and f not inclusive, giving a factor K(x,, t ;  x,, s) 
and finally on those between t and t" giving 
K(xf,,,  I " ;  X I ,  I). Hence the left-hand term in (26) 
excluding the X ' ~ . X ' .  factor is 

- (xl-xn)~) .K(xl ,  t ;  x,, s)K(x,, s; Xl' ,  t ' )  

X $ ( X ~ . ,  tr)d'xl.,d"xld'x,d13x1. (28) 

which in improved notation and in the relativistic case 
is essentially the result given in 11. 

We have made use of il special case of a principle 
which may be stated more generally as  

(Xf,,lF(Xly t l ;  x2~ t ? ;  "'xkj l k ) I $ t ' ) s p  

=Jx*(xL!?)K(xl.., 1 " ;  X I ,  tI)'K(Xl, 1 1 ;  XP, t z ) .  . . 

XK(Xk-I, t k - 1 ;  Xkr tk )K(xk ,  f k ;  xf', 1 ' )  

.F(xl, 11; xz, 1 2 ;  ' '  'xk, tk)$(xi,) 

X d ' ~ i , . d ~ ~ l d ' ~ z ,  . .d3Xkd3X1* (29) 

where F is any function of the coordinate x1 a t  time f , ,  
xz a t  t 2  up  to xk, t k ,  and,  i t  is important to notice, we 
have assumed t">tl>tz>. . 'It>/'. 

Expressions of higher order arising for example from 
R'are more complicated as there are quantities referring 
to several different times mixed up, but  they all can be 
interpreted readily. One simply breaks up  the ranges of 
integrations of the time variables into parts such that  
in each the order of time of each variable is definite. 
One then interprets each par t  by formula (29). 
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As a simple example we may refer to the problem of 
the transition clement 

arising, say, i n  tlic cross term in C' and V in an ordinary 
second order pcrturlxilion 1)rol~l~m ((lisrcgartliiig ratlin- 
tion) with pcrturlxttion potentixl U ( x ,  [)+ V ( x ,  /). In 
the integration on s a n d  / which should iricluclc (lie 
entire range of time fur each, we can split t h e  range of 
s into two parts, s < f  aiid s > t .  111 tlie first case, s < l ,  
the potential 1' acts earlier than I/, and in the othcr 
rangt., vice versa, so that  

+ p1J "'q x ' ( x l . . ) K ( x l . . ,  1" ; x.,  s) 

x V ( X , ,  s ) K ( x . ,  s ;  X I ,  I ) U ( X f ,  1 )  

. K ( x ~ ,  I ; x i , ,  I ' ) IC . (X , , )~ 'X , . ,~~X,~?X~~~X~.  (30) 

so that  the single expression 011 the left is represented 
by two terms analogous to  the two terms required in 
analyzing the C:ompton effect. It is in t h i s  way that  
the several terms and their corresponding diagrams 
corresponding to each process arise when an  at tempt  
is made t o  re~)rcsent the transition elenlents of single 
expressions involving time integrals in terms of the 
propagation kernels li. 

It remains to study in more detail the term in ( 2 6 )  
arising from x ' ( t )  . x . ( s )  in the interaction. The interpre- 
tation of such expressions is considered in detail in C, 
a i d  we must refcr to Eqs. (39) through (50) of that  
paper fur a more thorough analysis. .4 similar type of 
term also arises i n  the Lagrangian formulation it1 
simpler problems, for example the transition element 

arising say, in the cross term in A and B in a second- 
order perturbation prohlem for a particle in a per- 
turbing vector potential A ( x ,  l ) + B ( x ,  1 ) .  The time 
integrals must first be writteii as  Ricmaniiiu~i sums, the 
velocity (see (6)) being replaced hy x ' =  : c - l ( x , + l - x , )  
+$c-'(x,-x,-l) so that we ask for the transition 

element of 

C ~ [ l ( ~ i + i - ~ , ) + f ( ~ , - ~ i - i ) ] . A ( ~ i ,  t ,)  
1 1  

x c i ( x , + l - x , )  + ~ ( X J - X J - I ) I  . B ( x j ,  L J ) .  (31) 

In  c i t  is shown that  when converted to operator 
notation the quantity ( X ~ + ~ - X , ) / ~  is equivalent (nearly, 
see Iielow) to an operator, 

( x , + i - x , ) / ~ ~ i ( ~ ~ X - x ~ ~ )  (32) 

operating in order indicated by the time index i (that 
is after X I ' S  for Ili and before all X I ' S  for l>i). In non- 
rc1;ttivistic mechanics i ( l l x - x l l )  is the momentum 
operator p ,  divided by the mass m. Thus  i n  (31) the 
espression [ ~ ( x , + ~ - x , ) + ~ ( x , - x , - ~ ) ] .  A ( x , ,  I,) becomes 
c ( p . A + A . p ) / 2 t n .  Here again we must split the sun1 
into two regions j < i  and j > i  so the quantities i n  the  
usual notation will operate in tlie right ordcr such that  
eventually (31) becomes identical with the right-hand 
side of Eq. (30) but  with U ( x t ,  1 )  replaced by the 
opsrator 

i a x ,  

standing in the same place, and with the operator 

standing in the place of V ( x , ,  s). The  sums and factors 
e have now become f dl f ds. 

This is nearly b u t  not quite correct, however, as there 
is an  additional term corning from the terms in the sum 
corresponding to the special values, j =  i, j =  i+ 1 and 
j= i - l .  We have tacitly assumed from the appearance 
of the expression (31) that ,  for a given i, the contribu- 
tion from just three such special terms is of order 2. 
n u t  this is not true. Altliough the expected contribution 
of a term like ( . ~ + ~ - x ~ ) ( x ~ + ~ - x ~ )  for j # i  is indeed of 
order 2, the expected contribution of (x,+l-zJz is 
f i e n t - l  [C, Eq.  (SO)], that  is, of order c. In  non- 
relativistic mechanics the velocities are unlimited and 
i n  very short times e the amplitude diffuses a distance 
proportional t o  the square root of the time. Making 
use of this equation then we see that  the additional 
contribution from these terms is essentially 

when summed on all i. This has the same effect as  a 
first-order perturbation due to a potential A .  Bli tz .  
Added to the term involving the momentum operators 
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we therefore have an additional term'? 
; 1" 1 

In  the usual Hamiltonian theory this term arises, of 
course, from the term A2/2m in the expansion of the 
Hamiltonian 

H = (Zm)-l(p- A)*= (2m)-l(p2-p. A - A. p+ A2) 
while the other term arises from the second-order action 
of p . A + A . p .  We shall not be interested in non- 
relativistic quantum electrodynamics in detail. The 
situation is simpler for Dirac electrons. For particles 
satisfying the Klein-Gordon equation (discussed in 
Appendix A) the situation is very similar to a four- 
dimensional analog of the non-relativistic case given 
here. 

6. EXTENSION TO DIRAC PARTICLES 

Expressions (24) and (25) and their proof can be 
readily generalized to the relativistic case according to 
the one electron theory of Dirac. We shall discuss the 
hole theory later. In the non-relativistic case we began 
with the proposition that the amplitude for a particle 
to proceed from one point to another is the sum over 
paths of exp(iS,), that is, we have for example for a 
transition element 

(x l l l+)=  ~2 S...SX*(XN)Q,(XN,XH-~, .. .xo) 
. + ( ~ o ) d ~ ~ o d ~ ~ I . .  .d3X,v (34) 

where for exp(iS,) we have written ap, that is more 
precisely, 

As discussed in C this form is related to the usual 
form of quantum mechanics through the observation 
that 

(xi+r(x;),=A-' exp[iS(x,+l, x,)] (35) 
where (xi+l Ix,), is the transformation matrix from a 
representation in which x is diagonal a t  time 1 ,  to one 
in which x is diagonal a t  time f ,+ l= f ,+c  (so that it is 
identical to Ko(xi+l, l ,+ t ;  x,, 1,) for the small time 
interval c). Hence the amplitude for a given path can 
also be written 

+p= n,(xi+l I X J e  (36) 
for which form, of course, (34) is exact irrespective of 
whether (X,+~I xJ, can be expressed in the simple form 
(35). 

For a Dirac electron the ( X ~ + ~ / X , ) ~  is a 4x4 matrix 
"The term corresponding to this for the self-energy expression 

(26) would Rive an integral nver 6 + ~ ( 1 - t P - ~ x , - x , ~ * )  which is 
evidently infinite and leads to the quadratically divergent self- 
energy. There is n o  such term for the Dirac electron but there 
is for Ktein-Cordnn particles. We shall not discuss t i e  infinities 
in  this paper as they have already been discussed in 11. 

+p,= n, A-1 expis(xi+*, x,), 

(or 4 N X 4 N  if we deal with N electrons) but the expres- 
sion (34) with (36) is still correct (as it is in fact for 
any quantum-mechanical system with a sufficiently 
general definition of the coordinate x,). The product 
(36) now involves operators, the order in which the 
factors are to be taken is the order in which the terms 
appear in time. 

For a Dirac particle in a vector and scalar potential 
(times the electron charge e) A(x, f ) ,  A4(x, I ) ,  the 
quantity (x,+t l  x.)*cn) is related to that of a free particle 
to the first order in c as 
( x , + ~ I x , ) ~ ( ~ ) =  (x,+tIxJ,(") expC--(tAdx, t.) 

- (xJ+i-xJ, A(x8, (,))I. (37) 
This can be verified directly by substitution into the 
Dirac e q ~ a t i o n . 1 ~  I t  neglects the variation of A and A,  
with time and space during the short interval c. This 
produces errors only of order t2 in the Dirac case for 
the expected square velocity (x,+t-x,)*/c2 during the 
interval c is finite (equaling the square of the velocity 
of light) rather than being of order l / c  as in the non- 
relativistic case. [This makes the relativistic case 
somewhat simpler in that it is not necessary to define 
the velocity as carefully as in ( 6 ) ;  (X,+~-X,)/C is 
sufficiently exact, and no term analogous to (33)  arises.] 

differs from that for a free particle, GP(O), 
by a factor n, exp--i(eA,(x,, ~ , ) - ( ~ , , ~ - x , ) ~ A ( x ~ ,  I,)) 
which in the limit can be written as 

Thus 

exactly as in the non-relativistic case. 
The case of a Dirac particle interacting with the 

quantum-mechanical oscillators representing the field 
may now be studied. Since the dependence of Q,p(A)  on 
A, A,  is through the same factor as in the non-relativ- 
istic case, when A, A ,  are expressed in terms of the 
oscillator coordinates 9, the dependence of Q, on the 
oscillator coordinates 9 is unchanged. Hence the entire 
analysis of the preceding sections which concern the 
results of the integration over oscillator coordinates 
can be carried through unchanged and the results will 
be expression (25) with formula (24) for R. Expression 
(25) is now interpreted as 

(X1,,/expiR/$l,)= lim e - 0  SX'(X, , . (~) ,  xL,,(*). .. 1 
Xn(ap, n(0)d3xc , , (n )d~x l r , -~ (") .  . .d3x,,(*)) 

.exp(iR)+(x,.('), xl,(2). . .) (39) 
13 Alternatively, note that Eq. (37) is exact for arbitrarily large 

t i f  the potential A ,  is constant. For i f  the potential in the Dirac 
equition is the gradient of a scalar function A,=dxldx, the 
potential may be removed by replacing the wave funclion by 
, b=exp( - ix l$ '  {gauge transformation). This alters the kernel by 
a factor exp[-r(x(2)-x(l))] Owing to the change in the initial 
and final wave functions. A constant potential A p  is the gradient 
of X=A,x,, and can be completely removed by this gauge trans- 
formation. so that the kernel differs from that of a free particle 
by the factor e~p[- i (A, ,r , ,~-A~r,~)]  as in (37).  
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where a7,, , , (O) ,  the am~)l i tude for a particular path for 
particle I I  is simply the expression (36) where ( X , + ~ / X , ) .  
is the kernel KO, ,z(x,+i(ro, l < + ~ ;  x,(") ,  I , )  for a free elcc- 
tron according to the one electron Dirac theory, with 
the matrices which appear operating on the spinor 
indices corresponding to particle (71) and the order of 
all operations being tlcterminctl by the time indices. 

For calculational purposes we can, as  before, expand 
R as a power series and evaluate the various terms in 
the same niatitier as for the non-relativistic case. In  
such an expansion the quantity x . ( t )  is replaced, as  we 
have seeii in  (32) ,  hy the operator i(,'Zx-xZl), that  is, 
in this case by (Y operating a t  the corresponding time. 
There is no furtlicr coniplicatetl term analogous to (33) 
arising in this case, for the expected value of ( . X ~ + ~ - X , ) ~  
is now of order t2 rather than c. 

For example, for self-energy one sees that  expression 
(28) will be (with other terms coming from those with 
x ' ( t )  replaced by (Y and with the usual 0 in back of 
each I(, because of the definition of K O  in relativity 
theory) 

lR($r.)s,= - ~ ' ~ ~ * ( x l ~ ~ ) ~ o ( x l ~ ~ ,  1"; X I ,  t )Pa, 

. ~ + ( ( ~ - ~ ) ' - ( x I - x ~ ) ~ ) K u ( x I ,  t ;  x,, S)P.I, 

. K ~ ( x ~ ,  s ; x i , ,  1 ' ) P $ ( ~ , , ) d ~ ~ i , , d ~ ~ , d ~ ~ ~ d ~ ~ i , d ~ d ~ ,  (40) 

where a(= 1, al,2,3=a,,,, .  and a sum on the repeated 
index p is implied in the usual way;  alcbl.=u4br-ulbl 
-a2b2-a3ha. One can change pa, to Y, ,  and J.* to $0. 
In  this manner all of the rules referring to virtual 
photons discussed in I1 are deduced; bu t  with the 
difference that  K O  is used instead of K+ and we have 
the Dirac one electron theory with negative energy 
states (although we may have any  number of such 
electrons). 

7. EXTENSION TO POSITRON THEORY 

Since in (39) %re have an  arbitrary number of elec- 
trons, we can deal wi th  the hole theory in the usual 
manner by imagining that we have an  infinite number 
of electrons in negative energy states. 

On the other hand, in paper I on the theory of 
positrons, it was shown that the results of the hole 
theory in a system with a given external potential A ,  
were equivalent to those of the Dirac one electron 
theory if one replaced the propagation kernel, K O ,  by a 
different one, K,., and multiplied the resultant ampli- 
tude by factor C, involving A, .  We must now see how 
this relation, derived i n  the case of external potentials, 
can also be carried over in electrodynamics to be 
useful in simplifying expressions involving the infinite 
sea of elcctrons. 

To do this we study in greatcr detail the relation 
between a problem involving virtual photons and one 
involving purely external potentials. In  using (25) we 
shall assume in accordance with the hole theory that  

the number of electrons is infinite, but th:it t h c y  all 
have the same charge, E .  Let the states ILZ,, x,,,, repre- 
sent the vacuum p lus  perhaps a number ol rcal electrons 
in positive energy states and perhaps also sotlie empty 
negative energy states. Let us call the amplitude for 
the transition in an  esternal potential B,, but  e.cclttdirtg 
virlunl ~ ~ O ~ O J Z S ,  ToCB], a functiorial of BF(l). We have 
seen (38) 

where 
T0Cnl= ( X P  I expip1 $v) (41) 

by (38). We can write this as 

where x 4 ( t ) = t  and k4=1, the other values of p corre- 
sponding to space variables. The corresponding ampli- 
tude for the same process in the same potential, but 
including all the virtual photons we may call, 

T.z[B]=(xr~~Iexp(iR) exp(iP) I J.V).  (42) 
N o w  let us consider the effect on T,z[B] of changing 
the coupling e2 of the virtual photons. Differentiating 
(42) with respect to e' which appears only I4 in R we find 

We can also study the first-order effect of a change 
of B,: 

6T.2[B~/6R,(1) = -i( I + 1 . t , ( v t ) 6 4 ( x n ( n )  - x a , t l  

where x=, I is the field point at which the derivative with 
respect to B,  is takeills and the term (current density) 
-En ~ ~ t ~ , ( ~ l ' ( l ) 6 ' ( x ~ ( ' l ) ( l ) - 2 ~ ,  is just 6P/6B,(1). 
The  function 64(2,(n)-x,, I) means 6(x4(")-x4, ,) 

I n  changing thc charge ez  w e  mean to vary only the degree 
to whicli virtual phntons are important. We do not contemplate 
changes in  the  influence of the external potentials. If one wishes, 
as E is raised the  strength oi the potential is dccreascd propor- 
tionally so that B,, the poteniial limes the charge c ,  is held 
Constant. 

" T h e  functional dcrivntivc is defir,ed such that ii 7 [ B ]  i s  a 
numlm depending on the functions B*(i), tlic first order variation 
in T pmduccd by a change from B, lo B,+AB, is given by 

T[B+Ab'] -  r [ B ] = S ( S r [ B ] / a B , ( l ) ) a R , ( l ) d . l  

the integra: extending over all four-space I=,. 
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X 6 ( n ~ ' " ) - x r ~ ,  1)6(xr""-xx~, 1 ) 6 ( . x ~ ( ~ ~ ) - n ~ ,  that  is, 6 ( 2 ,  1) 
with ~ ~ . 2 = x , l " ~ ( t ) .  A second variation of T gives, by 
differentiation of (44) with respect to B,(2), 

' 6 4 ( X m ( n ) ( t )  - xa,  ,)ayX,f",(s)- xg, 2) 

x expi(R + P) I +(,). 
Comparison of this with (43) shows that  

~ T , * [ B ] / W )  = ~ i S S ( a ~ . z ~ ~ l / a ~ , ( l ) a ~ " ( 2 ) )  

X 8 + ( s t ? ) d r t d n  (45) 

We now proceed to use this equation to prove the 
validity of the rules given in I1 for electrodynamics. 
This we do  by the following argument. The equation 
can be looked upon as  a differential equation for T,z[B]. 
I t  determines T,z[O] uniquely if T,[B] is known. We 
have shown it is valid for the hole theory of positrons. 
But in I we have given formulas for calculating T O I B ]  
whose correctness relative to the hole theory we have 
there demonstrated. Hence we have shown that the 
T.z[B] obtained by solving (45) with the initial condi- 
tion To[B] as  given by the rules in I will be equal to 
that given for the same problem by the second quant- 
ization theory of the Dirac matter  field coupled with 
the quantized electromagnetic field. But  i t  is evident 
(the argument is given in the next paragraph) that  the 
rules" given in I1 constitute a solution in power series 
in e2 of the Eq.  (45) [which for e2=0 reduce to the 
To[B]  given in 13. Hence the rules in I1 must give, to 
each order in e2, the matrix element for any  process 
that would be calculated by the usual theory of second 
quantization of the matter and electromagnetic fields. 
This is what we aimed to prove. 

Tha t  the rules of 11 represent, in a power series 
expansion, a solution of (45) is clear. For the rules 
there given may be stated as follows: Suppose that  we 
have a process to order k in e? (i.e., having k virtual 
photons) and order IZ in the external potential B,. 
Then, the matrix element for  the process wi th  one more 
virtual photon and two less pulenlials is lhat obtainedfrom 

where s13= ( z p , ~ - z , . ~ ) ( z p . ~ - ~ , . ~ ) .  

'I T h a t  is, of course, those rules of I 1  which almly 10 the  un- 
modified elcctrodynamics of Dirac electrons. ( T h e  limitation 
e x c l u d i n ~  real photons in the initial and  final s ta tes  is removed 
in Sec. 8 1 T h e  same arguments clearly apply t o  nucleons inter-  
acting via neutral  vector mesons. vector coupling. Other  couplings 
require a minor extension of the argument.  T h e  moilihcation 
t o  the ( X ~ + I I X , ) ~ ,  a s  in (37),  produced by  some counlings cannot  
very easily be written without using operators i n  the exponents.  
Tliesc operators can be treated a s  numbers if their order of oper- 
ation is maintained t o  be always their ordcr in time. T h i s  idea 
will be discussed and  applied more generally in a succeeding paper.  

the previous matrix b y  clruosinl: /rum Ihe n potentials a 
pair,  say  O,(f) acting at I and B,(Z) a c t i n g  at 2,  replacing 
them b y  ie26,,6+(s122), adding the resulls f o r  each way of 
chaosiizg ihe pair,  and dividirq b y  k + l ,  the present 
number of photons. The matrix with no virtual photons 
( k = O )  being given to any  n by the rules of I ,  this 
permits terms to all orders in e2 to be derived by 
recursion. I t  is evident that  the rule in  italics is that  of 
11, and equslly evident that  it is a word expression of 
Eq. (45). [The factor f in (45) arises since in integrating 
over all d r ,  and d r 2  we count each pair twice. The 
division by R + 1  is required by the rules of II for, 
there, each diagram is to be taken only once, while in 
the rule given above we say what to do  to add one 
extra virtual photon to k others. But which one of the 
k + l  is to be identified a t  the last photon added is 
irrelevant. I t  agrees with (45) of course for i t  is canceled 
on differentiating with respect to e2 the factor (e2)&+I 
for the ( k + l )  photons.] 

8. GENERALIZED FORMULATION OF QUANTUM 
ELECTRODYNAMICS 

The relation implied by  (45) between the formal 
solution for the amplitude for a process in an  arbitrary 
unquantized external potential to that  in a quantized 
field appears to be of much wider generality. We shall 
discuss the relation from a more general point of view 
here (still limiting ourselves to the case of no photons 
in initial or final state). 

In  earlier sections we pointed out that  as a conse- 
quence of the Lagrangian form of quantum mechanics 
the aspects of the particles' motions and the behavior 
of the field could be analyzed separately. What  we did 
was to integrate over the field oscillator coordinates 
first. We could, in principle, have integrated over the 
particle variables first. Tha t  is, we first solve the 
problem with the action of the particles and their 
interaction with the field and then multiply by the 
exponential of the action of the field and integrate over 
all the field oscillator coordinates. (For simplicity of 
discussion let us put  aside from detailed special con- 
sideration the questions involving the separation of the 
longitudinal and transverse parts of the field.$) Now 
the integral over the particle coordinates for a given 
process is precisely the integral required for the analysis 
of the motion of the particles in an  unquantized po- 
tential. With this observation we may suggest a 
generalization to all types of systems. 

Let us suppose the formal solution for the amplitude 
for some given process with matter in an  external 
potential is some numerical quantity TO. We 
mean matter in a more general sense now, for the 
motion of the matter may be described by the Dirac 
equation, or by the Klein-Gordon equation, or may 
involve charged or neutral particles other than electrons 
and positrons in any manner whatsoever. The quantity 
To depends of course on the potential function B p ( l ) ;  
t ha t  is, i t  is a functional TOIB]  of this potential. We 
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assume wc have some expression for it in terms of Be 
(<,.;art, or to sniiie rlesire(1 degree of npproxiiiiation in 
the strrngtli of the pntentinl). 

l ' i i r n  tlir nn$ivt-r T , Z [ / ~ ]  t n  the corrcyionrling i1r01)- 
kin i i i  cIit:itituni ciertro~lynarnics is T,,[.*l,.(l)+/<F(i)] 
x r ~ p ' i ? , ~ )  sum iiiec 1 ovpr all possiblc dist riliu t i r i  t i ' i  of 
ficlcl .AH(l), wlicrein S,,  is the  action for t h e  field . y 0- - - ~ & ~ ~ / - I ~ ~  ~ i ( , ) . ] , / i , / ) * - ( ~ . ~ l ~ ) ? ) d f ~ d /  t h e  $um 
nit p mi tying the usual miiius sign for space coni~ic)- 
netits 

If /,'[.I] is any functional 4 ,4p(1) we sliall rclircsent 
by ( i j  FL.1 J ;  tliii superposition of  I'C.11 exp(i.la) ovcr 
distributions of il, for the case i n  which there are no 
photnns in i i i i t i n l  or  final stale. That is, we have 

The ~v.ilu:itiun of " 1  P ' [ , ~ l ] 1 0  directly from the rlcfin- 
tion of tile nimation ,,I I is not neccssary. \Ve c w  
give the  rewlt  i n  citi3tlicr way. \Ye first n o t c  that the 
oijeratioii is linear, 

01 F1[:I]+F,[A 3 I o = 0 I F t [ A ] I  o+o 1 F,[,I] 1 o (4;) 

so that  if F is represented as  a sum of terms each term 
c w  he a~ialyrctl  scparately. We have studied csst:ntially 
the case i n  which F [ d ]  is an esponential function. In 
iact ,  wh-~t  \ y e  have done i n  Section 4 may be repealed 
with slight niodiilcation to show that 

where j , ( l )  is an arbitrary function of position and 
tirnr for each value of p .  

l o  for only 
a particular ftriictional of  4 ,  the appearance of the 
arbitrary function j , ( l )  makes it sufficiently general to 
permit the evaluation for any other functional. For i t  
is in hi. expcrte'l that  any functional can be represcnted 
as  a superposition of exponen~ials with different func- 
tions j , ( l)  (liy analogy with the principle of Foiirier 
iritegrdls for orrlinary functions). Then, by (47 ) ,  the 
result (if the nperation is the correspondiiig sul,crimsi- 
tion of e.sprr..:inns rclual  t i t  t l r c  right-Iiand side i ~ f  (48) 
with the vari,iui j ' s  sul~stitiitetl forj , .  

In many a1q)lications F[.4] c m  be given as  a lower  
series in A,:  

illthouglt this gives the evaluation of 0 1  

~ , v l i ~ r c ; . , ; , / ~ ( l ) , / ~ " ( l ,  2 ) . . .  are known numerical func- 

~ ~ I i c r e  we set o / l / o = l  (from (48) withj ,=O).  We cnn 
work o u t  e.xprcsGon5 fur the srtrcessive powers of A ,  
by diiffcrciiti,ttin:: Iiotli siiJe5 of (48) successively with 
respect to j ,  at111 scttiiig j,=O in each derivative. For 
esanii~le, tlic lirst variatiuti (derivative) of  (48) with 
reslicct to jy(.3) givcs 

Settiiig j p = O  givcs 

Differentiating (51) again with respect to j v ( 4 )  and 
setting j , = O  shows 

0 1 "(-3) 1 D =  0 

0 1  Ap(.3),.1,(4) 1 o = i ~ * 6 p J + ( s 3 r ~ )  ( 5 2 )  
and so on for higher powers. Thcse results may be 
su1)stituted into (50). Clearly therefore when T D [ O + A ]  
in (46) is expantlcrl in a power series and thc successive 
ternis are computed in this way, we obtain the results 
giveu in 11. 

It is evident that  (46), (47), (48) imply that  T.z[B] 
satisfies the diffcrcntial equation (45) and conversely 
(45) w i t h  the clefiiiition (46) implies (47) and (48). For 
if Tu[n]  is an exponential 

we have from (46), (46) that  

Direct suhstitution of this into Eq (45) shows it to he a 
solution satidying the hiundary condition ( 5 3 ) .  Since the 
rliifcrzntial cqua1inn (45) is linear, if  To[/?]  is a super- 
position of ex~~onent ia ls ,  the corresponding supcrlmsi- 
tion of solutions (54) is also a solution. 
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Many of the formal representations of the matter 
system (such as that of second quantization of Dirac 
electrons) represent the interaction with a fixed po- 
tential in a formal exponential form such as the left- 
hand side of (48), except that j.(l) is an operator 
instead of a numerical function. Equation (48) may 
still be used if care is exercised in  defining the order of 
the operators on the right-hand side. The succeeding 
paper will discuss this in more detail. 

Equation (45) or its solution (46), (47), (48) consti- 
tutes a very general and convenient formulation of the 
laws of quantum electrodynamics for virtual processes. 
I ts  relativistic invariance is evident if it is assumed that 
the unquantized theory giving TOIB]  is invariant. I t  
has been proved to be equivalent to the usual formula- 
tion for Dirac electrons and positrons (for Klein-Gordon 
particles see Appendix A). It is suggested that it is of 
wide generality. It is expressed in a form which has 
meaning even if it is impossible to express the matter 
system in  Hamiltonian form; in fact, it only requires 
the existence of an amplitude for fixed potentials which 
obeys the principle of superposition of amplitudes. If 
TOIB] is known in power series in B,  calculations of 
T.z[B] in a power series of e2 can be made directly 
using the italicized rule of Sec. 7. The limitation to 
virtual quanta is removed in the next section. 

On the other hand, the formulation is unsatisfactory 
because for situations of importance it gives divergent 
results, even if TOIB] is fiiiite. The modification pro- 
posed in 11 of replacing 6+(s1z2) in ( 4 9 ,  (48) byf+(s1z2) 
is not satisfactory owing to the loss of the theorems of 
conservation of energy or probability discussed in I1 a t  
the end of Sec. 6. There is the additional difficulty in 
positron theory that even To[B] is infinite to begin 
with (vacuum polarization). Computational ways of 
avoiding these troubles are given in 11 and in the refer- 
ences of footnote 2. 

9. CASE OF REAL PHOTONS 

The case in which there are real photons in the initial 
or the final state can be worked out from the beginning 
in the same manner." We first consider the case of a 
system interacting with a single oscillator. From this 
result the generalization will be evident. This time we 
shall calculate the transition element between an initial 
state in which the particle is in state $ f ,  and the 
oscillator is in its nth eigenstate (i.e., there are ~t photons 
in the field) to a final state with particle in x1, , ,  oscillator 
in mth level. As we have already discussed, when the 
coordinates of the oscillator are eliminated the result 
is the transition element where 

J 

where P,, (p. are the wave functionss for the oscillator 

'' For an alternative method starting directly from the formula 
(24) for virtual photons, see Appendix B. 

in state m, n and k is given in (12). The G,, can be 
evaluated most easily by calculating the generating 
function 

g ( X ,  Y)=C, ~"G,.X..Y"(m!n!)-r (55) 
for arbitrary X, Y .  If expression (11) is substituted in 
the left-hand side of (S), the expression can be simpli- 
fied by use of the generating function relation for the 
eigerifunctions* of the harmonic oscillator 

C rp.(go) Yn(n !)-+= ( w / ? T ) ~  exp(- +id) 

Xexp3[qO2- (V exp[-id']- ( 2 ~ ) $ ~ ) 2 ]  

Using a similar expansion for the pm* one is left with 
the exponential of a quadratic function of qo and q, 
The integration on q 3  and qI is then easily performed 
to give 

g(X, Y)=COO exp(XY+ip*X+ipV) (56) 
from which expansion in powers of X and Y and 
comparison to (11) gives the final result 

m! n! c,,= Goo(m !n !)-~X- - 
7 (m-r)!r! (n-r)!r! 

where Goo is given in (14) and 

and the sum on r is to go from 0 to m or to n whichever 
is the smaller. (The sum can be expressed as a Laguerre 
polynomial but there is no advantage in this.) 

Formula (57) is readily understandable. Consider 
first a simple case of absorption of one photon. Initially 
we have one photon and finally none. The amplitude 
for this is the transition element of Gol=iPGoo or 
( x t ~  1 ipG00 IJ.1,). This is the same as would result if we 
asked for the transition element for a problem in 
which all photons are virtual but there was present a 
perturbing potential - (2w) -+y ( t )  exp(- id)  and we 
required the first-order effect of this potential. Hence 
photon absorption is like the first order action of a 
potential varying in time as y ( l )  exp(--iwt) that is with 
a positive frequency (i.e., the sign of the coefficient of t 
in the exponential corresponds to positive energy). 
The amplitude for emission of one photon involves 
C,~=ifl*G~o, which is the same result except that the 
potential has negative frequency. Thus we begin by 
interpreting ip* a s  the amplitude for emission of one 
photon ifl as the amplitude for absorption of one. 

Next for the general case of n photons initially and 
m finally we may understand (57) as follows. We first 
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neglect Bose statistics and imagine the photons as 
individual distinct particles. If we s tar t  with n and end 
with w z  this process may occur in several different ways. 
The  particle niay absorb in total n--r of the photons 
and the final m photons will represent I of the photons 
which were present originally plus m--r new photons 
emitted by the particle. In  this case the u-Y which are 
to be absorbed may be chosen from among the original 
iz in 7 1  ! / ( 7 i - i - )  ! r !  different ways, and each contributes 
a factor ip ,  the amplitude for absorption of a photun. 
Which of the 171-r photons from among the lit are 
emitted can be chosen in m ! / ( m - r )  ! r !  different ways 
and each photon contributes a factor $* in amplitude. 
The initial 7 photons ivhich do  not interact bit11 fhe 
particle can be re-arranged among the final Y in r !  ways. 
We must sum over the alternatives corresponding to 
different values of 1. Thus the form of G,, can be 
understood. The  remaining factor (m!)-'()i !)-+ may be 
interpreted as saying that  in computing probabi ities 
(which therefore involves the square of G,,,) the 
photons may be considered as  independent but that  if 
vi are actually equal the statistical weight of eacli of 
the states which can be made by rearranging the vz 
equal photons is only l/?n!. This is the content of Uose 
statistics; that  tn equal particles in a given state 
represents just one state,  i.e., has statistical weight 
unity, rather than the 7)2 ! statistical weight wliich 
uvuld result if i t  is imagined that  the particles and 
states can be identified and rearranged i n  i i z !  different 
ways. This holds for both the initial and final states of 
course. From this rule about  the statistical weights of 
states the derivation of the blackbody distribution 
law follows. 

The actual electromagnetic field is represented as a 
host of oscillators each of which behaves independently 
and produces its own factor such as  G,,,,. Initial or final 
states niay also he linear combinations of states in 
which one or another oscillator is excited. The results 
for tliis case are  of course the corres~ionding linear 
combination of traiisition elements. 

For photons of a given direction of polarization and 
for sin or cos wavcs the explicit expression for fl  can be 
obtained directly from (58) by substituting the formulas 
(16) for the 7's for the corresponding oscillator. I t  is 
more convenient to use the linear combination corre- 
sponding to running waves. Thus we find the amplitude 
for absorpticin of a photon of momentuni K,  frequency 
k =  ( K .  K)' polarized in direction e is given by including 
a factor i times 

@.a= ( 4 r ) q 2 k ) - - h 5 c n l ,  esp(-z'kl) 
L" 

x esp(i K , x, ( 1 ) )  e . x' (+I/ (59) 

in the transition element (25). The density of states in 
momentum space is iiow (2n)-WK. The amplitude 
for emission is just i times the complex conjugate of 

this expression, or what amounts to the same thing, 
the same expression with the sign of the fuur vector k ,  
reversed. Since the factor (59) is exactly the first-order 
effect of a vector potential 

APH= ( 2 n l k ) k  exp(-i(kr-K.x)) 

of the corresponding classical wave, we have derived 
the rules for handling real photons discussed i n  11. 

We can express this directly in terms of the quantity 
T e z [ 1 3 ] ,  the amplitude for a give11 traiisition without 
emission of a photon. What we have said is that  the 
amplitude for absorption of just one photon whose clas- 
sic31 wave form is A,,I'"(l) (time variation ex1I ( - ik lL)  
corresponding to positive energy k )  is proportional to 
the first order (in c) change produced in T,,[BJ on 
changing U to  D + r A P f f .  T h a t  is, more exactly, 

S ( 6 T I ~ [ B ] / 6 B Y ( 1 ) ! A * P H ( l ) ~ 7 ~  (60) 

is the amplitude for absorption by the particle systrni 
of one photon, A!'". (A superposition argument shows 
the expression to be valid not only for plane wavcs, 
but for spherical waves, etc., as  given by the form of 
A The ampl i~ude  for emission is the smie  expression 
but  with the sign of the frequency reversed in A P H .  
The amplitude that the system ahsorlx two  photons 
with waves antl ;I pJ'"Z is obtained from the next 
derivative, 

the same expression holding for the absorplion of one 
and emission of the other, or emission of both tlepending 
on the sign of the time tlependence of '4  I"f and :I ""~. 
Larger photon numbers correspond to higher deriva- 
tives, absorption of I ,  emission of I?  requiring the 
( I r+/ . )  derivatics. LVhen two or more of t l ic  I h o t o n s  
are exactly the same (e .g . ,  A I ' 1 l ~ = A I ' ! ' 2 )  the s:tnic 
expression Iiulils for the ampli tu~le  that  l 1  :ire dJSoI'l>Cd 
by the system \rhile I ?  are emitted. IIowever, the 
statement that i n i h l l y  IZ of a kind are  prescnt antl  RC 
of this kind are present finally, does not inilily 11= J I  
and l 2=m I t  is possible th;it only J r - - r = / l  w r e  
absorbed by the system and m - r = / t  eniittctl, antl that  
r remained from initial 10 final s ta te  without interactiuii. 
This term is weighed by the coinbinati~rinl cocllicient 

(m!/i !)-i( :) (:)r! and summed over the possiibilitics 

for r as explained in coiinection with (57) .  'l'lius oiice 
the amplitude for virtual processes is knuwn, tha t  for 
real photon processes can bc obtained by differentiation. 

I t  is possible, of course, to den1 with situalioiis in 
which the electromagnetic field is not in a tlelinite state 
after the interaction. For exaniple, we niight ask for 
the total probability of a given process, such as a 
scattering, without regard for the nurnlicr of photons 
emitted. This is done of course by squaring the ampli- 
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tude for the emission of m photons of a given kind and 
summing on all m. Actually the sums and integrations 
over the oscillator momenta can usually easily be 
performed analytically. For example, the amplitude, 
starting from vacuum and ending with m photons of a 
given kind, is by (56) just 

G,, = (m!)-'Goo(iP*)". (61) 
The square of the amplitude summed on m requires 
the product of two such expressions (the y(l) in the B 
of one and in the other will have to be kept separately) 
summed on m: 

Em G.,o*G,",'= En Goo*Coo'(m!)-~p-(p'*)~" 
=GOO*GOo' exp(pP'*). 

In  the resulting expression the sum over all oscillators 
is easily done. Such expressions can be of use in the 
analysis in a direct manner of problems of line width, 
of the Rloch-Nordsieck infra-red problem, and of sta- 
tistical mechanical problems, but no such applications 
will be made here. 

The author appreciates his opportunities to discuss 
these matters with Professor H. A. Bethe and Professer 
J. Ashkin, and the help of Mr. M. Baranger with the 
manuscript. 

APPENDIX A. THE KLEIN-GORDON EQUATION 
I n  this Appendix we describe a formulation of the equations 

for a particle of spin zero which was first used to obtain the rules 
given in 11 for such particles. The complete physical significance 
of the equations has not been analyzed thoroughly so that it may 
be preferable to derive the rules directly from the second quanti- 
zation formulation of Pauli and Weisskopf. This can be done in a 
manner analogous to the derivation of the rules lor the Dirac 
equation given in I or from the Schwinger-Tomonaga lormulation' 
in a manner described, for example, by Rohrlich."The formulation 
given here is therefore not necessary for a description of spin 
zero particles hut is givcn only for its own interest as an alternative 
to the formulation of second quantization. 
We start with the Klein-Gordon equation 

(ia/ax,- A,,)Z+-m'+ (1A) 
for the wave function + o f  a particle of mass m in a given external 
potential A , .  We shall try to represent this in a manner analogous 
to the formulation of quantum mechanics in C. That  is, we try 
to represent the amplitude for a particle to get from one point to 
another as a sum over all trajectories of an amplitude exp(i.7) 
where S is the classical action for a given trajectory. To  maintain 
the relativi~tic invariance in evidence the idea suggests itself of 
describing a trajectory in space-time Iiy giving the four variables 
XJU)  as  functionsof some fifth paramcter 11 (rather than expressing 
xl, x z ,  xi in terms of x d .  As we expect Lo represent paths which 
may reverse themselves in time (to represent pair prorluction, 
etc., as in I) this is certainly a niore convenient representation, 
for all four functions x,(a)  may be considered as functions of a 
purameter 11 (somewhat analogous to proper time) which increase 
as  we go along the trajectory, whether the trajectory is proceeding 
forward (dx,/du>O) or backward (dx,/du<O) iil time." We shall 

I' F. Rohrlich (lo be published). 
lo  The physical itleas involved i i t  such a description are discussed 

in detail by Y .  Nambu, Frog. Theor. I'hys. 5, 82 (1950). An 
equation 01 type (2A) extended to the case of Dirac electrons has 
been studied by V. Fock, Physik Zeits. Sowjetunion 12, 404 
(1937). 

then have a new type of wave function p(x, u )  a function of five 
variablis, x standing for the four x,. I t  gives the amplitude lor 
arrival a t  point zp with a certain value of the parameter u. We 
shall suppose that this wave function satisfies the equation 

iJr/Ja - - +(ia/a+,,- A,,)'p P A )  
which is seen to be analogous to the time-dependent Schrodinger 
equation, 11 replacing the time and the four coordinates of space- 
time x, replacing the usual three coordinates of space. 

Since the potentials A,(x)  are functions only of coordinates xe 
and are independent of u, the equation is separal~le i l l  ii and we 
can write a special solution in the form p=exp(+iiii2n)+(x) where 
J.(x),  a function of the coordinates x,, only, satisfies (1.4) am1 the 
eigenvalue +ma conjugate to u is related to the mass pit of the 
particle. Equation (2A) is therefore equivalent to the Klein- 
Gordon Eq. (1A) provided we ask in the end only fur  the solution 
of (1A) corresponding to the eigenvalue tin' for the quantity 
conjugate to u. 

We may now proceed to rcpreseiit Eq. (2A) in Lagrangian lorm 
in general and without regard to this eigenvalue condition. Only 
in the final solutions need we apply the eigenv:tlur condition. 
That  is, if  we have some special solution p(x, N) 01 (2A) \re can 
select that part corresponding to the eigenvalue +m2 by calculating 

+ (X) -~~e*p( - t im 'u ) r (x ,  u)du 

and thereby obtain a solution $ of Eq. (IA). 
Since (2A) is so closely analogous to the Schrodinger equation, 

it is easily written in the Lagrangian form described in C, simply 
by working by analogy. For example if r ( x ,  u )  is known a t  one 
value of u its value a t  a slightly larger value u+t is given by 

. &', s)d'r,.(Z*i.)-I(-Zni.)-( (3A) 
where (x,,- xP' ) I  means (x,  - x"') (xw- xu'), d'r,. = d r,'d rz'dxt'dr,' 
and the sign of the normalizing factor is chanr;eJ fu r  the I, 
component since the component has the r e v e r d  sign in its 
quadratic coefficient in the exponential, in accordance with our 
summation convention a,,b# = a,b,- a l b l  - a 2 b r  nabr.  Equation 
(3A), as  can be verified readily as  described in C, Sec. 6, is equiva- 
lent to first order in e, to Eq. (2A). Hence, by repeated use 01 this 
equation the wave function a t  uo=ne can be represented in terms 
of that a t  u=O by: 

+ t - ' ( ~ ~ i - x ~ ~ - ~ ) ( A , , ( x i ) + A ~ ( x . - ~ ) ) ]  
"-1 

1 4  
. r ( x , o ,  0) II (d'r./4*1Zi). (4A) 

That  is, roughly, the amplitude for getting from one  Imini to 
another with a given value of uo is the sum ovir all trajectories 
of exp(is) where 

S- -~"nC$(d* , ldr i )z+(dx, ldu)A, (x) ldr i ,  (5A) 

when sufficient care is laken to define the quantities, as in C. 
This completes the formulation for particles in a fixed potential 
but a few words of description may be in order. 

I n  the first place in the special c u e  of a free particle we can 
define a kernal k'Ol(x, ug; x ' ,  01 for arrival from . x i ,  0 to xe a t  f i e  
as the sum over all trajectories lietween these p i n t s  of 
~xp--I ' fpt(dx, /du)~Ju.  Then for this case we have 

p(x, m) = J ' b ( Q l ( x ,  110;  x' ,  O ) p ( r ' ,  O)d'r,. (6A) 

k'O)(x, i t o ,  x ' ~  0)=(4n2ufi)- '  e~p--i(x,,--*;')~/21io (7A) 
for wO>O and by 0, by definition, for uo<O. The corresponding 

and it is easily verified that ko i5 given by 
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kernel of importance when mc select the eigenvalue $.tz ism 

(the last extends only from rio=0 since ka is  zero lor negative u0) 
which is identical to the I +  defined in lJ .z l  This may be seen 
readily by studying t h e  Fourier transiorm, ior t h e  transform of 
the integrand un the right-hand side i s  

~ ( 4 i u O 2 i ) - '  exp(ip. x) exp- ti(nrztro+x,2/zio)d'r, 
=exp- +iao(v?-ppz) 

so that the 110 integration gives for the transform of I ,  just 
l / ( p ~ ~ - n P )  with the  pole defined exactly as i n  I f .  I'hus we are 
automatically representing t h e  positrons as trajectories wi th  the 
time sense reversed. 

If Q[o'[x(ir)]=exp-i f ~ + ( d r , / d a ) ' d r r  i s  t h e  aml>litude for a 
given trajectory .xV(ii) for a free particle, then the amplitude in 
a potential is  

@"I[x(u)]= W [ X ( U ) ]  exp-iJo"'(dx~,ldri)A.(x)drr.  (9.4) 

I f  desired this may he studied b y  perturbation methods b y  
expanding the exponential i n  powers of ,Ir. 

For interpretation, the iiitcgral i n  (9A) must he writ ten as a 
Riemann sum, and i f  a perturliation expansion is made, care must 
be taken wi th  the ternis quadratic in the velocity, for the cllect 
of (x",,+l-x",i)(x",,+l-x",i) is not of order tz hut is -i6,.c. The 
"velocity" d.r,/dtr beconics the rnomentiini operator pr= +iO/a.u,, 
operating half before and half alter . Ip ,  just as i n  the non-relativ- 
istic Schrodinger equation discussed in Sec. 5. Furthermore, in 
exactly the same manner as i n  that case, but  here i n  four dimen- 
sions, a term quadratic i n  A ,  arises i n  the second-order perturlm- 
tion terms from the coincidence of two velocitics for  tlic same 
value of I ( .  

As an exnmple, the kernal k' . ' l (x ,  1," ;  x ' ,  0) for proceeding i rom 
+', 0 to x,,, uo in a polential A,, difiers from k'O' to first i)rder in 
A, by a term 

the P ,  here meaning +ia/Oy,. The kernel of importance on 
selecting the eigcnvalue $II?  i s  olitsincd by mult iplying this b y  
exp(-+i,u2iin) and integrating 110 from 0 to m.  The kernel 
P l ( . c ,  u0; y.  a )  depcnds only o n  u'=tto- i (  and i n  the integrals on 
u a n d  t i u ;  f ~ ~ d r i n f ~ o d r i e n p ( - ~ i i i i z r r ~ ) ~ .  .,can l i e  writtcn, on inter- 
changing the order 01 integration and changing varialdes to 11 
and 71', Jpdii fomdrc' e x p -  ~ i ? ? z 2 ( 1 1 + 7 i ' ) )  .. .. Now the integral on 
u' converts kIol(u, 110;  y ,  1 0  to  2 i l + ( x ,  y )  b y  (XA).  while that on 11 
convcrts k'O'(y, 11;  x ' ,  0) to 2 i l + ( y ,  x'), so the result beconics 

as expected. The same principle works to any ord1.r so that t h e  
rules for a single Klein-Cordon particle in external potentials 
given in  11, Section 9, are deduced. 

The transition l o  quantum electrodynamics is simple for in 
(5A) we already have a transition amplitude rcptesented as a 
sum (over trajectories, and cvcntually ti0) of ternis, in  each of 
which the potentinl appcnrs in exponential form. LL'e niny make 
use of the general relation (54). Hence, for example, one finds 

20 The factor 2i i i i  front of I +  i s  simnly to mnkc the  definition 
of I ,  here agree with that in  1 and 11. I n  11 i t  oprralrs n i t h  
p .  A + A . p  :is a pcrturlnt ion. l l u t  the pc r tu r l i s t i ~~n  coming frorll 
13A) in  a natural w:iv b v  exnnnbion of the  cximncntiiil is 

for Llic case of no photons in the init ial  anrl Anal states, i n  the 
prcsence of an external potential B,, the amlihtude that a particle 
procccds from (xp ' ,  0) to (+, u.) is the sun1 over 811 trnjccturies 
01 the  quanti ty 

This result niust I,c multil,lied Iiy exp(-+ivt%J and integrated 
on 110  from zero to inf ini ty to exprcss tlic action of a Klein-Cordon 
particle acting on itself thrnugh virtual pliotons. The intrgrals 
are interpreted iis Rieinann sums, arid i f  pcrturliation cxpiinsions 
are ninrlc, the ncccssary care i s  taken with the tcrnis quadratic 
i n  vclocity. Whcn thcre are scvcral I)Iiriiclcs (o ther  than  the 
virt i i i i l  pairs a l rca ly  incl idcd) one use n scp:iratc II for cacli, 
arid writcs tlie amplitudc lor each set ol  1r:ijccturici as the cxl)o- 
ncnta l  of - i  times 

$.z~; ~ ~ " ~ ~ w ~ ~ ' ' l  dr,' " I (  7 1 )  d.xp""l( 11 ' )  

da d i d  " "8 

X 6 T ( ( ~ p ' p ' l ( ~ i )  - x"t'"l(ii'))*)dt1d7~', ( 1  1 A) 
where x , , l " l ( ~ i )  are the coordinate5 of the trajectory of t l i e  ntli 
p;irticle.n The snlution shouhl dcpend on the liO(") as 
e x p -  tirit2S,, 1 i ~ ~ ~ ~ 1 ) .  

Actually, knowledgc of the motion of a sinj$e chargc implies a 
grrat deal aliout the behavior of sevcral charges. For a pair 
nh ich eventually may tu tn  out to b e  a virtual pair ma) appear 
i t i  t h e  short run as two "othcr particlr,s." As a \,irtuaI liair, that 
is, as the reverse section of a w r y  long anrl coinplicnteil single 
track \YC know its behavior 1,s (10A). Wecntt assume that such a 
section can be looked a t  crjually well, lor a l imited duration a t  
least. us I,cing due to othor  unconncctcd pwt ic lcs .  This theii 
implics a rlrfinite liiw of inter:wtinn ui I)drti<lcs i l  tlic self-action 
(10.4) of a siiiglc particle i s  k n u n n .  (This is similar to  t h o  relation 
of real and virtual photon processes di.:cussed in  rlctail in  Appendix 
B ) It is p s s i l ~ l e  thxt a detailed a i i : i l ) 5 i ~  of this CUUIII show that 
(10A) implicd that (118) was correct lor many ~iarticles. There 
is even rcason to hc l icw that  the I:iw of Uose-I3nstcin statistics 
and the expression fur cuntriliutions from closed loops could he 
deducctl l q  following this argument. This has not yet been 
analyzed coniplctcly, however, so rie niust l ~ a v c  this formulation 
in an inconililele form. l'hc exprcshioii for closed l o q ~ s  should 
come out to be C,=exp+L vhcre L, the contribution froni a 

The form (10A) suggests anorher intcrcstina possilii l ity for 
avoiding the divcrgcnce5 nf qunntuni clcctrorlynamirs i n  this 
case. T h e  divergences arise f r o m  the 6 ,  function uhcn I ~ = I L ' .  
We nii  ht restrict t h e  integration in  the  driul>le integral such that 
) I L - - B ' ~ > ~  vl icre 6 is sonic Anitr r luanti ly, vcry smal l  conipared 
w i th  u - 2 ,  hlore grncrally, w e  could keep the region u = u '  from 
contri1,uting Iby inclurling i n  t l i e  intejiratid a factor F ( u - u ' )  
whcrc F ( x ) + + l  for x large cunipnrrtl to some 6 ,  and F ( O ) = O  (e.g., 
F ( x )  acts qualitatively l ike l - - ~ x p ( - x ? 6 - ~ ) .  (,&tiother n a y  might 
be to replace 11 Iby a discoiitinuous varial)le, that is, we do not 
use the l imi t  i n  (4.4) as r-0 I iut set I = & )  The idea is that two 
interactiuns Motihl cot i tr i l~ute very l i t t le  in anii)litude i f  they 
follon.erl onc another too rapidly in  11. It i s  easily verified that 
this rn;tkcs thc otherwise divergcnl intcfiritls lirtite. Dot nhether 
the  resulting formulas innkc firiwl Iihysical sense i s  hard to see. 
The nctiun of :L potential IYOUIIJ now (Icpctiil o r  the value of  II sn 
that E,l. (211). or i t s  cqitiviilcnt, u , n i l r l  tint hc sclraralr'e i n  11 so 
that $,it? ~ ~ o u l d  I I U  longcr I ~ c a  strict cigrnbaluc for a l l  rlisturlnnccs. 
Hifill energy 1x)tcnti:tIs could cxcite statvs correst~nn<Iitip, to other 
eigcnvnlucs, rxtssil)ly thcrclly cu r rcymd ing  to n t h c r  mnsws. This 
n o ~ c  is mcirnt cinly a5 a spcc~ilntion, for not cn,,iicti nrirk h:is 
I k c u  cI<~nc in  t l i i s  direction to mnkc surc !lint a ~CBPIIII:LI~IC tlliysicnl 
theory can Ix ~ICVCIU~CII nlnng thcse lincs. ( \ \ h a t  l i t t l c  u o r k  h a s  
h e n  dnnc was not promising.) Analogous mo<lifications c:m also 
lie niade lor Dirac electrons. 
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single loop, is 
~ = - 2 L l ( u o )  exp(- i i n r ~ d u o / u o  

where I(uo) is the sum over all trajectories which close on them- 
selves ( X ~ ( I I ~ ) = X ~ ( O ) )  of e x p ( i S )  with S given in (SA), and a 
final integration dr,co, on x,(O) is made. This is equivalent to 
putting 

l ( i i ~ ) = ~ ( k ~ ~ ~ ( x ,  fin; x ,  O ) - k i o ) ( x ,  r ia ;  x,  O))dr, .  

The term kl@j is subtracted only to simplify convergence problems 
(as adding a constant indepeodent of A ,  to L has no cflect). 

APPENDIX B. THE RELATION OF 
VIRTUAL PROCESSES 

REAL AND 

If one has a general formula for all virtual processes he should 
be alile to find the formulas and states involved in real processes. 
That is to say, we should be able to deduce the formulas of Section 
9 directly from the formulation (24), (25)  (or its generalized 
equivalent such as  (46), (48)) without having to go all the way 
back to the more usual formulation. We discuss this prol)lem here. 

That  this possiliility exists can be seen from the consideration 
that what looks like a real process from one point of view may 
appear as a virtual process occurring over a more extended time. 

For example, if  we wish to study a given real process, such as 
the scattering of light, we can, i f  we wish, include in principle the 
source, scattcrcr, and eventual alisorber of the scattered light in 
our analysis. We may imagine that n o  photon is present initially, 
and that the source then emits light (the energy cvming say from 
kinetic energy in the source). The light is then scattered and 
eventually absorbed (becoming kinetic energy in the absorber). 
From this point of view the process is virtual; that is, we start 
with no photons and end with none. Thus we can analyze the 
process by means of our formula for virtual processes, and obtain 
the formulas for real processes by attempting to break the analysis 
into parts corresponding to emission, scattering, and absorption?' 

To  put the problem in a more general way, consider the ampli. 
tude for some transition from a state empty of photons far in the 
past (time 1') to a similar one far in the future (I-1"). Suppose 
the timc interval to be split into three regions a, b ,  c in some 
convenient manner, so that region b is an  interval 1,>1>11 around 
the present time that we wish to study. Region a, ( f t > l > l ' ) ,  
precedes b, and c, (1">1>11), follows b. We want to see how it 
comes about that the phenomena during b can be analyzed by a 
study of transitions g,.(b) between some initial state i a t  time I ,  
(which no longcr need be photon-free), to some other final state j 
a t  time I t .  The states i and j are memhers of a large class which 
we will have to find out how to specify. (The single index i is 
used to represent a large number of quantum numbers, so that 
dinerent values of i will correspond to having various nunibers of 
various kinds of photons in the field, etc.) Our problem is to 
represent the over-811 transition amplitude, g(a, b ,  c), as a sum 
over various values of i ,  j of a product of three amplitudes, 

d a ,  b ,  c ) = Z  2, go,(c)gii(b)pto(a); (IB) 
first the amplitude that during the interval a the vacuum state 
makes transitinn to some state i,  then the amplitude that during 
b the transition to j is made, and finally in c the amplitude that 
the transition from j to some photon-free state 0 is completed. 

P'The fnrniulas for real processes deduced in this way are 
strictly limitcil to the case in which the light conies from sources 
which are originally dnrk, and that eventually :ill light emitted is 
absorlxd again. We can only extend i t  to the case for which these 
restrictions do not hold by hylinthesis. namely. that the details 
of the scattering process are independent of these characteristics 
of the light source and of the eventual disposition of the scattered 
light. The argument of the text gives a method for discnvcring 
formulas for real processes when no more than the formula for 
virtual processes is a t  hand. But with this method Iielicf i n  the 
general validity of the resulting formulas must rest on the physical 
reasonableness of the above-mentioned hypothesis. 

The mathematical problem of splitting g(a, b, c) is made definite 
by the further condition that f , * (b )  for given i, j must not involve 
the coordinates of the particles for times corresponding to regions 
a or c, g,o(a) must involve those only in region a, and go&) only 
in c. 

T o  become acquainted with what is involved, suppose first that  
we do not have a problem involving virtual photons, but just the 
transition of a one-dimensional Schrodinger particle going in a 
long time interval from, say, the origin o to  the origin 0, and ask 
what states i we shall need for intermediary time intervals. We 
must solve the problem (IB) where E(a. b, c) is the sum over all 
trajectories going from o a t  I' t o o  at  I" of expiS where S= f Ldr. 
The integral may be split into three parts S=S.+Sa+S. corre- 
sponding to the three ranges of time. Then exp(iS) =exp(iS.) 
.exp(iSa) .exp(i.f.) and the Separation (1B) is accomplished by 
taking for gao(a) the sum over a11 trajectories lying in a from o to 
some end point x,, of exp(iSi,). for g,,(b) the sum over trajectories 
in b of exp(iSa) between end points x l ,  and x,, ,  and for go,(c) the 
sum of exp(iSfi,) over the section of the trajectory lying in c and 
going from x, ,  to o. Then the sum on i and j can be taken to be 
the integrals on x ~ , ,  x,, respectively. Hence the various states i 
can be taken to correspond to particles being a t  various coordi- 
nates x. (Of course any other representation of the states in the 
sense of Dirac's transformation theory could be used equally well. 
Which. one, whether coordinate, momentum, or energy level 
representation, is of course just a matter of convenience and we 
cannot determine that simply from (lB).) 

We can consider next the problem including virtual photons. 
That  is, g ( ~ ,  b, c) now contains an additional factor exp(iR) 
where R involves a double integral S f over all time. Those 
parts of the index i which correspond to the particle states can 
be taken in the same way as  though R were absent. We study 
now the extra complexities in the states produced by splitting 
the R. Let us first (solely for simplicity of the argument) take 
the case that there are only two regions a, c separated by time 
10 and try to expand 

The factor exp(iR) involves R as a double integral which can be 
split into three parts f. f.+f. f . + f a  f .  for the first of 
which both I ,  s are in a, for the second both are in c, for the third 
one is in a the other in c. Writing exp(iR) as exp(iR,,).exp(iR..) 
.exp(iR.,) shows that the factors R,. and R.. produce no new 
problems for they can be taken bodily into ~ o , ( c )  and p.o(a) 
respectively. However. we must disentangle the variables which 
are mixed up in exp(iR,.). 

The expression for R.. is just twice (24) but with the integral 
on s extending over the range a and that for 1 extending over c. 
Thus exp(iR.,) contains the variables for times in a and in c in 
a quite complicated mixture. Our problem is to  write exp(iR..) 
as 3 sum over possibly a vast class of states i of the product of 
two parts, like ki'(c)/ i ,(a),  each of which involves the coordinates 
in one interval alone. 

This scparation may be made in many different ways, corre- 
sponding to various possible representations of the state of the 
electromagnetic field. We choose a particular one. First we can 
expand the exponential, exp(iR.,), in a power series, as  
S., i"(n!)-l(R,J". The states i can therefore be subdivided into 
subclasses corresponding to an integer n which we can interpret 
as  the number of quanta in the field a t  time lo. The amplitude 
for the case n = O  clearly just involves exp(iRA and exp(iR,,) in 
the way that i t  should if we interpret these as the amplitudes for 
regions a and c, rcspectively, of making a transition between a 
state of zero photons and another state of zero photons. 

Next consider the case n =  I .  This implies an  additional factor 
in the transitional clement; the factor R.. . The variables are still 
mixed up. But an easy way to perform the separation suggests 
itself. Namely, expand the 6 + ( ( l - ~ ) : - ( x " ( l ) - x ~ ( ~ ) ) ~ )  in R.. as  
a Fourier integral as  

g(a, c) = Zi go,(c)gida). 
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For the exponential can he written immediately as a product of 
exp+i(K,x,(s)), a function only of coordinates for times s in a 
(suppose s < t ) ,  and exp-iK,x,(t) (a function only of coordinates 
during interval c). The integral on d3K can be symbolized as a 
sum over states i characterized by the value of K. Thus the 
state with n = l  must he further characterized by sperifying a 
vector K, interpreted as the momentum of the photon. Finally 
the factor (l-x',,(l) .x',"(s)) in R,, is simply the sum of four parts 
each of which is already split (namely 1, and each of the three 
components in the vector scalar product). Hence each photon of 
momentuni K must still be characterized by specifying i t  as one 
of four varieties; that is, there are four polarizations.2' Thus in 
trying to represent the effect of the past a on the future c we are 
lead to invent photons of four polarizations and characterized by 
a propagation vector K. 

The term for a given polarization and value of K (for n= 1) 
is clearly just -B&'.* where the 0. is defined in (59) but with the 
time integral extending just over region a, while p .  is the same 
expression with the integration over region c. Hence the amplitude 
for transition during interval a from a state with no quanta to a 
state with one in a given state of polarization and momentum is 
calculated by inclusion of an extra factor ipO8 in the transition 
element. Absorption in region c corresponds to a factor i4,. 

We next turn to the case n=2. This requires analysis of R.?. 
The 6, can be expanded again as a Fourier integral, but for each 
of the two 6,  in tR.2 we have a value of K which may be different. 
Thus we say, we have two photons, one of momentum K and one 
momentum K' and we sum over all values of K and K'. (Similarly 
each photon is characterized by its own independent polarization 
index.) The factor f can be taken into account neatly by asserting 
that we count each possible pair of photons as constituting just 
one state a t  time lo. Then the f arises for the sum over all K,  K 
(and polarizations) counts each pair twice. On the other hand, for 
the terms representing two identical photons (K=K' )  of like 
polarization, the $ cannot be so interpreted. Instead we invent 
the rule that a state of two like photons has statistical weight f 
as great as that calculated as though the photons were different. 
This, generalized to n identical photons, is the rule of Bose 
statistics. 

The higher values of 11 offer no problem. The l / n !  is interpreted 
combinatorially for different photons, and as a statistical factor 
when some are identical. For example, for all n identical one 
obtains a factor (n!)-l(-&Pa')" so that (n! ) - l ( ip , * ) *  can be 
interpreted as the amplitude far  emission (from no initial photons) 
of n identical photons, in complete agreement with (61) for G,,,a. 

To obtain the amplitude for transitions in which neither the 
initial nor the final state is empty of photons we must consider 
the more general case of the division into three time regions (1B). 
This time we see that the factor which involves the coordinates 
in an entangled manner is expi(R.b+Rb,+R.,). .It is to he 
expanded in the form 2, 2, h,"(c)k.,'(6)h,(a). Again the expan- 
sion in power series and development in Fourier series with a 
polarization sum will solve the problem. Thus the exponential is 
Z,Zb 21% ( j R ~ ~ ) ' ( ~ R ~ ~ ) i i ( i R b ~ ) l ~ ( ~ ~ ! ) - l ( ~ ~ l ) - J ( r ! ) - l .  Now the R are 
written as Fourier series, one of the terms containing 11+12+r 
variables K. Since Il+r involve a, 1?+r involve c and l1+12 
involve 6, this term will give the amplitude that l l+r photons 
are emitted during the interval a, oi  those 11 are ahsorbed during 
b but the remaining Y ,  along with 1 s  new ones emitted during 6 go 
on to be absorbed during the interval c. We have therefore 
n=l ,+rphotons in the state a t  ti met^ when b begins, and ?l1=1s+r 
a t  Is when b is over. They each are characterized liy momentum 
vectors and polarizations. When these are different the factors 
( l i ! ) - ' ( l * ! ) - I ( r ! ) - l  are absorbed combinatorially. When some are 
equal we must invoke the rule of the statistical weights. For 

Usually only two polarizations transverse to the propagation 
vector K are used. This can be accomplished by a further re- 
arrangement of terms corresponding to the reverse of the steps 
leading from (17 )  to (19). We omit the details here as it is well- 
known that either formulation gives the same results. See 11, 
Section 8. 

exsmplr, suppose all 11+12+r photons are identical. Then 
R.b=ipbP.*, RbC=i@,Bb*, R.,=iB,p.* so that our sum is 

2 1  Z/? 2, (1, !12!r ! ) - ~ ( ~ p ~ ) I ~ + ~ ( i p ~ ) ~ ~ ( i ~ b * ) ~ ~ ( i p ~ * ) ~ i + ~ .  
Putting m=ls+r, i i = l , + ~ ,  this is the sum on n and vi of 

( i&)m(m!)-+[Zr (nt !n ! )+ ( (vz -Y)  !(n-r) !?!)-I 
X ( iB~*)"~-r( iB~) "-,](n !)- l ( i#a*)".  

The last factor we have seen is the amplitude for cniission of n 
FhrItonS during interval a ,  nhile the first factor is the amplitude 
for a1,soiption of m during c. The sum is therefore the factor for 
transition from n to ,n identical photons, in accordance with (57). 
We see the significance of the simple generating function (56). 

We Iia-ve therefore found rules for real photons in terms of 
those for virtual. The real photons are a way of representing and 
keeping track of those aspects of the past behavior which may 
influence the future. 

If one starts from a theory involving an arbitrary modification 
of the direct interaction 6, (or in more general situations) it is 
possible in this w:ry to discover what kinds of states and physical 
enti?ies will be involved if one tries to represent in the present all 
the information needed to predict the future. With the Hamil- 
tonidn method, which begins by assuming such a representation, 
it is difficult to suggest modifications of a general kind, for one 
cannot forniu!nte the problem without having a complete repre- 
sentation of the characteristics of the intermediate states, the 
particles involwd in interaction, etc. I t  is quite possible ( i n  the 
author's opinion, it is very likely) that we niay discover that in 
nature the rrlation of past and future is so intimate for short 
dnratiuns that no simple representation of a present may exist. 
I n  such a rase 'I theory could not 6nd expression in Hamiltonian 
form. 

An cwctly riirilar analysis can be made just as easily starting 
with the general forms (46), (48). Also a coordinate representation 
of the photons iould have been used instead of the familiar 
momentum one. One can deduce the rules (601, (61). Nothing 
essentially different is involved physically, however, so we shall 
not pursue the subject further here. Since they implyz3 all the 
rules for real photons, Eqs. (461, (471, (48) constitute a compact 
state3nent CII n l l  the laws of quantum electrodynamics. n u t  they 
give divergent results. Can the result after charge and mass 
renormalization also he expressed to all orders in $/hc in a simple 
way? 

APPENDIX C. DIFFERENTIAL EQUATION FOR 
ELECTRON PROPAGATION 

An attempt has been made to find a differential wave equation 
for the propagation of an electron interacting with itself, analogous 
to the Dirac equation, but containing terms representing the 
self-action. Neglecting all effects of closed loops, one such equation 
has been found, but not much has been done with it. I t  is reported 
here for whatever value it may have. 

An electron acting upon itself is, from one point of view, a 
complex system of a particle and a field of an indefinite number 
of photons. T o  find a differential law of propagation of such a 
system we must ask first what quantities known a t  one instant 
will permit the calculation of these same quantities an instant 
later. Clearly, a knowledge of the position of the particle is not 
enough. We should need to specify: (1) the amplitude that the 
electron is a t  r and there are no photons in the field, (2) the 
amplitude the electron is a t  x and there is one photon of such 
and such a kind in the field, (3) the amplitude there are two 
photons, etc Tha t  is, a series of functions of ever increasing 
numbers of variables. Following this view, we shall be !ed to 
the wave equation of the theory of second quantization. 

We may also take a different view Suppose we know a quantity 
0,2[B, z], a spinor function of x ~ ,  and functional of BJl), defined 
a s  the ampli'~Jile that an electron arrives a t  with no photon in 
the field :when it moves in an arbitrary external unquantized 
potential B,,(l). We allow the electron also to interact with itself, 
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also chantefur  a t  the first position x we may have had a photon 
present (amplitude that i t  was emitted at another point 1 is 
69,2/6B,(l)) which was absorbed a t  x (amplitude photon released 
at 1 gets to xis 6+(szaz) where sz? is the squared invariant distance 
from 1 to x) acting as a vector potential there (factor 7"). EUects 
of vacuum polarization are left out. 

Expansion of the solution of (IC) in a power series in B and h 
starting from a free particle solution for a single clcrtron, produces 
a series of terms which agree with  the rules of I[ for action of 
potentials and virtual photons to various orders. It is another 
matter to use such an equation for the practical solution of a 
problem to all orders in 2. It might IJe possible to represent the 
self-energy problem as  the variational problem for in, stemming 
from ( 1 C ) .  The 6, will first have to be modified to obtain a 
convergent result. 

We are not in need of the general solution of (IC). (In fact, 
we have it  in (46), (48) in terms of the solution To[B]=.Po[B, x] 
of the ordinary Dirac equation ( i V - m ) % [ B ,  x ] = B % [ B ,  XI. 
The general solution is too complicated, for complete knowledge 
of the motion of a self-acting electron in an arl,itrary potential is 
essentially all of electrodynamics (Ilecause of the kind of relation 
of real and virtual processes discussed lor photons in Appendix B, 
extended also to real and virtual pairs). Furthermore, it is easy 
to see that other quantities also satisfy (1C). Consider a system 
of many electrons, and single out some one for consideration, 
supposing a11 the others go from some dcfinitc initial state i to 
some definite final state /. Let + , 2 [ B ,  s ]  lie the amplitude that  
the special electron arrives a t  x ,  there are no photons present, 
and the other electrons go from i to f when there is an external 
potential 0, present (which Br also acts on the other electrons). 
Then +,? also satisfics ( 1 0 .  Likewise the amplitude with closed 
loops (all other electrons go vacuum to vacuum) also satisfies 
(IC) including all vacuum polarization effects. The various 
pro1,lems correspond to dilicrent assumjitions as to the (lependcncr 
of 9.2[B, I] on B, in the limit of zero e2. The Eq. (1C) without 
further boundary conditions is pro1,ahly too general to be useful. 

but 9.2 is the amplitude a t  a given instant that there happens 
to be no photons present. A s  we have seen, a complete knowledge 
of this functional nil1 also tell us the amplitude that the electron 
arrives a t  x and there is just one photon, of form A r P " ( I )  present. 
It is. from (601, f ( 6 + 2 [ B ,  1 ] / 6 B ~ ( l ) ) ~ ~ " ~ ~ ( l ) ~ ~ , .  

Higher numbers of photons corrcspond to higher functional 
derivatives of 92. Thcrcfore, +.?[B, 3-3 contains all the informa- 
tion requisite for describing the state of the electron-photon 
system, and we may expect to find a dilicrentinl equation for it,  
Actually it satisfies (V=-yud/d.ve, B=yrB, , ) ,  
( i V - n 1 ) + 2 [ B ,  x ] = B ( . s ) + . 2 [ 0 ,  s ]  

+ie2y,J'S+(s,r')(6~.2CB, x l l S B , ( l ) ) d ~ ~  ( 1 C )  

as may lie scen from a physical a rgum~n1 . l~  The operator (iV-m) 
operating on the x coordinate of a.2 should equal, from Dirac's 
equation, the changes in +.2 as wc go from one position x to a 
neighlroring position due to t he  action of vector potentials. The 
terni 8(+)9 .2  is the elicct of the external potential. But 9.2 may 

2b 11s general validity can also be demonstrated mathematically 
Iron1 (15). The aml)liturle for arriving a t  u with no photons in the 
field with virtunl photon coupling el is a transition amplitude. 
It must. thcrcfore, s;ilisfy (45) ~ i t h  7' .z[R]=9,z[B,  x ]  for any x. 
Hence show that the quantity 
C.Z[B, x ] = ( i v - , i r - B ( . v ) ) ~ . z [ B ,  x ]  

___ 

-ie'y,~'6+(~,1~)(6U~,ZcB, x l / S B , ( l ) ) d r ~  

also satisfies Eq. (45) by s u l d t u t i n g  C.z[B, I ]  for T , Z [ B ]  in 
(45) and using the fact that +,z[U, x ]  satisfies (45). Iicnce i f  
Co[B, 1 ] = 0  then C.Z[B, Y ] = O  for all 2. But C.z[R, x ] = 0  means 
that $ . z [ B ,  I ]  satisfies (I(-) .  Thcrcforc, that solution 9 ? [ B ,  I ]  
of (45) II hich also satishus (io- rtr-B(.s))+,,[B, x ] = O  (the proliil- 
gallon of  a free electron without virtuxl ~ i l i ~ ~ t o i i s )  is a solution of 
(IC) as wc wished to show. Equatiim (I(:) may he more cnn- 
veiiient than (45) for some pu;-poses for it docs not involve 
diflerentiation with rcspcct tri the coupling constaiit, and is more 
analogous to a wave equation. 
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An alteration in the notation used to indicate the order of operation of noncommuting quantities is sug- 
gested. Instead of the order being defined by the position on the paper, an ordering subscript is introduced 
so that  A,B,, means A B  or B A  depending on whether s exceeds s' or vice versa. Then A .  can he handled a s  
though it were an ordinary numerical function of s. An increase in ease of manipulating some operator 
expressions results. Connection to the theory of functionals is discussed in an appendix. Illustrative appli- 
cations to quantum mechanics are made. In quantum electrodynamics it permits a simple formal under- 
standing of the interrelation of the various present day theoretical formulations. 

The operator expression of the Dirac equation is related to the author's previous description of positrons. 
An attempt is made to interpret the operator ordering parameter in this case as a fifth coordinate variable 
in an extended Dirac equation. Fock's parametrization, discussed in an appendix, seems to he easier to 
interpret. 

In  the last section a summary of the numerical constants appearing in formulas for transition prob- 
abilities is given. 

N this paper we suggest an alteration in the mathe- I matical notation for handling operators. This new 
notation permits a considerable increase in the ease of 
manipulation of complicated expressions involving 
operators. No results which are new are obtained in 
this way, but it does permit one to relate various 
formulas of operator algebra in quantum mechanics in 
a simpler manner than is often available. In  particular, 
it is applied to quantum electrodynamics to permit an 
easier way of seeing the relationships among the conven- 
tional formulations, that of Schwinger and Tomanaga,' 
and that of the author.2 These relationships havealready 
been discussed by many people, particularly D y ~ o n . ~  
The connection was shown by means of a re-ordering of 
operators in each term of a perturbation power series. 
Here, the same end is achieved in much the same way 
without having to resort to such an expansion. 

I t  is felt, in the face of daily experimental surprises 
for meson theory, that it might be worth while to spend 
one's time expressing electrodynamics i6 every physical 
and mathematical way possible. There may be some 
hope that a thorough understanding of electrodynamics 
might give a clue as to the possible structure of the 
more complete theory to which it is an approximation. 
This is one reason that this paper is published, even 
though it is little more than a mathematical re-expres- 
sion of old material. A second reason is the desire to 
describe a mathematical method which-may-be-useful 
in other fields. 

The mathematics is not completely satisfactory. No 
attempt has been made to maintain mathematical rigor. 

* Absent on leave a t  the University of Brazil, Rio de Janeiro, 
Brazil. 

1 See J. Schwinger, Phys. Rev. 76, 790 (1949), and S. Tomonaga, 
Phys. Rev. 74, 224 (1948), where additional references to previous 
work may he found. 

* The author's previous papers will hereafter he designated as 
follows: R.  P. Feynman, Revs. Modern Phys. 20, 367 (1948)-C; 
Phys. Rev. 76, 749 (1949)-I; Phys. Rev. 76, 769 (1949)-11; and 
Phys. Rev. 80, 440 (1950)-1II. 

F. Dyson, Phys. Rev. 75, 486, 1736 (1949). 

The excuse is not that it is expected that rigorous dem- 
onstrations can be easily supplied. Quite the contrary, 
it is believed that t o  put the present methods on a 
rigorous basis may be quite a difficult task, beyond the 
abilities of the author. 

The mathematical ideas are described and are illus- 
trated with simple applications to quantum mechanics, 
in the first four sections. Some possible mathematical 
relations between the operator calculus described here 
and the theory of functionals is described in Appendix 
A, with further specific mathematical applications in 
Appendixes B and C. Section 5 ,  and more particularly 
Secs. 6 to 9, apply specifically to quantum electro- 
dynamics and may be omitted without loss by those 
whose interest is limited to mathematical questions. 
The use of a fifth variable to parametrize the Dirac 
equation is discussed in Secs. 8 and 9. An alternative 
procedure due to V. Fock4 appears in Appendix D. 
Section 10 gives a summary of the rules for computing 
matrix elements. 

1. DESCRIPTION OF THE NOTATION 

The order of operation of operators is conventionally 
represented by the position in which the operators are 
written on the paper. Thus, the product A B  of twc 
operators A and B is to be distinguished from the 
product in reverse order BA. The algebra of operator: 
is noncommutative, so that all of the ordinary algebra, 
calculus, and analysis with ordinary numbers become: 
of small utility for operators. Thus, for a single operator, 
a, ordinary functions of this operator, such as A = expa, 
can be defined, for example, by power series. These 
functions obey the rules of ordinary analysis even 
though a is an operator. But if another operator f l  i r  
introduced with which a does not commute, the ques- 
tion of functions of the two variables a, p is beset with 
commutation difficulties and the simplest theorems of 
analysis are lost. For example, if R= expp, it is not true 
' V. Fock, Physik. Z. Sowjetunion 12, 404 (1937). 
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that B A ,  that is, expo expa, is equal to exp(P+a). 
Thus, the law of addition of exponents fails. Conse- 
sequently, the principles of elementary calculus are no 
longer operative in a simple way. For example, expand 
esp(cY+B) to first order in P, assuming P small. The 
zero-order term is expa, but the first-order term is 
!)either P expa nor (expa)@ nor the average of the two. 
I-rom the theory of time-dependent perturbations in  
rjuantum mechanics we learn that it is 

esp(a+P) 

necessary to define the order of operations, there being 
only one operator in the term. 

The notation is to be extended so that the index need 
not be integral, for example, A--tB3.?= B.4, since 
3.1>-+,  and in general A,R,.=BA if s'>s and .4B if 
s> s' and is undefined if s = s'. 

How can we work with an expression such as 
exp(a+j3) so as to free the a and of their nonconi- 
mutative aspects and thus utilize the theory of functions 
for rearranging the expressions? Take a quantity .\- very 
large and write 

'rhe appearance of the integral in this analytic result 
appears surprising and its derivation does not indicate 
c.learly how to differentiate or expand other functions 
of a+o. Further, the simple integral on s is not easy 
t o  perform, although the results can be given i n  several 
\vays as power series. That the integral cannot be clone 
i n  a general fashion is clearly due to a weakness of 
notation, for in a representation in which a is diagon;il 
with eigenvalues an we can of course verify directly the 
usual result, 

,,exp(a+ fl)),,,n = (expa,)6,,,,, 

+ (expa,-espa,,)P,,,,(a,,,- a,,)-l+ . . ( 2 )  

1 1 1  the perturbation theory of stationary states. 
We shall change the usual notation of the theory of 

operators and indicate the order in which operators are 
to operate by a different device. We attach an index to 
the operator with the rule that the operator with higher 
index operates later. Thus, BA may be written B I A o  
or .loB1. The order no longer depends on the position 
on the paper, so that all of the ordinary processes of 
analysis may be applied as though A.  and B 1  were 
commuting numbers. It is only at  the end of a calcula- 
tion, when the quantities are to be interpreted as 
operators, that the indices 0 and 1 are of importance if 
one wishes to reconvert an expression to the usual 
notation. Thus, if i l=expa and B=expp, we can now 
safely write BA =exp(ao+P1), as there is only one way 
to interpret the latter expression. Other analytic 
processes then become valid. For example, 

In each factor we replace a+,b bj. a , + d , .  \\.here i is an 
index running to ,Y, and write 

= lim esp - C (a,+P,) , 
.\-+x I' -I- , = I  .'- 1 

where the last espression is \vritten i n  accordance ~ i t h  
the new convention that the index i controls the order 
of operation. (The ambiguity arising from a ,  and ,bi 

with the same index can only cause trouble i n  a product 
a&, and such products are of vanishing importance as 
S+.c .) More simply, calling s= ;/.I-, \ y e  can take the 
limit and write 

That  this is valid is, of course, evident, since we could 
call a,+Pa= ys with y a definite operator operating a t  
order s, so that 

= 1+a+p++(a?+2pa+p2)+. . . for in this expression the order index is unnecessary, 
only one operator y being involved. The integral is 

i n  the conventional notation. For on squaring just Y, 

( a o + P 1 ) 2 =  ao2+ 2aoP1fP12, i1 yds= y i l  ds= 7, 

since y does not now depend on s. Therefore, Eq. (3) 
is trivial as it stands; but what is not trivial is the fact 

we must interpret the quantity aopl as Pa in accordance 
with our convention. The quantity PI" alone (that is, 
not multiplied by any other expression with an index, 
such as a0) is simply p2,  since the index is no longer 
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that the right-hand side of Eq. (3 )  may be manipulated 
just as though a, and pb were numerical functions of s, 
with the assurance that now the order of operations 
will always be automatically specified by the index. For 
example, from Eq. (3) we have the legitimate relation 

As an example, showing that such manipulations do not 
destroy the validity of equations, consider the term of 
first order in both a and p on both sides of Eq. (4). 
Expanding the left side as l + ( a + p ) + $ ( ( ~ + p ) ~ + .  . ., 
we see that the term in question is +(aj3+pa), while 
expansion of the right side gives for the corresponding 
term (A’ adds)(.&1 p,ds). This can be simplified by 
being written as 

In  the first integral we have s>s’, so that cu,P,, is equal 
to ap, while in the second s<s’, so it is pa. Hence, there 
results aPSo‘Sosdsds’+paSo’J’dsds’; thus on per- 
forming the integrations we find finally 

This process of rearranging the form of expressions 
involving operators ordered by indices so that they 
may be written in conventional form we shall call 
disentangling the operators. The process is not always 
easy to perform and, in fact, is the central problem 
of this operator calculus. As a second example of disen- 
tangling, consider the problem of expanding Eq. (4) 
to the first order in 1.3. I t  is evidently 

exp(a+P)=exp( 1‘ a.ds)+exp( i1 a,,ds’) 

.&Is+. . . . (5) 
0 

The first term is simply expa, for as is independent of s, 
as there is no other operator with which a, does not 
commute in this term. The next is the integral over s 
of exp(Jol a,,ds’)&. In the integral on s’ we can split 
the range, according to whether s’<s or s’>s: 
exp(J’ a,,ds’) e x p ( h a  cus,ds’)B,. The a8, in the first 
factor acts after the pa and is otherwise independent of 
s’, while the a,, in the second factor is to act before 
the &. Hence, if we write these factors respectively 
after and before the p, and imply the usual convention, 
the aa, will be independent of s’ in the range 0 to s and 
we may perform the integral. Hence, the result is the 
integral on s of exp[(1--s)a]p exp(scu) in agreement 
with Eq. (1). 

Incidentally, by applying new subscripts in another 
way the term may be also written as So1 exp[(l-s)a&?, 
Xexp(scuo)ds, in which case the integral may be im- 
mediately performed to give 

C(d ld4  exp(a+ eP)le-0 

=i‘ exp[(l-s)a]fl exp(sa)ds 

= (expa~-espao)(cuz-cuo)-‘P1. (6) 

All the four expressions are equivalent as has been 
shown, but only the first and third are in a form in 
which the operators are disentangled so that the con- 
ventional expressions may be used. In  the representa- 
tion in which a is tliagonal, it should be evident that 
the matrix element of the last espression is that given 
in Eq. (2) 

Any operator function of aS-8 can, by replacing 
a+P by So1 asds+&’ &fs, be manipulated in a mani- 
fold of ways, many of which lead to useful formulas. 
In a like manner, more complicated operator expressions 
can be rewritten using ordering indices. They may then 
be manipulated using all of the results of ordinary 
analysis. 

A word about notation : Inasmuch as in mathematics 
and physics there itre :ilready many uses of the s u b  
script notation, very often we shall write ~ ( s )  for a,. 
In a sense, a(s)  is a function of s, namely, i n  the sense 
that although the operator a may be definite, its order 
of operation is not-so that the operator plus a pre- 
scription of where it is to operate, a(s) ,  is a function of s. 
Furthermore, there will be many cases in which tlic 
operator actually depends explicitly on the parameter 
of order. 111 this case we should have strictly to writc 
as(s) but will omit the subscript when no ambiguity 
will result from the change. 

We may remark i n  il general sense about the mathe- 
matical character of our expressions. Given an es- 
pression such as A’ P(s)ds, we are not concerned with 
evaluating the integral, for the quantity when separated 
from other factors with which it might be multiplied is 
incompletely defined. Thus, although psds standing 
alone is equivalent simply to p, this is far from true 
\\,hen so1 Pads is multiplied by other expressions such as 
e x p h i  a&-. ’Thus, we must consider the complete 
expression as a complete functional of the argument 
functions a(s) ,  P(s ) ,  etc. With each such functional we 
are endeavoring to associate an operator. The operator 
depends on the functional in a complex way (the 
operator is a functional of a functional) so that, for 
example, the operator corresponding to the product of 
two functionals is not (in general) the simple product 
of the operators corresponding to the separate factors. 
(The correspontling statement equating the sum of two 
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iunctionals and the sum of the corresponding operators 
is true, however.) Hence, we can consider the most 
t:omplex expressions involving a number of operators 
M, A\r, as described by functionals F [ M ( s ) ,  iV(s). . - 3  of 
the argument functions M ( s ) ,  N ( s ) .  . . ( = M 8 ,  N , .  . .). 
For each functional we are to find the corresponding 
operator in some simple form;6 that is, we wish to disen- 
tangle the functional. One fact we know is that any 
nnalytic rearrangement may be performed which leaves 
the value of the functional unchanged for arbitrary 
?ii(s), :V(s). . . considered as ordinary numerical func- 
tions. Besides, there are a few special operations which 
ive may perform on ZJ[M(s), N ( S ) .  . .], to disentangle 
the expressions, which are valid only because the 
functional does represent an operator according to our 
rules. These special operations (such as extracting an 
exponential factor discussed in Sec. 3) are, of course, 
proper to the new calculus; and our powers of analysis 
i n  this field will increase as we develop more of them. 

2. APPLICATIONS IN QUANTUM MECHANICS 

The wave equation ia#/al= H$ determines the wave 
function + ( / 2 )  a t  time t z  in terms of that a t  time 11, $ ( t l ) .  
In fact, they are related by a unitary transformation 
$((>)= Q(f2, t l ) $ ( t l ) .  The unitary operator Q(h, t l )  can 
be espressed as Q ( t z ,  tl)=exp(-i(12-ll)IZ) in the case 
that ZI is independent of the time. In spite of the 
simple appearance of the analytic form of SZ in terms 
of H, little has been done except formally with this 
expression for the reasons outlined in the previous 
section. We may readily re-express it as 

and may then find the expression easy to utilize. 
Further, if II is an explicit function of the time IZ(/), 
we can consider the .Q to be developed as a large number 
of small unitary transformations in succession, so that 
we have directly 

Hereafter in this section we shall make the convention 
that time is the ordering parameter and simply write 
H ( f )  for Hl(t) .  

We can use this expression to derive many results i n  
quantum theory. Thus, if IZ(1) can be written as the 
sum of two parts If(O)(!) and U(/), we have 

Xenp( --iIlf2 U ( t ) d t ) .  (8) 

‘This point of view is discussed in further detail in Appendix A.  

If H(O) is simple and U is small, an expansion in powers 
of U is simple. We call the operator corresponding 
to the hamiltonian H@)+ U and Q ( ” )  that corresponding 
to ZJ(O). The first-order difference of R(u)and S Z ( O )  is 

- iJlt2 U(t)dt exp[ -iJr H(t’)dt’], 

which may be disentangled as 

as explained in connection with Eq. (6). This is a 
standard result of time-dependent perturbation theory. 

As a second example consider the perturbation term 
of first order in U and in V arising from the hamiltonian 
H(O)(t)+ U(t)+ V(t) .  It is 

- iItz U ( l / ) d t ! ~ , “  v(t’’)dt” exp[ - i ~ ~ ‘ ~  H ( t ) d t ] .  

I n  order to disentangle this, we can break the t” 
integral into two regions, t ’ < t ’  and t’>t’. The term 
arising from the first region has V operating before U, 
while the reverse is true for the other region. (The 
integral on t for each region is then divided into three 
parts determined by the relation of t to t’, f’.) Thus, 
the term becomes, when disentangled, the sum of two 
terms : 

This is the way that the various terms corresponding to 
the different diagrams arise in quantum electrodynamics 
when an attempt is made to calculate explicitly a single 
operator expression arising in  perturbation theory. 

The results here are very similar to those derived 
from the lagrangian form of quantum mechanics as in 
I l l .  Here we have the advantage of being able to use 
the more familiar operator concepts and to work in 
greater generality from the start. For it is not necessary 
that H be restricted to coordinate and momentum 
operators only. Equations (7) and (8) are correct for 
any H ;  for example, one containing creation and anni- 
hilation operators of second quantization, or Dirac 
matrices, etc. 

The connection of these formulas to those given in I 
is simple. K(Q,  t z ;  x I ,  / I )  is just a coordinate integral 
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kernel representation of the operator Q ( L 2 ,  t l )  so that, 
for example, Eq. (9) gives directly 

4JIfZ K(0)(X2, t.L;2, t )U(x ,  t)K'O'(x, t ;  XI, t l )dxdt ,  

the expression (9) of I, while Eq. (10) translates immedi- 
ately into the expression (30) of 111. 

As another type of application, consider two inter- 
acting systems whose hamiltonian is H ( a ) + H ( b )  
3. U[x(") ,  db) ] ,  where involves operators of 
system (a) only, Hcb) involves only those of system ( b ) ,  
and U involves both. Then we may ask for the ampli- 
tude, if a t  t l  system (a) is in state $1 and system (b)  in 
&, that a t  12 they are in &, 42. This is the matrix 
element 

But this may be split into two problems. We may first 
find the matrix element 

for the system (a) alone, considering that in the inter- 
action potential U[da), db)] ,  all operators referring to 
( b )  are arbitrary numerical functions of t. (We have 
been writing as though U depends on (b)  only through 
the coordinate, db);  but the same method applies if i t  
is also a function of momentum, or spin, or other 
operators on system (b).) Then the matrix element T(")  
depends on the function ~ ( ~ ) ( t ) .  As we indicate, it  is a 
functional of ~ ( ~ ) ( t ) .  The final answer, m, is then a 
matrix element ( 4 2 )  MI +1) between the states dl and $J~; 

wherein now the quantities d b ) ( t )  are considered as 
ordered operators operating relative to each other and 
to H ( b ) ( t )  in accordance with the time parametrization. 

In this way we can analyze one part of a pair of 
interacting systems without having yet analyzed the 
other. The influence of a on b is completely contained in 
the operator functional T ( a ) [ x ( b ) ( t ) ] .  This separation 
may be useful in analysis of the theory of measurement 
and of quantum statistical mechanics. I t  is the possi- 
bility of such a separation which exists also in the case2 
of the lagrangian form of quantum mechanics, C, 

F E Y N M A N  

which makes that form useful in analyzing the quantum 
properties of the electromagnetic field. We may there- 
fore expect that with the present operator notation it 
should be equally easy to make this analysis. That  this 
is indeed true we show by example further on. Since 
this, the main advantage of the lagrangian form, can be 
so easily managed with the new notation for operators, 
this may well take the place of the lagrangian form in 
many applications. I t  is in some ways a more powerful 
and general form than the lagrangian. I t  is not restricted 
to the nonrelativistic mechanics in any way. A possible 
advantage of the other form at present might be a 
slight increase in anschaulichkeit offered for the inter- 
pretation of the nonrelativistic quantum mechanics. 

3. DISENTANGLING AN EXPERIMENTAL FACTOR 

There is one theorem which is very useful in disen- 
tangling operator expressions. We shall give it in this 
section. Suppose we have several operators M ,  N ,  etc. 
(which may also be functions of time, or more generally, 
the ordering parameter s), which are ordered in some 
way. 

Let us say the functional F[M(s) ,  N ( s ) .  . .] defines 
the ordered operator. Now suppose we replace M ( s )  by 
M'(s)= U-'M(s)U, N ( s )  by N'= U-lNU, etc., where 
U is some constant operator. Then, as is well known, 
in F [ M ( s ) ,  N ( s ) .  . .] in any product of successive 
operators, such as M(s+ds)N(s),  the UU-' cancel out 
in between (that is, M N =  U-'MUU-'NU= U-IMNU, 
etc.), so that there results 

F[M'(s) ,  N ' ( s ) .  . .I= U-'F[M(s), N ( s ) .  . . ]U,  (14) 

where the U's are written to operate in the correct 
order. (If we wish to be more specific, we can imagine 
the range of the ordering parameter to be s=O to 1 
and write the right-hand side as UI-'FUo.) 

This is a simple rewriting of a well-known theorem 
of equivalence transformations. However, a much more 
interesting case is that in which U(s)  is actually a func- 
tion of the ordering parameter. That  is, we contemplate 
performing different transformations on the operators 
M ( s )  depending on the value of s a t  which they are to 
operate. Then in a product of successive operators such 
as M'(s+ds)N'(s), where 

M' (s+ ds) = u-l ( s+ ds)M(s+ ds) u (s+ ds) 

(operating in the order indicated by the position of U-I, 
M and U )  and iV'(s) = U-'(s)N(s) U ( s ) ,  the factors 
U(s+ds) and U-l(s) will not cancel out, but we will 
find the operator U(s+ds)U-'(s) operating between 
times s and s+ds, say a t  s+$ds. If we assume U con- 
tinuous, we can imagine U ( s )  differs from U(s+ds) to 
the first order in ds, and hence that U(s+ds)U-'(s) 
equals to first order in ds:  

U(s+ds)U-'(s) = I+P(s)ds, 

where P(s)  is an operator defined by this relation in the 
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limit ds-iO. We may write this relation 

dU(s)/ds= P(s) U ( s )  (15) 

with positional ordering. Hence, between s and s+ds 
there should operate an additional factor l+P(s)ds, 
which for convenience we may write, valid to first order, 
as exp[P(s+$ds)ds]. The s++ds in P(s++ds) will 
automatically locate the factor in the correct order. 
But there is a factor of this kind appearing between the 
operators for each value of s, or multiplying the factors 
all together, we obtain the net factor expJolP(s)ds, 
the product becoming a sum, or integral in the ex- 
ponent. Hence, we have the general theorem: 

where 

and 

this last coming from integrating Eq. (15). We shall use 
the theorem by writing it in the form 

/.I 

exp I P(s)dsF[M(s), N ( s ) .  . .] 
J n  

= U(l )F[M’( s ) ,  N’(s).  . .]U-l(O), (18) 

in which form it serves as a rule for disentangling an 
exponential factor from another expression. A word of 
caution is necessary in reading Eqs. (18), (16), and (17), 
for three different notations are used in the expressions. 
In Eq. (18) the new ordered notation is used in its 
complete form; for example, the s in expA1 P(s)ds 
gives the order in which the P is to operate relative to 
the M ,  N of the functional F which it multiplies. In  
Eq. (16), however, all the operators are to operate a t  s, 
but the relative order in M’ of U ,  M, and U-’ is as 
given by the usual position convention. Finally, Eq. 
(1 7) would be less ambiguous if it were replaced by the 
differentialequation (15). For in thesolution (17), the s’ 
are to bear no relation to the s in Eq. (16) or Eq. (18). 
The operator U ( s )  is to be computed from P by Eq. 
(17) first, then the whole operator U(s)  is to operate in 
Eq. (16), and then in Eq. (18) a t  the position s. 

We shall use this theorem in several applications 
related to quantum electrodynamics. Most particularly, 
we shall find a certain special case useful enough to 
warrant special mention. It is the case that P(s)  is of 
the form a(s)P., where a(s) is a simple numerical 
function, and P, is an operator whose form does not 
depend on s but whose order of operation does. Then 
if we call a(s)=&* a(s’)ds’, so that u(s) is also a nu- 

merical function, Eq. (17) gives U(s)  = exp[a(s)PJU(O). 
We shall further choose to specialize U(O)= 1. (The 
more general case corresponds to a final simple constant 
equivalence transformation (14) with U(O).) Then our 
theorem may be written 

= e x p [ P I i l  a(s)dr]F[M’(s ) ,  N’(s) .  . .], (19) 

where 

M‘(s) = exp -P, cu(s’)ds’ M(s)  [ I  1 
Further, since this theorem with Eq. (20) substituted 
into Eq. (19) is valid when a(s)  is an arbilrary numerical 
function, it is also true if a(s)  is any ordered operator 
a(s)  commuting with P for all 5, provided that in all 
expressions involving a,  the parameter s or s’ is con- 
sistently interpreted as giving the order in which the 
a operates.6 

The mathematical proof of the theorems (18) and 
(19) offered here is admittedly very sketchy; but since 
the theorems are true, it should not be hard to supply 
them with more satisfactory demonstrations (see 
Appendix A for an alternative demonstration). 

There are a number of other interesting relations 
which we may derive from Eq. (19), but which we shall 
not need in this paper. One is included here because it 
has been found useful in certain other applications. If 
a(s) is considered infinitesimal in Eqs. (19) and (20), 
expansion in first order in a gives the follorving result 
(or differentiate each side with respect to ~ ( 1 )  and set 
ff (s) = O), 

P,F[M(s)] = P#[M(s)-J- s’ ( P M -  MP),GF/bM(s)ds 
1 

(if we assume F can be represented by a functional 
having a derivative 6F/6M(s)) .  We have taken F to 
depend only on one operator M ( s ) ,  but the generaliza- 
tion is clear. Here, ( P M - M P ) ,  is conventional ordering 
is PM(s) -M(s)P and is considered to act as an entity 
a t  s. The differential form 

(dPJdl)F[M(s)]= (PM-MP)dF/6M(l )  (21) 

is also useful. 

To simplify such descriptions, in a situation involving two seLs 
of operators, any one of the first set commuting with any one of 
the second, i t  is often convenient to generalize to the use of two 
different ordering parameters-one for first set, and one for the 
second. 
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4. THE INTERACTION RJ3PRESENTATION 

As a first simple direct application of our theorem 
consider again the perturbation problem (8) of com- 
puting the operator 

=exp[ -illf’ H(O)(t)dt] exp[ - - i l lL *  U ( t ) d t ] .  (8) 

If we suppose the properties of H(O) to be known and 
simple, the right side of Eq. (8) may be disentangled by 
means of our theorem (18). We consider -iH(O)(l)  as 
an operator P(s)  and 

as the functional F from which the 

is to be disentangled. Hence, a direct application of Eq. 
(18) gives 

where 

S(t)=exp[ -iJ‘ H ( o ) ( t ’ ) d t ]  

(the lower limit a used in defining S is arbitrary ; it may 
be taken as 11 so S(tl)= 1 if that is convenient), and 

u’(t)=s-yt)v(t)s(t) (23)  

(operating in positional order). If we take matrix 
elements not between states \tl and +2 but between 
J.l’=S-l(t~)+l and +~’=S-~(tg)+~, we may call the 
%matrix 0.‘ and omit the S(h )  and S-l(t1) factors in 
Eq. (22). These new time-dependent states I)’ are 
evidently states that would give rise to +l a t  l1 and +:, 
a t  /2 (from some fixed reference time a) if the perturba- 
tion were not acting. Then the time-dependent per- 
turbation theory simply comes to evaluating 

Expansion in power series, substitution of U’ from Eq. 
(23), and use of the relation R(O)(t’, t”)=S(t’)S-l(t’’) 
leads immediately to the formulas (9) and (lo), so that 
Eqs. (23) and (24) give the simplest form to the time- 
dependent perturbation theory. Of course, the samc 

results may be obtained by a unitary transformation in 
the conventional way. Ordinarily, result (24) is not 
written in this way, for it involves the time convention 
on the ordering of the operators. ( I t  is usually expressed 
as a differential equation for Q’.) If the perturbation U 
represents an interaction between some systems de- 
scribed by H(O), the reduction of Eq. (8) to Eq. (24) 
is called passing to the interaction representation. 

5 .  SYSTEM COUPLED TO AN HARMONIC OSCILLATOR 

As a further example of the use of the notation we 
solve completely the problem of a particle or system of 
particles coupled linearly to an harmonic oscillator. 
This problem in greater generality is the main problem 
of quantum electrodynamics. It has been thoroughly 
studied in 111, but we solve it again as an illustration 
of the new notation. Let the hamiltonian of the com- 
bined system be 

I [ =  T I ~ ( ~ ) + H ~ ~ ~ -  rm,  

II,,,, = (1/2m) (p2+u292), 

where iI,,, is the liamiltonian of the oscillator alone, 

where p is the momentum conjugate to q,  the coordinate 
of the oscillator. Further, H,, which may depend ex- 
plicitly on time, is the 1i:tmiltonian of the particles, and 
r may contain any operators pertaining to the particles 
as well as possibly being an explicit function of the 
time. We ask for the matrix element for finding the 
particles in state xt’ ,  and the oscillator in some eigen- 
state t n  a t  time I”, if at ;I previous time 1’ the particles 
are in state xf,, and the oscillator in its nth eigenstate. 
I t  is the matrix element 

using the time ordering convention. As already dis- 
cussed in Sec. 2, this can be considered as  the matrix 
element between states xt, and xt,, of the matrix 

where G,, (the analog of T of Sec. 2), a functional of 
r(t), serves to define the net effect on the particles of 
their interaction with the oscillator. Calculation of G,, 
means evaluating 

in a general way as a functional of I’(1). We are to 
consider I’(h) here as a simple numerical function, and 
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only later utilize the fact thnt it is an operator involving 
the particles when we go to evaluate the matrix M ,  
Eq. ( 2 9 ,  between the particle states xl, and xt”. The 
evaluation of G,,, for an arbitrary numerical function 
r(t) may be performed in  a variety of ways. One is by 
the lagrangian forin of quantum mechanics given 
explicitly in  111, Sec. 3, with the sole difference (which 
15 unessential for this part of the problem) that there 
I’(t) was called y(f) and was a functional of the coor- 
dinates ~ ( 1 )  of the particles, while here we see we are in 
a more general position as I?([) may be a functional of 
any ordered operators referring to the particles. We 
find, for example [ITI, Eq. (14)], 

The same result may also be obtained by a direct solu- 
tion of the Schrodinger equation for the forced oscillator. 
The great advantage of the operator notation is to allow 
this formal solution for an oscillator forced by an 
~zr.bi/rury polerilial friiiclion r (1) to be equally useful 
when the oscillator is actually in interaction with a 
quantum-mechanical system! 

Thus, we have the answer for G,, in 111, Eq. (57), 
using r for y. I t  is, however, interesting to see how this 
expression for G,, could be worked out directly using 
the methods of the ordered operator calculus. We want 
to disentangle the operator 

Let us call, i n  the usual way, Q*= ( & u ) $ ( q - z ‘ d p )  and 
Q= ( + ~ ) i ( q + i w - ~ p )  the creation and annihilation 
Operators. They satisfy the commutation relation 

QQ*-Q*Q= 1. (28) 

‘I= (2u)-+(Q+Q*). (29) 

In terms of them ~l,,,=$u(Q*Q+QQ*) and 

Sow as a first step we pass to the interaction representa- 
tion (Sec. 4). We use the theorem (20) with P,= -iH,,,, 
a(s)= 1, to disentangle the exp[--iJAOs,(t)dt] factor, 
obtaining 

G = s ( t”)  exp 1 i (2u)-~~,”’r(1)Cc, . ( / )+~~*(t) ,~t  js-l(t’), 

culate the matrix element of 
1” 

G’ = ex pi( Zu)-kl r ( t )  [Q’ ( t )  + Q’* ( t )  ]d t  . 

From Eq. (28) we readily calculate that’ 

Q’(t) = Q c r Z w 1  and Q’*(t) =Q*e+’“l, (30) 

so that the problem becomes the disentanglement of 

1 1“ 

Xenp[ i ( 2 u ) b L  r(s)e-iwsQ,Tds . 

We shall find it most convenient to disentangle this into 
a form in which all the annihilation operators operate 
first, and then come the creation operators (since the 
nth state cannot suffer more than n annihilation 
operators, Qn+l& vanishing, the expression will be 
easy to evaluate in this form). To this end let us use 
theorem (19) again, this time with P=Q*, 

a ( s )  = i ( 2 ~ ) - * r ( f ) e + ~ ~ ~ .  

Calling, temporarily, 

A(t) = i ( z w l - + l f  r(t)e+iuldt, 

we find 

G’= exp[A (t”)Q1..*] exp[ i(2m)-*Lf’’ r ( t )e- twtQ”(t)dt ] ,  

where 

Q”(4 = exp[-- A(t)Q*IQ expCfA (“2. (31) 

Q’’(f) =QL+ A (f) ,  ( 3 2 )  

The commutation relation (28) here gives8 

so that 

G’=expCA (t”)Q1,,*3 

In the last factor Qf can be replaced by Qt,  since 1 is in 
any case less than t ” ,  so that all the Ql’s come before 
the Qp*,  and Q1 need not be ordered relative to itself 
as it is a constant operator. Hence, we may, with a 
slight rewriting (for example, i,B* for .4(1”)), write 

G’= exp(iP*Q (,,*) exp(i/3Q1,)Goo (33)  
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with Goo equal to expi(2w)-+&"' r ( l ) e - iw tA  (t)dt and 
therefore identical to Eq. (27), and with 

p= (~w)-bJ,  r(t)e-iw*ddt, 
f" 

just as in 111, Eq. (58). The operator G' is now com- 
pletely disentangled. I ts  matrix element between n and 
m we call Gmn. The matrix element may be evaluated 
by ordinary methods, since the t' and 1'' in Q and Q*, 
respectively, in Eq. (33) are unnecessary if the posi- 
tional notation is used. That  the element for n=O, 
m=O is just what we call Goo is evident, for if exp(ipQ) 
be expanded as 1+pQ+p2Q2. . . and the result applied 
to 40, all the terms beyond the first give zero for 
Q+o=O. Thus, this exponential may effectively be 
replaced by unity. Likewise, the second can be replaced 
by unity for &*Q* = 0. 

The case of more general values of m, n, may be 
worked out by writing 

so that 
+ n =  (n !)-'Q*n6~, ( 3 5 )  

G,,,,= (40 I (m!)-f(n!)-1Qme.8*Q*eisQQ*"i 40)Goo. (36) 
Then, since e@QQ*= (Q*+ip)e@Q (as in Eqs. (31), (32)), 
repetition n times gives e'BQQ**= (Q*+ifi)ne70Q, and 
likewise Q"ke~*Q' = elO*Q*(Q+ip*)". We find 

G,,,= (& 1 (m!)-*(,!)-*e@*Q*(Q+ip*)m 
X (Q*+ip)"e~8QI +o)Goo. (37) 

The exponentials may now be replaced by unity as 
previously discussed. The other factors expanded by 
the binomial theorem give 

The next to last factor by Eq. (35)  is 

( S ! ) y r ! ) + ( 6 1 & ) =  ( S ! ) * ( Y ! ) + L ,  

so that finally 

operators rather than as amplitudes associated with a 
path. The result in general is Eq. (43) below [in agree- 
ment with 111, Eq. (48)], and there is no need to go 
into the details again of summing the effects of all the 
oscillators to obtain this result. We will pass directly 
to a discussion of the complete electromagnetic field. 

6. QUANTUM ELECTRODYNAMICS 

There are available several equivalent formulations 
of quantum  electrodynamic^.'*"^ We shall give a very 
brief outline of their interrelationships using the ordered 
operator notation. We can start with the usual for- 
malism of Heisenberg, Pauli, and D i r a ~ . ~  The wave 
function of the system, consisting of the electron-positron 
field and of the electromagnetic field in interaction, 
satisfies a wave equation i d $ / d t =  H$, where the 
hamiltonian for the system may be written H=II,"+ H,- 
+H, ,  where H,,, is that of the electron-positron field free 
of potentials, Z3, is that of the electromagnetic field in 
empty space, and H ,  represents the interaction of the 
two fields. The problem is to obtain the wave function 
a t  time t 2  in terms of its value a t  a previous time 11. I t  is 
therefore a study of the operator 

I - 1 2  

We can simplify this by first disentangling the expo- 
nential factor 

That  is, we go directly to the interaction representation, 
and find that we must analyze 

We shall always use the interaction representation and 
shall omit the prime here for simplicity of notation. 
Furthermore, it will be sufficient for our purpose to 
consider only the case fl+- and t2++ m, so that 
quantum electrodynamics is a study of the operator'O 

where the A,(l) is the operator potential of the electro- 
magnetic field and j,(l) is the operator current of the 

See, for example, P. A bl. Dirac, The Principles of Quonlim 
hfeckanics, (The Clarendon Press, Oxford, 1947), third edition, 
Chapter 12. 

as in 111, Eq. (57). 
Having this form for the behavior of a system of 

I 

10 For systems with particles of spin zero or one, S may be written 

shown by C. N. Ysng and D. Feldman, Phys. Rev. 79,972 (1950), 
for example, Eq. ( 3 3 ) .  Thus, all of these results given here for the 
Dirac field are equally correct for spin zero or one if y,, is replaced 
bv 8.. . See also M. Neumann and W. €1. Furrv. Phvs. Rev. 76. 

particles interacting with a single oscillator, we could in this same form by use of the Kemmer-Dufin matrices Bc, as is 
go on and discuss the quantunl electromagnetic field as 
a set of such oscillators. I t  is evident that to do so would 
be simply to repeat the steps described in 111, set. 4, 
using 1' for y and reinterpreting the symbols as ordered 1677-(1949), and R. Moorhouse, Phys. Rev. 76,'1691'(1949). 
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Dirac electron-positron field. They, of course, commute 
with each other, since they refer to different systems. 
Further,I‘ A,,(l), A,(2) commute if 1 and 2 are separated 
by a spacelike interval, as do j,,(l), j , ,(2). In  the ex- 
pression for S the operators are ordered in accordance 
with the time 1. 

We may thus define the problem of quantum electro- 
dynamics as a study of the operator S. Let us imagine 
for purposes of discussion that we disregard the deriva- 
tion of S given in the preceding paragraph. We imagine 
the problem is given directly as the analysis of the 
operator S defined in Eq. (39) (assuming the commuta- 
tion rules, reference 11). Let us see how the various 
formalisms are simply different ways of expressing or 
analyzing S. 

First, we might try to define S in some way which 
would not require the use of the ordering notation. 
Suppose we split the range of integration of t into two 
regions - 00 to T and T to 00. Then the integral may 
be split into two parts. We can write the factors, as 

Now, since t’<l, all the operators on the last factor act 
before those of the first factor, so they are disentangled 
relative to the first factor. Hence, we are led to define 
an operator function of T ,  

1 j p ( x ,  t )A, (x ,  t)d3xdt . 

If T is changed to T+dT, an additional factor appears 
operating in front of all other t < T ,  namely, 
exp[-iATJj,,(X, T)A,,(x,  T)d3X]. Hence, Q ( T )  satisfies 
the differential equation 

the operators operating in positional order. 
Thus, we are lead to a differential equation, the 

solution of which can be used to define S (for S is 
Q ( T )  as T++ 00 when Q(7)  is that solution of Eq. (40) 
which +I as 7’- m). If we define +(- m) as an initial 
state wave function, clearly, + ( T )  = G(T)+(- m )  satisfies 
the same equation as Q. This is the Schrodinger equation 
in the usual formulation if written in interaction repre- 
sentation. (We probably would not be led to go back 

“See, for example, J. Schwinger, Phys. Rev. 74, 1439 (1948). 
In his notation (except that  we put  a factor e in A , ,  rather than 
j p ) ,  the commutation relations are [his Eqs. (2.28 )and (2.29)] 

[ A  ,,(z), A y(z’)]= 4sN6 , , ,D(z -d )  - 
and j,,(z)=&)~,,+(z) with (+,(z), +p(x‘) I = --iS,p(z-x’) i f  no 
external potential is acting. Other combinations commute. 

to the ordinary representation as this is an unnecessary 
increase in complexity.) 

The apparent lack of covariance implied by using 
time to define the differential equation can be remedied 
by analyzing S in a slightly different manner, suggested 
by Tomanaga and by Schwinger.’ 

The variables x,  1 over which one integrates in Eq. 
(39) may be divided into two groups in another way; 
those previous to and those following an arbitrary space- 
like surface u : 

S=exp[ -is j p ( x ,  1)A,(x, t)d3xdt] 
b 

j r (x’ ,  t ‘ )AV(x’ ,  t’)d3x’di’ 1 
where the region a of integration of the second factor 
are those points of space-time previous to u, while b 
are those following u. Now again the factors are disen- 
tangled. I t  might a t  first be argued that since there are 
some values of t’ greater than I, the corresponding 
operators in should follow, not precede, those in A. 
But for those t’ which exceed f, the points x,  x’ are 
separated by a spacelike interval (as u is a spacelike 
surface); hence the order of the A , ( x ,  I )  and . lv(x‘ ,  1’) 
as well as of j , , (x ,  t )  and j v (x’ ,  1’) is irrelevant, as these 
commute. Hence, the operators are, in fact, disen- 
tangled; and we can define 

as an operator defined as a functional of the surface u. 
A small change in surface a t  x,  t changes the operator by 

6Q(u)/6u(x, t)’ - i j , , ( x ,  t ) A , ( x ,  t ) Q ( u ) ,  (41) 

the equation of Schwingerl* for Q(u) (and also for +(u) 
defined by Q(u)+(- m)). Again, S is Q(u) as the surface 
u is removed to + 00 . 

These differential equations (40) or (41) are therefore 
needed to define the operator S if one is limited to con- 
ventional notation. The form (41) has the advantage 
of putting the relativistic invariance more into evidence. 
However, the solution (39) is common to both and is 
more easily used. I t  is likewise evidently invariant if we 
write it 

(with the point 1 representing X I ,  1 1  and d ~ ~ = d ~ x ~ d t ~ )  
and assume the convention here that if two operators in 
Eq. (42) correspond to points separated by either a time- 
like or a zero interval, that operates$rst whuh corresponds 

‘2 I. Schwinger. Phys. Rev. 74, 1439 (1948) 
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to the earlier lime. If they are separated by a spacelike 
interval, no definition is necessary, for they commute. 

The other developments consist in methods of 
actually evaluating Eq. (42), given the commutation 
relationsll of the A,(l) .  The method explained by 
Dyson3 consists of making a power series expansion of 
S and disentangling it term by term. For example, the 
second-order term is 

This term may then be analyzed into the conventional 
notation by reordering the operators. In this example 
it is necessary merely to break the region of integration 
in l2  up into two, t 2 < t l  and tz>ll .  Actually, because of 
the symmetry they give equal contributions, so that 
the result is 

the ordering now being conventional. From here the 
matrix elements are computed between given states by 
use of the commutation relations (46) below. For further 
details we refer to Dyson’s papers3 The result is that 
given by the rules of 11. 

Another method is to notice that the entire de- 
pendence of S on -4, can be directly evaluated. As far 
as the states of the field are concerned, the evaluation 
of matrix elements of S is exactly the same as though 
j,(l) were a numerical function (since it commutes with 
all A,( l ) ) .  Hence, these may be worked out by first 
obtaining the result for a field interacting with a given 
unquantized current distribution j,(l). This can be 
done, for example, by using the lagrangian methods 
described in 111. For example, the matrix taken between 
states in which the field is empty of photons initially 
and finally is 

as is shown in I11 (for j ,  a numerical function). This 
may now be interpreted as follows : The matrix element 
of S for a transition in which a t  t=  - 00 there are no 
real photons and the matter is in state x-, to the state 
a t  + 00 also empty of photons with the matter in state 
x+, is the matrix element of Soo between x- and x+, 
where Soo, given in Eq. (43), operates now only on 
matter variables, the order of operators j,(l), j , (2)  
being determined just as in  Eq. (42). This expression 
forms the basis for the author’s treatment of virtual 
photon processes (11). 

If an additional unquantized potential B,(l) is 
present, the expression (12) for S is altered just by the 
replacement of A , ( l )  by <4,(l)+B,(l). 

The matrix corresponding to Eq. (43) would be a 

F E Y  N M A N  

functional of B,(l) and a function of 8: 

1 j , ( l ) j , (2)6+(s1zz)dT~~Tz 

I t  is evident by direct substitution, that S,(B] satisfies 

Since the equation is linear, any matrix element of S,?, 
say Te9[B], between two states of the matter satisfies 
same equation. This is Eq. (45) of 111, which is shown 
i n  I11 to be a general statement of the rules given in I1 
for solving electrodynamic problems. Evidently, the 
case of real photons in initial or final state can be carried 
through i n  parallel to the discussion in 111, with j,(l) 
now as an operator. 

This completes our discussion in a general way of the 
relations between the various representations of electro- 
dynamics. However, we wish to add a word concerning 
the derivation of Eq. (43). We have indicated how this 
may be done using the lagrangian method. However, 
we have seen from our example with the single forced 
oscillator that the same results may be obtained directly 
with the operator method, in just as simple a manner. 
Of course, by considering the field as a set of such oscil- 
lators we \vi l l  arrive a t  Eq. (43), thus completely avoid- 
ing the lagrangian formulation. However, since the 
relation between Eqs. (42) and (43) is so fundamental, 
we should like to  show how the operator method 
permits a simple direct passage from Eq. (42) to Eq. 
(43).13 (\Ve are simply following the steps leading from 
Eq. (26’) to Eq. (33) for the single harmonic oscillator, 
but are using A,,(l) to replace 4.) 

The field operator il,(l) can be split into two parts 
A , ( l ) =  Ap+(1)+A,-(l), where the first A,+(1) anni- 
hilates photons, and the second A,,-( 1) creates them.14 
They satisfy the commutation relations (positional 
___. 

‘ 3  \\ e riniit tlic usual exkra cuinplications in all such demoii- 
strations concerned with showing that disregard of the supple- 
mentary conditions on J A , / J x ,  is legitimate. 

i4 Ordinarily, the field 0perato.r A,( l )  is expanded into modes 
A,( l )  = ZiA,;( .~)(Qi*e“W’f+Q~e-’W’f) ,  where A,{ is the numerical 
function [for example, cosines or sines, I11 Eq. (l)] describing the 
classical mode i of frequency w i  and Q,*, Qi are the creation and 
annihilation operators into which p i ,  the coordinate of the oscil- 
lator of this mode, has been split (29). The factors efht result 
from use of interaction representation (30). Then we have 
A,-(l)=Zin,i(z)Qi*eW’~ and A,+( l )=Z iA  .( )QiepiUif. The 
commutation rule (46) then results from that o[i< Q and Q’ (28). 
Using the representation of I11 Eq. (l), the right-hand side 
of Eq. (46) comes from Eq. (28) directly in the form 

(2~) -4e%?,J  exp[ - i k ( l ? -  t l )  ] cos(K. xi - K . xn)dJK/k, 
which on integration for /*>ti [see I11 Eq. (22)] is Eq. (46). The 
separation has been accom lished directly in coordinate space hy 
J. Schwinger, Phys. Rev. &, 651 (1949). 
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ordering) 

A ,,-(1)Av+(2) - Av+(2)A,-(  1) = - ~ C ’ ~ , J + ( S ~ Z ? )  (46) 

forL5 t1<t2.  We have set s1z2= (XI,,-XP,,)(Z~,,-XZ,,). 

disentangle the operator 
On the basis of this commutation rule, we are to 

j , ( 2 )AV1?+(2)d~ ,  , (42‘) 1 
where for definiteness we indicate the time of operation 
by the subscript. This is already of the exponential form 
of theorem (18), using - i S j , ( l ) A ~ t ~ - ( l ) d ~ x ~  as f‘(s), 
s=t2. Hence, the result is 

I 
where 

where in Eq. (47) we suppress the ordering rules for A + ,  
/I- and use instead positional notation (but maintain 
the rules for j,,). 

The commutation rule (46) permits Eq. (47) to be 
written16 

.Aut;’+(2) = Avt2+(2)+ 1; e26+(sI2*)j,,(l)d~,. (48) 

Hence, we have 

1 

Is This restriction at first sight looks unrelativistic. For 11>h w e  
\wuld have the complex conjugate of --iC6Pv8+(s~z2), but - i b + ( s d  
is real in s acelike regions (as 6 + ( x )  = 6(x) -im-’). 

I6 For, i?A,,1)’+(2) of (47) is considered as a functional of j ,  its 
first variation with respect to jJ3) is (t l<tz). 

i enp(+iL: j r A  ,-dd.)[AP-(3)-A.+(2) --A ,+ (2 )AP- (3 ) ]  

b Eq. (46). The first variation of expression (48) gives the same 
result, so that Eq. (48) is correct for all j,,, since i t  obviously IS 
correct for j,=O. 

the A operators being entirely disentangled (the j ’ s  are 
still entangled). The ordering index t z  on Artz+ has been 
changed to - w in Eq. (49), since all the A+ commute 
and act before A,,-, so that no ordering is necessary. 

Taken between states empty of photons the result is 
just Soo of Eq. (43), for the annihilation operation A+ 
on the state of zero photons is zero, and creation opera- 
tion of A -  has zero amplitude of leaving a state without 
photons. If there is one photon present initially and we 
ask that no photons remain, we shall have to annihilate 
it and create none, so that if the A- and A+ exponentials 
are expanded in power series, we must take only the 
term linear in A+ and independent of A-. This is 
equivalent to a first-order action of the potential B ,  
in Eq. (44) in perturbation. The corresponding rules 
for higher numbers of real photons are readily derived 
from Eq. (49). I n  this way we have completed an inde- 
pendent deduction of all the main formal results in 
quantum electrodynamics, by use of the operator 
notation. 

7. THE DIRAC EQUATION 

Up to now we have discussed the matter system 
using the description of second quantization. I t  was 
pointed out in I in the case of the electron-positron field 
where a small number of charges is involved, another 
simple interpretation is available. In  this section we 
should like to  discuss this from an operator point of 
view and to give in the following sections the formulas 
in this picture for electrons interacting through the 
agency of the electromagnetic field. 

We begin by discussing the behavior of a single 
charge (plus the virtual pairs produced from it) in an 
unquantized potential B= y,,B,,, omitting the con- 
tributions from closed loop diagrams. This section will 
therefore constitute a brief summary of I using operator 
notation. 

The behavior of a single charge is obtained by solving 
the Dirac equation 

(iV- B-m)+=O (50) 
with suitable boundary conditions and interpreting the 
solution as described in I. For convenience we shall 
always solve, instead, 

(iV- B-m)+=iF, (51)  

where F is a source function, by writing 

+= ( iV-  B-m)-’iF ( 5 2 )  

and interpreting the reciprocal operator in the definite 
sense implied by the limit of the operator when m has 
a vanishingly small negative imaginary part. If, for 
example, we wish the ordinary solution for t> ta  which 
a t  f = t o  has the form f(x) representing an electron (i,e., 
f(x) has only positive energy components), that solution 
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is the obtained from Eq. (52) by setting” F(1)  
=-&(tl-lo)f(xl). If f contains negative energy com- 
ponents, Eq. (52) gives the desired solution for these 
components for t< lo .  

From the definition of K+cB)(2, 1) in I, Eq. (15), we 
can write 

K+‘B’(2, 1)= (iV- B-m)-’i6(2, l), (53) 
so that - iK+(B)(2,  I)  is the space-time representation 
of the operator (iV-B-m)-’ needed for Eq. (52). 
Thus, the solution (52) is 

$ ( 2 ) =  JK+(B)(2 ,  l)F(l)d71. (54) 

The perturbation theory, considering B as a per- 
turbation on the free particle, arises from Eq. (53) from 
a power series expansion in B. For any pair of operators 
A ,  B we have 

( A  + B)-lz A-1- A-lBA-l+A-lBA-lBA-I. . . , (55) 

(iV- B -  m)-’= (iV-m)-’f (iV-m)-‘B(iV-m)-1 

or in space representation (putting 

so that with A = (iV-m), B= - B we have 

+ ( ~ V - ~ ) - ‘ B ( ~ V - W Z ) - ’ B ( ~ V - V Z ) - ’ + .  * 1 (56) 

K+(2, l)=i(iV-m)-16(2, 1)) 

K+‘B’(2, 1)=K+(2, l ) - i  K+(2, 3)B(3)K+(3, 1)dTa S 
- JJK+(2,4)B(4)K+(4,3)B(3)K+(3,l)dT4d73, (57) 

as in I, Eqs. (13) and (14). The corresponding mo- 
mentum representation is evident directly from Eq. 
(56), for (iV-m)-l is (P-m)-l. 

If F is to represent an initial state, it isalso convenient 
to use the free particle solution f ( l )=  (iV-m)-W(l) 
to represent the state. We are often interested in the 
amplitude that the system is in a final state g(x). I n  
this case, we can define a sink function G and a corre- 
sponding free particle solution g= iQ(iV-m)-’ (where 
we write the adjoint so that it will correspond to the 
solution g(1) = -i(iV--m’)-’G(l) corresponding to m’ 
having the opposite sign of the imaginary part to m). 
The matrix element to go from +f to g is then the space- 
time integral of 

The expansion (56) gives for this element 
&(iV- B-m)-’F. (58) 

--igBf-ibB(iV- m)-’Bf 
-igB(iV-m)-*B(iV-m)-~B+f- * * f (59) 

l7 For !<lo, the J. from Eq. (52) would be zero and would not be 
the solution desired; it can be obtained only from F with a different 
definition of the poles of the reciprocal operator. We assume we 
are only interested in the solutions in regions of space-time later 
than the time the “initial” electron wave functions are specified 
and earlier than the “initial” positron function is given. Since we 

F E Y N M A N  

(assuming g, f are orthogonal states, J g ( l ) F ( l ) d ~ ~ =  0 
so the leading term vanishes). In  space representation 
the first two terms of this are I, Eq. ( 2 2 ) ,  and I, Eq. 
(23) ; in momentum representation the second term is 
I, Eq. (35). 

If more than one real charge is present without 
interaction, there is an operator (iV- B-m)-’ for each 
charge, operating exclusively on the space and spinor 
coordinates of that charge. Operators corresponding to 
distinct charges commute. Matrix elements are taken 
in the antisymmetric way described in I, Sec. 4, for 
accord with the exclusion principle. 

The contribution from closed loops is a factor 
C,=exp(-L), where L is not very easily defined 
directly in operators. But the first-order change on 
changing the potential from B to B+AB is 

(60) 
where the “trace” means the diagonal integral in coor- 
dinates and the “Sp” on the spinor indices, in space- 
time representation just I, Eq. (29). 

This completes our summary in terms of operators of 
the results given in paper I on the theory of positrons. 
The main point is that aside from the problems of 
closed loops, one is merely analyzing by various tech- 
niques the consequences of Eq. (52) and, therefore, in 
general, the properties of the operator 

AL= trace[{ (iV- B-m)-l- (iV-m)-l)AB], 

(iV- B-m)-1. (61) 
We may now turn to the quantum electrodynamics 

of such a particle, or system of particles. For simplicity 
we may restrict ourselves to the case of all virtual pho- 
tons. The real photon case can, of course, as always be 
obtained by considering also the effects of external po- 
tentials. For simplicity further assume, a t  first, zero ex- 
ternal potential. Our central problem, then, is the calcu- 
lation of the matrix element 

R=o((iV- A-m)-’)O (62) 
of (iV- A-m)-’ between states of the field empty of 
photons initially and finally. Here A = r , A ,  and A,(1) 
is the operator A,+(l)+A,-(l) acting on the field coor- 
dinates and satisfying commutation rules (46). This 
problem is relatively hard to solve directly. We do have 
the matrix element of any exponential form in A ,  in 
(43) ; but with A ,  involved in a reciprocal, it  is another 
matter. We shall represent the reciprocal as a super- 
position of exponentials in the next section. 

From Eq. (62) we can derive in a simple direct manner 
the perturbation series results of 11. For we know1* that 

o(A ,(1))0= 0, o(A ,(1)A,(2))0= ie28,J+(~~2~), etc. (63) 

will take matrix elements between two states, this represents no 
r e d  limitation (see I). 

l8 The order of the A ,  operators in Eq. (63) is according to the 
time convention. If we put  A=A+,+A-  and use Eq. (46) to 
rearrange factors, they are evident, since nr+ on the initial (and 
A,-  into the final) photon-free state vanishes. They are identical 
to the lagrangian relations 111, Eq. (52) ,  and form the basis of 
Dyson’s description. 
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Hence, if we expand the reciprocal in power series as 
Eq. (56), in coordinate representation (57), with B 
replaced by A (or by A+B if an unquantized potential 
B is present along with A ) ,  we may readily write down 
the zero-zero matrix element of each term. For example, 
third term of Eq. (57) gives the self-energy contribution 
in accord with 11, Eq. (6). The other results of I1 are 
just further consequences of this series expansion as we 
have emphasized in 111. 

8. USE OF A FIFTH PARAMETER IN 
DIRAC'S EQUATION 

In this section we discuss the representation of 
the reciprocal operator in exponential form. Since 
Sorn exp(iWx)dW=i/x (or rather lim&/(x+ie)), we 
we may write 

i(iV- B-m)-'= exp[i(iV- B-m)W]dW, (64) 

the definition of the singularity (as the limit with m 
having an infinitesimal negative imaginary part) being 
automatically represented. (See, however, the remarks 
at the end of this section.) We can also write this in the 
ordered operator form, 

im 

im e x p [ i ~ ~ ~ i V ( w ) - B ( w ) ~ d w  1 exp(-imW)dW, (65) 

where we have written B(w) for y,(w)Bg(xp(w)), where 
x,(w) are the four ( Y =  1 to 4) coordinate operators, of 
which B,  is a function, ordered by the ordering param- 
eter w and y,(w) are the four Dirac matrices similarly 
ordered. Likewise, we have iV(w) = y,(w)id,,(w), where 
id,(w) are the four ordered momentum operators con- 
jugate to x,. 

In this form B can be replaced by A and the expec- 
tation value for virtual transitions can be taken. This 
is done in the next section. We continue here with a 
more complete discussion of Eq. (65). 

The perturbation expansion in B of Eq. (65) should 
lead, of course, to Eq. (56). For example, the term first 
order in B in Eq. (65) is evidently 

- i i m  exp(imW) 

Xexp[iJw iV(w')dw']i" B(w)dwdCV. (66) 

Now the range of thew' may be divided into two regions 
and the quantities reordered (just as in Eqs. (5) and 

-iJmlW dWdw exp[i(W--w)(iV-m)lB 

( 6 ) )  to 

~exp[iw(iv-m)], 

so that changing the order of integration, one finds 
immediately from 

exp[i:iv(iV--m)]dv= i(iv--m)-l lrn 
the result - i(iV - m)+B(iV - m)-l as required. 

The contribution L of a closed loop can be written 
directly in exponential form. I t  is easily shown from 
Eqs. (60) and (65) that 

L= lm trace[ exp( i l w ( i V ( w ) -  B(w)) 1 dw 1; - 
X exp( - imlV). (67) 

(The second term in Eq. (60) actually has zero trace 
and was added only to make convergence problems 
appear less difficult. It has been omitted in writing Eq. 
(67). Also, the value of Eq. (67) when B=O may be 
subtracted away, if desired, for a constant addition on 
L changes only the normalization of all probabilties.) 

Incidentally, the method of rendering this expression 
convergent (see 11, Sec. 7) for further calculations, is to 
call its value for mass m, L(m2) and then to calculate 

LP= JrnCL(mz) - L(m2+ XZ),G(X)dX, 

where 

Jrn G(h)dh= 1 ant1 lrn h2G(X)dX=0 

and to assume that L p  is to be used as the correcc value 
of L in place of L(m2). This is equivalent to replacing 
the factor exp(-imW) in the integrand of Eq. (67) by 
another function F(W), where 

F(W)= Jm[enp(-imW)-expl -i(m*+iZ)iw)l 
XG(X)dX. 

For large W this approaches exp(-imW), but for 
small W i t  falls off, the real par t  of it, at least, varying 
as W4. This renders Eq. (67) convergent. (Theimaginary 
part of F(W) does not seem to lead to momentum space 
integrals whose convergence would be in question.) This 
suggests a general method of maintaining convergence ; 
by keeping processes corresponding to small intervals 
of w from occurring with large amplitude. This is briefly 
discussed in I11 in reference 22. What is said there 
applies qualitatively as well to the Dirac case analyzed 
here, with u replaced by w. 

If there are several charges in the system, we must 
associate a separate w, for each, say w, for the nth. 
Each must have its own set of matrices y r ( " )  and coor- 
dinates x(") (y's for different charges commute). If we 
call 

B'"' = yr(,)(w,)Br(X(n)), 
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the total matrix for all N particles is 

fi im exp{iJWn civ(n)(wn)- B(n)(wn)3w,, I n-1 

Xexp( -iimWn)dWn. (68) 

If in addition there are present a number of closed 
loops, the corresponding number of factors L must be 
multiplied in. 

One might try to give a kind of physical or, rather, 
mathematical view by which the form of Eq. (65) can 
be appreciated, in the following manner: 

We may deal with the Dirac equation somewhat in 
analogy to the method used in the discussion of the 
Klein-Gordon equation in the Appendix A of 111. 
Consider a fifth variable w in addition to the four x, 
and that we have a wave function +(x, w), which is to 
satisfy 

Then since the potentials R,(x)  are independent of w, 
the equation is separable in w, so that +(q w) 
=exp(imw)+(x) is a solution of Eq. (69), if +(x) is a 
solution of the Dirac Eq. (SO). Also, if we have any 
special solution of Eq. (69), +(x, w), we may obtain a 
solution of Eq. (50) by finding 

+(x)= J m  $ ( x ,  w) exp(-imw)dw. (70)  

Hence, by studying Eq. (69), we are a t  the same time 
studying the Dirac equation. 

Given the wave function +(x, 0) for w =  0, the wave 
function at  w= W is given by 

-ia+/aw= (iv- B)+. (69) 

-m 

dx, w = ~(W)+(x,  O), ( 7 1 )  
where the operator O(W) is 

W 

O(W) = e x p i 1  [iV(w) - B(w)]dw (72)  

for W>O and, for convenience,’7 we take 0=0 for 
W<O. The important operator for the Dirac equation, 
in view of Eqs. (70) and (71),  is 

1: O(1V) exp(-iimW)dW, 

which is just Eq. (65) 
This interpretation suffers from a d%culty, however. 

For a free particle the operator O(W) in momentum 
space is O(W)=exp(iWp)= cos(Wp)+i@/p) sin(pW), 
where p = ( p 2 ) ’ .  The integral of this times exp(-imW) 
is really not always defined, even if m has a small 
negative imaginary part, for in intermediate states p” 
may be negative and p imaginary, so that B contains 
positive exponentials in W and the integrand is oscil- 
lating with ever increasing amplitude. We therefore 
look a t  Eq. (64) as a formal definition of the value of 

the integral in all cases. Although this is satisfactory in 
a formal way for operators, it means that our inter- 
pretation cannot be taken literally. For example, we 
cannot obtain an unambiguous integral representation 
of O(W) in coordinate space, for the requisite integral 
J exp(-ijW) exp(-ip.z)d4p is undefined. This is 
because it is probably not possible to  obtain the wave 
function (71) at any value of W from that at W=O 
from Eq. (69) without further definitions. At least, the 
corresponding second-order equation (a2+/aP) - V2+ 
- d2+/aW2=0 is apparently not of the kind for which 
this type of Huygens principle applies. 

An alternative method of parametrizing the equation 
which does not seem to suffer from this interpretational 
difficulty is given in Appendix D. It leads, however, to 
more complicated (although algebraically equivalent) 
expressions for matrix elements than does Eq. (64). 

9. DIRAC ELECTRONS IN QUANTUM 
ELECTRODYNAMICS 

Returning now to quantum electrodynamics, for a 
single charge we want the expectation between photon 
free states of R in Eq. (62): This by Eq. (65) is the 
integral over all positive W of exp(-imW) times 

0 

( e x p i l w  [iV(w)- A(w)]dw 

This is just exp[iAW iV(w)dw] times (the o( )o refers 
to the photon states, that is, affects A ,  only) 

which is of the form 

of Eq. (42) with 
W 

j,(l)= J Y , ( W ) 6 4 ( % ( W ) - X 3 d W ,  (73) 
0 

where xvl is the field point a t  which j,, is calculated and 
64(xu2-x,1) means 6 ( 2 ,  1). Thus, we may find the ex- 
pectation value with the relation (43). With this value 
of j ,  substituted on the right side of Eq. (43), the 64 
functions are immediately integrable, and we find 
finally 

R= im exp[ - i’‘ V(w)dw] 

X6+(s2w,,o,,)dw’dw’r exp(-imW)dW, (74) 1 
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in which we have written v?,, ,,, for [.u,,(TL”)-~,,(w”)] 

This expression then contains a description of a Dirac 
electron interacting with itself. If an extra factor 
exp(-iAw B(w)dw) is included, it describes such an 
electron also in an external potential. ‘The terms may 
be expanded in powers of B and 8, and each term may 
then be simplified in the way we have described many 
times before, for example, in connection with Eq. (66). 

\Vhen several charges are present, the result from 
Eq. (68) is the integralL9 

J*J*...J^ expli; J’“~ [iV(n)(wn)-vzldw, 

x C%I(W’) - 4 w ’ ’ ) I .  

~l‘he contributions from closed loops may be obtained 
irom this by choosing some value of 16, say, n=i, to 
represent matrices applying to a loop, dividing under 
the integral sign by T V i ,  and taking the trace with 
respect to the variables i. 

The various present-day meson theories of nuclear 
interaction may be set up in  quite analogous ways. For 
example, a nucleon interacting with itself through the 
agency of neutral pseudoscalar mesons with pseudo- 
scalar coupling is evidently described by Eq. (74) ; but 
\ v i t l i  ) ) I  replaced by the proton mass, and the interaction 
term altered by the replacement of e2 by g?, Y,, by 7 5 ,  

m t l  6+(s2) by 4nI+(s?),  the appropriate propagation 
function for mesons of mass p ( I ,  is defined in I, Eq. 
(32), but m = p ) .  Charged mesons may be represented 
by the use of isotopic spin operators also ordered by w. 

10. SUMMARY OF NUMERICAL FACTORS FOR 
TRANSITION PROBABILITIES 

The exact values of the numerical factors appearing 
i l l  the rules of I1 for computing transition probabilities 
are not clearly stated there, so we give a brief summary 
Iiere.?0 

The probability of transition per second from an 
initial state of energy E to a final state of the same total 
energy (assumed to be in a continuum) is given by 

ID This equation with its interpretation was proposed as a forniu- 
lation of the laws of quantum electrodynamics (for virtual pho- 
tons) by the author a t  Lhe Pocono Conference of Theoretical 
W s i c s  (1948). The notation for ordering operators was explained 
there. However, a t  this time, the author had no complete formal 
(lerivation of Eq. (75) from the conventional electrodynamics, nor 

he know of a satisfactory method of dealing with the closed 
l r )0p  divergences. 

I and I1 the unfortunate convention was made that  d‘k 
“leans dk4dkldk2dka(2a)* for momentum space integrals. The 
confusing factor (2,)- here serves no useful purpose, so the con- 
\ ention will be abandoned. In  Lhis section& has its usual meaning, 
dk  rdk idkdk,.  

( h = c =  l),  

Prob. trans/sec = 2 n . V  I5n 1 Lp(E) ,  

where p(E) is the density of final states per unit energy 
range a t  energy E and 1x1 * is the square of the matrix 
element taken between the initial and final state of the 
transition matrix 311 appropriate to the problem. iV is a 
normalizing constant. For bound states conventionally 
normalized it is 1. For free particle states it is a product 
of a factor N ,  for each particle in the initial and for 
each in the final energy state. iV, depends on the 
normalization of the wave functions of the particles 
(photons are considered as particles) which is used in 
computing the matrix element of 5n. The simplest rule 
(which does not destroy the apparent covariance of 
m), iszL N,=2e , ,  where e i  is the energy of the particle. 
This corresponds to choosing in momentum space, plane 
waves for photons of unit vector potential, ez= - 1. 
For electrons it corresponds to using (Uu) = 2m (so that, 
for example, if an electron is deviated from initial p1 to 
final p2,  the sum over all initial and final spin states of 
I ~ m 1 2  is Sp[(pz+m)nt(pl+m)%]). Choice of norma- 
lization (u-ytu)= l results in iY,= l for electrons. The 
matrix Sn is evaluated by making the diagrams and 
following the rules of 11, but with the following defini- 
tion of numerical factors. (We give them here for the 
special case that the initial, final, and intermediate 
states consist of free particles. The momentum space 
representation is then most convenient.) 

First, write down the matrix directly without 
numerical factors. Thus, electron propagation factor 
is (P-m)-l, virtual photon factor is k-* with couplings 
- y r . .  . - y r .  A real photon of polarization vector e,, con- 
tributes factor e .  A potential (times the electron charge, 
e) A,,(%) contributes momentum q with amplitude u(q), 
where a&)= JA,(l)  exp(iq.rl)d4xl. (Note: On this 
point we deviate from the definition of u in I which is 
there (2n)-* times as large.) A spur is taken on the 
matrices of a closed loop. Because of the Pauli principle 
the sign is altered on contributions corresponding to an 
exchange of electron identity, and for each closed loop. 
One multiplies by ( 2 ~ ) - ~ d ~ p =  (2n)-*dpd&dp,dp, and 
integrates over all values of any undetermined mo- 
mentum variable p .  (Kote: On this point we again 
differ.?O) 

The correct numerical value of 3lZ is then obtained 
by multiplication by the following factors. (1) A factor 
(4n)b for each coupling of an electron to a photon. 
Thus, a virtual photon, having two such couplings, 
contributes 4 d .  (In the units here, e2= 1/137 approxi- 
mately and ( 4 ~ ) ’ e  is just the charge on an electron in 
heaviside units.) (2) A further factor - i  for each virtual 
photon. 

For meson theories the changes discussed in 11, 
Sec. 10 are made in writing m, then further factors are 

In general, iV; is the )article density. I t  is A’, = (ziy‘u) for 
spin one-half fields and i [ f+*d+/d t )  - &3+*/dt ]  for scalar fields. 
’The latter is 2s;  if the field amplitude + is taken as unity. 
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(1) (4n)fg for each meson-nucleon coupling and (2) a 
factor - -z for each virtual spin one meson, but + i  for 
each virtual spin zero meson. 

This suffices for transition probabilities, in which 
only the absolute square of 3n is required. To get 3n 
to be the actual phase shift per unit volume and time, 
additional factors of i for each virtual electron propa- 
gation, and --i for each potential or photon interaction, 
are necessary. Then, for energy perturbation problems 
the energy shift is the expected value of i3n for the 
unperturbed state in question divided by the normal- 
ization constant N i  belonging to each particle compris- 
ing the unperturbed state. 

The author has profited from discussions with 
M. Peshkin and L. Brown. 

APPENDIX 

In  this Appendix (A, B, C) an attempt will be made to  discuss 
some of the properties of ordered operators and of functionals in 
a somewhat more general way. 

Almost certainly many of the equations will be incorrect in 
their general form. This is especially true of those involving fourier 
transforms in function space. However, i t  is expected that  they 
are correct in the special cases in which the formulas have been 
applied in the main part  of the paper. Therefore, at least a t  first, 
when new results using these methods are derived, care should be 
taken to check the final result in some independent way. I t  is 
analogous to using power series expansions, or fourier transforms, 
in a calculation in a situation in which the conditions for the 
validity of the power expansions or of the transform have not been 
checked, or are not known to be satisfied. The physicist is very 
familiar with such a situation and usually satisfied with it, 
especially since he is confident that  he can tell if the answer is 
physically reasonable. But mathematicians may be completely 
repelled by the liberties taken here. The liberties are taken not 
because the mathematical problems are considered unimportant. 
On the contrary, this appendix is written to encourage the study 
of these forms from a mathematical standpoint. In  the meantime, 
just as a poet often has license from the rules of grammar and 
pronunciation, we should like to ask for "physicists' license" from 
the rules of mathematics in order to express what we wish to say 
in as simple a manner as possible. (These remarks do not apply 
to Appendix D.) 

A. Relation to  Theory of Functionals 
In  this section we would like to suggest how a general theory of 

ordered operators might be built up, and in particular, to point 
out certain relations to the theory of functionals. For clarity of 
exposition in this Sec. A, only, we represent all operators by 
bold-faced letters M and ordinary functions in regular type M .  
We have mentioned that with every functional F[M(s) ,  N ( s ) .  . .] 
of the argument functions M ( s ) ,  N(s )  we wish to associate an  
operator (by identifying M ( s )  with an operator M(s) interpreting 
5 as an ordering parameter with the operators M(s), N(s) sup- 
posedly known and with known commutation relations). The 
general theory of these associations might instead have begun by 
defining the meaning for the special case of the exponential func- 
tional expJ7 M(s)ds  (we assume throughout this section, for 
convenience, that the range of s is 0 to 1). The corresponding 
operator 

~ = e x p ~ [  ~ ( s ) d s  ( 1 - 4  

is defined as the value G(1) a t  s= 1 of that solution of the operator 
differential equation 

dG(s)/ds= M(s)G(s), (2-a) 

F E Y  N M A N  

which is the identity operator a t  s=O, i.e., G(O)=I. We have 
thereby defined the operators corresponding to more complex 
functionals such as F-expJ'[p(s)M(s)+.(s)N(s)+.. .Ids, where 
p ( s ) ,  v(s). . . are numerical functions and M, N arbitrary operators 
(which need not commute) as  the G(l )  from 

dG(s)/ds=[p(s)M(s)+~(s)N(s)+...IG(~) (3-a) 
with G(O)=I.  For clearly p(s)M(s)+~(s)N(s)+. . .  can be con- 
sidered as a single operator function of s, the M(s) in Eqs. (1-a) 
and (2-a). 

Next we make the general definition that  the operator to be 
associated with the sum of two ormore functions Fl[M(s),  N ( s ) .  . .] 
+FzlM(s), N ( s ) .  . .]is the sum of the operators Fl[M(s), N(s). . .] 
+FZ[M(s),  N(s). '1 corresponding to each separately. 

Considering a derivative as  the limit of a difference, we can usc 
this idea of superposition to further extend the range of functionals 
for which operators are defined. As an example, in virtue of the 
fact that  Jn' M(s)dsJo' N(s)ds  is the first derivative with respect 
to both p, Y of expJnl[pM(s)+vN(s)$s evaluated a t  p, v = O  we 
may define the operator corresponding to fn' M(s)dsJ1 N(s)ds 
as  the corresponding derivative of the operator expJol[pM(s) 
+vN(s)%s Then from a study of the properties of the solution of 
Eq. (3 a) expanded in powers of p, Y we may readily verify that  
fo' M(s)dsJnl N(s)ds could also be evaluated directly by con- 
sidering s as  an  ordering index on the operators. 

Thus, the superposition rule permits a wide increase in the class 
of functionals for which we have defined operators. In  fact, with 
some mathematical license, we have defined the operator for any 
functional. We wish to imagine that  any functional can be repre- 
sented as  a superposition of exponential ones in a manner analogous 
to the representation of an arbitrary function as a superposition 
of exponential functions. Thus, we expect to be able to write for 
any functional F[M(s)] (the true mathematical restrictions are 
completely unknown to  me) 

F ~ h i l ( s )  I= J exp [ix p ( s ) ~ ( s ) d s ]  ~ [ p ( s ) l ~ p ( s ) ,  (4-a) 

where 5[p(s)] is a new (complex) functional, the functional 
transform of F [ M ( s ) ] ,  and J. . . Dp(s) represents (some kind 
of an) integration over the space of functions p ( s ) .  For simplicity 
we take the case of just one argument function M(s) .  If F [ M ( s ) ]  
is given, 5 can he determined perhaps from 

with suitable normalization. Then, if 5 is known, we define the 
operator F[M(s)] as 

F C M ( s ) l = s  exp[iJ' r(s)M(s)ds]SCr(s)IS)r(s), (6-a) 

where p ( s )  is a numerical function. Since we have already defined 
the operator exp[i&' p(s)M(s)ds] (by Eq. (3-a) with p replaced 
by ip), we now simply require superposition of such operators for 
various p ( s ) .  The extension to functionals of several variables is 
evident. 

With these definitions of operators in terms of exponential func- 
tionals, the various theorems are easily proved. For example, the 
theorem (18) of Sec. 3 is first readily demonstrated for the special 
case that F is an exponential (1-a). Thus, to calculate 

R= e x p x  P(s)ds e x p x  M(s)ds 

we must solve dG(s)/ds= [P(s)+M(s)]G(s). We try a solutioll 
G ( s ) =  U(s)X(s) ,  so t h a t  d G / d s =  (dU/ds )X+UdX/ds=PG 
+UdX/ds in virtue of Eq. (15). Thus, we have a solution if 
dX/ds=U-'MG=U-'MUX=M'X with M' as  in Eq. (16). Since 
G(0) = 1, if U(0) = 1, we must have X(0) = 1 so the solution of the 
X equation is exp&l M'(5)ds in accordance with the definition 
(1-a), (2-a). (If U(O)#l, replace X by XUP(0) throughout.) 
Hence, Eq. (18) is established for exponential functionals. And 
since the theorem involves F linearly, i t  is therefore true for any 
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superposition of exponentials and hence for any functional which 
can he defined by means of such superposition. 

B. Momentum and Coordinate Operators 
In nonrelativistic quantum mechanics, without spin, all 

operators can be made up of coordinate operators and their con- 
jugate momentum operators. We show in this section how, a t  
least in principle, all such operator functions can be disentangled. 

We can consider the case of one degree of freedom Q, and its 
momentum P. (When more variables are present, they present no 
new problem as variables corresponding to different independent 
coordinates commute.) Thus, we are to disentangle the general 
operator F[P(s), Q(s)] subject to the condition 

PQ-QP= --i. ( 7 - 4  
This is the problem solved in this section. We can satisfy the coni- 
mutation relation by putting P=-id/dQ (so that  our solution 
may have applications outside quantum mechanics for the com- 
bination of operators X, d / d X  are of frequent occurrence). Then 
the operator F can be defined by giving the function g of Q resulting 
from 

for arbitrary functions f ( Q ) ,  where Q(s) and P(s )  are interpreted 
as multiplication by Q, and --i times differentiation with respect 
to Q in the order defined by F. 

To obtain the relation of g, f suppose the P-dependence of I: 
can he expanded as  a functional transform, ( p ( s ) ,  ~ ( s ) ,  v(s) are 
numerical functions) 

g(e)  = F C ~ ,  Q ( ~ ) I ~ ( Q )  (8-a) 

where 5 is a functional of n(s) and of ~ ( s ) .  Now to evaluate the 
operator 

e x p [ - i x  ~ ( s ) n ( s ) d s ]  FCQ(~), V(~)I (10-a) 

we use our theorem (20) to disentangle the P(s) operator. We use 
a(s)=--iiz~(s) in Eq. (20), calling y(s)=Jo*u(s’)ds’, so that Eq. 
(10-a) is 

e-1~(1)P(L)5[Q’(s), n(s)], (11-a) 
where Q’(s) = e f z V ( a ) P Q , c ’ V ( s ) P .  As is well known from Taylor’s 
theorem, the operator ehdidr displaces z by h so thatn 

Q’(s)=Q*+y(s). (12-a) 
Substitution into Eq. (11-a) finds all the Q. preceding the P(1) 
so the operators are disentangled and Q. may he written simply 
Qo, whence we have 

X 5[Qo+x  u(s’)ds’, n(s)] Dn(s), (13-a) 

We can go a bit further and assume Eq. (9-a) can be inverted as  
which in principle, a t  least, solves the problem. 

where p(s) is a numerical function for transforming F. Also, 
r(s)= fo*v(s)ds is as good a function as n(s) for purposes of 
integration,13 and we may write, substituting Eq. (14-a) into Eq. 

22 Or differentiating Q’(s) with respect to s, find dQ’(s)/ds 
=ieiY(:)p(PQ-QP)e-lu(a)Pdy/ds. If we use the commutation rela- 
tion, this is dy lds ,  whence Q’(s) differs from y($) by the constant 
operator Q, the evident value of Q’ for y(s)=O, establishing Eq. 
(12-a). 

23 For, if %(s) he considered as  the limit as A+O of an  integra- 
tion over all the variables ni=u(s;)  with ~ i + ~ - s , = A ,  then the 
change is from the variables vi= (yi+l-y;)A-’. Integration over 
~i for all i>o is equivalent to integration on all n,. (Since 
dnz=A-ldyi+,, the jacobian of the transformation is A-(“A),  which 

xFCp(s ) ,  Q~+y(s) la)~(s)Dy(s) ,  (15-a) 
the integral extending over all p ( s ) ,  and all y(s) subject to y(0) =O.  

Considering P as  -id/dQ, the operator F[P(s) ,  Q(s)] may be 
considered to operate on a function f ( Q )  to produce another 
function of Q. In  particular, we are often interested in quantum 
mechanics in the projection of this final function into a given 
“final state” function g; that  is, F is often defined through its 
matrix element 

If we substitute into this expression (15-a), the PI can be con- 
sidered to act  entirelyong*(Q) andsince exp(+iyP)g(Q) =g(Q+y),  
we find 

( , e * ~ ? f ) = j  g*(Qo+y(l)) exp[iJ p ( s ~ r ) d s ] ~ ~ p ( s ) .  ~ u + v ( s ) l  

X DP(s) DJ,,.(s) ./(Qo)dQo. 
Define ~ ( 5 )  as the numerical function p(s)=Qof?(s) and write 
finally (po= Qo) 

( g * f ‘ f ) = J J  g’(Q1) eXP[iJ p(s )Q(s )ds]FCp(s ) ,  Q(s)l 

x a)p(s)DQ(s)j(Po)dPod~~, (16-4 
where the integral a)p(s) is over all p ( s )  and the integral DQ(s) 
is over all trajectories Q(Z) which go between the initial position 
Q~ and the final one qI, the final integration on dy ,  heing repre- 
sented explicitly. This represents a complete reduction of an 
ordered operator F[P(s) ,  Q(s)] involving conjugate operators P ,  
Q (’i-a)to a property of the corresponding numerical functional 
F [ p ( s ) ,  Q ( s ) ~ ,  for in Eq. (16-a) p ( s ) ,  Q(Z) are numerical functions 
so that  all the operators have been eliminated. 

This is obviously related to the lagrangian form of quantum 
mechanics of C. In  fact, for transitions, we are interested in the 
operatorS=exp[--iiSo‘H(t)df], where, for example, H =  (1/2m)PP 
+V(Q, 1). The matrix elements of this, according to Eq. (16-a) 
are (use t for s in range 0 to i7 

The integral on p ( t )  is easily done. (See Appendix C for a more 
general discussion of gaussian integrals.) Substitute p ( t )  = mq 
+p’( t ) ,  so that  

s,’ [ ( l /zm)p(t)‘-p( t )p( t )kl l= (1/2nz)[ p’(t)2df- t V L S , ’  Q(l)*dt .  

Also, a)p ( t )=  a)p’(t), since p and p‘ differ by a constant at each 1 
(keeping q(t) integration until later). The Dp’ (1) integral then 
separates out and integrates to some constant. Hence, within 
such a normalizing constant, the matrix element is 

x/(Qu)%dl)dpodQT. (17-a) 
Tha t  is, the transition amplitude from point QU a t  t = O  to QT at 
t =  T is the integral over all trajectories connecting these points 
of exp-iJoT L[p(t), p(t)7dt, L being the lagrangian for this problem. 
This is the fundamental theorem on which the interpretation of 
C is based. 

The fact  that  the nonrelativistic quantum mechanical operators 
(other than spin) can be expressed in terms of an integral over 

is only a change of normalization, and we are disregarding nor- 
malization factors.) 
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trajectories IS based on the fact that  the operators involved satisfy 
Eq. (7-a). If other operators are involved, such as  Pauli’s spin 
operators u, or Dirac matrices y,, which satisfy different commuta- 
tion rules, a complete reduction eliminating all the operators is 
not nearly so easily affected. It is possible to eliminate the p 
operators in the Dirac or Pauli equation and get forms like Eq. 
(17-a), but the amplitude for a single trajectory is then a hyper- 
complex quantity in the algebra of the y, or u. We give an example 
of this. 

Without disentangling the Y,, operators we shall disentangle 
the momentum operators p,=ia/az, from the operator O ( W )  
of Eq. (72), which is a key operator in the analyses of the.Dirac 
equation. 

If we write 

the p,, operators are already in exponential form and no fourier 
transforms are necessary. We may disentangle the p ,  in the first 
integral by a direct use of the theorem (20) with P(s)=p,(re~) 
( p ,  for each value p is disentangled separately) and a($) =iy,,(w). 
The resulting x,’(w) operator is s , , ~ I ) +  faw y,(?u’)dzo’ just as in 
Eq. (12-a) so that we obtain 

Xexp[--if. B{z,,(0)+~Wy,(w’)dw‘,~ > I  &a . (18-a) 

Here the I-,, and p p  are completely separated, but the y,, are 
thoroughly entangled. The w in B keeps track of the fact that  
the y p  in its definition acts a t  the order z; thus, it is 
y,(w)B,[x,(0)+J0~ y,,(w’)dw’]. A similar separation may be 
made in the operator for self-action (74) which now is 

X 6+[ {C,(tt’)- C,(w”) J 2 ~ a ’ d w ’ ’ )  exp(--irnW)dW, (19-a) 

where one must substitute C,(w) = faw y,(w’)dw’, C,(w) = yr(ra) 
( p , , -  refers to the momentum operator operating on the final 
state). All reference to space coordinates have disappeared. The 
problem of self-energy of an electron is reduced to the algebraic 
one of disentangling a combination of y p  in an expression in 
which, however, they are almost hopelessly tangled up. Not much 
has been done with this expression. ( I t  is suggestive that perhaps 
coordinates and the space-time they represent may in some future 
theory be replaced completely by an analysis of ordered quantities 
in some hypercomplex algebra). 

Since the spin operators are so simple and fundamental to 
quantum mechanics, they present some interesting unsolved 
problems. For example, if F[z(s) ,  y(s) ,  z(s)] is a known functional 
of a three-space trajectory ds), y(s), z ( s ) ,  evaluate in terms of 
this functional, the operator F[u,(s), uy(s), u&)], where the uz, 
uy, uz are the anticommuting Pauli operators of unit square satis- 
fying uZuyur = i. The corresponding problem with Dirac operators 
is a kind of four-dimensional generalization of this. Alternatively, 
since the Dirac operators can be represented as  the outer product 
of two commuting sets of Pauli operators, the solution of the 
problem with Pauli operators could be directly extended to the 
Dirac case. The P a d  matrices (times i) are the basis for the 
algebra of quaternions so that the solution of such problems 
might open up the possibility of a true infinitesimal calculus of 
quantities in the field of hypercomplex numbers. 

C .  Gaussian Functionals 
In a large number of problems the operators appear in ex- 

ponential~ only up to the second degree. For this reason i t  is handy 
to have available a formula for the integration of gaussian func- 
tionals. We can define a gaussian functional G[y(s)], of one 
function y(s), as one of the form, G[y(s)]=expiE[y(s)] with 

E[y(s)] quadratic. Thus, we have 

E[y(s)]= ;L1X n ( t ,  s)y(l)Y(s)dlds+S,L B(s)y(s)ds, (204) 

where A(1,  s), B(s)  are functions independent of y (that is, G is 
gaussian if the second functional derivative of InG is independent 
of y ) .  Gaussian functionals of several variables are of frequent 
occurrence. All the quantum field theory hamiltonians anti 
lagrangians are of this form in the field variables. A formula for 
the integral of G[y(s)] over all paths y(s) has been found useful. 
I t  will i ~ e  developed here. Consider the integral (we suppose .4 (/, s) 
real, or a t  least has a positive definite imaginary part) 

K A ,  BI=J e x p { - i ~ ~ y ( s ) l ~ ~ v ( s ) .  (21-a) 

I t  is a functional of A ( t ,  s) and B(s). First, the dependence on B 
may be determined, as  follows. 

Let g(s) be that trajectory which makes the exponent E[y(s)] 
an extremum. Tha t  is, 4 is a solution of (assuming A symmetric) 

Or, if Ar be the reciprocal kcrncl to ..I (which can often most easily 
he found merely hy solvinE Eq. (22-a)), 

g(s)= -j’ :\’(/, s )B( / )d l .  (23-a) 

Then put y(s)=g(s)+.i-(x). (Sote,  By(s)= D.v(s).)  In  virtue of 
Eq. (22-a), one finds ECyl=ECg]+f&lJ1il ( I ,  s)x(t)x(s)dtds.  
Here, E [ ~ ( J ) ]  can also I)e written explicitly as  - 3  fol f o l B ( s )  
X.V(l, s )B( t )d lds ,  using Eq. (23-a). Substituting this into Eq. 
(21-a), we see a factor ex],(iE[g(s)])=G[g(s)] may be taken 
outside the integral, as i t  is independent of ~ ( s ) .  Hence, we have 

K A  I R1= GC!l(s)YCA I, (24-a) 
where 

/ [ A  I= e x p [ + i l J  A (1, s)x(t)x(s)dlds a>x(s) = I C . . ~ ,  n] 
does not depend on B ,  and 
C[lj(s)]= exp{iE[g(s)]j 

(25-a) I 
=exp[-+iJo”J ~ ( s ) ~ ( t ,  s ) ~ ( t ) d / d s  . (26-.1‘1 

Often this is as far as  i t  is necessary to go, as the dependence ~i 
I on B may have been all that is necessary to know, J [ A ]  bciiip 
a kind of normalizing factor that is not of importance or that C:III 

be obtained in some other manner. 
Having this form for I ,  we may obtain other integrals. I.‘ur 

example, since 

1 

6 K . 4 ,  B]/as(t) = is GCy(s)&(t) By(r), 

this integral can be imniediatrly evaluated by differentiation oi 
the expression (24-a) for I with respect to B(t) .  Since 

SCCy(s)]/sB(/) = ;c[g(S)]6E(g(s)) /6B(t)  

= -iJ; B(s).V(l ,  s)ds ’G[g(s ) ] .  
we find 

1 CCy(s) l?(~)~y(s)=Q(t)ICA, B1. (27-a) 

Differentiating a second time, since 6 g ( t ) / M ( t ’ )  = - N ( t ,  t ’ ) ,  one 
finds 

.f GCy(s)ly(l)y(t’) Q ( s )  = [g(OV(1’)+2V(1, L‘)]I[A, B ] ,  

etc., for higher powers of y. 
Incidentally, this permits us to obtain the properties of J .  For 

the left-hand side of (28-a) is also -2iUC.4, B] /6A( t ,  t’). In the 
special case R=O, w e  have g=O from (23-a), and since J f . l )  

(28-a) 

= 1C.i. 01, \\.e find 
a J / aA (1, / I )  = - f l V ( l ,  1’)J. (2%) 



235 

A N  O P E R A T O R  C A L C U L U S  1 2 7  

This property of J determines i t  to within a numerical factor 
independent of A .  

We have used these theorems, or something like them, on 
various occasions. One example was the passage from Eq. (16-a) 
to Eq. (17-a). In more generality, put  

,,here R is quadratic in p .  The integrations on p ( s )  in Eq. (16-a) 
represent an example of our theorem with y= p and E[p(s ) ]  

= J [ p q - H ( p ,  q ) x s .  The extremum requires d H / a p = q .  If the 
solution of this is p ,  considered as  a function of @, q, then the 
integral on p produces within unimportant factors an exponential 
of J [ p q - H ( p ,  p)]ds, that  is, if U s ,  where I, is the lagrangian. 
This example shows that in our discussion, we have not been 
juficiently rigorous mathematically, for the important problem 
of the order of noncommuting operators p ,  q ,  in the original 
definition of H does not seem to have arisen. 

.4 second example is the integration of exp(i Jut) when L is 
quadratic in q, q. For the forced harmonic oscillator where 
~ = f ( Q z - - 3 ~ l ) + r ( t ) q ( t ) ,  the integral was carried out in 111, 
footnote 7. The operator A( l ,  s) is -[(dZ/dF)+w2]6(t-s), the 
inverse N of which involves sines and cosines but is not unique. 
However, in this case boundary conditions exist a t  the end points 
q ( O ) ,  q ( T ) ,  and these boundary conditions determine N and also 
restrict the range of y integration. The footnote serves a model of 
what to do under circumstances and will not be discussed further 
here. 

The problem of integrating 

e x p [ - i I  j , ( I ) A , ( l ) d 7 1 ]  .cxp[i~(dA,/dx,)’dr 1 (ST$)-’ 
over all distributions of field A,(l) required in 111, Sec. VIII, 
serves as a further example. Here y(s)  is replaced by A,(l), and 
B(s)  by j,(l). The operator A(1, s) becomes 0 1 ~ S ( 2 ,  l ) ,  the inverse 
of which is again not unique. The inverse N( t ,  s) required in 111 
is S + ( S , ~ ~ ) .  (The boundary conditions required to define this par- 
ticular inverse are probably related to the condition that  no 
photons are supplied in the past and none are wanted in the 
future, so that the inverse must have no positive frequencies for 
f+- m and no negative ones to t++ m .) Thus, E [ q ( s ) ]  becomes 
the important quantity - + fSj,(l)j,(2)a+(stz2)dTld72, so that  
Eq. (24-a) gives Eq. (43) or 111, Eq. (48), which we had taken 
such pains in I11 to derive in a more rigorous manner. In  none of 
these examples do we require J .  

A more complicated example is that  of the analysis of the 
operators corresponding to the electron-positron field given in I, 
Appendix. If electrons obeyed Bose statistics, the commutation 
rules would have been altered, the net effect being just to change 
a few signs in the final expressions. Analyzed as  an Einstein-Bose 
field, however, the operators ‘F can be considered as  ordinary 
functions, and the lagrangian technique may be used. The problem 
then requires gaussian integrals (actually, integrals of exponentials 
of bilinear expressions, but these are as easy to work out). The y 
corresponds to W (or W*), the A(! ,  s) is related to the Dirac 
hnmikonian, and its inverse K+cA1(2, 1) replaces N. The problem 
of determining C. corresponds to that of finding J [ A ] .  The 
problem is complicated somewhat by the necessity of keeping the 
order of the 7,-operators correctly. 

The relation of problems with operators obeying Fernii-Dirac 
statistics and those with the same operators obeying Einstein-Bose 
commutation rules is very close. The results of the former in 
practical at least, may be obtained from the latter by 
simply altering some signs. The Einstein-Bose case is very easily 
analyzed by ordered operator algebra (as in Sec. 7) or by the 

“The only known practical case, of course, is the electron- 
positron field. Here the problem has been completely worked out. 
I seem to he affected by the disease so prevalent today in theo- 
retical physics, to delight in seeing a very general method of 
solving a problem, when actually in physics only one example of 
thc type of problem exists and this has already been worked out. 

lagrangian integral methods. The anticommuting operators seem 
a t  first sight more complicated; but this they cannot be, as the 
results are just as simple. I t  would seem worth while to develop 
the analysis of anticommuting operators in much more detail than 
has been given here. Presumably, good use can be made of the 
similarity to the Einstein-Bose case. The theorems developed in 
analysis of this problem may conceivably have application in the 
problem of disentangling Pauli spin operators. 

D. Fock’s Parameterization of the Dirac Equation 
We wish to call attention to an  interesting alternative method of 

parameterizing the Dirac equation, suggested by Fock.4 I t ,  like 
that  of Sec. 8, would also have permitted us to pass directly to 
the formulation of electrodynamic problems. It is more readily 
interpreted than that of Sec. 8.= 

As a consequence of the Dirac equation (iv- B ) $ =  pit L, + also 
satisfies (iv- B ) ( i V -  B)+=7n2$. Expanding the operator. this is 
equivalent to 

(30-a) 
with upv= +~(Y,Y.-Y.Y~). This differs from the Klein-Gordon 
equation only through the addition of the term -+upVFfiv ,  where 
F,,= (aB,/ax,)-aB,,/ax, is the field tensor. 

Just as in the Klein-Gordon case, 111, Appendix A, this can be 
converted by the aid of a H t h  parameter to Fock’s equation, 

for which the special solution +=exp(-$gim2za)+ leads back to Eq. 
(30-a). I t  can then be analyzed by the lagrangian method. The 
final result is that  the amplitude to go from one point to another 
[see I11 Eq. (5-a)] is the sum over all trajectories x,(u) of the hy- 
per complex amplitude 

exp( - if[+ (dx,,/du)2+ (dx,/dra)B,(A:) 

[(ialax,) - B,Y+- ~ u , ~ F , , + =  n l v ,  

ia+/au= ;[(ia/a~,) - B P I z + -  ~ u , ~ F , . + ,  (31-a) 

-:u,”(r~)P,.(x(ir))]dz~}, (32-a) 

the order of operation of the up” being determined by the parameter 
u. This, in fact, is the lagrangian formulation of the Dirac equation 
suggested in C, Sec. XIV. 

A rotation (and Lorentz transformation) by angle wPv in the 
pv-plane, is represented in Dirac theory by the operator 
exp(+iw,,n,,). (The summation on both p and Y accounts for a 
factor 2.) Hence, we can say that  Eq. (32-a) means that the am- 
plitude for arrival is exp(iS), where S is the classical action 
- f[+(dx,/du)2+B,dx,/duldza, but the orientation represented 
by the hypercomplex amplitude has rotated at each point in its 
path at an angular velocity (per dzr) equal to the field strength at 
that  point. (Angular velocity in four dimensions is an antisym- 
metric tensor of second rank, as  is the field strength.) 

Since the potentials appear in exponential form, this may be 
directly connected to the form representing the action of virtual 
photons. The result is a set of rules like that for the Klein-Gordon 
case, Sec. IX ,  but with an  additional coupling F,,y,y.. They may 
be shown to be algebraically equivalent to the rules usually given 
for the Dirac equation, but  are somewhat more complicated and 
not very interesting. There are some properties of the Dirac 
electron, however, which are more obvious in this formulation 
than in the usual one, and these we will discuss. 

I t  is apparent from Eq. (32-a) that  in the classical limit the 
trajectory is that  of minimum S and therefore satisfies 

dex,,/du2= (dxu/du)Fvp. (33-a) 
(Hence, (dx,,/du)*= (ds/du)l  is a constant of the motion where s 
is the proper time, and the minimum action S is - +(ds/dza)%L plus 
a term independent of u. Since this is to vary as - $mzu, we find 
ds=mdu.) As h-0, the magnetic moment approaches zero and 
does not affect the trajectory. But  since the intrinsic spin angular 
momentum also goes to zero, the rate of precession of spin has a 
classical limit. For completeness we should also give the equation 

ti, Y .  Nambu, Prog. Theor. Phys. (papan) 5, 82, 1950 
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of motion of the spin axis (just as the spot on a billiard cue ball 
has a motion, although it does not affect the trajectory of the 
ball). From Eq. (32-a) we see the spin axis precesses a t  angular 
velocity F,, (per du).  (These are well-known results of the WKB 
approximation method when applied to the Dirac equation.) 
Since Eq. (33-a) says only that dr , /du  precesses a t  the same an- 
gular velocity, we can summarize the classical equations of 
motion, and of spin precession for a Dirac electron as: The velocity 
vector and spin plane are fixed in a fuur-dimensional coordinate 
system turning at each instant at an angdar velocity per unit proper 
time equal to elm times the field strength acting un the electron at that 
inslant. (For example, for a slowly moving electron in a magnetic 
field B the velocity vector revolves about the magnetic field as an 
axis a t  angular velocity w= (e /m)B,  the cyclotron frequency. The 
spin does likewise precessing therefore at the same frequency, 
which is twice the Larmor frequency.) 

I have expended considerable effort to obtain an equally simple 
word description of the quantum mechanics of the Dirac equation. 
Very many modes of description have been found, but none are 
thoroughly satisfactory. For example, that of Eq. (32-a) is in- 
complete, even aside from the geometrical mysteries involved in 
the superposition of hypercomplex numbers. For in (32-a) the 
field enters in two apparently unrelated ways, once into dehing  S 
and again in the rotation rate. In  the classical limit both effects 
of the field can be neatly stated in one principle. What makes 
things particularly simple in quantum mechanics if, for a diffusing 
wave, a rotation at  rate F,, is accompanied by a phase shift equal 
to the line integral of A,,?*E 

2 6 I f  the +uPYFPY term is considered to have a coefficient a 
analogous to a kind of anomalous magnetic moment, difficulties 

In the case that the fields F,,, are constant in space and time, 
the operator factor exp(+iua,.F,,.) is independent of the trajectory 
and factors out of Eq. (32-a). The remaining path integral is 
gaussian and can be carried out exactly (Appendix C), giving the 
results of Fock4 and Nambu." 

If the operator on the right-hand side of Eq. (31-a) is considered 
as a type of hamiltonian, the rate of change with u of all the rele- 
vant physical quantities (given by the commutator with this 
operator) are very easily interpreted by classical analogy. 

There are, of course, twice as many solutions of Eq. (30-a) as 
solutions of the Dirac equation (SO). (The others correspond to 
Eq. (50) with negative m.) If x is a solution of Eq. (30-a), the 
projected part $= (2m)-*(iV- B + m ) x  solves the Dirac equation 
(SO).  Projection operators must still be used, therefore, in cal- 
culating matrix elements if Eq. (30-a) in perturbation is used 
instead of the Dirac equation.2' 

arise in the resulting theory unless a= 1 or a=O. Thus, the real 
part of L,  in the amplitude for a vacuum to remain a vacuum, 
C,=exp(-L), should always be positive if the theory is to be 
easily interpreted (see I, Sec. V). For general a, i t  seems that the 
real part of L is positive for some processes (or potentials), negative 
for others. It is always positive only if a= 1. But for a=O it is 
always negative, so we can reinterpret the theory in this case as 
referring to Bose particles, in which case C, should be exp(+L) 
(I, Sec. V). For a=O, Eq. (30-a) becomes the Klein-Gordon 
equation, of course. 

27 A convenient way to make the correspondence of solutions x 
of Eq. (30-a) and \I. of the Dirac equation unique is to assume x 
is also an eigenfunction of 7 5 ,  that is, y s x = i x .  This is possible, as 
y5 commutes with the operators of Eq. (30-a). Then, for each +, 
the corresponding x is x=(l- iys)$.  
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Slow Electrons in a Polar Crystal 
R. P. FEYNVAN 

CdZfmnia Institute of Technology, Pasadena, California 
(Received October 19, 1954) 

A variational principle is developed for the lowest energy of a system described by a path integral. It is 
applied to the problem of the interaction of an electron with a polarizable lattice, as idealized by Frohlich. 
The motion of the electron, after the phonons of the lattice field are eliminated, is described as a path 
integral. The variational method applied to this gives an energy for all values of the coupling constant. 
It is a t  least as accurate as previously known results. The effective mass of the electron is also calculated, 
but the accuracy here is difficult to judge. 

N electron in an ionic crystal polarizes the lattice A in its neighborhood. This interaction changes the 
energy of the electron. Furthermore, when the electron 
moves the polarization state must move with it. An 
electron moving with its accompanying distortion of 
the lattice has sometimes been called a polaron. It has 
an effective mass higher than that of the electron. We 
wish to compute the energy and effective mass of such 
an electron. A summary giving the present state of 
this problem has been given by Frohlich.' He makes 
simplifying assumptions, such that the crystal lattice 
acts much like a dielectric medium, and that all the 
important phonon waves have the same frequency. We 
will not discuss the validity of these assumptions here, 
but will consider the problem described by Frohlich 
as simply a mathematical problem. Aside from its 
intrinsic interest, the problem is a much simplified 
analog of those which occur in the conventional meson 
theory when perturbation theory is inadequate. The 
method we shall use to solve the polaron problem is 
new, but the pseudoscalar symmetric meson field 
problems involve so many further complications that 
it cannot be directly applied there without further 
development. 

We shall show how the variational technique which 
is so successful in ordinary quantum mechanics can be 
extended to integrals over trajectories. 

STATEMENT OF THE PROBLEM 
With Frohlich's assumptions, the problem is reduced 

to that of finding the properties of the following 
Hamiltonian : 

X[aK+ exp(--iK- X ) - u K  exp(iK. X)]. (1) 

Here x is the vector position of the electron, P its 
conjugate momentum, UK+, QK the creation and annihi- 
lation operators of a phonon (of momentum K). The 
frequency of a phonon is taken to be independent of K. 
Our units are such that h, this frequency, and the 

H. Frohlich, Advances in Physics 3,325 (1954). References to 
other work is given here. 

electron mass are unity. The quantity ci acts as a 
coupling constant, which may be large or small. I n  
conventional units it is given by  

1 / 1  1 \ 8 / 2 m w \ f  

where 6 ,  em are the static and high frequency dielectric 
constant, respectively. I n  a typical case, such as NaC1, 
a may be about 5 .  The wave function of the system 
satisfies (h= 1) 

iw/at = H*, (2) 

so that if p,, and En are the eigenfunctions and eigen- 
values of H ,  

then any solution of (2) is of the form 
HPn=EnQn, ( 3 )  

Now we can cast (1) and (2) into the Lagrangian form 
of quantum mechanics and then eliminate the field 
oscillators (specializing to the case that all phonons are 
virtual). Doing this in exact analogy to quantum 
electrodynamics,2 we find that we must study the sum 
over all trajectories X ( t )  of exp(iS'), where 

This sum will depend on the initial and final conditions 
and on the time interval T. Since it is a solution of the 
Schrodinger Eq. (2), considered as a function of T it 
will contain frequencies En, the lowest of which we seek. 
It is difficult to isolate the lowest frequency, however. 

For that reason, consider the mathematical problem 
of solving 

without question as to the meaning of 1. This has the 
same eigenvalues and eigenfunctions as (3), but a 

* R. P. Feynman, Phys. Rev. 80,440 (1950). 

*/at= -B+, ( 5 )  

660 
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solution will have the form 

For large t any solution therefore asymptotically dies 
out exponentially, the last exponent surviving being 
that of the lowest E, say ED. 

An equation such as (5) can be converted to a path 
integral just as easily as (2) is, and the integral over 
the oscillator coordinates can again be done in an 
analogous way. The Lagrangian form corresponding to 
( 5 )  turns out to be 

K = J  expSDX(l), (6) 

with 

+z-#~JJ 1 x,- x ~ ~ - ~ e - ~ ~ - * ~ ~ ~ s .  (7) 

This is just as one might expect from replacing t in (4) 
by -d .  Now, since K is a solution of (5), its asymptotic 
form for a large 1 interval, 0 to T is 

K - e - E O  (8) 

as T-m.  Therefore, we must estimate the path 
integral (6) for large T .  

VARIATIONAL PRINCIPLE 

The method we shall use is a type of variational 
method. Choose any S1 which is simple and purports 
to be some sort of approximation to S. Then write 

J e x p s a x ( l ) = J  exp(S-S1) expSlaX(t). (9) 

Now this last expression can be looked upon as the 
average of exp(S-S1), the average being taken with 
positive weight expS1. But for any set of real quantities 
f the average of expf exceeds the exponential of the 
average, 

Hence if in (9) we replace S-S1 by its average, 

b P f )  2 e x p m  (10) 

(S-Sl) 

we will underestimate the value of (9). Therefore, if 
E is computed from 

exp((S-S1)) expSIBX(l)-exp-ET, (12) 

then we know that E exceeds the true Eo, 

E 2 Eo. (13) 
If there are any free parameters in Sl we can choose 
as the “best” values those which minimize E. 

Since (S-Sl) defined in (11) is proportional to T ,  
let us write 

(S-S1)= sT. (14) 
Furthermore, the factor exp(S-Sl) in (12) is constant, 
of course, and may be taken outside the integral. 
Finally, suppose the lowest energy El for the action SI 
is known, 

expS1BX(t)-exp(- E J ) ,  (15) 

then we have 
E=Ei-S (16) 

from (12), with s given by (11) and (14). (In the case 
that S and Sl are both simple actions [of the form of 
(18) below] this can readily be shown to be equivalent 
to the usual variational principle.) 

POSSIBLE TRIAL ACTIONS 
Some of the methods which have been applied to 

this problem, so far, correspond to various choices 
for S1. The perturbation method corresponds to 
S1= - 3 s  (d X / d t ) V f  and gives 

E= - a. (17) 
We see immediately that the perturbation result is an 
upper limit to Eo, a result proven only with much 
greater effort by  more usual methods, by Gurari3 and 
Lee and Pines? Another suggestion is 

where V is a potential to be chosen. If a Coulomb 
potential is chosen, V‘(R)=Z/R, and the parameter Z 
varied, one finds 

E= - (25/256)2= -0.09W 

asymptotically for the case that a is very large. For 
large a this corresponds to Landau’s method’ with a 
trial function of the form e-8.. If a harmonic potential 
V ( R )  = kR2 is used (corresponding to a Gaussian trial 
function in Landau’s method) the value is somewhat 
improved : 

If a is not so large, the form (18) can still be used in 
(16). The evaluation of s requires knowledge of the 
eigenfunctions and eigenvalues for the potential V 

a M. Gurari, Phil. Mag. 44,329 (1953). ‘ T. Lee and D. Pines, Phys. Rev. 88, 960 (1952). Lee, Low, 

E= - (1/3 7r)a2= -0 .1ow. (19) 

and Pines, Phys. Rev. 90, 297 (1953). 
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The result is somewhat difficult to evaluate for the 
Coulomb potential, but fairly simple for the harmonic 
case [see (34) below]. However, it  is readily shown 
that for any a less than about 6 no choice of V can 
improve the result (17) for V=O. Frohlich has asked 
for a method which works uniformly over the entire 
range of a. He points out that the artificial binding to 
a special origin, which (18) implies, is a disadvantage. 
It is this which presumably makes any potential V 
give a poorer result than V=O for small a. 

To remedy this, I thought a good idea would be to 
use for S1 the action for a particle bound by a potential 
V( X- Y) to another particle of coordinate Y. This 
latter could have finite mass, so no permanent origin 
would be assumed. Of course the action for such a 
system would contain both x(t) and Y(t). But the 
variables Y(t) could be integrated out, a t  least in 
principle, leaving an effective S1 depending only on X. 
A t  first I tried a Coulomb interaction for V(x-Y) 
but it was rather complicated. The technique may be 
useful in more difficult problems. But here we have 
already seen that an harmonic binding should be as 
good, if not better. Further, an extra particle bound 
harmonically has its variables Y (1) appearing quad- 
ratically in the action. It may therefore be easily 
eliminated explicitly. The result we know from studies 
of similar problems in electrodynamics. We are, in this 
way, led to consider the choice 

Xexp (- w I 1- s 1 )dtds, (20) 

where C and w are parameters, to be chosen later to 
minimize E. 

EVALUATION OF THE ENERGY 

Since S1 contains X only quadratically, all the 
necessary path integrals are easily done.6 Because the 
method may not be familiar we outline it briefly here. 
Define the symbol ( ) as 

Then comparison of S1 and S shows that 

R. P. Feynman, Phys. Rev. 84, 108 (1951), Appendix C. 

We concentrate first on the first term A of (21). I n  
it we may express I X,- x, 1-l by  a Fourier transform, 

1 Xi- X,I-’= [d3K exp[iK. (X,- X.)](27PK2)-1. (23) 

For this  reason we need to study 

(expCiK.(X,- X,)]) 

= f expS1 exp[iK. ( X , -  X,)]DX(t)/ 
1 

J~ expSlDX(1). (23) 

The integral in the numerator is of the form 

where specifically 

f (1) = iK6 ( t  - 7) - iK6 ( t  - C )  . 125) 

Now we shall find (24) insofar as it depends on f or K 
aside from a normalization factor which drops out in  
(23). Incidentally let us notice that the three rec- 
tangular components separate in (24) and we need 
only consider a scalar case. The method of integration 
is to  substitute X( t )=X’ ( t )+Y( t ) ,  where X’(t)  is that 
special function for which the exponent is maximum. 
The variable of integration is now Y ( f ) .  Since the 
exponent is quadratic in X ( t )  and X’ renders it an 
extremum, it can contain Y( t )  only quadratically. 
Evidently Y then separates off as a factor not containing 
f, which may be integrated to give an unimportant 
constant (depends on T only). Therefore within such 
a constant 

I = e x p  -3 Xtf2dt-+C (X,’-X.‘)* [ s ss 
where X’ is that function which minimizes the expres- 
sion [subject for convenience, to X’(O)=X’(T)=O if 
the time interval is 0 to TI. The variation problem 
gives the integral equation 

GX’(t)/dtz= 2CJ(X[-X:)e-wl ‘-“Ids- f ( t ) .  ( 2 7 )  

Using (27), (26) can be simplified to 

Z=exp + f ( t )X’( t )dt  . [ J  1 
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We need merely solve (27) and substitute into (28). 
To do this we define 

Zlt) = - Je-Wl**IX;ds, 
2 

so that 

while (27) is 
d2z ( t ) /dP= WZ[Z ( t )  -X’(f)], 

d2X‘ (t)/dt2 = -[X’ ( t )  - z ( t ) ]  - f ( t )  . 
4 c  

W 

The equations are readily separated and solved. The 
solution for X’(1) substituted into (28) gives, for the 
case (25), 

I=(exp[iK. (X, -  X,)]) 

where we have made the substitution 

v2= 4f (4C/w). (30) 
The result is correctly normalized since it is valid for 
K=O. The integral on K in (22) is a simple Gaussian, 
so that substitution into A gives 

U 31 ~ = T - * a v ~ m [ w 2 r + - ( ~ - e - u r )  v2- w2 e-‘dT. (31) 

To find B we need (( Xt- XJ2). This can be obtained 
by expanding both sides of (29) with respect to K up 
to order A?. Therefore 

4 c  W2 

v3w V2 
f((X,- X,)2)=-(I-e-lp~~)+-I 7--61. 

The integral in B is now easily performed and the 
expression simplifies to  

B = 3 C / w .  (32) 
Finally we need E l ,  the energy belonging to our action 
S1. This is most easily obtained by differentiating both 
sides of (15) with respect to C. One finds immediately 

CdEJdC= B ,  
so that, in view of (32) and (30), integration gives 

El = 3 (v-w), 

since E1=O for C=O. Since E1-B=(3/4v)(v-w)2 we 
obtain finally for our energy expression: 

3 

4v 
E=--(w-w)’- A ,  (33) 

with A given in (31). The quantities v, w can be con- 
sidered as two parameters which may be varied sepa- 
rately to obtain a minimum. 

The integral in A unfortunately cannot be performed 
in closed form, so that a complete determination of E 
requires numerical integration. It is, however, possible 
to obtain approximate expressions in various limiting 
cases. The case of large a corresponds to large v. The 
choice w = 0 leads to an integral 

and E1=3V/4. I t  corresponds to the use of a fixed 
harmonic binding potential in (18). For large v ,  
can be neglected, so that A=~-*av+. This corresponds 
to using a Gaussian trial function in Landau’s method. 
For a less than 5.8 and w=O, (33) does not give a mini- 
mum unless v=O,  so that the w=O case does not give a 
single expression for all ranges of a. I n  spite of this 
disadvantage the result with (34) is relatively simple 
and fairly accurate. For a>6,  only fairly large v are 
important, and the asymptotic formula (good to 
1 percent for v>4), 

A =a(w/~)+[I+ (2 lna)/v], 

is convenient. Frohlich, however, considers the discon- 
tinuity a t  a= 6 as a serious disadvantage, which it is the 
purpose of this paper to avoid. This we do by choosing 
7 0  different from zero. 

Let us study (33), just for small a, in case w is not 
zero. The minimum will occur for v near w. Therefore 
write v=(l+e)w, consider c small, and expand the 
root in (31). This gives 

A =a(v/w)[ 1- ~ ~ m r t e - r ( l - ~ - w r ) d r / w r * +  * - I . 
The integral is 

(35) 

The problem (33) then corresponds, in this order, to 
minimizing 

That is, 

which is valid for small a only, as c was assumed small. 
The resulting energy is 

2w-“ (1+ w) +- 11 = P. 

E=+&t2-a-ae( 1- P) .  

E =  2a(l - P ) / ~ w ,  

E= - a--d( 1 - P)’/~w. 

Our method therefore gives a correction even for small 
a. I t  is least for w=3, in which case it gives 

E= - a-d/81= -a-1.23(~r/lO)~. (36) 

It is not sensitive to the choice of w. For example, 
for w = l  the 1.23 falls only to 0.98. The method of 
Lee and Pines6 gives exactly this result (36) to this 
order. The perturbation expansion has been carried to 

8 T. Lee and D. Pines, Phys. Rev. 92,883 (1953). 
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second order by Haga’ who shows that the exact 
coefficient of the term should be 1.26, so that 
our variational method is remarkably accurate for 
small a. 

The opposite extreme of large a corresponds to large 
v, and, as we shall see, w near 1. Since v>>w the integral 
(31) reduces in the first approximation to (34), which 
we can use in its asymptotic form. The next approxi- 
mation in w can be obtained by expanding the radical 
in (31), considering w/v<<l. Furthermore, e-’’ is 
negligible. In this way we get 

). (37) 
3 21n2 d 

4v 
E=-(v-w)~-~Y(v/T)* 

This is minimum, within our approximation of large v, 
whenw=l, and ti= (40L2/9~)-((4ln2-1): 

E= - a2/37r-3 ln2--4= -0.1OW-2.83. (38) 

The approximations do not keep E as a n  upper limit as, 
unfortunately, the further terms, of order l/d are 
probably positive. 

For further numerical work it is probably sufficiently 
accurate to take w = l  for all a, rather than do the 
extra work needed to minimize this extra variable. 
This value of w means that the trial S1 has the same 
time exponential in the interaction term as does S .  
For small a, that is, u near 1, the integral can be ex- 
panded in a power series in (u-1). The resulting 
energy is (w= 1) : 

E = - a - 0.98 (a/ 10)’- 0.60 (a 11 0) 
-0.14(a/10)4. . .. (39) 

The two expressions (38), (39) fit fairly well near a=5. 
For practical purposes it may suffice to use (39) below 
a=5 and (38) above. If more accuracy than 3 percent 
is needed near a=S numerical integration of A must 
be performed. The value of v which gives (39) is 

v =  1+1.14(a/10)+ 1.35(a/10)2+ l.88(a/10)3. 

This may help to choose an appropriate v .  For w = 3  
the results are 

E= - a- 1.23(a/10)2-0.64(~/10)3. . ., 
~=3+2.22(a/lO)+ 1 .97(~~/10)~ .  . .. 

EFFECTIVE MASS 

Another quantity of interest is the effective mass. 
If the particle moves with a mean group velocity V ,  
its energy should be greater. For small V the energy 
goes as V, and writing it as mV”/ .we call m the 
effective mass. Since there is an operator analogous to 
the momentum which commutes with the Hamiltonian, 
it would be expected that there is a variational principle 
which minimizes the energy for each momentum. That  
is, we ought to be able to extend our method to yield 
’ E. Haga, Progr. Theoret. Phys. (Japan) 11,449 (1954). 

an upper limit to the energy for each value of V ,  or 
better, of momentum Q. We have not found the 
expected extension. 

If we limit ourselves just to finding the effective 
mass for low velocities, however, we may proceed in 
this manner: For a free particle of mass m whose initial 
coordinate is 0 and final coordinate is XT the sum on 
trajectories is 

exp(-wzXT2/2T). (40) 
Hence we can study the effective mass for our system 
by studying the asymptotic form of (6) in the case 
&#O. The asymptotic form should vary for small 
XT as exp(-EoT--mX~~/2T), its dependence on X T  
determining m. This only requires that (27) be solved 
for the boundary conditions X’=O a t  f = O  and XI= X T  
a t  I= T. There are some confusing complications a t  the 
end points so it is easier to proceed as follows. We 
will put & = U T  so that the propagation (40) is 
exp(-+mVT). [Note that U is not a physical velocity 
because f is an artificial parameter in Eq. ( S ) ,  and is 
not the time.] That is, we seek the total energy and 
equate it to Eo++mu2. But if we substitute XI= X” 
+Uf into (27), we see that it is a solution if x” is. 
This X” goes from 0 a t  f = O  to 0 at  t =  T ,  and is there- 
fore our previous solution. Such a substitution into 
(26) means that the term involving f adds a term 
exp(JfU.fdt) so that this is the factor by which I is 
multiplied, aside from normalization. For the f given 
in (25) this is exp[iK.U(T-u)] so that we now have 

1 K2 

2 v2 
=exp[ - - - - F ( ( T - ~ ( ) + ~ K . U ( T - - ( T )  , (41) 

where 
212- W 2 

F(T)=W2T+-(1-C?-ur). (42) 
V 

Substitution into (22) and (21) gives for A the value 

A (U) = 2 - t a d m s  ( 2 ~ ~ K ~ ) - ’ e - ~  

3 K2 
d3Kd~. (43) 

Second differentiation of (41) with respect to K shows 
that 

so that one obtains for B the value 

( ( x ,  - XS)2) = 3F (f - 3) v-2+ u2 ( t  - s)2, 

3c 2 c  
B=-+-U2. 

vw w3 

We again find E, from dEl/dC= B/C and E1=+U2 for 
C=O. Thus 

El = 3 ( V  - ~ ) + t  u2 (1 + 4Cw-9, 
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and our final expression is 

E = iVZ+ (3/4~)  (Y- w ) ~ -  A ( u) . (44) 

We next expand A (U) to order u2 and write the 
kinetic energy as mW/2 to find, finally, 

m = 1 +~T-~~S~~F(i) , - 'e- . izdr.  (45) 

The values of the parameters to use in (45) are those 
which were previously found to minimize E when U=0. 

m= 1+Qa+0.0252+. . . (46) 

for w=3, while for w =  1 the 0.025 becomes 0.023. For 
large a it becomes 

0 

For small a this gives 

m= 16cr4/817r4= 202(01/lO)~. (47) 

Our energy values, coming from a minimum principle, 
are much more accurate than the mass values, whose 
precision, especially for large a, is hard to judge. Since 
(46) and (47) do not match well, intermediate values 
of a require numerical integration of (45). 

Lee and Pinesa have worked with a different type of 
variational principle. It seems to be nearly as good as 
ours for a less than about 5, but is poor for larger CY 

(for example, a t  a= 15, Lee and Pines find Eo< - 17.6, 
while we find Eo< -26.8). This appears to contradict 
their statement that their method is exact for large a. 
They are referring to a different problem, however, 
in which the upper momenta are cut off. This means 
that in S in (7) the function I X,- X.1-l is replaced by 
some other function V (  I X t -  X.1) which differs for 
small I X t -  x.1. I t  is evident, for large a, that the best 
trajectory will be the one that wanders only slightly and 
the energy will be 2-*aV(O) in the limit. Their method 
gives this result in the limit, as ours would also. For 
the case where V is singular, so V(0)  does not exist 
their method is not exact, and it is inaccurate for 

for intermediate values of a even if V(0)  exists, if V 
has steep walls. 

The method is readily extended to cases in which the 
photon frequencies are not constant, and the coupling 
is not just proportional to K F .  The same trial action 
S1 can be used, but the integral for A becomes more 
complicated. For the Hamiltonian 

H= ~P+C,T~,TUK+UK+ V-* CK[CK*UK+ exp( - i K .  X) 
+CKUR exp(+iK. X)], 

Eq. (33) still holds; the only change is that the integral 
for A becomes 

where F ( T )  is given in (42). 
An attempt has been made to apply this method to 

meson problems. The case of scalar nucleons interacting 
by scalar mesons seems tractable, but the greater 
complexity of the more realistic problems shows the 
need for further development. 

We are limited in our choice of .Sl to quadratic 
functionals, for those are the only ones we can evaluate 
directly as path integrals. It would be desirable to find 
ou t  how this method may be expressed in conventional 
notation, for a wider class of trial functionals might 
thereby become available. 

I am indebted to H. Frohlich for bringing the problem 
to my attention, and for his comments on it, and to 
G. Speisman for emphasizing the importance of the 
general inequality (10). 

Note  added in proof.-Professor Frolich and Professor 
Pines have kindly informed me that S. I. Pekar [Zhur. 
Eksptl. i Teort. Fiz. 19, 796 (1949)] has calculated the 
limiting values of energy and mass for large a, by an 
adiabatic approximation. The energy is -0.1088a2 and 
the mass is 232(~~/10)~.  Therefore our variational 
method gives an error of only 3 percent in the energy 
and 15 percent in the mass for large a, and presumably 
smaller errors for smaller a. 
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We have obtained a11 approximate expression for the impedance 
function a t  all frequencies, temperatures, and coupling strengths 
of an electron coupled to a polar lattice (a system commonly called 
a polaron). The starting point for the calculation is the quantum 
mechanical expression for the expected current. The phonon co- 
ordinates are eliminated from this expression by well-known field- 
theory techniques. The resulting exact “influence functional” is 
then approximated by a corresponding quadratic “influence func- 
tional” which, it is hoped, imitates the real polaron. Correction 
terms are computed to account for the difference between the 
approximate impedance and the exact polaron impedance in a 
manner closely analogous to F-eynman’s trcatment of the polaron 
self-energy. I n  fact, the analytic evaluation of the expression for 
the impedance obtained here is carried out using the approximate 

I. INTRODUCTION 

N electron in a polar crystal interacts with the A surrounding crystal. The effect of this interaction 
is to surround the electron with a distorted lattice: a 
cloud of phonons. The nature of this system, “the 
polaron,” has been extensively studied.’-* I t  is interest- 
ing as a plienonienon in solids, but it has an extended 
interest since it is one of the simplest examples of the 
interaction of a particle and a field. I t  is in many ways 
analogous to the problem of a nucleon interacting with 
a meson field. (The estra complications of spin and iso- 
topic spin do not, however, permit direct use of the 
methods to be described here, without some extension 
of their power.) In cases of practical interest, the 
coupling between the electron and the longitudinal 
optical modes of vibration of the crystal is sufficiently 
strong that simple perturbation methods do not apply. 
I t  is the strong-coupling aspect of the problem which 
has aroused so much interest. For this reason, the 
“polaron problem” has generally been studied in a con- 
siderably idealized form. 

I t  is assumed that in the undistorted lattice the elcc- 
tron would move as a free particlc (with possibly an 
altered mass), that only the optical modes interact with 
the electron, that they do so in a very simple way, and 

‘R.  P. Feynman, Phys. Rev. 97, 660 (1955), hereafter to be 

’H. Frohlich, Advances in Physics, edited by N. 1;. Nott  
called I. 

(Taylor and Francis, Ltd., London, 1954), Vol. 3, p. 325. 
S. I. Pekar, Zhur. Eksp. i Teoret. Fiz. 19, 796 (1949). 
T. D. Schultz, Phys. Rev. 116, 526 (1960). 

“influence functional” that was successfully employed in minimiz- 
ing the bindins (and free) energy of the polaron in earlier calcula- 
tions. However, the accuracy obtained using this approximation, 
for the impedance calculation, is less satisfactory and i ts  limita- 
tions are discussed. Nevertheless, beginning a t  intermediate 
coupling strengths, the approximate impedance produces a level 
structure of increasing complexityand narrowing resonances as the 
coupling strengthens. This suggests that  further refinements may 
be fruitful. Methods for finding a better quadratic influence func- 
tional for use in our impedance expression as well as ways of 
improving the expression further are suggested. A comparison of 
our results with those of the Boltzmann equation points up 
interesting differelices which arise from reversing the order of 
taking limits of zero frequency and coupling. 

that they all have the same frequency. These are quite 
drastic simplifications; however, sufficient data are not 
available to improve these assumptions so as to repre- 
sent any actual crystal. The methods given here do not 
require these simplilications (except perhaps that the 
electron’s kinetic energy is a quadratic function of its 
momentum) ; the same techniques can be readily applied 
to include variations of frequency and coupling of the 
optical modes with wave number, influences of other 
modes, etc., although some of the integrals done analyti- 
cally here might have to be done numerically. 

In  discussing losses and mobility such idealization 
may alter completely the true behavior, because some 
essential loss mechanism such as lattice defects or inter- 
action with acoustic phonons has been idealized away. 
I t  is important to appreciate, therefore, that in all the 
remaining analysis and discussion we shall be talking 
only about a strictly idealized problem. 

One of us1 has shown that the ground-state energy 
und effective mass of the polaron could be calculated 
with considec;ible accuracy from a variational principal 
obeyed by path integrals. Of more interest, experi- 
mentally, is the mobility of the polaron and, moro 
generdly, its response to weak, spatially uniform, time 
varying electric fields. This is a more complicated 
problem involving the rate a t  which a drifting electron 
loses momentum by phonon interactions, through emis- 
bions of phonons or collisions with phonons already 
present. In the practical situation a t  temperatures not 
too near the melting point of the crystal the density of 

1004 



244 

M O B I L I T Y  01; S L O \ \ ’  E L E C T R O N S  I N  P O L A R  C R Y S T A L  1005 

optical phonons is quite low as a result of the high energy 
required to evcitc them. In our idealized model losses 
can occur only through collisions with optical phonons, 
SO that these collisions could be analyzed by first finding 
the collision cross section and then using the Boltzmann 
equation (or equivalently the usual formulas for trans- 
port cross section) to get the mobility.$ This is the 
technique generally employed in transport problems. 
Yet there exists ;I class of transport problems in  which 
this cannot be done. If many phonons are colliding 
simultaneously with an electron most of the time, and 
if there are possibly quantum interferences among these 
collisions (such that the cross section for scattering from 
one phonon depends on the presence and behavior of 
others), the collisions cannot be separated in time as 
required for the validity of the Boltzmann transport 
equation. What we need to calculate (the average posi- 
tion of an electron a t  time 1, if, a t  1=0 a pulsed electric 
field was applied) can be easily written formally, but 
little has been done with such a form unless the coupling 
is weak or the collisions are well ~eparated.~.’ 
.4 secondary interest which we had in this problem 

was to see if we could compute transport problems in 
cases when not only the perturbation theory, but also 
the Boltzmann equation is inadequate. Therefore, in 
spite of its lack of reality, we have analyzed the problem 
of the impedance of a polaron of arbitrary coupling 
strength in an oscillating electric field, for arbitrary 
temperatures (temperatures so high perhaps that the 
Boltzmann factor e--Ao‘kT far the energy ?w of the 
optical modes is not necessarily small). 

In any specific range of conditions, such as low tem- 
perature, high temperature, or high frequency of ex- 
ternal electric field, etc., special approximations might 
be made to obtain a better answer than is given by 
our general formula. However, it was of interest to see 
how well one could do in a general way for arbitrary 
values of the parameters. 

11. FORMULATION OF THE MOBILITY PROBLEM 
IN TERMS OF THE ELECTRON 

COORDINATES ALONE 

If a weak alternating electric field E=EoeiVt is applied 
to the crystal in the 3: direction, the current induced 
(by motion of the electron) may be written as 

j ( u )  = [ z ( ~ ) ] - ~ E , # ~ ~ .  (1) 

This defines the impedance function z(v) which we wish 
to calculate. We will assume that the crystal is isotropic 
SO that j =  ( k ) ,  where ( x )  is the expectation of the elec- 
tron displacement in the x direction (taking the electric 
charge as unity). The displacement ( x )  is E/ iv z (v ) .  

Transformed to time variables, this implies that 

( x (  r ) )  = - [= iG( r - u)Iq2(u)du, 

111 

(2) 

where C ( r ) ,  i times the electron displaceincut a t  time T 

induced by a pulsed electric field a t  time zero, h:ir ths 
inverse transform 

( 3 )  G(T)e-” ‘ds = G(v) = [.4v)]-’. 

Wc take C(r)=O for T<O. ’  
The effect of a perturbing field E(l) i n  the .u direction 

is to add to the complete Hamiltonian of the system If, 
the term --xE(t)m - E. X (where N is the component 
of the vector position of the electron X in the direction 
of the field). If at some time (a), long before the field is 
turned on [i.e., E(1) = 0 for 1 <a] the state of the system 
is represented by the density matrix par then the density 
matrix a t  time r is U(r,u)p,,U’-l(T,u) Thn<, the es- 
pected position a t  time r is 

where 
( % ( T ) ) =  Tr[x~(~,a)p.o.’-*(~,(i)], (4) 

is the unitary operator for the development of a statc 
in time with the complete Hamiltonian H -  X .  E. 

We use a time-ordered operator notation; all un- 
primed operators are placed to the left, latest times 
farthest to the left, then the matrix p a t  the right and 
finally all primed operators on the right of p ,  with latest 
times farthest to the right.g Thus, primed operators 
are ordered oppositely to unprimed. We can, therefore, 
write 

U’-’(T,U) = cxp i [Hs’- X.’. E’(x)]~s . ( 6 )  ii.; 1 
The quantity E is not an operator but simply a function 
of s so that in (4), E’(s)=E(s).  However, as we shall 
see in a moment, it  is convenient to handle a more 
general case where E and E’ are different arbitrary 
functions of s. 

For weak fields we expand (4) to first order in E and 
find an expression for ~ ( r )  of the form (2). Evidently, 
-;G(T-u) is the response to a 6 function E ,  so we may 
set E(s)= d(s-u)=E’(s) ,  substitute into (4), and ex- 
pand the exponential to first order i n  e. However, we 
note that (4) itself may be considered to be --i times the 
first functional derivative nith respect to E(T)-E’(T) of 

g= Tr[ U(b,a)paU’-l(b,u)], (7) 
J. Howarth and E. 13. Sondheimer, Proc. Roy. SOC. (London) 

A219, 53 (1953). 
‘R. Kubo, J. Phys. SOC. Japan 12, 570, 1203 (1957). ’ M. Lax, Phys. Rev. 109, 1921 (1958). 

8 I n  our idealized model X and E will be in the same direction, 
although in general (in the presence of magnetic field or aniso- 
tropic crystalline fields), G and e mill be tensors. 

R.  P. Feynman, Phys. Rev. 84, 108 (1951). 
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as b --f + Q, , and a + - a. That is to say, we calculate 
g from (S), (6), and (7) with 

and 
E(s )  = e&(s-u)+$(3-  T )  ( 8 4  

s ’ ( S ) =  €6(s -U) - -6 (s -T ) .  (Sb) 

G(T- U) = q(a?g/&$t),,,,o. (9) 

Pa= e.p(-PWQ, (10) 

The quantity we require is 

If the initial state is one of a definite temperature 
T ,  then 

where p= l / k T  and Q is a normalizing constant, which 
we eliminate by calculating (1/2g)(Pg/&$t) evaluated 
a t  c = ~ = 0 .  

The Hamiltonian representing an electron in inter- 
action with the vibrational modes of a crystal is 

H =  P2/2m+CK W K U K ~ U K  

+ V-”’ CK [ C K * U ~ +  exp(-iK. X) 
+CpaK exp(iK. X)]. (1 1) 

are the annihilation and 
creation operation of phonons of momentum K,  fre- 
quency WK, coupled to the electron via the coupling 
coefficient CK; P is the momentum of the electron; 
X is its coordinate; m is its effective mass calculateed in 
a fixed lattice; V is the crystal volume. We take 
7z=l ,  m = l .  

As a specific example we shall take the simplified 
model of FrohlichZ in which W K = ~  independent of K ,  

In this expression, UK, 

and CK= i23’47r*/za1’2/ 1 K 1 ,  where a is a constant relate2 
to the dielectric constant; intermediate coupling corre- 
sponds to a= 6. 

The quantity p., the initial distribution, should be 
c-fl” for the full Hamiltonian H. If the time (a) is 
sufficiently far in the past we can just as well take 
p,=constXexp(-p CK WKUK’UK). That  is, we may 
assume that in the past only the oscillators were in 
thermal equilibrium a t  temperature P I .  As a result of 
the coupling, the entire system will come very quickly 
to thermal equilibrium a t  the same temperature. The 
energy of the single electron and its coupling are in- 
finitesimal (of the order 1/V) relative to the heat bath 
of the system of phonon oscillators, so that the exchange 
of energy between the electron and the lattice will bring 
everything to thermal equilibrium a t  the original lattice 
temperature. 

With this choice of pa the dependence of U ,  U’, and 
p a  in (7) on the phonon oscillator coordinates is suffi- 
ciently simple so that the oscillator coordinates may be 
eliminated and the entire expression reduced to a double 
path intcgral involving the electrons coordinates only. 
This reduction, explained in Appendix A, is carried out 
by methods analogous to those used before by one of 
the authors on problems in  electrodynamic^.^ 

The result is (taking a + - OD, b + + Q,) 

(12) 

whcrc 

- E’(t). X’(t)]t lL 

X(exp[-iK. X(s)]+exp[-iK- X ( S ) ) + ~ U ( W K ,  t-s)(exp[-iK. X(s)]-exp[-iK- X’(s)]}]d~dt. (13) 

The functions y(w,r )  and U(W,T) are given in Appendix A. I n  the spccial case of Frohlich’s Hamiltonian the integral 
on K can be performed to give 

+ ,,-8,zp j+m [e-ilt- 8 I + 2 P( p) codj - s) c+’I I + 2P (p)  cos (t  - s) + - -* I X(0- X(S) I 1 X’(0- X’(S) I 
2 L--a) + 2P(@) cos( 1 - s ) ]  

- Idtds, (14) 

where P@)= [eb- IT’. 
The double integral DX(t)DX’(t) is only over those paths which satisfy the boundary condition X(t)- X’(t)=O 

a t  times t approaching *m. The boundary conditions on the paths a t  large positive or negative times, reflects 
the arbitrariness of the initial electron state. 

I X’(0- X(S) I 
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Thus, we have reduced the problem of find G via (7), 
(81, and (9) to that of finding the dependence of a path 
integral (12) on the forcing functions E and E'. This 
expression is exact [for the Hamiltonian ( l l ) ]  but quite 
complicated. In  the next section we discuss approrimate 
methods of evaluation. 

action term in S as indicating that a t  time 1 the particle 
acts as though it were in a potential 2-"ol~-~e-'"') 
X I  X(l)- X(s)l-'ds resulting from the electrostatic 
interaction of the electron with its mean charge density 
of its previous positions [the weight for different times 
being e-+#)]. The assumption then is that such a 
potential may be roughly replaced by a parabolic 
potential centered a t  the mean position of the electron 
in the past [the weight for different times being 

I n  I, a path integral, similar to (14), had to be e-w+a) 1. I n  fact, the extra parameter w can be adjustctl 
rough to compensate partly for the error of using a parabolic 

approximation the "interaction of the charge with I,otential in place of the true form,  TI^^^ 
itself" represented there by a term in the action function argument strongly suggests that the dynamical behavior 
s, 2--(11'&-1~--.l I x(t)- x(s)\-', might be imitated by a of the electron, (its motion under an applied electric 
function so in which this term is replaced by field) might be described approximately i f  we replace 
l /2Ce-wlt-8~[x(i)-  X(S)] ' .  One may think of the inter- 9 by a Qo, where 

III. A METHOD OF APPROXIMATION 

It was there that in 

1 dX( t )  1 dX'(1) ' @.=/I [-( 2 -)'--( dl 
2 -) di ]dl-[mm [E(I).  X(i)- E'(/). X'(/)]dl 

-5 /+-mi_, 
{ [ X(/)- X(s)]"e-i" I[-"+21-'(Bw) coszfl(f-s)] 

2 --m 

+ [ X' (1 )  - X'(s)]"e+;""- + 21'(PUI) cosw(l-s)] 

The parameters C and w are to be determined so as 
to approximate CP as closely as possible. At zero tem- 
perature (P=O), we shall fix C and w at the values 
given in I. The assumption that Qo is a good approxi- 
mation to Q for computing the mobility a t  low tem- 
peratures is based on the supposition that the compari- 
son Lagrangian, which gives a good fit to the ground- 
state energy a t  zero temperature, will  also give the 
dynamical behavior of the system. In finding the 
ground-state energy, the parameters can be chosen b y  
a variational principle but we know of no such principle 
for the mobility. At finite temperatures the parameters 
C and w can be determined from a variational principal 
for the free energy which is a direct esterision of the 
method used in I for the ground-state energy, and re- 
duces to it in the zero-temperature limit. Others~"JOa 
have derived in detail the expressions from which the 
best C and w may be determined for finite p. Thus, C 
and w can be considered as known functions of a and P 
even though, unfortunately, no closed analytic form 
exists, and in any specific calculation they would have 
to be evaluated numerically. 

Actually, we shall not be satisfied merely to replace 
by 90, but we shall obtain a first correction to z ( v )  

by studying, in the next section, the first term in an 

lo Y. Osaka, Progr. Theoret. Phys. (Kyoto) 22, 437 (1959). 
lD. M. A. Krivologz and S. I. Pekar, Bull. Acad. Sci. U.S.S.R. 

21, 1, 13, 29 (1957). 

expansion of exp[i(@-*,J]: 

+/e'"Oi(9-9,)DXDXf. (16) 

In  this section, however, we will consider only the 
first term, 

go = e i W  Xa X'. (17) 1 
We can expect to evaluate the integral ( 1 7 )  exactly, 

because the expression for Qo is a quadratic form in 
X ( t )  X'( t )  and all such "Gaussian" path integrals can 
be evaluated e x a ~ t l y . ~  There are several ways to perform 
the integration in (17). One way is to observe that the 
expression (15) is obtained by eliminating the variable 
Y from a system in which an electron interacts with a 
single particle described by the Lagrangian 

L,=-(dX/d l ) '+3(dY/d t ) ' - -~(X-  Y)?+E. X. (IS) 

If we calculate the g for such a system by integrating 
over all the Y variables first, then (17) results; provided 
we choose k=(v*-w2) and M=(v2-wZ) /w2 ,  where 
v2=w*+4C/w. However, Lo can be re-analyzed as the 
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sum of two normal modes, 

so that go can be written as the product of two factors, 
one for each harmonic oscillator. For a single oscillator 
of mass m and frequency w ,  coupled as r(i). X, the 
value of g is given in Appendix-A. Here we have two 
oscillators, one of mass ml=M+ 1 = v2/.02 and frequency 
w l = O  coupled with a r(t)= E(t), and a second oscillator 
with mZ=M/M+l, wz=v, and r(i)=-(M/M+l)E(t) 
= -[(v2-w2)/v2]E(t). If the contributions of the two 
normal modes are combined, go takes the form 

fm 

go= e r p ( i  iz Cf(- .)-f’(- .)I( Cf(Y)+Y(.)I~d.)  

+ U(J4 - 1’(.)1.1 O b )  1 dv), (20) 

where” 

V,(v)= - ( v 2 - W ? ) / ( Y - - i P ) 2 [ ( Y - i L ) ? - v 2 ]  (21) 
and 

We have expressed E(t) and E’(1) by their Fourier 
transforms 

4- 
f( Y) = /- E( t)e+ W. (23) 

To obtain Go(7-u) we must evaluate go for E and E’ 
given in (8), that is to say, we must substitute 

interpretation that G&) is the response we would ha\le 
predicted for the system Lo had we treated i t  classically. 
I n  addition, there is no temperature dependence in Go 
(except through the variation of the parameters v ,  w with 
temperature). Both of these well-known results follow 
from the linearity of L0.1zJ3 

For a particle of mass m, for low frequencies, 
G= - - i /mv2 so that a comparison of this expression wit11 
(21) and (26) gives an effective electron mass m=v2/w2. 
This value for m is not the same as the more accurate 
value given in I ,  but as Shultz‘ has shown, it is numeri- 
cally not very different over a wide range of a. Thus, 
the reactive part of Go may be satisfactory, but the 
dissipative (real part) appearing as it does all at the 
single frequency v, must be only a very crude 
approximation. 

I n  the nest section we shall compute the corrections 
implied by the additional expansion terms in (16). We 
shall find that the mass is now exactly that  given in I, 
and that the dissipatiion has a much more realistic 
behavior. 

IV. FIRST CORRECTION TERM 

To evaluate the second term on the right-hand side 
of (16) we shall have to integrate ei4~(@-+0). I n  order 
to see what is involved, consider only one of the terms 
arising from @e’*O: 

1 x b ( W K ,  t-S)+ia(CL’K, l-s)]dsdl 

XDX(t)DX’(t). (27) 

Other terms from 9 are similar to  (27) with some re- 
placements of X by X’, while the terms from 90 we will 
consider later. Evaluation of (27) requires a knowledge 
of the path integral 

into (20), and find the term of order c9. Evidently R ( K , ~ , ~ ) =  eicboexp{i~.[x(t)- X ( ~ ) I ) D X ~ X ’ .  (28) 

Go( T - u )  = -- Yo(Y)eCi.(r‘)dy~ (25) Once R(K,l ,s)  has been evaluated, (27) becomes an 

I 
+ i  +- 

27 L ordinary multiple integral: 
where G,-,(T-u) is the zeroth order approsimation to d3K + m -  
G(7-U) [Eq. (2)]. Therefore, .=/ G$cKlz/- I, R(K,t,s) 

Go(Y)= + i Y o ( ~ ) .  (26) 
X b ( W K ,  f--s)+ia(WK, l-s)]dsdt.  (29) Since Yo is the classical response function for the 

comparison system LO, the result has the immediate 
I* c is a small positive quantity and the limit c + 0 is to be 

taken. 

I* F. L. Vernon, Jr., Ph.D. thesis, California Institute of Tech- 
R. W. Hellwarth, Hughes Research Laboratories, Fourth 

nology, 1959 (unpublished). 

Quarterly Progress Report, September 15, 1958 (unpublished). 
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The function R is easily evaluated. I t  is clearly given by 
our general formula (20) with 

f(”) = (ee-iw+ l l e - i rr ) f+  K ( @ f  - e-i**) (30) 

f (v)=  (ce-iv*-tp+vr)2. (31) 

andL4 

Similarly, a term of the form (27) with X(l) replaced 
by X’(l) can be expressed in terms of our general path 
integral (20) by using the proper f’s, 

and 
f(,,)= (ce-ivu+ve-irr)$- K e - i p *  (32) 

f’(u)= (ee- ivc-ve- ivr ) i -  K e - i v f  (33) 

I n  this way, Jei*o@D XD X‘ can be evaluated. Similarly 
the term Jei*o@&DXDX’ may be obtained. To  get 
Jei*o[X(t)- X(s)]zDXDX’, one can differentiate R 
with respect to K twice and evaluate it a t  K=O. 
(Details are given in Appendix B.) 

The final result for the first-order change in G is 

GI= -iU,z(~)~(~)+(4C/~)y?/(~z-~~)], (34) 

where 

x ( u )  = 1 [ I -  eu.1 ImS(u)du, (354  

and 

[exp(iwKu) + 2P(pwK)  cos(wrzc)]. (3%) 

“Im” means the imaginary part and the function D(u) 
is defined as 

w z  ya-  9 

D(U) = - -[ 1 - e + i s l r  

v2 [ w2v w- 

+4P(pu) sin’(vu/2)]-iu+zi~/~ . (3.5~) 

For Frolilich’s Hamiltonian, the integration over K may 
be done to give 

(36) 

1 
S(u) = 2c~/32/?r( [D(u)]-3/2[ei“+2P(P) COSZL]} . 

We have found an approximate form for C ( P ) :  

G(Y)=Go(Y)+GI(v). (37) 

From it we may find the impedance to rust order in 
Gi(v) : 

UZ(U)= l/G(~)~l/Go(~)-[l/Go(~)’]lci(~). (38) 

The question arises as to whether it is more accurate to 
expand in this way or to leave the formula as uz(u) 

I‘ Equation (20) is a one-dimensional formula. For the case of 
vector forces the product of two fs is to be interpreted as a dot 
product . 

= (Go+CJ-l. Of course, if GI were truly small it would 
not matter. However, there are excellent reasons to 
believe that the expanded form is far more accurate. 
This is best explained by considering a simple example 
of a free particle to which we add a harmonic binding 
as a perturbation. The resulting G’s are [ao arising 
from +in(dX/dt)Z only], 

Go(”)= +;Yo(”)= -i/nzuz (39a) 

GI(”)= - iwOz/ t~w4,  (39b) 

where wo is the natural frequency of the oscillator. In 
this case the expanded form of z(u) is 

and 

z’uz(Y)=m(wo*-u~). (40) 

The true C(u) shows a structure (resonance a1 v=wo) 
which is not reflected in an expanded form of G, but 
which is precisely duplicated (for this linear system) if 
one expands z(u). Therefore, we substitute (34) into (38) 
to obtain the simple result, 

- iuz(u) = u? - y. (P) . (41) 

With X ( U )  given by (35), this is our final expression for 
the impedance of the polaron. It is Eqs. (41) and (35) 
which we will evaluate in various limits and discuss in 
the following sections. 

The first term on the right-hand side of (41) is a pure 
free-particle term, while x ( u )  contains all of the correc- 
tions due to the interaction with phonons. The entire 
dependence of our results (41) on the trial action @po is 
in D(u), Eq. (3.5~). D(u) in turn appears only in the 
exponential term in Eq. (35b). This exponential is an 
effect due to recoil as can be seen by expanding the 
exp(iK. X) term in the Hamiltonian as l + i K .  X (which 
we may call a dipole, or linear coupling approximation). 
If the expansion is made, then the exponential term 
e--K2D(t1)’2 in (35b) will not appear. In other words, if 
we had any problem in which the field oscillators were 
coupled linearly to the electron’s coordinate X, then 
our method would give us the exact formula for thc 
impedance irrespective of the choice made for the trial 
functional @0.15 This is fact in the best argument for 
treating the perturbation expansion (16) as an expansion 
for Z ( P )  in the manner of Eq. (38). 

Therefore, insofar as the system of phonons beliaves 
as though they were linearly coupled, so there were no 
recoil effects, (41) is exact. However, recoil effects are 
included in (41); it is only that they are not included 
precisely. They are approximated by finding their eliect 
for the imitative functional rather than the true 
functional @. For this reason we expect (41) to he an 
excellent approximation to the true impedance of tlie 
polaron. 

16Assuming that also im lies a linear coupling and is a 
quadratic functional of X(t), X.5). 
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V. BEHAVIOR OF THE IMPEDANCE 

For purposes of further analysis in which we shall 
change the contour of integration on the variable u, we 
list some properties of S(u). For real u, S*(u)=S(-u)  
and S(iu) is purely real. In  addition S(u)=S(i/I-u) 
for complex u. The real part of D(u) must be positive 
in order for the K integral to converge. Therefore, the 
region of u where this happens, namely the strip parallel 
to the real axis between the lines u=real and 
u=real+@, is the region free of singularities for S(u) .  
In  the limit of zero temperatures (0+ m )  this strip, 
over which S(u) is analytic, widens to include the entire 
upper half-plane. 

1. Zero Temperature, v < 1 ; Effective Mass  

For Frohlich’s case we consider first the case v < l ,  
@= m . Then the path of integration [in the integral for 
~ ( v ) ]  along the real axis may be rotated to the path along 
the positive or negative imaginary axis u=O to f i m  
(depending on the sign of eiu). The resulting expression is 

w? -3/? 

( l - P ‘ ) + - T  d7. (42) 1 xr- 02 

v?--w? 

Therefore, z is purely imaginary for v < l  and there is 
no dissipation at  the absolute zero of temperature (a dc 
field will continue to accelerate the electrons indefi- 
nitely). The reason for this behavior is simply that there 
are no existing phonons for the electrons to scatter off 
and none can be created by the electrons until the 
frequency u of the applied field is high enough to excite 
the electrons to a state of energy hv higher than the 
energy ho needed to create a phonon. If there is a range 
of frequencies w down to zero (as for acoustic modes) 
then a resistance exists a t  any frequency of the applied 
field and at  zero temperature. I n  the Frohlich model it 
begins a t  v = l .  Of course, a dc field will eventually 
speed the electrons up until they can radiate phonons 
and dissipate energy. However, this is a nonlinear effect 
in the applied field strength and is not described by a 
theory of the impedance. For extremely low frequencies 
Y we can put (1-coshvr)=-v2~*/2. The result is that 

VZ-WZ w 2  -3/2 

x [ ( y ) ( ~ - e - * u ) + - u ]  0. V 2  du}.  (43) 

The polaron behaves like a free particle with an esective 
mass. This mass is the same as the one derived in I, by 
a modification of the variational ground-state energy 
calculation. 

2. General Expression for Dissipation 

The analytic properties of S(u) outlined at the be- 
ginning of this section allows one to rewrite the expres- 
sion for the Imx(v) in a form more convenient for com- 
putation. We may write (35a) as 

(44) Imx(v) = I m  sin(vu)S(u)du. 

Using the fact that S(u)  is analytic between u=real and 
u= real+$, we may change the contour of integration 
in (44) from along the real axis to  one which goes first 
from 0 to iP/2 up the imaginary axis and then from @/2 
to iP/2f m parallel to the real axis. (The closing piece 
of the contour required a t  infinity does not contribute.) 
Because S(iu) and sin(ivu)d(iu) are real, the leg of the 
contour up the imaginary axis contributes nothing to 
(44), which requires the imaginary part. The contribu- 
tion from the remaining part of the contour (from 
iP/2 to $/2+ m) gives 

L- 

Imx(v) = sinh(pv/2) cos(vu)Z(u)du, (45a) l 
where z(U)=S(U+i/I/2) is given by 

COS(WKU) exp[-4?K2A(u)] 

sinh (pwK/2) 
XgK2 (433) 

and A(u) = D( I(+ $3/2). 

+-+- . (45c) 1 A(4=$[  (7) sinh@v/2) 0 4  

v2-w2 COS~@V/~)-COS(VU) U? 0 

The dc mobility p for the polaron is given by 

p-I= lim Imx(v)/v. 
-0  

Our rest ts (44), therefore, gives 

p-’=$ Z(u)du. (46) l 
For the case of Frohlich’s Hamiltonian, we find that 

2a 03/2sinh@v/2) v (3 Imx(v) = - 
3d7r sinh(p/2) 

cos(uu) cos(u)du 
(474 

[u2+a2-b C O S ( O U ) ~ / ~ ’  
where 

a2= a2/4+ Rp coth(@v/2J, 
(47b) b= R@/sinh(Ov/2), 
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and (they are present in number e-6) so the outgoing electron 
momentum is ( l + ~ ) l / ~ .  The third corresponds to the 
electron absorbing a phonon and emitting a quantum 
i i v  to the electric field. This emission contributes nejia- 

RG ( v ~ - w ~ ) / w ~ v .  

3. Dissipation at Low Temperatures 

(47c) 

tively to the energy loss of the electric field. The fourth 
term results from a particularly energetic electron of 
energy exceeding l+v radiating a phonon and emitting 
a quantum to the field. 

For low temperatures e-@ and, therefore, e-8" are very 
much less than one, so that (47a) may be expanded as 
a power series in b. 

Since the dc mobility is given by the Imx(v)/v as 
v -+ 0 (50) gives an expression at low temperatures for 
the dc mobility of the Frohlich model. Using our trial 

Imx(v)=- 

3pRe-@Y12 cos(vu) 15 p2R2e-8" functional Go, we find that +------- 
4 (u2+u?)2 

(3/443)eS e ( o ~ w * ) / w * u *  (51) 
X [ l +  

(u2++a') 

[~+COS(~VU)]+. . . d2L. (48) 1 
Now an integral like S ~ o s ( X u ) d u / ( u ~ + + ~ ) ~ / ~  falls off 
exponentially like ( 2 ~ 1  X 1 )1~z(u)--s12e--Ixla as X increases. 
Thus, the smallest values of X count, and these count 
with the smallest p0wer.e-8 in front. This permits us to 
select the important terms for each v. For example, the 
last term in brackets contributes when v = 2 v + 1  for 
there is a contribution from cos(vu) cos(u) cos(2vu). The 
e-8" is compensated for by the e8(F1)/2 in front. 

For v < l + v ,  and 11-vl  >p-', only the first term in 
the expansion contributes and we obtain 

I. (49) + ('+ 1) 112e-S(rt1)/2e-R(v+l) 

As p -+ 00 this shows a threshold a t  v =  1. Below v =  1 
the result is nearly zero; above, it is -8a(v/'~)~(v- 1)lI2 
Xexp[-R(v-l)]. This is the threshold to create one 
optical phonon from the energy quantum R v  supplied 
by the external field. If we have an excess energy v- 1, 
the final electron has momentum propertional to 
( ~ - 1 ) " ~  and this appears as a factor because of the 
phase space available. The cross section depends in 
some way on the frequency above threshold; the factor 
exp[-R(v- l)] is a rough approximation to this, 
generated by our model 

in a little more detail, 
in case v < l ,  (49) can be rewritten as 

To study the dependence on 

Imx(v) z &(v/w) a[ (1 - v) 1/2e-P(+V)e-R 

+ (1 +v)1/2e-R(l+u)e--8- (1 -v)1/2e-R(l-v)e-@ 

1, (50) - (l+v)1/2e-R(1+')e-8(1+") 

The terms are easily understood. I n  the first, an electron 
absorbs a quantum of energy v to emit a phonon with 
energy one. The chance that the electron has enough 

The dependence of (51) on the coupling strength a is 
as a-1 for small a (and high 8) because the "best" w=v 
for small a (see I). This dependence on a is of course 
the same as is derived by perturbation theory. As a 
becomes large (a>>l) the best parameters satisfy the 
relation v/w-a2. Therefore, the mobility p becomes 
proportional to a-'& a t  high coupling strengths. The 
result (51) Gun not be compared directly with the results 
of previous c a l c u l a t i ~ n s ~ ~ ~ J ~ ~ ~ ~  because its temperature 
dependence is e@/p rather than the eb dependence found 
in the other approaches. At high 4 (where these previous 
calculations are valid), the different dependence on 
temperature would be experimentally unobservable. 
However, the origin and significance of this (incorrect) 
temperature dependence is interesting and will be dis- 
cussed a t  some length in a later section. 

Returning to our general expression for the Imx(v) 
(48), we see that there are other thresholds at higher 
frequencies coming from higher terms in the sum (48). 
For p= 00 the next threshold is at v = u + l ,  the contribu- 
tion above threshold being (2a/3)(v/'~)~(v-v- 1)3/2 
Xexp[- R(v-v- I)], These higher thresholds corre- 
spond to exciting the electron to an excited state of 
energy v and emitting a phonon. The position of this 
excited state (at v) and the higher ones along with the 
selection rule that says these cannot be excited without 
the emission of a p-state phonon is a fiction supplied 
by our imitating action Go. 

Of course, for strong couplings, there will be such 
complicated excited states, with partial selection rules 
leading to a complex curve for Imx(v). For strong 
electron-phonon coupling, the electron is in effect bound 
in a potential which it makes by  distorting the lattice in 
its neighborhood. If the lattice were held fixed in this 
distorted state, we would expect the electron to have 
various excited states in this potential. I n  fact, the 
lattice moves so that "states" are unstable, but for 
large a the excitation energies are of order a2 larger than 
the lattice frequency so it cannot follow quickly enough. 
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FIG. 1.Plotof Irnx(u) forn=3,w=2.5 ,v=3.4andf l=100.  v i s  
plotted in units of the optical mode frequency o and Im x ( v )  is 
plotted in units of (m/o). 

The Imx(v) should have a maximum when u is equal to 
a frequency which can be absorbed in going to such an 
excited “state.” The widths of these maxima reflect 
the lifetimes of these “states” for phonon emission. 
Naturally, we cannot expect our approximate formula 
(35a) to give such detailed results correctly.18 I t  is 
reassuring, however, that our method gives such a 
realistic looking behavior, and strongly suggests that it 
represents a long step forward toward the correct 
Imx(v). In the last section we outline some ways of 
improving the Imx(u). When the coupling is not too 
strong (a=3), these thresholds are weak and hard to 
see, and the curves will have a “washed out” appear- 
ance. In Figs. 1-3 are given curves of Imx(u) vs u for 
a=3,  a=5, a=7 and for low temperatures (p=lOO). 
These figures show the resonance effects very nicely. As 
a functon of frequency each curve consists of maxima 
of increasing width. As a function of LY the curves show 
more maxima of decreasing width as (Y increases. All 
of the curves were computed numerically on an IBM 
7090 computer, using an infinite power series expansion 
of ( 4 7 4  in terms of K functions (Bessel functions of 
imaginary argument). The values of the parameters used 
werew= 2.5, v=3.4fora=3, w= 2.1, v=4.0 fora=5, and 
w= 1.6, v=5.8  for a=7. 

FIG. 2. Plot of Irn x ( u )  fora-5, w=2.1, v=4.0, and f l =  100. u is 
plotted in units pf the optical mode frequency w and Irn x(u) is 
plotted in units of (m/w).  

18 Pekar, in the strong-cou ling limit, using Gaussian trial wave 
functions for the electron, L d s  an excited state at precisely u. 

6 8 10 12 14 16 18 20 22 24 26 28 
V 

FIG. 3. Plot of In] x ( u )  forn=?, m=l .6 ,  v=5.8,  and @=loo. u is 
plotted in units of the optical mode frequency w and Irn x(u) is 
plotted in units of ( m / w ) .  

4. Behavior at High Temperatures 

For high temperatures, ,B is small and (disregard for 
a moment the variation of w/v with temperature) A(u) 
varies like d /P .  Therefore, only small u will be of im- 
portance in the exponent, and we can expand A(u) 
(45c) as 

~ ( 4  = ~ / P C ( Z L ? + P ~ / ~ )  
- ( ~ ~ - ~ ~ / 1 2 2 ) ( z ~ ~ f ~ ~ / 4 ) ~ + ~  ,]. (52) 

The leading t,erm is, therefore, that of perturbation 
theory, and our formula is insensitive to the trial func- 
tional ape. Actually this is even more accurate than it 
appears, because as T rises the parameters v and w 
change in just such a way that w2-w2 falls making the 
approximation (52) still better.IOJh 

At very high temperatures the perturbation theory 
works because the electron has on the average, an energy 
high compared to the lattice frequency. In  this case the 
effective polarization should fall to zero in the limit of 
infinite temperature. We, therefore, expect that the 
accuracy of our formula will increase as the temperature 
rises. 

VI. WEAK-COUPLING LIMIT; THE 
BOLTZMANN EQUATION 

In  the limit of weak coupling (C, small or (Y small) 
the “best” model parameters are v=w or C-0. That  is, 
the model of (15) becomes the bare free electron: 
Perturbation theory is also simply the expansion (16) 
but with @O just the free-electron influence functional 
[i.e., D(u) = -iu+uz/,B]. Therefore, our series 
Go+G1+. . . for the admittance agrees with perturba- 
tion theory in the weak-coupling limit. 

One would expect then, that in the limit of weak 
coupling the mobility in constant fields obtained here 
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would be exactly that obtained from the Boltzmann 
equation using perturbation theory for the electron- 
phonon scattering cross sections. This turns out to be 
not true; the question being whether the limit v -+ 0 is 
taken before or after the limit of weak coupling 
j CK 1 + 0 is taken. A detailed comparison of our result 
to that of the Boltzmann equation for weak coupling 
is instructive. 

The Boltzmann equation for a particle with mo- 
mentum distribution j(P) in an electric ficld E(1) in 
the .2: direction is 

af/af+Eaf/aP,= - [y(P-+ P')f(P) s 
-y(P' + P)f(P')]d3P'/(2*)3. (53) 

The first t e r n  in (54) is just the probability to emit a 
phonon of momentum K=P'-P. The second term is 
the probability to absorb a phonon of momentum K. 

The Maxwell distribution, fo(P) = (2n/B)-alze-@p'12, 
is a solution of (54) with no electric field since 

r(P -+ P')fo(P) =r(P' -4 P)fO(PO. (55) 

If E is a very weak, spatially uniform field varying 
as E=E@iVf, the deviation of f from equilibrium can 
be written as f=fo[1+EoeWfP,lr(P)], where I@) is a 
function of P2 satisfying [using (54)] 

In (53), r ( P 4  P') is the probability per second that an X[PZlt(P)-P,'h(P')]d3P'/(2*)J. (56) 
electron of momentum P is scattered to momentum P' 
by collisions with the phonon gas. This rate, using the 
usual perturbation theory, is 

y(P ---f P')=2nl CKI ' [ ( 1 - e - 8 " K ) - ' ~ ( t r " " ~ f p 2 f W K )  

The current j is -Eoe"'SPtk(P)jo(P)d~P, so the im- 
pedance is given by l/z(v)= - J P ~ ~ ( P ) ~ o ( P ) ~ ~ P .  
Multiplying (56) by P,h(P)fo(P) and integrating over 
all P, we find another expression for the impedance: +(&K- 1)-16(+P'2-+P2-U~)]. (54) 

z(v) = (57) 

L J  

The integral equation is quite difficult to solve in 
general. We will content ourselves with an approximate 
analysis. The expression (57) has been written so that 
it is stationaryIg for variation of h about the true 
solution (56).  That is, errors in It will appear only in 
second order in z(u). 

The simplest approximate solution to (56) is that 
h(P) is a constant. Then (57) gives 

z(u)-iu=r, (58)  
where 

This represents a frequency-independent pure resistance 
r. Thus, iur should be compared to the X ( Y )  of (35a). 
To do so we substitute (54) into (59). One sees that the 
first term in brackets in (54) gives the same contribution 
as the second, so calling P'=P-K we get (replacing 

"If v=O (57) is a minimum, giving the useful variational 
Principle for p-1 discussed by Wilson [A. Wilson, Theory of Metals 
(Cambridge University Press, New York, 1959), p. 3001. 

K z 2  by P/3) 

XS[+(P- K ) 2 - + P ' - ~ K ] d 3 P d 3 K .  (60) 

Next we replace the B function by B(x) = J~ei""du/2~.  
The P integral is then readily evaluated to give 

r=p d3K (2a)-3jCK12j1(2 dzi P(-wK) L 
X e~p[-- ;WOK- +K'( - iu+ 1 ~ ' / p ) ] .  (61) 

I 
Replacement here of ZL by zc+i+9/2 shows that I ' = Q  

from (45a) if A(u) takes on its free-particle value, 

This result is what we expected but there are two 
points to be made. Firstly, we made no assumption that  
u was small in solving the Boltzmann equation. Why 
then do we not find that I'=Imx(u)/u as a function of 
frequency instead of a constant, the limit as v - 0  of 
Imx(v)/v? The answer does not lie in trying to solve (56) 
more exactly, for if we take a high-frequency case so 

u"la+/3/4. 
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that the collision term in (56) is negligible compared to  
the iv term, in first approximation h=(O/iv) and is 
indeed constant as we assumed. That  is, (58) is a closer 
approximation to the prediction of (56) the higher the 
value of Y relative to r. The answer is that the original 
formulation of the Boltzmann equation is faulty a t  high 
frequencies. I t  is assumed that the collisions are made 
and that between collisions the particle drifts in the 
electric field. But a t  higher frequencies new processes 
are possible in which, for example, the electron absorbs 
a quantum hv from the field and radiates a phonon. I n  
the quantum theory for higher Y this cannot be analyzed 
as the succession of two independent events. Therefore, 
a t  the higher frequencies we may use our formulas (35). 
If the results deviate from that of the Boltzmann equa- 
tion we must conclude the latter is inaccurate. 

The second point to discuss is this. We did not solve 
the Boltzmann equation exactly; presumably, therefore, 
r is not exact. Why then is our result p-l from (51) not 
asymptotically exact as OL --+ 0, in spite of our argument 
that our formulas should be correct in perturbation 
theory? The reason is easy to see from (57). Forfinile v, 
as the coupling gets weaker the collision term falls below 
Y and r is in fact exact. Thus, for any Y other than zero 
in the limit of infinitesimal coupling our result (45) is 
exact. However, for v=O, to get the exact answer no 
matter how small the coupling, the full Boltzmann 
equation must be solved and our result for p, (45), is 
only an approximation. [Mathematically, the lack of 
uniform convergence arises when we invert G and 
expand, because the resistive part of x ( v )  exceeds the 
leading (reactive) term v2 no matter how small the 
coupling is if v = 0.1 

Although not exact, our result (45) for p-l is still a 
good approximation to the solution of the Boltzmann 
equation. The value of s-l obtained for Frohlich's model 
a t  low temperature from (51) vanes as Ple-B, while 
from the Boltzmann equation we know that it should 
vary as a constant times e-B.6 But because of the rapid 
variation of the exponent these two are hard to dis- 
tinguish (for example, the temperature at which the 
mobility reaches a given value is imperceptibly different 
in the two cases). At higher temperatures our results 
for p-' (46) no longer behaves as e+/S. I n  this case the 
values obtained from (46) and the Boltzamnn equation 
would come closer together. (At extremely low tem- 
peratures Frohlich's model, of course, fails. Although 
acoustic phonons are not very effective, they cannot be 
disregarded for there are virtually no optical phonons 
excited.) As a test of our approximate solution of the 
Boltzmann equation we have also analyzed a system 
interacting at  high temperature with acoustic phonons 
with 1 C K l *  proportional to K2, WK=KUO, and P1>mu0*. 
Such a coupling leads to a relaxation time for the elec- 
trons which varies inversely with their velocity. In  this 
case p is proportional to in either theory, but Eq. (46) 
gives a result 32/% or 13% higher than the more 
accurate solution of (56) given by (59). 

VII. SUGGESTIONS FOR IMPROVING ACCURACY 

The entire dependence of our result (35) for the 
polaron impedance on the imitating quadratic influence 
functional is contained in D(u) which is expressed in 
terms of the model's response function, Yo(v).  If in the 
expansion we used a more elaborate (but still quadratic) 
ipo, then a11 results would be the same but with a D(u) 
coming from a different Uo(v )  in (35). What is the best 
Yo(v) to take? We note that YO(.) was also the first 
approximation to the desired function Y(u) = [ iuz (v ) ] - l .  
A natural suggestion, therefore, is that the best Yo(v)  
is the "true admittance function of the real polaron". 
Since the true Y(v)  is unknown, perhaps the next best 
alternative would be to use a YO(u) in (35) such that  
the z(v) itself equals [i~Y~(v)]-~; that is to use a Y~(Y) 
which satisfies (35) self-consistently. 

To find a self-consistent Yo(.) is not, in general, easy. 
However, one might use the results calculated here, for 
example, and re-insert them as a new Y&) in (35) and 
recalculate z(v) to find a second iteration, which might 
provide an even better impedance with which to re- 
calculate again if necessary. Aside from the great 
amount of work involved and questions of convergence 
of the procedure, we cannot even be sure if a substantial 
improvement would result; however, the following ob- 
servations do suggest that a self-consistent solution of 
(35) could result in a considerable increase in accuracy. 

I n  the variational principle of I, one can try a trial 
action functional So which is more general than the two 
parameters one employed there and which describes an 
electron coupled to a general linear system, 

Then, putting h(t)= f h(u)eiV1dv/2?r, one finds that the 
function h(v) which gives the lowest energy in the 
variational principal a t  zero temperature, satisfies the 
integral equation 

where 

The Eqs. (35) treated as a self-consistent set with 
D(u) generated from Y(Y) = [v2+x(v)l-' can be trans- 
formed for B=O at least, to exactly this same pair of 
Eqs..(63) and (64). I n  this case x(-&I) replaces h(p). 
We therefore, can conclude (for a = O )  that  if one tries as 
a trial action functional that for an electron coupled to  
a general linear system, no such system will produce a 
better result than one which has a n  impedance which is 
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the self-consistent solution of (3S).20 (Possibly the same 
is true for arbitrary 8, but  we have not checked this 
point.) These considerations substantiate further the 
interpretation of the expansion (38) in terms of an 
impedance rather than a n  admittance. 

integrals and performing the resulting Gaussian inte- 
grals.12 As a n  alternative method we choose to represent 
the trace in free oscillator eigenfunctions. In  this repre- 
sentation (p.),,,=e-"BW(l-ee'-BW) and 

The above point, and the existence of a minimum g E  C m  .n Gm, .Gm, n*'e-BWn( 1 - e-@-) ,  ( A l l  
principle for the Boltzmann equation, suggest that some 
minimum principle exists for the mobility x(%ip)  in 
quantum mechanics at arbitrary 8. 

Another way to improve accuracy is to try to include 
the next term (@-@J2 in the expansion. The integrals 
to be performed still are of the form required for the 
evaluation of the ( @ - @ o )  term but with more com- 
plicated driving forces E and E'. Although the calcula- 
tion would proceed straightforwardly it would, in 
general, be very laborious. However, for certain values 
of v and 8, one could do what amounts to the same thing 
in a somewhat easier way, For example, for r 1 < v < l  
the various terms in (SO) could be improved by calcu- 
lating the appropriate cross sections more accurately. 
The cross section to absorb a quantum from the electric 
field and emit a single phonon requires matrix elements 
of quantities like xt exp(iK. XJ. Equation (50) corre- 
sponds to calculating these with the propagator 
exp(i@o), but an improvement can be made by calcu- 
lating them with the propagator 

[I+-i(@- aO)] exp(i@o). 

For zero frequency the Boltzmann equation can be 
used with the rates y(P'+ P) Eakulated with the 
propagator exp(i@,J ; further improvement would again 
result by adding a correction for the difference of 4j 
and a0. 

ACKNOWLEDGMENTS 

The authors would like to thank W. G. Wagner, 
Morrel Cohen, J. McKenna, and M. Lax for many 
helpful and stimulating discussions. 

APPENDIX A 

In  this appendix we discuss a fundamental path 
integral (or trace) such as (7) for a single one-dimen- 
sional oscillator, in terms of which all other path 
integrals can be immediately evaluated. 

The oscillator Hamiltonian H= p2/2+w2@/2. Le t  

U=exp 1 --i /: [ l i t+y ( l )q t ]d t } ,  

where G,,, is given in reference (9), Eq. (38) and 
G,,,,,,' is the same expression with y' replaced by y. 

By expanding 

exp[(x+it)(y+it*)]= C(x+it)'(y+ i(*)'/L! 

in powers of x and y, one can show that Gm., may also 

I 

where 
+m 

t= i(2w)-l/z/- eiWfy(t)dL. 643) 

The summation over m and 11 in our expression for g can 
be done by the binomial theorem if one uses this es- 
pression for G,,,,,; but the one in reference (4), Eq. (38), 
for G,,,,', calling ~ = Y + v ,  where I is the free index in 
Gm,,', permits summing first over Y then over z'. Tlie 
final result is 

g = GooCode(t* 
x exp[( 1 -e-@w)-1(ii- it')(;[* - i t ' *e-B*)] .  (A4) 

Substituting in for Goo and Go:, we find that 

g= exp(ti[ /: c ~ ( L )  -~'(oI{ ~y(s)  +y'(s)l 

x y ( w ,  t-s)+i[y(s)-y'(s)]u(w, l -s)}dlds  

where 
y(w, t-s)=(l/w) sinw(l-s), ~ > s  

= 0, L<s (.Ah) 

and 
a(w, t-s)=(1/2w) cosw(f-s)[1+2P(Bw)]. (A7) 

If y(u), y'(v), y(v), a(.) are the Fourier transforms of 
y ( t ) ,  ~ ' ( t l ,  etc., so that, for example, 

y( t )  = y(v)eiVfdv/2n, ('48) I 
then the expression for g can be written in Fourier 
space as 

i + "  
and P.=e+H/Q. The Tr(UpaU'-l)=g may be done in 
several ways, for example by writing i t  in terms of path 

One probably cannot get x ( v )  from (63) and (64) by iteration 
for one finds x(-W only approximately this way and one cannot 
Pass to an accurate value on the real line from an imperfect 
knowledge on the negative imaginary axis alone. 

g=exp(q, 1- C ~ ( - ~ ) - - ~ ' ( - - ) I ( C ~ ( U ) + ~ ' ( V ) I  - 
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Here," 

and 

a(w,v)  = (A/~w)[  1+ 2P(Pw)][6(v+w)+ ~ ( Y - w ) ] .  

y(w,v)= l / ( v - i e ) 2 - d  ( A m  

(A 11) 

For the case of the Hamiltonian (l l) ,  we can represent 
the particle motion by a path integral on X ( t ) .  Then we 
have in fact a large number of independent oscillators, 
each coupled to the particle. The K mode of frequency 
W K  is coupled by a y(t)=Cpexp[iK.X(t)]. Each of 
these modes contributes a factor like (A9) to g so that 
the final exponent is a sum of contributions from each 
oscillator mode. 

We shall need the functions (AlO), (All) and super- 
positions of them (sums for various frequencies) which 
we call Y(v) ,  A ( v ) .  We shall also need another function 
D(u) defined as 

J -m 

and A(rc) defined as D(u+ij3/2).  All these functions are 
related to Y(v), in fact to its imaginary part ImY(v). 
We need it only for v>O, since ImY(-v)= -ImY(v). 
For a single oscillator, from (AS) as we have Imy(v) 
= - ( ~ / 2 w ) [ 6 ( v - w ) - 8 ( v + w ) ] .  But a(.) can also be 
written as 

A eS'+1 e+"+ 1 
e-Bv - 1 -- 8 (v - w )  +- 6(v+w) ) ;  

2w ( eBv-1 

hence, a(v)= -coth@v/2) Imy(v). Further, since the 
poles of a general Y(v) lie above the real axis, the real 
part of V ( v )  can be obtained from the imaginary part. 
Proceeding in this way, we find the following expressions 
for all the functions in terms of ImY(v): 

( A H )  

(-441) 

[COS~@/~)-COS(V~)]  
A(%)= -- ImY(v)dv. (A16) 

r / sinh@v/2) 

Although derived for a single oscillator, these relations 
are linear and hold for any superposition of oscillators. 

APPENDIX B 

We give here the details of the calculation of the first 
order correction to GI. A s  explained in the text, we can 
calculate an expression like ( 2 8 )  by substituting (30) 
and (31) into (20). If we write 

for the expression (20) calculated for K=O, the result 
( 2 0 )  with K included as in (30) and (31) is 

R(K,4s) 

We shall ultimately only need the result to the first 
order in BTJ [see (S)], so differentiating R with respect 
to TJ and B ,  putting e = t ) = O  and calling the result 
2 r ( K , t , s ) ,  we get (there is a 1/3 for averaging over 
directions of K)'4 

ikP 
Xexp[- 47T / l e i " - ~ i u a ~ z ( Y o + i A o ) d ~ ] .  (B2) 

The first term is GO(7-u) times the path integral with 
B =  q=O. Such a term arises no matter what we integrate, 
so in total it  gives G 0 ( ~ - a ) ~ e ' ~ 0 ( 9 - ~ ~ ) ~ x ~ x ' .  This 
term just cancels when we remember that we must 
divide (dZg/&$e) by g evaluated at e=t)=O for normali- 
zation. Therefore, this does not contribute to GI, the  
first correction of G from GO, and we omit it. The other 
terms are later to be multiplied by  a function of t--s= u 
only, and integrated on t and s. Hence, we let t=u+s 
and integrate on all s's to get [note Yo(-v)=Y~*(v),  
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r (K ,  l--s)= [ -; /2( l - -c0svu)Y0(")  

> 

[where Yo(tj, A&) are the inverse transforms of UO(Y), 
Ao(v) ] .  Expression (46) is equal to D(u), defined in 
(3.5~) for u>O, and D(-u) for u<O, sinceYo(u)=O for 
u<O. Thus, this term in r(K, t -s) contributes a piece 

This will make a contribution to G1(7-u). I t  is already 
in the form of a Fourier transform so for the contribu- 
tion to C&) we omit the integral on v and the factor 
eiv(r-q). According to (29) we must nest multiply 
r (K ,  k - s )  by y(w~,u)+ ia(w~,u)  and integrate on u. 
This is best done by  dividing the range of u from 0 to 00 
and from - to 0, and in the latter putting u -+ -21 
so that all integrals are over positive u only. 

The integral in the exponent is -K2/2 times 

Adding the three other corresponding pieces from 
esp(iK-[X'(t)- X'(s)]), etc., multiplying by ICKI*, 
and integrating over K [see Eq. (30)] gives the first 
term in (35). The second term is gotten in an analagous 
way from We need to expand our expression for 
r ( K ,  t -3 )  just to first order in K2.  The terms like 
e- iKrD(U) are replaced by one. The resulting expression 
is an integral on u, ~ " ( l - e i v Y ) S , ( u ) d u ,  where 

2 coswu 

The integral on u gives Cv2/w(v2-w2), as in the last 
term of (34). 



257 

A N N A L S  OF PHYSICS: 24, 118-173 (1963) 

The Theory of a General Quantum System interacting with 
a Linear Dissipative System 

R. P. FEYNMAK 

California Institute of Technology, Pasadena, California 

AND 

F. L. VERNON, JR.* 

Aerospace Corporation, E l  Segiindo, California 

.-i formalism has been developed, using Feynnian’s space-time formulation of 
ii~~nrelativistic quantum mechanics whereby the behavior of a system of in- 
tvrest,, which is coupled to  other external quantum systems, may be calculated 
i n  trriiis of its own variables only. It is shown that the effect of the external 

teiiis in such a formalism can always be incl-uded in a general class of func- 
i:tls (influence functionals) of the coordinates of the system only. The prop- 

cbrticr o f  influence functionals for general systems are examined. Then, specific 
forit  is o f  influence functionals representing the effect of definite and rendom 

,ic:!l forces, linear dissipative systems a t  finite temperatures, and combina- 
tii!iis of tliese Ere analyzed in detail. The linear system analysis is first done for 
perfectly line:ir systems composed of combinations of harmonic oscillators, loss 
k i n g  i i i t  rodticed by continuous distributions of oscillators. Then approxi- 
m:!tely 1inc:ir systems m d  restrictions necessary for the linear behavior are 
ci~nsitlrred. InHrrence functionals for all linear systems are shown to have the 
s;:iiie forin i n  ternis of their classical response functions. In addition, a fluc- 
tux t  ion-dissipnt ion t lieorein is derived relating temperature and dissipation of 
the linear system to it Huct.uating classical potential acting on the system of 
interest wl~ich reduces to the Nyquist-Johnson relation for noise in the case of 
electric circuits. Sample cnlculations of transition probabilities for the spon- 
t::neous emission of :in atom in free space and in P“ cavity are made. Finally, a 
t lieorem is proved showing that  within the requirements of linearity all sources 
of noise or quantum Huctuat ion introduced by maser-type amplification devices 
:!re :mounted for by R cl:~ssical calculetion of the characteristics of t.he maser. 

I. INTRODUCTION 

Rlany situations O C C I I ~  in quantum mechanics in which several systems are 
coupled together but one or inore of them are not of primary interest. Problems 

* Tliis report is based on L? portion of a thesis submitted by F. L. Vernon, Jr. in partial 
fulfillment of the requirements for the degree of 1)octor of Philosopliy a t  the California 
Institute of Technology, 1059. 

118 
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FIG. 1. General quantum systenis Q and X coupled by a potential V ( Q ,  X, t )  

i l l  the theory of measuremeiit aiid in statistical mechanics present good examples 
of such situations. Suppose, for instance, that the quantum behavior of a system 
is to be investigated when it is coupled to one or more measuring instruments. 
The instruments in themselves are not of primary interest. However, their 
effects are those of perturbing the characteristics of the system being observed. 
Ai more concrete example is the caw of an atom in an excited state which inter- 
acts with the electromagnetic field in a lossy cavity resonator. Because of the 
coupling there will be energy exchange between the field and the atom until 
equilibriuin is reached. If, however, the atom were not coupled to any external 
tlisturbances, it would simply remain unperturbed in its original excited state. 
Thc cavity field, although not of' central interest to  us, influences the behavior 
of the atom. 

To make the discussion more definite, let us suppose there are two nonrela- 
tivistic quantum systems whose coordinates are represented in a general way 
by Q mid X ,  as i n  Icig. 1, coupled together through some interaction potential 
which is n function of the parameters of the two systems. It is desired to compute 
the expcctation value of an obsenrable which is a function of the Q variables 
only. As is ivell kiiowi, the complete problem can be analyzed by taking the 
Hamiltoiliati of the coinplete system, forming the wave equation as follows : 

and then finding its solution. In  general, this is an extremely difficult problem. 
In addition, when this approach is used, it is not easy to  see how to eliminate the 
coordinates of X and iuclude its effect in an equivalent way when making coin- 
putations on Q. h satisfactory method of formulating such problems as this in a 
general way was made available by the introduction of the Lagrangian formula- 
tion of quantum mechanics by Fcynman. He applied the techniques afforded 
by this method extensively to studies in quantum electrodynamics. Thus, in a 
problem where several charged particles interact through the electromagnetic 
field, he found that it was possible to eliminate the coordinates of the field and 
recast the problem in terms of the coordinates of the particles alone. The effect of 
the field was included as a delayed interaction between the particles (1, 2 ) .  

The central problem of this study is to develop a general formalism for finding 
all of the quantum effects of an environmental system (the interaction system) 
upon a system of interest (the test system), to  investigate the properties of this 
formalism, and tc draw conclusions about the quantum effects of specific 
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interaction systems on the test system. Cases where the interaction system is 
composed of various combinations of linear systems and classical forces will be 
considered in detail. For the case in which the interaction system is linear, it 
will be found that parameters such as impedance, which characterize its classical 
behavior, are also important in determining its quantum effect on the observed 
system. Since this linear system may include dissipation, the results have ap- 
plication in a study of irreversible statistical mechanics. 

In  Section 11, after a brief discussion of the Lagrangian formulation of quantum 
mechanics, a general formulation of the problem is made and certain functionals, 
called influence functionals, will be defined, which contain the effect of the in- 
teraction system (such as system X in Fig. 1) on the test system in terms of the 
coordinates of the test system only. General properties of these functioiials will 
be derived and their relationship to  statistical mechanics will be discussed. To  
obtain more specific information about the properties of the formalism, we then 
specialize the discussion to  cases where well-defined systems are involved. In  
Section 111, the special cases are Considered in which the interaction system is a 
definite classical force and a random classical force. In  Section IV, the influence 
functionals for exactly linear systems at  zero temperatures are derived and then 
extended to the case that the linear systems are driven by classical forces. In  
addition, the effect of finite temperatures of linear systems is considered. Then, 
in Section V, the unobserved systems are again assumed to be general but weakly 
coupled to  the observed system. Within the approximation of weak coupling 
these general systems also behave as if they were linear. Then finally in Section 
VI, the results of the analysis are used to  prove a general result concerning maser 
noise. 

It is to  be emphasized that although we shall talk of general test and interac- 
tion systems, the Lagrangian formulation is restricted to  cases iiivolving mo- 
mentum or coordinate operators. Therefore, strictly speaking, systems in which 
the spin is of importance are not covered by this analysis. However, this has no 
bearing on the results since their nature is such that their extension to the case 
where spins are important can be inferred. 

An equivalent approach can be made to  the problem using the Hamiltoniaii 
formulation of quantum mechanics by making use of the ordered operator calcu- 
lus developed by Feynman (3 ) .  This approach has been used to  some extent by 
Fano (4)  and has been developed further by Hellwarth (5).l Some advantages 
of this method are that many results may be obtained more simply than by the 
Lagrangian method and nonclassical concepts such as spin enter the fornialism 
naturally. However, the physical significance of the functions being dealt with 
are often clearer in the Lagrangian method. 

operator techniques. 
Many of the results obtained in this work have also been obtained by him using ordered 



260 

INTERACTION O F  SYSTEMS 121 

11. GENERAL FORMULATION-INFLUENCE FUNCTIONAL 

A. LAGRANGIAN FORMULATION OF QUANTUM MECHANICS 
We shall begin the discussion with a brief introduction to the Lagrangian or 

space-time approach to quantum mechanics and the formal way in which one 
may set up problems of many variables.2 Let us suppose that we are considering 
a single system which has coordinates that are denoted by Q, and that for the 
time being it is nct acted on by any other quantum system. It can be acted on 
by outside forces, however. The system may be very complicated, in which case 
Q represents all the coordinates in a very general way. If at a time t the variable 
Q is denoted by Q t ,  then the amplitude for the system to go from position 
Qr at t = r to Q T  a t  t = T is given by 

K ( Q T  , T ;  Qr , = I ~ X P  [(i/fi>s(Q)lW(t) (2.1) 
in integral which represents the sum over all possible paths Q ( t )  in coordinate 
space from Qr to QT of the functional exp [ ( i / f i )~S(&)] .~  S ( & )  = JrT  L( &, Q, t )  dt 
is the action calculated classically from the Lagrangian for the trajectory Q( t ) .  
For the case that Q is a single linear coordinate of position, this is represented in 
the diagram in Fig. 2. The magnitude of the amplitude for all paths is equal but 
the phase for each path is given by the classical action along that path in units 
of 6. Thus, amplitudes for neighboring paths which have large phases tend to 
cancel. The paths which contribute the greatest amount are those whose ampli- 
tudes have stationary phases for small deviations around a certain path. This is 
the path for which the classical action is a t  an extremum and is, therefore, the 
classical path. Remarkably enough, for free particles and harmonic oscillators, 
the result of the path integration is 

K ( Q T ,  Qi) = (Smooth Function) exp [( i / f i )SC,]  
where S,I is the action evaluated along the classical path between the two end 
points QT , Q T  . However, for more complicated systems this simple relation does 
not hold. A discussion of the methods of doing integrals of this type is not in- 
cluded here since methods appropriate for the purposes here are already con- 
tained in the literature (I, 2 ) .  

Since K ( Q T  , Q r )  is the amplitude to go from coordinate Qr to Q T  , it follows 
that at t = T the amplitude that the system is in a state designated by & ( Q T )  
when initially in a state &( Q T )  is given by 

A m ,  = s &*(&T)K(&T , Q r ) + n ( & r )  ~ Q T  &?, 
(2 .2 )  I ( b r n * ( & ~ )  exP [ ( ; / ~ ) S ( Q ) l ~ n ( Q r ) ~ Q ( t )  d & T d & r  

* For a niore complete treatment, see ref. 1 .  
In subsequent equations K(QT , T ;  Q t  , t )  will be written K(QT , Q t ) .  
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Qr Q T  

Q{t)-- 

FIQ. 2. Space-time diagram showing possible paths for particle to  proceed from Q7 t o  Q T  

The probability of the transition from n -+ m is given by lA,,,,l2 and from Eq. 
(2.2) this can be written in the form of multiple integrals as follows: 

P,, = S ~ J ~ * ( Q T ) + ~ ( Q ’ T )  exp I ( i l f i>[s(Q> - s(Q’>lf 
(2.3) 

X a(QT)a* (&: )DQ(t )DQ’( t )  dQr dQ’, d&T ~ Q ’ T  

As a example of a more complicated case let us consider two systems whose 
coordinates are Q and X.4 The systems are coupled by a potential which can be 
designated as V ( Q ,  X )  and incorporated in the total Lagrangian. We assume 
that when 17 = 0 the states of Q and X can be described by sets of wave func- 
tions 4 k ( Q )  and x , (X)  respectively. If, initially, Q is in a state and X is 
in a state x,(XT), then the amplitude that Q goes from state n to m while X 
goes from state i to f can be formed in a similar way to that of Eq. (2.2), 

A m , , , ,  = ~ * ( Q T ) x ~ * ( ~ T )  exP [ ( i / f i )s(Q, X ) ] + n ( & r ) x i ( X T )  
(2.4) x DQ(t)DX(t)  dQ, dX ,  d Q T  dXT 

where S (  Q, X )  represents the clasfical action of the entire system including 
both Q and X. The important property of separability afforded by writing the 
amplitude in this way is now a ~ p a r e n t . ~  For instance, if one wishes to know the 
effect that X has on Q when X undergoes a transition from state i to f, then all 

Each system will be denoted by the coordinates that  characterize it.  Where Q or X 
means specifically a coordinate, i t  will be so designated by a statement if i t  is not obvious. 

6 If system Q represents a harmonic oscillator and the interaction of Q with X were linear 
and of the form - y ( t ,  X ) Q ( t ) ,  then that  part of Eq. (2.4) which involves the Q variables 
corresponds to  the function G,, defined and used by Feynman to  eliminate the electromag- 
netic field oscillators. See ref. 2. 
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of the integrals on the X variables may be done first. What is left is an expression 
for A,, for Q and in terms of Q variables only but with the effect of X included. 
The extension of writing transition amplitudes for large numbers of systems is 
obvious. In principle the order in which the variables are eliminated is always 
arbitrary. 

B. DEFINITION O F  INFLUEXCE 1;UNCTIONAL 

A functional can now be dcfiiicd which can be used to describe matheniatically 
the effect of external quantum systems upon the behavior of a quantum system 
of interest.6 

The fundamental theorem for this work may be stated as follows: For any 
system, Q ,  acted 011 by esteriial classical forces and quantum mechanical systems 
as discussed above, the probability that it makes a transition from state +n( Q-) 
a t  t = 7 to #,(QT) at t = 5” can be written 

P m ,  = s #m*(&~)+c.m(Q’~)  C ~ P  i (i/’fi)[So(Q) - So(Q’)I l~(Q,  &’I 
(2.5) 

X +**(Q’I)JII(Qr)aQ(t)~Q’(t)  dQ, dQ‘, dQT dQ‘T 

where F ( Q ,  Q’) contains all the efrects of the esternal influences on Q, and 
S o ( Q )  = f: L(Q, Q ,  1 )  dt ,  the actionof (2 withoutexternal disturbance. The proof 
of this is straightforward. Let us examine two coupled systems characterized by 
coordinates Q and X as represented diagrammatically in Fig. 1. Q mill represent 
the test system and X the quite general interaction system, (excepting only the 
effects of spin) coupled by a general potential T’(Q, X ,  t )  to Q. Assume Q to he 
initially (t  = T) in state #,(Qr) and X to be in state x l ( X r ) ,  a product state. 
The probability that Q is found in state # , , , ( Q T )  while X is in state % ( X , )  a t  
t = T can be written in the manner discussed above and is 

P m f , n t  = ( A m f , n t ( 2  

= s lclm*( Q ~ ) # , ( Q ’ ~ )  x/* (xT),(xrT) 
X exp ( ( i / f i ) [ S ~ ( Q )  - SO(&’) + S(-U - S ( X ’ )  + S d Q ,  X )  

(2.6) 
- s~(Q’,X’)ll 

X #n*( Q’r ) #n ( Q T )  XI* (X’r ) xz ( X r  ) d X r  
. . . dQ’&DX’(t) * - .  a Q ( t )  

The primed variables were introduced when the integrals for each A ,,,, n-ere 
combined. Now if all of Eq. (2.6) which involves coordinates other than Q or 

Hereafter, the system of interest will be referred to  as the test system. Conversely, the 
system not of primary interest will be called the interaction or environmental system. 
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Q’ is separated out and designated as 3( Q, Q’), then the following expression is 
obtained 

.exp { ( i l f i ) [ s ( X )  - S ( X ’ )  + SdQ, X )  - Sr(Q’,  X’ll) (2.7) 
X xi* (Xf7 ) xz ( X ,  ) d X ,  dX’,DX ( t ) DX’ ( t ) 

Incorporation of this expression into Eq. (2.6) yields the desired form of Eq. 
(2.5). If the path integrals are written in terms of kernels, Eq. (2.7) becomes 

F(Q, Q’) = .f x~*(XT)X~(X’T)KO(XT , X,)K;S? (X’T ,  
(2.8) 

where the subscript Q means that the kernel includes the effect of a potential 
V ( Q ,  X) acting on X during the interval T > t > 7. As can be seen, 5 is a 
functional whose form depends upon the physical system X ,  the initial and final 
states of X, and the coupling between Q and X .  

It is to be emphasized that the formulation of 5 is such that it includes all the 
effects of the interaction system in influencing the behavior of the test system. 
Thus, if there are two systems A and B which can act on Q, and if 

x XZ*(X’,)Xl(X,)  d X ,  ’ . ’ d S ’ r  

5~ on Q = S B  on Q , 
then the effects of A on Q are the same as those of B on Q. It follows that if 
simplifying assumptions are necessary in finding 5 ,  On and S B  On 0 (due to the 
complicated nature of A and B )  and if the resulting functions are equal, then 
within the approximations the effects of A and B on the test system are the same. 
In  the situation where the interaction system is composed of a linear system or 
combinations of linear systems we shall see that the same form of 5 is always 
appropriate. To adapt this general form of 5 to a particular linear system it is 
only necessary to know such quantities as impedance and temperature which 
determine its classical behavior. In  still other situations, very weak coupling 
between systems is involved. The approximate 3 which can be used in this case to 
represent the effect of the interaction systems has a form which is independent 
of the nature of the interaction system. This form is the same as for linear 
systems. These cases will be considered in more detail in later sections. 

C. GENERAL PROPERTIES OF INFLUENCE ~%JNCTIOXALS 

There are several general properties of influence functionals which are of 
interest and which will be useful in subsequent arguments. The first three of 
these (1 ,2 ,3 )  follow directly from the definition of 5(Q, Q’). The last two (4, 5) 
will require more discussion. 
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1. If the physical situation is unsure (as for instance if the type of interaction 
system X, or the initial or final states are not known precisely) but if the prob- 
ability of the pth situation is wp and the corresponding influence functional is 
.T, , then the effective 5 is given by 

Serf = c, wp5, = (5)  (2.9) 
Thus, in Eq. (2.6) if the initial state of X were not certain but the probability 
of each initial state were w , ,  then P,, for system Q would be given by 
~,w,P,, , , ,  . Since the summation involves only the part of Eq. (2.6) involving 
the X variables, it is a sum over the influence functions for each possible initial 
state and results in an average influence functional of the type given above. 

2 .  If a number of statistically and dynamically independent partial systems 
act on Q a t  the same time and if 5‘k’ is the influence of the kth system alone, 
the total influence of all is given by the product of the individual 5‘k’: 

5 = nL1 P’ (2.10) 

Again referring to Eq. (2.6), if there were N subsystems interacting with Q, 
then the probability that Q makes a transition from state ?z to m while each of 
the subsystems makes a transition from its initial to its final state is given by 
an expression of the same form as Eq. (2.6). The difference in this case being 
that the term involving the X variables would be replaced by a product of N 
similar terms-one for each subsystem. Thus, when the term involving all the 
X‘k’ variables is separated out the complete influence functional is recognized 
as a product of the functionals S‘”(Q, Q’) for each subsystem. 

DEFINITION: In  many cases it will be convenient to write 5 in the 
form exp [i@(Q, Q’)] .  @ is then called the influence phase. For independent dis- 
turbances as considered in 2, the influence phases add. In  the event that i@( Q, Q’) 
is a real number we will continue to use the notation @; the phase simply becomes 
imaginary. It will frequently be more convenient to work with cf, rather than 5. 

3. The influence functioyial has the property that 

T*(Q, Q’) = 5(Q’, Q) (2.11) 

Referring to Eq. (2.7), the definition of the influence functional, this fact follows 
immediately upon interchanging Q and Q’. 
4. In  the class of problems in which the final state of the interaction system 

is arbitrary, which means the final states are to be summed over, then 5 (Q,  Q’) 
is independent of Q ( t )  if Q ( t )  = Q‘(t) for all t. All of the problems we will be 
concerned with here are of this type. 
The validity of this statement can be ascertained by observing Eq. (2.7), the 
general definition of the influence functional. In  particular, for the case where the 
initial and final states of the interaction system X are i and f respectively, as in 
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Eq. (2.7), we denote the influence functional by ,3%(Q, Q’). Let us assume we 
have no interest in the final state of X which means that r%l(Q, Q’) must be 
summed over all such states. The initial state i can be quite general. Thus, the 
influence functional for the case of an arbitrary final state is 

SdQ, &’I = CrrF,(Q, &’I 
For clarity in finding the result of letting Q ( t )  = &’(t)  for all t in % $ ( Q ,  Q’), we 
will write out the expression explicitly from Eq. (2.7). It is 

5t(Q7 Q )  = S Cf x~*(XT>,(X’T)  
.exp ( ( i / f i ) [ s ( X )  - S(X’ )  + SdQ, X )  - SJQ, X’) ] ]  

x xt*(x’r)x*(xJ dX,  . . . 9 X ’ ( t )  
Since Q appears in the interaction potentials acting on the X and X’ variables 
respectively, it loses its identity as the coordinate of a quantum system and 
becomes just a number (which may be, of course, a function of time). Thus 
S,( Q,  X )  may be interpreted as the action of an external potential which drives 
the X system. The above expression then represents the probability that X ,  
which is in state i initially, is finally in any one of its possible states after being 
acted on by an external potential (as, for instance, in Eq. (2 .3 )  summed over the 
final states, m). This result is unity. We have then that 5(Q, Q) = 1 and is 
independent of Q (  t )  . 

5 .  A more restrictive statement of the property in the above paragraph (4)  
can be made. In  this same class of problems in which the final states are summed 
over, if &( t )  = Q’(t)  for all t > r then F(&, &’) is independent of Q ( t )  for t > r.  
To see this we write down the influence functional from Eq. (2.8) breaking up 
the time interval into two parts, before and after r .  Setting Q = Q’ for t > r and 
utilizing the closure relation for the sum over final states we have, 

Examining the parts of the above integral which contain the effects of t > r :  

I s(xT - X’T)KQ(XT,  Xr)KQ*(X’T, x’r) kxT dX‘T 
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\\-hich is independent of & ( t )  for t > r.  As will be seen later in the specific case 
of linear systems, this leads to a statement of causality. 

D. STATISTICAL MECHANICS 
Finally it is appropriate to  point out explicitly the significance of the influence 

functional in a study of quantum statistical mechanics. I n  the class of problems 
considered here we are only interested i n  making measurements on the test 
system and not on the interacting system. Thus, when the expectation value of an 
operator which acts only on the test system variables is taken, the final states of 
the interaction system must be summed over. It is equivalent to taking the ex- 
pectation value of the desired operator in the test system and simultaneously 
the unit operator in the interaction system. Therefore, only the influence func- 
tional where the final states of the interaction system are summed over will be 
of interest to  us. 

Starting with the coordinate representation of the density matrix (6) for the 
test and interaction systems, p (  &, X ;  Q’, S’), we will show the part played by 
the influence functional in obtaining an expression for p ( Q T ,  Q I T ) ,  that is, with 
the X coordinates eliminated, in terms of its value a t  an earlier time 7, p (  Q7 , Q’,) . 
First, we recall that the definition of p is as follows: 

A&, X; Q’, X ’ )  = ( $ ( Q ,  XI$*(&’, X’)>:,, (2.12) 

where #( &, X )  represents the wave function for one of the systenls in ail ensemble 
of systems each representing one of the possible states of the Q, X system (7).  
The average, represented by ( ),, , is taken over the ensemble. The trace of the 
density matrix is 

T r  P(& ,  X; Q’, X ’ )  = IS P ( & ,  X; &, X I  d& d X  (2.13) 

and the expectation value of a n  operator A which operates on the Q variables 
only is 

( A )  = SSS P ( Q ,  X ;  Q‘, X ) A  ( Q ,  &’I d& d&’ d X  (2.14) 

In the above 

and &(&) is one of a set of complete orthonormal eigenfunctions. From Eq. 
(2.14) then we see that the formal expression which we wish to derive is 
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in terms of p ( Q ,  , & I T ) .  From the rules given in Section 1I.A for propagation of 
a wave function with time we can easily find p T  in terms of pr . Thus 

~ ( Q T ,  X T  ; Q’T, X’T) = I ~ X P  { (i / f i)[So(&) - So(&’) 

+ S ( X )  - S ( X ’ )  + ~ I ( Q , X )  - SI(Q’,X’)l/  
X p ( Q l . ,  X, ; Q ’ T ,  x’,)a>Q(t) . . . dX‘, 

(2.17) 

Now, for simplicity let us assume that initially the two systems are independent 
so that 

P(&, , X ; Q’, , X’,) = P ( Q ,  Q’,)p(X,, X’,) 
Then eliminating the X T  coordinate as indicated in Eq. (2.lti) we have 

p ( Q T ,  &’TI = I {J  ~ ( X T  - X’T) exp [ ( i / f i ) [ S ( X )  - S ( S ’ )  

+ S I ( Q ,  X) - S,(Q’, X’)]lp(-Y, , J f 7 )  

X B X ( t )  . . . dX’4 exp [ ( i / f i ) [ S ~ ( Q )  - SO(Q’) I IP(Q~,  Q’r)DQ(t) . . . dQ’? 
The expression inside the braces is identified as 5 (  Q, Q’) for the case in which 

the final state of X is summed over. Therefore, the following result is obtained: 

Thus, if the density matrix of the test system Q is represented by p ( ( 3 ,  , Q:) 
at some initial instant 7, the density matrix p ( Q T ,  Q I T )  a t  some later time l’ 
is given by Eq. (2.18). The entire influence of the interaction system is co~itained 
in % ( Q ,  &’I. 
E. USE OF INFLUENCE FUNCTIONALS 

At this point we need to consider how influence functionals can be used i n  
the analysis of a problem. For clarity the discussion will be specialized to a 
particular problem but the principle is valid more generally. Suppose we wish to 
know the probability that a test system Q makes a transition from an initial 
state &(Qr) exp [( - i / f i )En7] to a final state &(QT) exp [(- i/fi)E,T] when 
coupled to an interaction system. The formal expression for this probability is, 
from Eq. (2.5), 

P,, = S & * ( Q T ) + ~ ( Q ’ T )  exp t ( i l f i ) [So(Q)  - So(Q’)I15(&, &’I 
(2.19) 

X +n* ( Q ’ T  )+n (&I) d&r . . . dQ’( t 1 
This is formally exact but except in special cases it cannot be evaluated exactly. 
Furthermore, to  obtain any specific answers to the problem the characteristics 
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of (3 must be known as well as knowing the influence functional. However, by 
using perturbation theory we may find general expressions for transition prob- 
abilities to as many orders as desired. For example, if the interaction system is a 
linear system a t  zero temperature, we will find that To(&, Q’) is of the 
form exp[z%( Q, Q’)].  The perturbation expansion is obtained by writing 
esp[i%(Q, Q’)] in terms of a power series and evaluating the path integral 
corresponding to each term in the expansion. In many cases the coupling between 
Q and the interaction system is small enough that only a few terms in the expan- 
sion are necessary. In  Appendix I the basic procedure for finding the perturbation 
expansion is demonstrated by finding the specific expression up to second order 
in the potentials involved for transition probability of a test system when acted 
on by a linear interaction system at zero temperature. Calculation of transition 
probabilities represent only one piece of information that one might desire to 
know about a test system. For instance, it is more usually desired to find the 
expectation value of an  operator in the test system. To calculate this one needs 
to know the density matrix describing the test system when i t  is coupled to  an 
interaction system. The exact expression for the required density matrix is 
given in Section I1,D. Again in the general case, one runs into the difficulty of 
making an exact calculation and is forced to make calculations using perturba- 
tion theory. The same procedure of expanding the influence functional into a 
power series and performing the required path integrations yields useful per- 
turbation expressions. 

111. INFLUENCE FUNCTIONALS FOR CLASSICAL POTENTIALS 

In  this section we will derive specific forms and properties of influence func- 
tionals for the effects of classical potentials on the test system. These represent 
the simplest form of influence functionals and their properties follow directly 
from the general properties obtained in the previous section. These forms will 
then be extended to the case where the classical potential represents Brownian 
noise. 

A. PROPERTIES OF INFLUENCE FUNCTIONALS FOR CLASSICAL POTENTIALS 
The first step is to find the influence functional for a definite classical potential 

acting on the test system, &. If the potential energy term in the Lagrangian is 
of the form V (  Q, t ) ,  then it can be ascertained readily by referring to the funda- 
mental definition of 5(  Q, Q‘) that 

5(Q,  Q’) = exp{ - (i / f i)JrTW(Q, t )  - V(Q’, t ) l 4  (3.1) 
or equivalently the influence phase is 
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The next degree of complication is to have several potentials, C k V k ( Q ,  t )  
acting on Q simultaneously. However, since the sum of all these potentials repre- 
sents an equivalent potential, say V (  Q,  t )  = C k V k  ( Q ,  t ) ,  then it is obvious that 
the total influence functional 5(  Q, Q’) is the product of the individual S k ( Q ,  Q’) . 
More specifically, 

5(Q,  Q’) = exp { - (i/fi)L‘V(Q, t )  - V(Q’, 01 4 
= exp - ( i / f i )JTT[VdQ,  2 )  - VdQ’, t > l  dtl 

= l T k % ( Q ,  Q’) ,  
(3.3) 

or 

The same result follows directly from Section II.C.3 which gives the total 
influence functional for several statistically and dynamically independent systems 
acting on Q. The total influence functional for all the systems (in this case po- 
tentials) is the product of the functionals for the individual systems. 

Another property of the classical influence functionals is obtained by inspec- 
tion of Eq. (3.1). We notice that for any classical 5 ( Q ,  Q’) if conditions are such 
that Q ( t )  = Q’( t ) ,  then 5 ( Q ,  Q’) = 1 and is independent of t for all times that 
the two variables are equal. It follows that the influence phase is zero for this 
condition. 

Finally, from Section II.C.l we find that if the potential is uncertain but the 
probability of each V,( Q,  t )  is wr then the average functional is given by 

In the following Sections we will assume a probability distribution w, appropriate 
to Brownian noise and will be able to derive a specific form for the average 
influence functional. 

B. SPECIFIC FUNCTIONALS FOR RANDOM POTENTIALS 
Let us now suppose that the potential has known form, V (  Q),  but unknown 

strength C ( t )  as a function of time so that the total potential is V ( Q ,  t )  = 
C (  t )  V ( Q )  . The average influence functional for two cases involving this type of 
potential will be particularly useful in the discussion contained in Sections IV 
and V. These cases are: (1)  when C ( t )  is characterized by any coupling strength 
(average magnitude of C) with a purely Gaussian distribution, and (2) when 
C ( t )  is composed of large number of very weak potentials (acting on the test 
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system simultaneously) whose distributions are stationary but not necessarily 
Gaussian. 

1. Gaussian Noise 
First, we consider the situation when C ( t )  is Gaussian noise with a power 

spectrum a(.) and a correlation function R(T) = ( 2 / x ) J : @ ( v )  cos Y T  d v  
then ( 5 )  is given by 

( 5 )  = ( ~ X P  i ( i / f i ) J ; c ( t ) [ v ( Q )  -2 T t - V(Q’)ldtl)  (3 .6 )  
= exp I - f i  Jr J r  R ( t  - s ) [ V ( Q t )  - V(Q’t)l[V(Q,) - V(Q’.)I ds dtl 

Expressed in Fourier transform notation this becomes 
(5 )  = exp { - (Tfi2)-’Jom+(v) I v,(Q) - v,(Q’) I’dv) ( X i )  

(3 .8)  
where 

V , ( Q )  - V,(Q‘> = Jr“V(Q) - V(Q’>le-’”‘dt 
Expressions of the type given in Eq. (3.6) are common for operations i t1  11 hich 
it is required to find the characteristic function, F ( i { )  = for j (  Y’) repre- 
sented by integrals of the form f( 7’) = ss:;; A ( T ,  t ) . x ( t )  dt wliere .r( t ) is a 
Gaussian process. The result will not be worked out here as it may bc found in  
standard references (8).7 The equivalent expression for 5 in terms of frcclueiicy 
components, Eq. (3 .7) ,  is obtained from Eq. (3.6) in a direct manner usiiig the 
definitions for R ( t )  and Eq. (3.8). 

2 .  Brownian Noise 
The Gaussian behavior of Brownian noise, characterized by the typical 

Gaussian probability distribution, may be the result of the cumulative eKects 
of many small statistically independent sources, none of which is truly Gaussian. 
How that comes about can be seen as follows. The effect of these small sources 
on a test system may be represented by an influence functional of the same form 
as that of Eq. (3.6) where now C ( t )  = cr=’=l C , ( t ) ,  N is a very large number, 
and the C,( t )  are independent random variables. Application of the central-limit 
theorem to this situation shows that the probability distribution appropriate 
to C ( t )  is asymptotically normal subject to the following conditions (9) : 

(a )  The average values, 

( C * ( t ) >  < O0 

Pt.2 = (I C % ( t )  - (Ct(t)) 1 2 )  < 00, 

and 

See, for example, pp. 372-373 where it is shown that  the characteristic function P(zE) 
appropriate to  the integral given above for a Gaussian process z( t )  is exp[->6Ez/JGcT, 
A ( T ,  t ) A ( T ,  s)K,(t, s )  ds d t ]  where thecovariance K,(t, s) = (zt.ra) is thecorrelationfurction 
corresponding to R(t - s) in Eq. (3  6). 

U T ) ,  
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(b )  The absolute moments 

/Ji,z+a = ( I  CL(t) - ( C , ( t > )  I z + * )  

exist for some 6 > 0, and 
(c )  Making use of the definition 

/ 1 1  = Cf=, P i . 2 ,  

then 

The condition of independence on the large number of variables and the finite 
average values required by (a )  aiid (b)  ahove assures that no one component 
dominates the total distribution. Condition (c )  is sufficient to ensure that all 
higher order correction terms tending to dcviate from a normal distribution 
vanish in the limit of large N .  It should be recognized that if the C, possesses 
finite third moments p,,3 the correction terms arising from these moments de- 
crease as N-'". However, for the cases i n  wliicli we are interested, the number of 
the component forces C, is essentially infinite arid higher order terms are negligi- 
ble. 

IV. INFLUENCE FUSCTIOSALS I;( )It  1,ISEAR SYSTEMS 

Linear systems are of considerable interest both Iwcause of the large number 
3f situations in which they are involved and Iwcausr they are amenable to exact 
:alculation. In this section the jiifluence functional for arbitrary combinations 
,f oscillators will be found by direct extension of the aiialysis of a single oscillator. 
411 linear systems which are lossless and those which contain certain kinds of loss 
can be represented by distributions of oscil1atoi.s. Situations in which dissipa- 
tion arises from sources other than distributions of perfect oscillators will be 
covered in Section V. The same conclusions apply for all linear systems, however, 
as will be discussed subsequently. For clarity, we will restrict our attention 
initially to linear interaction systems a t  zero temperature and not acted on by 
classical forces. The effects of finite temperature and forces can then be included 
so that their significance is more apparent. 

X. ZERO TEMPEK.~TURE LINEAR SYSTEM 

The result to be provcii involves the assumption that the interaction system 
( X )  is linearly coupled to the test system ((2). The total Lagrangian for the system 
is 
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where I;, = -&XI and L ( 2 ,  X, t )  is the part of the Lagrangian involving the 
X system above. The situation is the same as that shown in Fig. 1 except the 
interaction potential is given by V ( Q ,  X ,  t )  = - y Q X  and the X system is 
linear. Our fuiidameutal theorem for linear systems is as follows: 

The influence phase jor the efect oJ‘ X on Q can be written as  Jollows: 

aO(Q, Q’) i s  J’OiLrid by studying the properties oJ’ X alone.n Qy is  the Fourier trans- 
jorm oj  y ( t ) Q ( t ) and Z ,  is  a classical impedance Junction which relates the reaction 
of X to a n  applied jorce. Z ,  i s  jound by talcing the classical system corresponding 
to X (that is, whose Layrangian i s  L ( X ,  X ,  t ) )  and j indiny the response of the 
coordinate S to a driciny Jorce J (  t )  which i s  derived fiom the pokmtial - j (  t ) X (  t )  . 
j ( t )  i s  considered to be applied at 7’ = 0 subject to the ini t ial  conditions tha.t X (  0 )  = 
X(0) = 0.  Z ,  i s  dejined by the expression 

2” = j” / ( iVX”)  (4.3) 
where 

fl = J~wJ( t )e - i”’L  dt and X ,  = So“ X ( t ) e ?  dt 
In the tiiiie domain, Ey. (4.2) can be expressed as 

i@( Q ,  Q’) = - ( l/2fi).frCm J’, rtrs(Qt - Q ’ t )  
(4.4) 

.[&,F*(t - S )  - Q t s F ( t  - s ) ]  ds dt 
where I m  F ( t ) ,  which we will call B ( t )  is, for t > 0, the classical response of X 
to a force j ( t )  = 6 ( t ) .  Re F ( t ) ,  which for this zero temperature case we call 
A o ( t )  ~ is the correlation fuiiction for the zero point fluctuation of thc: variable X ,  
a point discussed at more length below. The relations, connecting these 
quantities are then. 

F ( t )  = A n i t )  + i B ( t )  

aid the inverse relations 

A n ( t )  = - - J~ Im (’-> cos vt dv 
8 0  ivz, 
2 “  B ( t )  = - - 1 I m  (L) sin v t d v  
T O  z v z ,  

(4.5h) 

8 More genewlly, the part of the interaction represented by Q could be represented by 
function of Q such ::s V ( Q ) .  In  this case Q in the influence phase would be replaced by V,(Q), 
the Fourier transfom of V(Q(1)).  
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A o ( t )  and B ( t )  are related as follows: 

These relationships may be written in many forms. Two additional forms are 

F ( t )  = 2 1- (L) cos vt dv 
T avZ, 

and 

All the poles of l / i v Z ,  have positive imaginary parts and this impedance func- 
tion has the additional property that 

( l / iYZ.)  = ( 1 / -  iVZJ* 

In the case of finite temperatures, the influence phase can be written in the same 
form as Eq. (4.4) except that ReF(t) = A ( t ) ,  that is, without the subscript 
0, and a more general relation exists connecting A ( t )  and I m  ( l / i v Z v )  (see 
Section IV,C). 

5( Q, Q’) Jor Single Lossless Harmonic Oscillator 

To prove the above theorem, we consider first a test system, Q, which is 
coupled to a simple harmonic oscillator whose mass is m, characteristic frequency 
W ,  and displacement coordinate X .  The complete Lagrangian for X and Q can 
be written 

Ltotal = Lo(&, Q, t )  + $.imx2 - $$mw2X2 + QX (4.6) 
and the total action is written ~ imi la r ly .~  

Stotsl = &(Q) + J?(>.imX’ - >gmw2X2 + Q X )  dt  

If X is assumed to be initially in the ground state (corresponding to zero tem- 
perature) then to  within a normalizing constant x $ ( X )  = e-mwx*’2h . The final 
state of X is assumed to be arbitrary which means the final states are to be 
summed over. Therefore, in Eq. (2.7), the definite state n*(X, )x f (X’ , )  
will be replaced by the sum &L”(X,)@.,(X’,) = 6 ( X T  - X’,). The % ( X )  
represent the energy eigenfunctions of the harmonic oscillator. With this in- 

s The interaction Lagrangian Q X  could be written more transparently as r&X where & 
and X are the coordinates of the system involved and y is a coupling factor which may or 
may not be a function of time. For simplicity in writing the lengthy expressions t o  follow, 
y has been incorporated into an effective coordinate (3 since no loss in genernlity results. 
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formation available the influence functional is completely defined and from 
Section 1I.B can be written 
To(&, Q’) = J 6(XT - X ’ T ) K Q ( X T ,  X T ) J ~ $ ( X ’ T ,  X’,) 

(4.7a) 

where the subscript Q, Q’ refer to the interaction potentials -QX and -Q’X’ 
acting on the X and X’ systems respectively. The subscript 0 on so(Q, Q’) in- 
dicates zero temperature. For the harmonic oscillator 
l i o ( X T ,  X, )  = Nexp { ( i / n ) [ S ( x )  - S I ( Q ,  X)lc~ass i ea l  

X exp [- (mw/2h) (X,’+X:’)] d X ,  . . . d X f T  

= N exp { [iw/2h sin w (  T - T ) ] [ ( X ~  + X?)  cos w (  1’ - T )  

- 2XTX,  + ( 2 X T / w ) J T T  Qt sin w ( t  - 7)dt + (2X, /o)  
(4.7b) 

. J r T  Qt sin w ( 1’ - t )  dt  - ( 2 / w 2 )  J r T  J r  ‘ QtQs sin w( T - 2) sin w (s - T ) ds d t }  
where N is a normalizing factor depending only on w and the time interval 
T - 7.l’ Thus, Eq. (4.7a) represents a Gaussian integral over the four X variathx 
since S is itself quadratic in the X variables. When the integrals are carried out 
the following result is obtained for the influence phase : 

Thus, F ( t  - s) in Eq. (4.4) corresponds in this case to e+iw(t--a) /mu and froin 
the definition given above B(1 - s) = ( l /mo) sin w ( t  - s).” Rewriting Eel. 
(4.8) in transform notation we have 

where 
Q. = Jmm Qte-i”t  dt  

The function [ -m[( v - ie)’ - w2]l)-’ = (mw)-’J’o“ sin Ute-””  dt  corresponds 
to l / i v Z ,  of Eq. (4.2).” 

lo See ref. 2 ,  Section 3. 
The finite time interval indicated by the limits T and 7 can be interpreted as turning 

the coupling (between Q and X) on at t = 7 and off at t = T. However, since the interaction 
system is to be considered in most cases as  part of the steady-state environment of Q,  i t  is 
really more meaningful to extend these limits over an infinite range of time (7 -+ - m ,  
T -+ + m ) .  The possibility of allowing X to  interact with Q over a finite range of time can 
be taken care of by giving the coupling factor (already included in the variable Q) the 
proper time dependence. 

I*  c which occurs in i v Z ,  is a convergence factor which was inserted in taking the Fourier 
transform ( l ( t ) /mw) sin ot where l ( t )  is the unit step function and is kept to  show thz loca- 
tion of the poles with respect to  the v axis when doing integrations of the type Jo H ( v )  
[ ivZ. ] - l  dv. 
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Having obtained the expression for the influence phase we now turn to the 
classical problem of finding the response of X ( t )  to a driving force, f(t), applied 
at  t = 0 with the initial conditions X ( 0 )  = X ( 0 )  = 0. Starting with the La- 
grangian of the unperturbed oscillator from Eq. (4.6), we add to it a potential 
term - J ( t ) X ( t ) .  This potential has the same form as the coupling potential 
-QX used in the quantum calculation. However, it is to be emphasized that 
the response of X to a force has nothing to do with the system Q outside of the 
type of coupling involved; therefore, J ' (  t )  will symbolize the force in the classical 
problem. The complete Lagrangian is 

(4.10) I,(-%, x, t )  = x?7?x2 - ~ ~ m w ' X '  + f X  

and the equation of motion derived from it is, 

?nX + 7 n w ' ~  = J (4.11) 

Its solution under the initial conditioiis stated above is 

X ( t )  = (mw)- 'JOf . [ ( . s )  sin w ( t  - s )  d s  (4.12) 

or alternatively, in terms of Fourier transforms, is 

x, = J;( -7?2[ (  Y - it)' - cd2]]-'  (4.13) 

Therefore, R( t - s) in this case is a Green's !unction which yields the response 
of X ( t )  to an impulse forceJ'(s) = 6(s) and its transform yields l / i v Z , .  Thus a 
classical calculation of the ratio X J J ;  under cliii~sc~iit iiiitial conditions yields 
the proper function for l / i v Z , .  

Distribution of OscillatorsRepresentation of Loss 
The results of the preceding section are easily extended to thr situation where 

the interaction system is a distribution of oscillators. First, we consider the case 
of independent oscillators coupled to the test system. It is assumed that there is a 
distribution of oscillators such that G(R) dR is the weight of oscillators whose 
natural frequency is in the range between R and R + dQ. More specifically, 
G(R) dR is the product of the number of oscillators and the square of their coupling 
constants divided by the mass in dQ. Thus, we have a situation represented by 
the diagram of Fig. 3. Each oscillator is assumed to be initially i n  the ground 
state and finally in an arbitrary state; the coupling is again assunied to be linear. 
The total action is then given by 

S[Q,  X ( Q ) ]  = So(&) + S I T  So" G(R)[>4X2 - >$X'R' + Q X ]  dR dt (4.14) 

For the general properties of influence functionals already described we know 
that when independent disturbances act on Q the influence functional is a product 
of the ones for each individual disturbance. Since %(Q,  Q') = exp [i%(Q, Q')]  
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I ~ I ( ; .  3 .  Tcst sys tem Q coupled to  a distribution of oscillators 

for the case of a siiigle oscillator, the total influence phase for the distribution is 
the sum of the individual phases, 

@ o ( Q ,  0 ' )  = So" G(Q)%.n(Q, Q ' )  dQ (4.15) 

l lore  cxplicitly. 

@,, = (2ah)-' rm G ( Q )  dQ 
(4.16) 

JO 

Q'v(Q-y - QL) Q'y(Qy - Q'") } d v  
-[(v - i e ) 2  - V] + -[(v + i e ) 2  - 0 2 1  

k'or this case then, the form of Eq. (4.2) is obtained if we put 

( ivZY)- '  = lim fo"G(Q)[(v - ie)' - Q2]-'df2 (4.17) 
C-0 

orl:' 

(ZV) - '  = ( s / 2 ) G ( v )  - ivSOmG(h2)(v2 - Q')-'dQ (4.18) 

Thus the efiects of all the oscillators are included in the influence phase through 
the espression for Z, , Eq. (4.17). Now, however, because of the continuous 
distribution of oscillators, 2, has a finite real part. We will now show that  this 
real part represents dissipation by arriving a t  the same impedance function 
classically. 

As before, we take the part of the Lagrangian from Eq. (4.14) having to do 
with the oscillators, except that  the coupling potential - Q ( t ) J O m  G ( Q ) X ( Q ,  t )  d0  
is replaced by - J ' ( t ) l ~ "  G ( Q ) X ( Q ,  t )  dQ, a classical potential. X ( 0 ,  t )  is the co- 
ordinate of the oscillator in the distribution whose frequency is fi while the total 
coordinate of the complete linear system with which f(t) is interacting is 

l a  Eq. (4.18) is obtained from (4.17) using the identity 

lini,,o [ ( u  - i e ) *  - V]-' = (u' - V-' + (iz/2n)[b(v - 0)  - b(v + n)] 
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Jo" G ( Q ) X ( Q ,  t )  dQ = X ( t ) .  It is the relationship between j ( t )  and X ( t )  in 
which we are interested in this classical case: 

L [ X ( Q ) ,  X ( Q ) ,  t ]  = Jo"G(Q) d Q [ x X ( Q ) 2  - 55Q2X(Q)'] 
(4.19) + j(1)Jo" G ( Q ) x ( Q )  dQ 

The equations of motion are the infinite set represented by 

X ( 3 )  + Q 2 X ( Q )  = . f ( t )  (4.20) 

They result from varying L with respect to the independent variables X ( Q ) .  
For quiescent initial conditions and for J ( t )  applied a t  t = 0, this solution is 
expressed 

X,(Q)/Sy = -[(v - - Q2]-' = [ i v ~ , ( ~ ) ] - '  

The relation of the total coordinate X ,  to J1 is obtained simply, 

X v / j v  = [ l o "  X p ( Q ) G ( Q )  dQl(.fv)-' 
(4.21) 

Referring to Eq. (4.17) it is seen that the same expression for 2, is obtained in 
the quantum and classical cases. In  addition, since Zv is now identified with a 
classical impedance, the real part represents resistance while the imaginary part 
corresponds to reactance. Therefore, a t  least for the case that loss is represented 
by distributions of oscillators, its effect can be included in the influence func- 
tional by using the appropriate impedance expression. The spontaneous emission 
of a particle in free space represents a good example of such a loss mechanism. 
A demonstration of this point is included in Appendix I1 where the oscillator 
distribution is related to the probability of spontaneous emission starting from 
the influence functional representing the effect of free space. 

= - J o " G ( Q ) [ ( v  - it)' - Q*]- 'dQ = (ivZy)-' 

The relationship 

( ivZr)- '  = Jo" B(t )e-" 'd t  

has already been established during the course of the derivation of the influence 
phase for the single oscillator. Now the inverse relation between F( t )  and l / i v Z ,  
can be written for the zero temperature case. In  the time domain the influence 
phase for the distribution of oscillators is 

i@(Q,  Q') = -(2fi)-'Jn" G(Q)Q-' dQ$?m 1:" ( Q L - Q ' t )  

(Q8e-1R('-8) - Q'sein(t-n)) ds dt 

Comparing this with Eq. (4.4) it is evident that 

F ( t )  = So" G(Q)ft-le*R' dQ 
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But from Eq. (4.18),  

Im(ivZ,)-’ = -TG( v)/2v 

Therefore, it can be immediately written that 

(4.22) -1 i v l  F ( t )  = - ( 2 / r ) f o W  Im(iv2,) e dv 

as was given in Eq. (4.5b). 
The results above can now be extended by a simple argument to include all 

linear systems composed entirely of distributions of oscillators. To do this it 
need only be shown that the general system can be reduced to a distribution of 
oscillators independently coupled to the test system, which was the situation 
just considered. Explicitly, suppose there exists a test system &, coupled to an 
assemblage of oscillators which are also interconnected with each other. For 
instance, the situation might be as in Fig. 4, where each of the X ,  components 
of the total interaction system could also represent a system of oscillators. 
However, it is well knowni4 that such a linear system may be represented by an 
equivalent set of oscillators (the normal modes of the total system) independently 
coupled to &.I5 Or, stated another way, the classical representation of the La- 
grangian in normal modes finds new linear combinations of the X ,  which makes 
the total Lagrangian, except for the coupling, a sum of individual quadratic 
forms with no cross terms. But, this same transformation of variables can be 
made on the expression for S(Q, Q’) (see Eq. (2.7)). The effect of this trans- 
formation is to change the D X (  t )  volume by a numerical factor, since the trans- 
formation is linear.16 Thus, in effect, we get the sum of independent systems in 
the quantum mechanical case also. From this argument it is concluded that the 
results above regarding a distribution of independent oscillators coupled to a 
test system, apply to any linear interaction system. Therefore, it has been found 
that the influence functional for all linear systems has exactly the same form 
exp[iao(Q, Q’)] where @o(&, Q’) is a quadratic functional of the Q and 
&’. %(Q, Q’) is adapted to a particular linear system only through the classical 
response of that linear system to  a force. Thus, the procedure for finding the 
influence functional for a linear system has been reduced to a classical problem. 
The fact that eliminating the coordinate of an  oscillator always yields an in- 

l4 This point is considered more fully in Section IV,B on classical forces. 
The fact that  one or more of the X I ,  might represent continuous distributions of oscil- 

lators need not be bothersome since in principle they represent the behavior of the total 
system in terms of its infinite set of normal modes. 

‘ 0  The only result of such a numerical factor would be to  change the normalizztion of 
5(Q, Q’). However, we already know that for the case that  the final states of the interaction 
systeni are sunimedover 5(Q, &’) = 1. Therefore the normalization of S(Q, Q’) is not changed 
by the transformation and thus is not dependent upon the coordinates chosen to  represent 
the interaction system. 
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I I 

Test system coupled to  an arbitrary assemblage of oscilL,t.ors 

fluence functional which is quadratic in the potential applied to that oscillator, 
is a basic property of linear systems. For example, where the coupliiig Lagrangian 
is linear between an oscillator of coordinate X and another system of coordinate 
Q, the elimination of the X coordinate yields an influence phase which is quad- 
ratic in (2 as has already been shown. If Q were the coordinate of another oscillator 
coupled to Z’, then elimination of the Q coordinates would yield an influence 
phase quadratic i n  P ,  etc. This can be understood mathematically by observing 
that the Lagrangiaii for all the oscillators with linear coupling is always quadratic. 
Doing the path iiitcgral to eliminate a coordinate is basically a process of com- 
pleting the square at i d  performing Gaussian integrals. This process of completing 
the square also yicltls quadratic terms. It is therefore not surprising that the 
influence phase for m y  linear system should be always of the same quadratic 
form. 

I t  is to be emphasized that thc analysis so far presented has been concerned 
entirely with systems \vIiosc complete behavior can be described by combinations 
of lossless oscillators at, zero tempcrature. The only example of such a system is 
the electromagnetic field i i i  free space. In  all othcr physical situations linear 
behavior is an appimimation to tlic actual behavior. However, this approxima- 
tion may be very good over a wide range of operating conditions. In  Section V 
the problem of approsimat.cly liiicar systems will be considered in detail. The 
results will be fouiid to Ix the same as for perfect oscillators to the extent that 
linear behavior is realized. 

Form of InJluence Funciionals jor  Linear Systems and Classical Forces as  De- 
duced Jiom Propertips 01’ /nflwencr Funciionals 

So far, we have found the influence phase for classical potentials, uncertain 
classical potentials, and linear systems a t  zero temperature. By studying Eqs. 
(3.1),  (3.6),  and (4.4), we see that the general form for the influence functional 
in which all three of these were acting 011 Q is 

T(&, Q’) = exp { jr7  iCl(t)(Q1 - Q’,) dt - J T T  Jif A l ( t  - s ) ( Q t  - Q’t) 
(4.23) 

. ( Q 9  - &’*I d s d t  - JrTJr‘i&(! - s ) (QL  - Q ’ t ) ( Q g  + Q I S )  dsdt ]  
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The exponent is written solely in terms of Q for simplicity although when the 
potentials are not linear in Q (as XV(Q)) ,  the same general form exists, ex- 
cept that it is written in terms of V ( Q ) .  We now observe that there are other 
possible combinations of the Q, Q’ variables not represented here such as terms 
in  ( Qt + Q t t ) ,  ( Q L  + & ’ I )  ( Q8 + Q’*>. To see if such terms are possible, let us form 
a hypothetical functional containing all possible forms up to second order in Q. 

z(Q, Q’) = exp (ITT [iC,(t)(Qt - Q’t )  + D l ( t ) ( Q t  -t Q ’ t l l  dt 

- Jr’ 17 ‘  IAi(r - s > ( Q t  - Q ’ t ) ( Q s  - 0 ’ s )  + iBi(t - s ) ( Q t  - Q ’ t ) ( Q s  + Q r s )  
+ iD2(t - s ) ( Q t  + Q ’ t ) ( Q s  - Q’s) + ud(t - s ) ( Q t  + Q ’ t ) ( Q s  + ds d t }  

(4.24) 

That the coefficients of the Q’s inside the double integrals should be functions of 
( 1  - s)  is evident since the functional should not depend on the absolute time. 
\Ye i i o ~  will try to eliminate terms in the exponent by using the general properties 
of s(Q, 0’) given in Section 11. First, we know 5(Q,  Q’) = 5*(Q’, Q) .  This 
implies that all the functions A1 , B1 , C1 , D1 , D2 , and D3 are real. Next, we know 
that 5 ( Q ,  Q‘) = 1 if Q‘( t )  = Q ( t ) .  Hence, D ,  , Da are zero. This leaves only one 
term \ v I i i d i  we did not have before, that of D2(1 - s). Now we apply the property 
of these futictionals requiring that if Qt = Q’t for t > t o  then s(Q, Q’) is inde- 
pendent of Q for t > t o  . This statement is obviously true for the Cl(t) 
aiidAl(t - s )  terms. Coiisidernon.theB,(t - s)  term. Fort > to , Qt - Q’t = 0 
and therefore this term is also legitimate. As for the D2(t - s )  term, let us coii- 
sider t > tu , but s < t o .  Then Qs - Q’& # 0. Furthermore, Q L  + Q’t = 2Qt # 0. 
Therefore. & ( t  - s)  must also be zero. The fact that D2(t  - s)  = 0 is actually 
a statement of causality, i.e., that the effect due to an applied force cannot 
precede the time the force was applied. To see this, let us change the limits of 
integration on this term 

J r T J T t D 2 ( t  - s I ( Q t  + Q ’ t ) ( Q *  - Q ’ g )  d s d t  

= J T 7  JL‘ D2(s - t ) ( Q t  - Q ‘ t ) ( Q s  + & l a )  d s  dt 

Now the integrand is of the same form as that of the B(t  - s) term. However, 
for a fixed t the integration over s is over the range of s > t .  This amounts to a 
sum over the future rather than a sum over past histories of the variable Q. 

The conclusion to be drawn is that there are three possible types of terms up 
to second order in Q and Q‘ when definite classical forces, indefinite classical 
forces, and linear systems act on Q. Terms of this type have already been derived 
during the course of our analysis. Therefore, there are no major types of phenoni- 
ena which have not been noticed. In the light of the above discussion we would 
expect the effects of additional phenomena, if they are described by terms of 
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second order or less in Q and Q’, to be contained in one or more of the three 
forms of exponents shown in Eq. (4.23). For instance, in the case of a linear 
system at  finite temperature, it will be found that the effect of temperature is to  
change the effective value of A l ( t  - s) in the exponent of Eq. (4.23) from its 
minimum value which occurs at zero temperature. It should be pointed out that 
although Ao(t - s) (see Eq. (4.5b)) occurs in a term which has the form of an  
uncertain classical potential acting on the test system, a t  zero temperature one 
must be careful about this interpretation, for the existence of a random classical 
potential implies a random fluctuation of the variables of the interaction system 
which could induce transitions in the test system either upwards or downwards 
in energy. However, if the interaction system is already in its lowest state i t  
can only induce downward transitions in the test system so that the term in 
Ao(t - s) by itself is not sufficient. Thus, as has already been found, the ex- 
ponent of the zero temperature influence functional contains two terms, one in 
Ao( t  - s) and the other in B(t - s), which are related through Eq. (4.5~). 
Together they give the whole picture, i.e., that there is a zero point, random 
fluctuation of the variables of the interaction system but that this fluctua- 
tion can induce only those transitions in the test system which, through spon- 
taneous emission, give up energy to the interaction system. 

B. INFLUENCE FUNCTIONALS FOR DRIVEN LINEAR SYSTEMS 
It is to be expected that if a classical force is applied to a linear interaction 

system which in turn is coupled to a test system, the effect of the interaction 
system is to modify the character of the force applied to the test system. I n  this 
section we will find the exact form for the influence functional of this effective 
force. If a linear system i s  coupled to Q ( t )  through one of i ts  coordinates X ( t )  and 
if a classical force C (  t )  is coupled to another coordinate Y (  t ) ,  then a( Q, Q’) repre- 
senting the efect of both the linear system and the force i s  

where @o i s  the injluence phase qr the linear system i s  the absence o j  a classical force 
C ( t ) ,  and zy i s  a transJer impedance function which modiJes the efect oJC. on Q. 
The impedance zy i s  found by computing the classical response of the coordinate X 
to the force C with all other potentials acting on the linear system (including those due 
to coordinates of external systems such as Q )  set equal to zero. The result of the 
calculation yields ivzy = C , / X ,  . Alternatively, in the time domain, 

@ ( Q ,  Q’) = %(Q,  Q’) + li-’ JZ Jk, ( Q t  - Q’t)b(t - s)C, d s d t  (4.26) 
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where” 

(ZvzV)- ‘  = Jo%(t)e-”“ dt 

The theorem can be stated in the form of a diagram as shown in Fig. 5 .  In  this 
figuref(t) = 1:- F ( s ) b ( t  - s )  ds .  It will be convenient to work in the frequency 
domain. 

First we recall the influence phase for a classical force acting directly on Q. 
From this expression we will be able to identify the character of the force acting 
on Q in more complicated expressions. If the potential is of the form - C ( t ) Q ( t ) ,  
we have, from Section 111, 

@ ( Q ,  Q’) = ( 2 ~ f i I - l  l a “  [Cv(Q-v - Q L Y )  + C-,(Q. - Q’”)] dv (4.27) 

Classical Potential and Q Coupled to the Same Coordinate 

Before developing the general situation we consider the simpler situation where 
Q is coupled to a linear system through the potential - Q X ,  and a force F ( t )  is 
applied to the same system through the potential - F X .  The Lagrangian for the 
complete system is 

L (system) = Lo(&, Q,  t )  + ( F  + Q ) X  + L(X, Y ,  . . .  X ,  Y ,  t) 

where X ,  Y ,  . . . represent all the coordinates of the linear system. If F = 0, 

@ ( Q ,  Q’) @ o ( Q ,  Q’) 

(4.28) 

Q’y(Q-y  - Q L p )  Q - * ( Q Y  - Ql) dv (4.29) 

(- i V 2 - J  1 + 
If F # 0 it is evident from Eq. (4.28) that the required influence phase can be 
found by replacing Q by Q + F and Q’ by Q’ + F .  Notice that F does not carry 
the prime notation since it is not a coordinate. If this substitution is made in 
Eq. (4.29) we have 

(4.30) 

17 The notztion z, , b ( t  - s) wzs chosen to  avoid confusion with 2, and B(t - s) which 
are the impedance end response function respectively of the linear system as seen by the 
test system. 
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SYSTEM ‘=Z 
FIG. 5. Equivalent influences of a linear system and a force, F ( t ) ,  acting on 2 test system, 

Q .  

As might be expected the total effect of the linear system and the driving force 
consists of two separate terms, one describing the effect of the linear system 
alone, aiid the other describing the effect of the driving force. Comparison of 
Eqs. ( A X )  and (4.30) shows that the effective force applied to Q is, in transform 
language, F,/ivZ, and, further, shows that F ,  is modified by l / i v Z ,  , the classical 
impedance function of the interaction system. In  this special example where F 
and (2 are both coupled to the same coordinate, 2, is both the correct impedance 
to be used in %(Q, Q’), i.e., that impedance seen by the test system, and is the 
transfer impedance zv which modifies F ,  . This is not true generally as we shall 
see in the liest section. In  addition, it is interesting to observe that no unexpected 
quantum effects appear because of the addition of a force to the interaction 
system. The only effect of the interaction system is to modify the characteristics 
of F ( t )  in an entirely classical way. 

Classacal Forces -4 ctiriy Through a General Linear System 

Having obtained an idea of the type of results to expect in the above simplified 
analysis we now proceed to the more general case. Let the N coordinates of the 
interaction system be represeiited by S, , i = 1 . . . N .  I ts  coupling to the test 
system, Q ( t ) ,  and to the driving force C ( t )  is given by the potentials -XnQ and 
- X & C ,  respectively. Thus we are assuming, for simplification in writing, that Q 
is coupled only to the variable X ,  and the force C( t )  is applied just to the variable 
X k  . Again the interaction system is assumed to be composed entirely of harmonic 
oscillators. The Lagrangian is 

L (system) = L ~ Q ,  0, t >  + C,., M ( T ~ , X ~ X ; ,  - v,,x,x,)I 
(4.31) 

I t  is well known in the theory of linear systems that new coordinates may be 
defined by means of a linear transformation of the X ,  . These new coordinates 
will be chosen as the eigenvectors, Y L  , of the interaction system (10) .  Thus, 

+ X n Q  + X,C 

xt = C L  GlY1 i = 1,2 ,  . . .  n 



284 

INTERACTION OF SYSTEMS 145 

Assuming the a,/ to be properly normalized, the Lagrangian may be rewritten 
as follows 

L ( Q ,  Q, I“, Yz , t )  = L(&, Q, t )  
(4.32) 

Since these are now independent oscillators coupled to Q the influence phase can 
be written don-ii immediately, 

+ cz [M( F? - W l ’ Y 1 ’ )  + Yz(%zQ aklc)] 

(4.33) 

(4.34) 

calculated classically. 
This c m  be written in the form of Ecl. (4.25) if we make the correspondence 

2 
~ 1 = -y7 an2 
ivz, 1 zvZ1(v)  

and 

(4.35) 

Using Eqs. (4.34) and (4.35) \ye can now show that 1/ivZY and l/ivz,are equiv- 
alent to X , (  v ) / Q Y  atid X,,( v ) / C ,  respectively. Thus 

and 

(4.36) 

(4.37) 
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Equation (4.36) is a mathematical expression of the argument used earlier to  
find the appropriate impedance function to be used in the influence functional 
for a linear system acting on Q. The additional information obtained here in this 
regard is that when other forces are present they are to be set equal to zero when 
this computation is made. Equation (4.37) states the new result that the transfer 
impedance which modifies C, in its effect on the test system is to be found by 
computing the ratio of C, to the coordinate X , ( Y )  to which the test system is 
coupled. The total force acting on the test system when several forces are acting 
on the interaction system is simply the sum of these forces each modified by the 
appropriate transfer impedance determined in the above described manner. 

C. LINEAR SYSTEMS AT FINITE TEMPERATURES 
The forms of influence functionals which are possible for linear systems have 

been established by an argument which utilized the general properties discussed 
in Section 11. Each of these forms has already occurred in the analyses of classi- 
cal potentials, random potentials, and zero temperature linear systems. There- 
fore, the results to be expected here are one or more of the forms already ob- 
tained. 

The discussion is begun again with a single oscillator as our linear system, for 
simplicity. From this, the extension to distributions of oscillators is immediate, 
as it was in Section 1V.A. The complete problem is set up in the same way as for 
zero temperature except that the initial state of the oscillator is not simply the 
ground state or any definite eigenstate. The effect of temperature is to make the 
initial state uncertain and it is properly represented by a sum over all states 
weighted by the Boltzmann factor eCBEn where p = l / k T ,  T being the tem- 
perature in this case. The final state is again arbitrary: therefore, a formal 
expression for the influence functional is 

5(&, Q’) J 6 ( I T  - X ’ T ) K Q ( X T ,  X , ) K ~ J ( X ’ T ,  X’r) 
(4.38) 

where N ,  the normalization constant, is En eKBEn. The 4, represent the energy 
eigenfunctions of the oscillator unperturbed by external forces. The first problem 
is to find a closed form for the expression En 4n(X)r#J11(X’)e--BEn. This can be 
done by noticing that its form is identical with the kernel which takes a wave 
function from one time to another if we make the correspondence that /3 repre- 
sents an imaginary time interval. If the times involved are t2  and tl , this kernel 
is 

~ o ( ~ 2 ,  xi> = Cn r#~n(x2>a*(xi> exp [- ( i / f i ) ~ n ( t P  - ti11 

. En N-’e-BE”r#J,(X,)r#Jn*(X’,) dX,  . . . dX’T 

(4.30) 
= exp [(ilfi)S,l] 



286 

INTERACTION OF SYSTEMS 147 

for the harmonic oscillator, and where the subscript 0 indicates the absence of 
external forces. For the harmonic oscillator the expression for S is easily obtained 
in terms of the initial and final positions X, and Xp ( 2 ) .  Thus, 

S,I = mw[2 sin W ( ~ Z  - tl)]-'[(X," + X,") cos w ( t z  - t l )  - 2X1X2] (4.40) 

Utilizing Eqs. (4.42) and (4.43) and making the correspondence@ = i(t2 - t l ) / h ,  
X1 = X,, and Xp = X,', we find that 

c 4n ( X ,  )a* ( x', 1 exp ( -PE,, ) 
(4.41) 

Using this closed expression for the average initial state of the oscillator and the 
kernel for the driven harmonic oscillator (Eq. (4.7b)) the influence functional 
can be evaluated by evaluation of a series of Gaussian integrations just as in the 
zero temperature case. The result expressed in the frequency domain is, 

i@(Q, Q') = i @ o ( Q ,  Q') 

= exp { -mw[2fi sinh (@fiw)]-'[(X: + X:2) cosh (p f iw )  - ZX,X',]) 

(4.42) 

Thus, the influence phase is made up of two terms, the first of which is the effect 
of the oscillator a t  zero temperature. The second is recognized as having the 
same form which was found for an  uncertain classical potential with a Guassian 
distribution. Therefore, the effect of finite temperature is to introduce a noisy 
potential acting on Q a t  the frequency of the original oscillator. The power 
spectrum of the noise produced by the finite temperature is 

- (*f i2) - 'Jo" 7rfi[2mw(eah" - 1)]-'6(v - w ) l Q ,  - dv 

+( v )  = *fi[2mv(esh' - 1)]-'6( v - w )  (4.43) 

To indicate more clearly the relationship of 4(v) to the characteristics of the 
linear system it is instructive to extend this expression to the case of a distri- 
bution of oscillators G(Q) all a t  the same finite temperature. The resulting 
influence phase is 
i@(&, Q') = i l o "  @dQ, Q')G(Q) d f i  

(4.44) + (rfi2)-' l o "  * f i G ( v ) [ 2 ~ ( e ' ~ '  - 1)I-l IQy - Q ' v 1 2  die 
where in the distribution m has been set equal to unity. The first term is again 
the influence phase for zero temperature, while the second term again has the 
form of a noisy potential whose power spectrum 

+(v) = (fir/2)G(~)[v(e@~" - 1)I-l 
Recalling the analysis of the distribution of oscillators, it is found from Eq. 
(4.18) that,?rG( v)/2 = Re( l /Zp) .  Therefore, the power spectrum can be written 

+(v) = f i  Re (l/Zy)[v(eah" - 1)I-l (4.45) 
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In the time domain the influence phase is 

i@ = +Po - ( ~ f i ' ) ~ '  l o w  dvG( v)&[v(eph" - l)] 
(4.46) 

Comparing this with Eq. (3.6) for random classical forces we see that the 
correlation function of the noise due to the finite temperature is 

X JZw JL ( Q t  - Q ' t )  ( Q g  - cos ~ ( t  - S) ds dt 

R(t  - s) = l o "  f iG(v)[v(eah" - 1)]-' cos v(t - s )  dv 
(4.47) 

= - (2/7r) Jam fi Im (iv~,)-'(e~'' - I)-' cos v ( t  - s) dv 

Finally, if we write Eq. (4.46) in terms of F ( t  - s) as, for instance, in Eq. 
(4.4), we find that 

F ( t )  = l o w  [G( v ) / v ]  coth ( B f i v l 2 )  cos vt dv + i l o "  [G( v ) / v ]  sin vt dv 

Thus, 

A ( 1 )  = - (2/7r) So" Im ( i v Z ) - '  coth ( p f i v l 2 )  cos vt dv 
(4.48) 

= -(a/..) low Im (iv~,)-'[l + 2(esh' - I)-'] cos v t d v  

and 

B ( t )  = - (2 /?r )  SO" Im (ivZy)-'sin vt dv 

which are the more general counterparts of Eq. (4.5b). Notice, however, that 
only the relation for A ( 1 )  changes with temperature. 

Thus, if a liiiear interaction system is initially at a finite temperature, the 
resulting effect is the same, as far as the test system is concerned, as if the linear 
system were at zero temperature and, in addition, a random classical potential 
were connected independently to the test system. The power spectrum of the 
random potential is given by Eq. (4.45) and is related both to the temperature 
and to the dissipative part of the impedance of the linear system. The theorem 
is stated i n  terms of a diagram i n  Fig. 6 where the power spectrum +( v )  of the 
random force C, is defined by 

+(v) = 4a(C,C-,~)6(v+ v') (4.49) 

This fluctuation dissipation theorem has a content which is different from those 
stated by Callen and Welton (11) ,  Kubo ( l a ) ,  and others. It represents still 
another generalization of the Nyquist theorem which relates noise and resistance 
in electric circuits (13) .  These previously stated fluctuation dissipation theorems 
related the fluctuations of some variable in an isolated system, which is initially 
a t  thermal equilibrium, to the dissipative part of the impedance of the isolated 
system. This would be equivalent i n  our case to relating ( Q 2 )  when the test system 
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FIG. 6.  l<cjuivalent irifluences o f  :i linear system a t  o finite temperature acting on a test 
system. 

FIG. 7. 1,ine:w clcssicel force P acting on a test system 

is at equilibrium ( F  = 0) to the dissipative part of F,/Q, where F is a classical 
force acting 011 (2 through a linear potential as shown in Fig. 7. However, we 
have shown that the efyect of an external quantum system at thermal equilibrium 
on a test system cnii I)c separated into two effects, a zero point quantum term, 
which cannot he classified as pure noise, and a random potential term. Using 
this influence friiictioiial approach we can find (Q’) due not only to the internal 
fluctuations of (2 but also due to the effect of X .  

The fact that all the derivations so far have been exact, which is a consequence 
of dealing only wi t l i  systems made up of distributions of oscillators, brings up 
two interesting aspects of the theory. The first one is that 2, does not depend on 
the temperature, oiily oil the distribution of oscillators. Yet in any real finite 
system, it is to be expected that the temperature of a system does affect its 
impedance. The secoiitl aspect is that when a force J’( t ) ,  of any magnitude what- 
ever, is applied to the liiiear system, its temperature does not change although 
it is obvious that if zy has a finite real part the linear system must absorb energy. 
For example, we have sho\vii that the effect on a test system of a linear system 
a t  a finite temperature acted on l)y a force / ( t )  is the same as the effect of a 
linear system a t  zero temperature, a force dependent only on the temperature of 
the linear system, and the force J’( t )  modified by the transfer characteristics of 
the linear system. Figure 8 shows the situation wheref, = F,/ ivz ,  and C ( t )  is 
the random force with a power spectrum given in Eq. (4.49). The influence phase 
acting on Q is 

i+ = ~ 3 0  + i (27rf i - l  Jzw ( f P / . l i v ~ . )  (Q-” - QL,) dv 
- (rfi2)-’ Jom4(v)IQv - Q ’ v j z  dv 

As can be seen, the addition of the driving force j ( t )  (which is denoted in the 
above expression by its Fourier transform f v )  does not change either the imped- 
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FIG. 8. Equivalent influences of a linezr system at a finite temperature and it force act- 
ing on &. 

ance characteristics or the temperature of the interaction system (which would 
be reflected as changes in @O(Q, Q’), zy , and +( V )  ) . 

The fact that the impedance characteristics of the interaction system are not 
temperature dependent is a direct result of linearity. The incremental response 
of a perfectly linear system due to a driving force is independent of its initial 
state of motion or of that induced by other linearly coupled forces. Therefore, 
the random motion of the coordinate of the interaction system implied by a 
finite temperature does not affect its response to a driving force. 

To see the reason that temperature of the linear interaction system has no 
dependence on the applied force F( t ) ,  let us consider a linear system represented 
by a very large box whose dimensions we will allow to become infinite. I n  addi- 
tion, we assume that a test system is located in the box and is receiving portions 
of a classical (very large amplitude) electromagnetic wave which is being trans- 
mitted by an antenna also within the box. As long as the box is of finite size and 
has lossless walls, any signal transmitted by the antenna will find its way either 
to the test system or back to  the antenna. Transmission of the signal will be 
effected through the modes of the cavity which have a discrete frequency dis- 
tribution. This system exhibits no loss since each mode represents a lossless 
harmonic oscillator. For the rest of the discussion it is convenient to separate 
the energy transmitted by the antenna into parts which reach the test system 
directly or through reflection from the walls. As the dimensions of the box are 
allowed to become infinite (i.e., the distribution of oscillators describing the 
electromagnetic behavior of the box becomes continuous), the time required for 
the energy to reach the test system by reflection from the walls also becomes 
infinite. Therefore, since part of the energy is lost from the antenna and test 
systems, the box has, in effect, dissipation. However, because of the volume of 
the box is infinite, its temperature is not changed by this lost energy. I n  other 
words, the box has an  infinite specific heat. In  addition, the energy transmitted 
by the antenna will generally have different characteristics from that of the 
Gaussian noise associated with temperature and even if the average background 
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- 
v (t) - - 

energy content of the box were changed it could not be properly described by a 
temperature parameter. 

All the results so far suggest that any linear system can be handled by the 
same rules that have been developed for systems of oscillators. This will be 
developed fully in the next section. However, we will assume this to be true now 
and conclude this section by applying the theorem just derived to obtain 
Nyquist’s result for noise from a resistor. Take as an example an arbitrary 
circuit as the test system connected to a resistor R T ( v )  at a temperature T as 
shown in Fig. 9. The resistor comprises the interaction system. The interaction 
between the test system and the resistor is characterized by a charge Q ( t )  
flowing through the test system and resistor and a voltage V ( t )  across the 
terminals. Let us associate & ( t )  with the coordinate of the test system and V ( t )  
with the coordinate of R( v )  . The interaction part of the Lagrangian is symboli- 
cally represented by - &( t )  V ( t )  since the current voltage relationship in R ( V )  

is opposite to that of a generator. The quantity i vZ ,  appearing in the influence 
functional is given by 

- [QY/Vy]  = -(ivRy)-‘ = ivZ, 
Thus, i t  follows that  

Re (.ZV)-’ = v2R, 
Then the results of this section tell us that this situation, as shown in Fig. 9, 
may be replaced by a resistor a t  zero temperature (i.e., a resistor with thermal 
fluctuations appropriate to zero temperature but with the same magnitude of 
resistance it has a t  temperature T )  and a random classical voltage whose power 
spectrum is 

+ ( v )  = fivR,(eflh” - l)-l (4.50) 
as shown in Fig. 10. 

TEST SYSTEM 
1 

FIG. 9. Test system acted on by 2 linear system represented by an electrical resistence E 
a t  a finite temperature. 
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- 
V(t) - 

The mean value of this voltage is 

(4.51) 

For high temperature fi << 1, and we find that over the frequency range where 
f i f i v  << 1, +( v )  = LTR, . If R, is constant over the frequency range of interest 
whose limits are v2 and v1 , then as a result of the noise power in this range 

( ~ ‘ ( t ) )  = 4LTR(f2 - J’I) (4.52) 

where f is the circular frequency. This is the famous Xyquist result for noise 
from a resistor. Notice that the noise voltage generator must be placed in series 
with the resistor as a consequence of interacting directly with the coordinate of 
the test system, which in this case is Q ( t ) ,  the charge flowing in the circuit. If 
the coordinates were chosen such that Q ( t )  were the coordinate of the resistor 
and V (  t )  that of the test system, then the noise generator would become a current 
source interacting with the voltage V (  t )  so that the situation would be as shown 
in Fig. 11, where (i’) = ( 4 L T / R )  ( f2 - J1) in the high temperature limit. 

It is worth mentioning, but obvious from the derivation, that if there were 
many sources of dissipation coupled to the test system, each a t  different tem- 
peratures, then there would be a fluctuating potential associated with each 
source of dissipation with a power spectrum characteristic to the temperature 
involved. The case of different temperatures represents a nonequilibrium con- 
dition in that the hot resistors are always giving up energy to the cold ones. 
However, when the resistors are represented by continuous distributions of 
oscillators as in the case of an infinite box (free space), the temperatures do not 
change because of the infinite specific heat of the ensemble of oscillators. 

V. WEAKLY COUPLED SYSTEMS 

Wc are now faced with the problem of finding influence functionals whose 
Iwhavior is in some sense linear but whose total behavior is not representable by 
systems of perfect oscillators. There are many examples of this. The concepts of 
resistance, electric and magnetic polarizations, etc. are basic quantities which 
characterize the classical electrical behavior of matter. However, for an accurate 
description of this behavior, these quantities can be constant, independent of 
the applied electromagnetic field only in the range of approximation that the 
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magnitude of this applied field does not become too large. We will consider here 
the analysis of such systems and the approximations which make linear analysis 
valid. Insofar as linear behavior is obtained, the results of this section are basi- 
cally the same as those obtained in previous sections with regard to finding in- 
fluence functionals. However, it is interesting to see the same principles come out 
of the analysis another way. In  addition, it will be found that expressions cor- 
responding to 2, which appear in the influence functional are actually closed 
forms which can be used to compute such quantities as the conductivity from a 
knowledge of the unperturbed quantum characteristics of a system. These es- 
pressions have been derived before by several authors but it is interesting to 
find that they also appear in the influence functiona1 quite naturally. The results 
will then be applied to the case of a beam of non-interacting particles passing near 
a test system such as a cavity. This analysis naturally lends itself to a discussion 
of noise in beam-type maser amplifiers. In  -4ppendix 111, the results of this and 
Section IV are used to compute the spontaneous emission of a particle in a 
cavity. 
A. INTERACTION SYSTEMS \VITH COI-I~I~ISC;  POTEXTIALS OF THE FORM 

- v(Q) u ( P )  
The specific result to be shown hcrc* can bc stated as follows: If a general 

interaction system, P ,  is coupled to a test system Q so that the interaction po- 
tential is small and of the form - V ( Q ) [ - ( f ’ ) ,  then the effect of the test system 
is that of a sum of oscillators whose frequeticies correspond to the possible transi- 
tions of the interaction system. Therefore, to the extent that second order per- 
turbation theory yields sufficient accuracy, the effect of an interaction system 
is that of a linear system. 

To show this, we shall first assume the interaction system to be in an  eigenstate 
&(P7) exp ( - ( i / f i ) E a ~ ]  a t  the beginning of the interaction and in an  arbitrary 
state at the end of the interaction consistent with the usual procedure we have 
followed. Also, for convenience in writing, the interaction potential will be 
assumed - U ( P ) Q .  The influence functional is then 
5(Q,  Q’)  = J 6(PT - P’T) exp { ( i / f i ) [ S ( P )  - S(P‘) 

(5.1) + (QU - Q’u’) dt]}&*(P’,)&(P,) dP, . . . DP’( t )  
where in the above we have written U for U ( P )  and U‘ for U(P’) .  Since the 
magnitude of the interaction is assumed to be small, the perturbation approach 
can be used to good advantage. Thus, expanding the interaction part of the 
exponent and keeping terms to second order in Q only, 
S ( Q ,  Q’)  = J ~ ( P T  - P’T) exp 1 ( i / f i ) [ S ( P )  - S(P’)I} 

X ( 1  + ( i / f i )  JrT (Qu - Q’u’) dt + ( i / f i I 2  JrT Jr‘ (Qtut - Q’tU’t) 

X (Q8UJ - Q’,U’,) dsdtl+,*(P’,)#~,(P~) dP, . . . DP’(t)  
(5.2) 
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The evaluation of this is done in an entirely straightforward manner and the 
following is obtained,” 

3(Q, Q’) = 1 + ( i U a a / K )  JrT ( Q t  - Q ’ t )  dt - Cb I uab/f i i ’  

(5.3) 
X J r T J T t  ( Q t  - Q’t){QI1exp [-iubn(t - s>l - &la ex-p [iuba(t - s>l) dsdt 

where 
U,b = Jd,*(P)Udb(P) dP and wb, = (Eb - Ea)/ii 

All terms which involve U a a  will be disregarded. This is because U,, represents 
the average value of the operator U ( P )  in an eigenstate of the interaction system 
alone. Even if it is not zero, it will be noted from Eq. (5.2) that terms involving 
U,, can be written 

1 + ( i u a o / f i )  I T T  ( Q t  - Q ’ t )  dt + ( 1 / 2 ! ) [ ( i u o a / f i )  I T T  ( Q t  - Q ’ t )  dt]’ + . . * 
= ex-p { ( i / f i )  J7’ c y U a ( ~ t  - Q ’ t )  dtl 

When 5(Q,  Q’) is used to  make a calculation on the test system, this term has 
the effect of adding a constant potential V ( Q ( t ) )  = -U,,Q(t) to the unper- 
turbed test system. Disregarding U,, , the influence functional then becomes 

5(&, Q’) = 1 + & (5.4) 
where 

and 
~ n ( t  - 8) = Cb ( I U b a l ’ / f i >  exp [iwbo(l - 811 

where the limits have been extended and the factors y l y s  inserted to allow finite 

M P T  - P’T) expl (i/h)[S(P) - S(P’)Il ( i lhPJ; J4 Q I U f Q . U ,  ds dt 

Taking the time integrations outside the path integral and replacing the path integrations 
by propagating kernels, this becomes 

A typical term in Eq. (5.2) is as follows: 

x &*(1’’7)60(p7)  dPT ” ‘  a P ( 1 )  

(i/h)’JT J: QtQ. ds dl.fa(PT - P‘T)K*(P’T , P:)K(PT , P t )  

. U t K ( P t ,  P,)U.K(P, , k’,)~.*(t-”,)~,,(P,)dPr . * *  dp’r 

Remembering that K ( P T  , P t )  = ~qb.(PT)+n*(Pt)exp( --iE,,(T - t ) / h } ,  this expression 
becomes simply, 

- z b  I Uab/h I* JT 14 &LQ)seXp[-iUba(i - S)] d S  d t  
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coupling time if necessary. If the strength of coupling is sufficiently weak then 
Eq. (5.4) can be rewritten 

In this form we recognize %(&, &‘) as that describing the effect of a sum of 
harmonic oscillators independently connected to the test system each of whose 
“weights” is uhuab/ii2. The complete response function for the system of 
oscillators is 

B,(t - S) = Im F a ( t  - S) = Cb ( 2 / U b a l 2 / f i )  sin W b a ( t  - S) 
where the subscript a on B, refers to the initial eigenstate. According to previous 
definition, the mass of each individual oscillator is identified by in = f i (  21 u b o / 2 W b a ) - 1  

and its characteristic frequency by w h .  Therefore, to the extent that second 
order perturbation theory yields satisfactory accuracy, any system may be 
considered as a sum of harmonic oscillators. This is equivalent in classical 
mechanics to the theory of the motion of a particle having small displacements 
around an equilibrium position. Its motion, to a first approximation, is also 
that of a harmonic oscillator, if the first effective term in a power series expansion 
of the potential around that equilibrium position is quadratic in the displace- 
ment. 

In  this part of the discussion we should again point out the motivation for 
writing the approximate influence function, Eq. (5.4), in terms of the approxi- 
mate exponential of Eq. (5.5), apart from the obvious advantage of making the 
form agree with that of exactly linear systems. Frequently, we deal with a test 
system which is influenced by another system which is actually made up of a 
large number of very small systems. Examples of such an interaction system 
would be a beam of atoms or the electrons in a metal. Although the expression 
for the influence functional for any one of the subsystems is only good to second 
order, their individual effects are so small that this accuracy is very good and 
Eqs. (Fj.4) or (5.5) is equally valid. However, when the sum of the effects of the 
subsystems is not small, then the two forms above do not describe the situation 
equally insofar as the composite effect of the interaction system is concerned. 
We know that when these subsystems are dynamically and statistically inde- 
pendent, the total influence functional is simply a product of the individual ones. 
In  such a case the influence functional obtained by using Eq. (5.5) as follows 

S k ( Q ,  &’I E ~ X P  {iCA(Q, Q’II 
yields much greater accuracy than that obtained from Eq. (5.4) where we would 
find 

S(&, &’I E 1 + iCli%(&, Q’) 
@k( Q, Q’) being the influence phase for the kth subsystem (see Appendix I V )  . 

5 “N exp (a,) (5.5) 
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The expression given by Eq. (5.5) has additional implications which are not 
immediately apparent. from the analogy with the harmonic oscillator. No 
assumption was made as to  whether the initial state was necessarily the lowest 
of the system. Therefore, Wba could be either positive or negative. Suppose for a 
moment that the interaction system has only two states ( & ( P )  and I # I b ( P ) )  and 
that the initial state, a, is the lower one ( W b o  > 0).  It is obvious that the only 
effect it can have on the test system Q is to absorb energy from Q. However, if 
the initial state, a, is the upper state (corresponding to  Wbo < 0) then the inter- 
action system can only give up energy to  the test system. It can do this in two 
ways, through spontaneous emission or through coherent emission due to some 
coherent driving force exerted on it by the test system. So for the case 0 6 0  > 0 
we expect the influence functional to show that the interaction system has the 
effect of a cold system characterized by a dissipative impedance (or positive 
resistance). Conversely, for Wba < 0 it is expected that 5(&,  &’) will be char- 
acterized by a negative resistance and a random potential due to the spontaneous 
emission transitions. This situation is made more obvious if we translate Eq. 
(5.5) into transform notation. Thus, 

(5.6) 

where 
i Y z b c , u  = - f i ( 2 W b a ! u b o 1 2 ) - ’ [ ( Y  - i C ) 2  - W i G 1  (5.7) 

First of all we notice that the sign of Z b a , v  changes with that of Wba and therefore 
its dissipative part can be positive or negative as was argued above. Secondly, 
for Wba < 0 there is a random potential acting on Q whose power spectrum is 
given by +(Y) = a j u b J % ( v  + W b a ) .  Of course when Wba > 0, the integral in- 
volving this term disappears indicating the noise potential does not exist and 
the effect is the same as that of a harmonic oscillator initially in the ground 
state with 1/2mw identified with 1 Uh12/fi. 

In a real physical situation it is not likely that the interaction system will be 
in a definite state initially. So to extend the above results to a more general case 
we assume that the initial state is described as a sum over states weighted by a 
density matrix p ( ~ )  which is diagonal in the energy eigenstates of the 
system. For example, if the system is initially in temperature equilibrium, 
p = e-BH/T, (e-8H)  where H is the Hamiltonian operator such that pmn = 
6,, exp (-&?i’,)/c, exp (-@En). The influence functional becomes 

F(Q, Q‘) = J 6(PT - P’T) exp i ( - l / h ) [ S ( P )  - S(P’)  
( 5 . 8 )  

4- J:T ( U Q  - U’Q’) dtI) Cn pnnI# I~(P’ , )~o(PT)  dP, . . . DP’( t )  
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Within the limit of small coupling, then we can simply extend the influence 
phase of Eq. (5.5) by summing over all initial states weighted by the initial 
density matrix paa . If this is done, we obtain the usual form of the influence 
phase, Eq. (5.4), with a response function B ( t  - s) given by 

~ ( t  - S )  = c a , b  ( 2 p 0 .  IUabl’/fi) sin w b a ( t  - S) (5.9) 

Again @(&, Q‘) is the phase for a sum of oscillators, each of whose weights is 
peal ucbj2/hz.1g I n  Section Iv it was shon-n that 8( t - s) was the classical response 
of the linear system to an impulse of force applied to the coordinate U ( P ) .  
However, the expression above is in a form which is familiar to us only when we 
think of the interaction system, P ,  as coiisistiiig of a sum of oscillators. In  
this connection B( t  - s) is the total classical response of the oscillators describing 
the system P to an impulse of force applied to the “coordinate” U(P).*O To 
obtain a more direct interpretation of Eq. (5.9) we now calculate the linear 
classical response B(t  - s)  of the iiiteractioii system to an applied impulse of 
force in terms of its unperturbed quantum characteristics. In  so doing we will 
show that Eq. (5.9) is indeed this expression. Therefore, we will again have the 
result that the influence functional for a general, linear interaction system is 
formed simply from a knowledge of its classical characteristics just as in the case 
of systems of perfect oscillators. By the “classical characteristics” of the quantum 
mechanical system we mean the expected value of U ( I J )  as st fuiiction of time 
after a potential - f ( t ) U ( P )  is applied starting at t = 0. Thus 

( U ( P t ) )  = s #*(P, )U(P1)#(PJ  dl’l (5.10) 

where + ( P t )  represents the state of system P at f. Using the path integral repre- 
sentation for the development of a wave function with time, as outlined in 
Section 11, this can be written 

( u ( P , ) )  = J V,S(P,  - P’,) exp {(i/fi)[so(~) - ~ O ( P ’ >  

+ Jo‘.f(s)( Us - U’,) ds]J#*(P’o)+.(f‘o) dPo . * . W ’ ( t )  

Alternatively, this expression can evidently be written 

19 It is interesting to  notice that the relative populations of any two levels may be de- 
scribed by an effective temperature TZ = l/kbe . For instance if the probabilities of occupz- 
tionof statesa and b &repao andpbb respectively, weusethedefinitionP,,/pbb = expS.(Eb - E,,). 
If poa = 0 this is described by setting T, = O f ,  meaning to approach zero from the positive 
side. Similarly, if the two stekes were inverted p b b  = 0 and T, = 0-. This device has been 
used widely in the description of such situations. 

20 U ( P )  may be regarded as a coordinate which is a function of other coordinates P in 
terms of which we choose to describe the int,eraction system. 
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The initial definite st,ate + ~ ( P ' ) + o ( P )  will be replaced by an  average state 
described by the following density matrix diagonal in the energy representation, 
CPao+a*(p'O)+'(Po) SO that 

+*(P', )+(PO) = Co Pao+o* ( ~ ' o ) + o ( ~ o >  

Assumingf(s) to be small in magnitude, Eq. (5.10) can be written to  first order 

(u,> = xu Paa J U J ( P ~  - ~ ' t )  exp { ( i / f i ) [ ~ o ( ~ )  - so(~')]J 
. {  1 + (i/fi) J o t f , U s  ds - (i/fi) Jo'fsu's ds) 

.+~*(P'O)+~(PO) dPo . . . ZOP'(t) 
(5.11) 

= x a  Paa( Uoc + x b ( i / f i ) l  u a b  1' Jot./; exp [ - i W b a ( t  - s) ]  

- x h  (i/fi) 1 u a b  1' J O Y S  exp [ i W b , i ( t  - s ) ]  ds] 

Again assuming U,, = 0, Eq. (5.11) becomes 

(ut) = C G . b  ( 2 P o a l  G a b  I ' / f i )  JO'Ss sill W b a ( t  - s) d s  (5.12) 
For f(s) = 6(s), then, the classical response function is" 

B ( t )  = C0.b (2Paa l  L7cb I ' / f i )  sin What 

which is identical with the response function found in the influence frinctional. 
Since we have found expressions identifiable as classical response functions 

and impedances, it remains to show that associated with the dissipative part of 
the impedance is a noise potential. The impedance is simply obtained from"" 

(5.13) 

( i Y z y ) - '  = l o "  B(t)e-'"t dt 
= E a , b  ( - 2 P a a W b a  1 u b a  [ ' / f i ) [ ( Y  -iE)' - ~ ~ o l - '  (3.14) 

To obtain the power spectrum it is only necessary to sum the influence phase 
of Eq. (5.6) over all initial states weighted by pa . Thus we find 

= C a , b  T f m  L'(6 1' 6(v + aha) (5.15) 

and we now wish to relate this to the real part of 1/Z,.  From Eq. (5.14) it is 
found that 

Re (ZV)-'  = C a , b  (TY I L7ba l ' / f i ) (Pt ,b - f a ,  )s(v + W b a )  (5.16) 

*I I t  should be noted that  iniplicit in tlie use of first order perturbation theory t.o obtain 
Eq. (5.13) is the fact that  for this relation for the response function to hold T.S :? steady- 
state description of the linear system, the initiel distribution must not be significantly 
disturbed by the application of the driving force. 

*z Expressions of this kind have been used by several euthors to  compute quantities sucli 
as the conductivity of materials. See, for instance, ref. 14. 
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Rewriting 4(  v )  

+ ( v )  = C a , b r  I U a b  I 2 ( P b b  - P o a ) [ ( P b b / P a o )  - 1]-’6(V + O b o )  (5.17) 

If the average initial state of the interaction system is one of temperature 
equilibrium, then pa,, = e--BEa/Cn e-PEn and p b b / p o o  = e’(ea-Eb) = - e p h o ~ b  . Taking 
advantage of the characteristics of 6 (  v + W b a )  so that v can replace w a 6 ,  from 
Eqs. (5.16) and (5.17)23 

Therefore, again we find that the power spectrum is related to the dissipative 
parts of the impedance when the initial state is one of temperature equ i l ib r i~m.~~  
The power spectrum given in the form of Eq. (5.17) again illustrates the origin 
of thermal noise and identifies it as being just another aspect of spontaneous 
emission. Pound has also discussed this ( 1 5 ) .  The only contribution to the noise 
power spectrum is through the possible downward transitions of each possible 
state, a, weighted by the statistical factor, poa . 

B. BEAM OF PARTICLES INTERACTING WITH A CAVITY 

In the cases just considered the interaction system provided a steady-state 
environment for the test system. In  contrast, let us now examine the situation 
where the interaction system is made up of a large number of independent 
particles coupled to the test system at different times. As an example consider a 
beam of noninteracting, identical particles which interact weakly with a resonant 
cavity as might occur, for instance, in a gas maser. We assume that the beam is 
not necessarily in temperature equilibrium but that the initial state of the 
particles entering the cavity would be properly represented by a density matrix 
diagonal in the energy representation. Such a situation would occur if the beam 
were prepared by passing it through a beam separator whose function would be 
to eliminate certain particles from the beam depending on their energy levels. 
For the purposes of simplifying the analysis we assume the molecules to be two- 
level quantum systems and that before they enter the cavity all of them are in 

*3 Notice that  if P were a two-level system initially in the lower state, then p b b  = 0 and 
T, = O+. In this case +(Y) = 0 which agrees with the required result for Y > 0 (Eq. (5.6) 
for uk > 0). If initially P were in the upper state then paa = 0 and T, = 0- yielding @(Y) = 
- (h/v)Re(l/Z,) agreeing with Eq. ( 5 6 )  for w k  < 0. This is the power spectrum of the so- 
called spontaneous emission noise from an inverted two-level system. 

It may be disturbing that Re(l/Z,) contains singular forms such as S(Y + w k ) .  How- 
ever, the infinite sums over the distribution of states of which it is a coefficient can be re- 
placed by integrals over densities of states in most practical situations and es part of an 
integrand 6 ( ~  + w k )  is not unrealistic. 
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the lower state or all in the upper state. It is easy to extend these results to the 
case where the beam is mixed with a certain fraction in the upper state and a 
certain fraction in the lower state initially. Since the beam is assumed to be 
composed of noninteracting particles, we can consider the total beam as composed 
of two independent beams appropriate to the two possible initial states of the 
constituent particles. The influence phase for the compIete beam is simpIy the 
sum of the influence phases for the two beams. In  addition, we assume that the 
beam is characterized by a spatial density such that the number of particles 
passing a given point along the beam in a time dt is Ndt and if to is the time a 
molecule passes a reference point in the cavity, y ( t  - t o )  describes the coupling 
between the molecule and cavity. Thus, the beam is a univelocity beam. Again, 
in a real case where the beam is characterized by a distribution of velocities, the 
total beam may be split up into many univelocity beams. The total influence 
phase is simply a sum of those for each component beam. 

Let us call the coordinates of the cavity Q ,  representing the test system and the 
coordinates of a particle in the beam P. The interaction between beam and 
particles is given by LI(Q,  P )  = y ( t  - to)&P. Under these circumstances the 
influence functional for the effect of the beam on the cavity can be written down 
immediately: 

i@B(Q, Q’) = - N  1 Pob/fi 12 JZ JL ds dt [ J 2  -Y(t - to)y(s - to) dto] 
(5.19) 

The integral involving the coupling parameters can be used to  define a new 
function r, 

) x ( Q t  - &I I )  ( Q d e - - i w b a ( t - s )  - Q’8eiwba(l-S)  

J 2 a  Y ( t  - to)Y(s  - t o )  dto = L Y ( t ) Y ( t  - t + s) dt  
(5.20) 

= r(t - 8 )  

Therefore, 
i@(Q,  Q‘) = - N  I P a b / f i  l 2  Jyw JL r(t  - S )  

(5.21) 
) dsdt x ( Q t  - Q’t)  (Qse - - iwba( l - - s )  - Q’seiWbo (I-*) 

From this we can identify the response function of the beam as 

B(t  - S )  = ( 2 / f i ) N  I Pab I2r(t - S) sin uba(t - S) (5.22) 

In  transform notation the influence fuiictional for the effect of the beam has the 
same form as has been previously derived with 

( i V z v ) - ’  = ( i / h ) N  I p a b  i 2 ( r Y - w b u  - rY+Wbo) (5.23) 
where 
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and with a power spectrum 

#J(v) = ?'6N I p a b  12[rV+wba + r--Y-Ubnl (5 .25)  
Previously, we have found that for a linear system initially in the ground state 
the power spectrum is zero over the range of positive v thus indicating a zero 
noise potential due to the linear system. However, is not necessarily zero for 
v > 0 in Eq. (5 .25 )  in the case that the beam is initially in its lowest state 
( w h o  > 0). This is because no restrictions were placed on the time variation of 
y ( t  - t o ) .  However, in practical situations the coupling between a cavity and a 
particle in a beam passing through the cavity varies adiabatically so that for all 
practical purposes #J( v )  is really zero for v > 0. To point this out more clearly, 
let us assume that y ( t  - t o )  = l ( t  - t o ) l ( t o  + T~ - t ) ,  that is, the coupling 
is turned on at t o  and off at t o  + T O  , the time of transit in the cavity being T~ . 
We find by evaluating Eq. (5.20) that 

r(t  - S )  = ( S  - t + T o ) i ( ~  - 1 + T o )  

and from this we can find 

rv+Uba = ~ ~ m ( ~ O - ~ ) l ( ~ O - ~ ) l ( T ) e s p [ - - i ( v +  w h ) r ] d r  
= (1 - i T o ( v  + who) - esp [-i(v + w h ) T 0 ] ) ( v  + wba)-' 

Therefore, from Eq. (5 .25 ) ,  

6(v) = ( f . i ) N  1 P o b  12ro'(sin28/@) (5.26) 

where 

8 = %( v + W b a ) T O  

To find the effect of suddenly turning the coupling on and off we find the ratio 
of the total noise power to the noise power for v > 0. This is given by 

IZm#J(v)  dv > JZm (sin2 Ole ' )  d8 
= 7rWbaTO 

J:#J(v) dv .fzba'O de/e2 
For ammonia molecules at  a temperature of T = 290"K, the average velocity 
v FZ 6 X lo4 cm/sec. For a microwave cavity of 10 em length r0 = 2 X 10' see. 
For the 3-3 line of ammonia w b a  FZ 1.5 x 10" rad/sec. For our case 
then (7rwbaro) M lo8. From this, we can conclude that even in this unfavorable 
case of coupling time variation, the #J( v )  is negligible for v > 0. 

Examination of Re(l/Z,), derived from Eq. ( 5 . 2 3 ) ,  reveals terms of the 
same form as those just discussed, 

Re(l /zv)  = W [ ( l / Z v )  + ( l / Z / ) l  
(5 .27 )  

= (vN/2 f i )  I p a b  ( 2 [ r t + w ( ,  - r v - - w b a  - r--Y+Ub, + r-"--ob,,] 
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By the same type of argument as above, the terms in can be neglected 
when v > 0, Wbo < 0 and conversely, when v > 0, oh > 0 the terms in l?v+oba 
can be neglected. Since this is the case, we can write 

(5.28) 

where be = l/kT, , describes the relative initial populations of the two states. 
Therefore, we conclude that in most practical cases the power spectrum can be 
written in the form of Eq. (5.28). In  cases where the transients cannot be 
neglected for very low Wba and very short transit times, however, +( v )  is not so 
simply related to Re( l / Z v )  and must be written in the form given by Eq. (5.25).  

It is to be noted that +(v) of Eq. (5.28) is not precisely of the form for the 
Kyquist relation because of the appearance of eshwb‘ in the denominator rather 
than e””. This is a consequence of the finite coupling time between each part, of 
the beam and the cavity which results in a nonequilibrium condition. If the 
coupling times were infinite, the expression for Re( l / Z v )  would contain forms 
such as 6( v + oh), a situation discussed earlier, so that the Kyquist form then 
results. However, when the coupling time is long as in masers, 

r V + W b o  + r-Y-Uba 4n6(v + W b a )  

so that the true Nyquist relation may be used with negligible error. 

VI.  SOURCES OF NOISE I N  MASERS 

Having developed the theory of linear systems in detail we are now in a posi- 
tion to discuss the sources of noise in linear quantum-mechanical devices such 
as maser amplifiers. The subject of maser noise has been explored by many 
authors (15-19). The details of the treatment given the subject differ, but the 
principles are essentially the same. The amplifiers are considered as operating at 
signal levels high enough (classical) that a signal entering a maser may be con- 
sidered as a group of photons whose number is large enough that the amplifica- 
tion process increases the signal in a continuous fashion. The sources of noise 
were found to be those derived from the thermal noise arising from the sources of 
dissipation, and those derived from spontaneous emission from the “active” 
quantum material. They go further and define an effective temperature of the 
active quantum system so that the noise i t  produces is related to the negative 
resistance of the active materials. Our analysis of linear systems has also shown 
that these same sources of noise exist. However, if the signal level entering the 
maser is very small such that its strength can be characterized by a few quanta 
per second, a serious question arises as to the nature of the signal out of the maser 
(here assumed to  be a t  a classical level). An additional fluctuation of the output 
signal or “quantum” noise might be expected due solely to what might be termed 
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a “shot noise” effect created by each individual photon entering the cavity. 
It has been shown that no such signal exists by other authors (20,21). We wish 
to show how the same result follows from the theory developed here in an ex- 
tremely transparent way. We will show that the only fluctuations in output 
signal which are to  be expected are those noise sources computed classically. 
No additional “shot noise” does, in fact, appear. 

Let us suppose that we have a beam-type maser amplifier in which all partici- 
pating systems used meet the requirement of linearity. There may be one or 
more beams interacting with various electromagnetic resonators which can be 
coupled together in any way desired. The output of the maser is connected to a 
detector of some sort which perhaps consists of a resistor in which the current 
is to be measured. To the input of the maser system we now apply an incoming 
classical signal of large magnitude and of frequency w through an  attenuator 
whose value of attenuation may be varied a t  will as shown in Fig. 12. I n  practice 
such a situation could arise if the classical wave originates from a distant antenna 
with a very large magnitude of output, so large that all quantum effects in the 
wave are effectively obscured. The long distance would then play the role of the 
attenuator. 

Now, if the classical wave were attenuated by a large amount so that only a 
few photons/sec were entering the maser, the only uncertainty in the signal in 
the output of the maser caused by the maser itself arises from those sources of 
noise which can be arrived a t  by a classical calculation of the characteristics of 
the maser. There is no extra quantum fluctuation introduced by the maser into 
the output signal due to the small number of quanta entering the maser. 

It is true that the amplitude of the signal output from the maser might itself 
be so small that it is still on a quantum level. In  this case the detector output 
would be uncertain due to the inherently small magnitude of the signal from the 
maser. However, if this is the case, we may put as many amplifiers in series as 
necessary to bring the output signal back to a classical level. When this is done 
the signal applied to  the detector consists of the original signal modified by the 
transfer characteristics of the maser system (and attenuator) and noise signals 
which arise from all the possible sources computed classically. The proof of this 
assertion is not difficult. We divide up the total system into a test system, here 
the detector, and an interaction system which consists of the maser, attenuator, 
and classical signal, C(t) .  Then, to find the effect of the interaction system on the 

FIG. 12. System in which a classical wave is attenuated to  a very low level (a few photons/ 
see), then amplified by a maser and detected. 
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detector we need only to  look at the influence functional. However, we already 
know that it can be written as follows: 

where -&(v) represents the power spect,rum of the noise from the ith source, 
zv is the classical transfer characteristic of the complete interaction system, and 
2, is the impedance of the maser system as seen by the detector. All the terms 
in the influence functional are familiar in view of the derivations which have 
been presented previously. The first term in the exponent of the influence func- 
tional is recognized as describing a linear system a t  zero temperature (Section 
IV),  the linear system in this case being the maser. This term describes the 
spontaneous emission of the detector back into the maser (see Appendix I). Fur- 
thermore, it can be deduced that this spontaneous emission can be thought of as 
resulting from a noise generator created by the detector (test system) acting on 
the interaction system in the usual classical way, i.e., whose power spectrum was 
related to the dissipative part of the detector impedance and to the temperature 
by the Xyquist relation 

+ ( Y )  = fivR,[exp ( f i v / k T )  - 11-I 

where R, is the detector resistance and T its temperature. The second term in 
the above composite influence functional is easily interpreted and is simply the 
effect of a classical voltage, related to the input voltage by the classical transfer 
characteristic of t,he maser, acting on the detector (see Section 1V.B). The last 
term represents the effect on the detector of random noise voltages associated 
with the various classical noise sources in the maser (Sections 1V.C and V). 
Both positive and negative resistances are such noise sources. In  either case the 
power spectrum of the noise from a particular resistance is computed from the 
same relation as given above. 

If R, is negative the effective temperature of R, will also be negative always 
giving a positive power spectrum. Therefore, if we were to compute the current 
in the detector due to the interaction system (maser) using the influence func- 
tional we would find components of current due to : ( 1 ) the noise voltage gener- 
ated by the detector itself, the power spectrum of which is related to the resist- 
ance of the detector by the generalized Nyquist relation given above; (2)  a 
classical voltage related to the input voltage C ( t )  by the classical transfer char- 
acteristic of the maser; and (3)  random noise voltages associated with the 
various classical noise sources (resistances) in the maser. Therefore, the maser 
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simply acts as a classical amplifier with sources of noise which can be predicted 
from considerations of its classical characteristics. 

APPENDIX I 

In  Section 1I.E the problem of making perturbation calculations using in- 
fluence funct,ioiials was outlined. Here we will calculate in detail the probability, 
to second order in the coupling potentials, that a test system which is in a 
definite state a t  1 = r and finds itself in another state a t  t = T when iiitcractiiig 
with a zero temperature interaction system. Let us call the initial and final statcs 

and + n L ( Q T )  respectively and, for simplicity, assume that these are eigen- 
states. The formal expression far the transition probability is given by Eq. 
(4.24) and for this case, 

5(Q,  &’I = e v  { -(ah)-’ J:w Jkw rtrs(Qt - Q ’ t )  
(1.1) 

X [QsF*(t - S )  - Q ’ J J ( L  - s)] ds t/tJ 

Then to second order 

P n m  e J+,t,*(QT)+or(Q’T) exp I ( i / f i )[So(Q) - Su(Q’)]) 

X (1 - ( 2 r L ) - 1 J O O w J f - ( I C ~ t ~ s ( Q 1 - & ’ r ) [ Q s F * ( 1 - ~ )  - Q’$(L - s ) ] d s d l }  (1.2) 

X +n*(&’T)+n(Qr) d&r . . . UO’(L) 

Making use of the fact that 

I exp [(ilfi)s~(Q)laQ(t) = K ( Q T ,  Q T )  

= J K ( Q T ,  & t ) R ( Q t ,  Q r )  dQt (where T < t < r )  

and writing (1.2) as a sum of integrals 

P n m  J + n I * ( Q T ) + m ( & ’ T )  exp {(i/’fi)[&(Q) - Su(Q’)) 

.4n*(Q’r)+n(Qr)  dQr * . . aQ’(t) 
- (2fi)-’ Jzw JL ds d l ~ s ~ t  J +m*( QT)+m( Q’T) 

(1.3) 
. ~ X P  { (G’fi)[so(Q) - so(&‘)]] 

X ( Q t  - Q ’ t ) [ Q J ’ * ( t  - s) - QlSF(t - s)]  

.+n*(Q’r>+n(QT) d&r . . . DQ’(t) 

Replacing K ( Q T ,  Q 1 )  by Ck + k ( & ~ ) + k * ( Q ~ )  exp [--iEk(T - t ) / f i ]  and taking 

matrix elements we have 

Prim = &mt1  - Ck(26)-’ I Qnk ) Y ( ~ n k ) l  + (25)-‘ i Qnm 12f(vnm) (1.4) 



305 

166 FEYNMAN AND VERNON 

where 

j (  vnm) = J-2" J'L- yty.[F*( t - s)eiY"m(f-6) + F ( t  - ~)e-'"~"'(~'-')]  ds dt (1.5) 

f( v )  can be simplified by restating the integral over t and s in terms of frequency. 
To do this we replace the upper limit t by + co and multiply the integrand by 
a step function 1 ( t  - s). Then utilizing the convolution theorem in the form 

JTm J ? m M ( t ) N ( s ) R ( t  - S )  dsd t  = (27r)-'J M_,N,R,dv 

where 

A!(,) = J'?- M ( t ) e - " ' d t  

f( v )  becomes 

J'( v )  = ( % ) - I  J% I yV-,,, 12(Fy + F,*) dv 

where 

F ,  = J?= l ( I ) F ( t ) e - i ' t  dt 

From Eqs. (4.5a) and (4.5b) we have that 

~ ( t )  = - ( 2 / n )  J'u" ~m ( l / iqZs)ein'  dq 

Therefore, 

1 i ( q - v ) t  + e--i(rl-v)t Fv + F,* = - (2/7r) lo" d~ Im (l/iqZ,) JOm d t ( e  

= - 4  Im (l/ivZ,) = (-I/Y) I k  ( l/Zp) 

and 

j ( v )  = (2/7r) J'?* I Y.-~ I'q-' I<e (1/Z,,) dv (1.6) 
Thus, to second order 

P n m  = & m { 1  - Ck (.A)-' I Qnk 1' Jo" Y-' I yv--U,,k 1' Re (Zw)-' d ~ )  
(1.7) + ( 7 r f i ) - '  1 Q,,,,, l 2  J'o" v-' I Y ~ - ~ ~ , , ,  I 2Re (&)-I dv 

For the special case that the coupling y is 

y = 0 for t > 1'/2 and t < - T / 2  

y = 1 for - T / 2  < t < T / 2  

dt I * = 4( Y - Y , , ~ ) - ~  sin2 ( v - vnk)T/2 T I 2  - i ( v - v f l k ) t  I yU--U,k I ' = I .f--T/2 

--f 27rT6(v - v n k )  for large T 
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Then, 
Z’,,,,, = 6,,,( 1 - Cli,vnt>o 2 T ( f i ~ n k ) - ’  I Qnk l2 Re(ZJ1J 

+ 2T(fiynrn)-’ I QnVfi 1‘ Re(Zvn,,,)-’ for Ynm > 0 (1.8) 
= 0 for vnrn < 0 

Thus, it is seen that the P,, now is proportional to the matrix element and to  
the dissipative part of the impedaiice Z“,,,,, . Appropriately enough, no transition 
is possible to energy states such that vtLm < 0 since the interaction system, being 
a t  zero temperature initially, can give up no energy to the test system. 

APPENDIX I1 

A. INFLUENCE PHASE FOR EFFECT OF FREE SPACE ON AN ATOM 
As an illustration, the influence phase for the effect of free space on an  atom 

will be calculated. This problem is more complicated than the idealized systems 
considered in deriving the formalism since the interaction here is of the form 
Q . X, Q and X being vectors rather than QX where Q and X are scalars. This 
difficulty could be overcome by writing the influence phase in tensor notation 
or by recasting the problem so that the interaction is of the form QX. The latter 
will be done to adhere more closely to the point of view of the derivations. Since 
a linear system is being dealt with, it is only necessary to determine a suitable 
coordinate for the atom and find the impedance function 2, for the effect of free 
space. It is assumed that the atom is made up of a system of particles of mass 
mn 7 charge e n ,  and position rA + x, where rA is the position of the center of 
charge of the atom. If the transverse part of the radiation field in the box is 
expanded into a series of plane waves each representing independent harmonic 
oscillations (tt), then the nonrelativistic Lagrangian for the complete system 
consisting of the atom and the field in the box can be written ( 2 )  

where LA is the Lagrangian of the atom unperturbed by outside forces and 
At’(X) = (87r~’)’’~Ck [ex(qf’cos(k.X) + qf’sin(k.X)) 

(11.2) + e2(qz’cos(k.X) + qr’sin(k.X))] 
Here e h  and e2 are two mutually orthogonal polarization vectors, each orthogonal 
to the propagation vector k. Kow we assume that the radiation field of the box 
is constant over the particle, i.e., that A(rA + r,) A(rA), the dipole approxi- 
mation.26 This permits one to replace En enXn by j, the current operator for 

*6 This is equivalent to taking A(kA + x,J, expanding it in a series of k.x, since this is 
assumed small, and keeping only those terms which keep the interaction term of the La- 
grangian linear. Since the interaction is of the form e,x,.A(kA + x,) for the nth particle, 
then A can only contain constant terms. 
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the atom. In addition, even though ex.el = 0, which fixes their relative orienta- 
tions, their absolute directions in a plane perpendicular to k are still arbitrary. 
Choosing e l  so that 

el.j = 0 (11.3) 

We assume the box to be very large so that xk + ( 16r3)-'1 d3k, because the 
mode corresponding to k and -k is the same. Combining ( I I . l ) ,  (II.Z), and 
(11.3) the following total Lagrangian is obtained. 

(11.4) 

Thus, the number of each of the two sets of oscillators (q:) and 4;)) in a volume 
of k space d3k is d3k/l67r3. The coupling strength of the pc '  and q{:,oscillators 
with the atom is (  ST)"^( j. ex) q:"cos( k . r,) and ( ST)'"( j . ex) pk cos( k . rA ) 
respectively. If j is oriented along the 8 = 0 axis in polar coordinate representa- 
tion, j. ex = j sin 8. Then choosing j as the atom coordinate, the impedance for 
the two oscillators of frequency lcc can be found from the rule found in Section 
IV  to be 

[ivZy(k)]-' = ( l / j , ) [ (S~)"~  sin 8 COS (k.rA)qc) + (ST)'" sin 6 Sin (k.r~)Pf)]" 

(11.5) - 

= -87rsin28[(v - i e ) '  - k c ]  

8?r sin' 6 cos2 (k .rA)  - ST sin2 0 sin2 (k-r , )  _ -  
(v - i C ) 2  - k2C2 (Y - i ~ ) ~  - k2C2 

2 2 -1 

The total effect of all the oscillators is 

(Z,)-' = (16~~)- '1Z,'  (k)  d3k = (16r3)-'Jk2 sin 8d8d+dk(Z,') 

= -i4v(3rc3)-'J'o" Q2 dQ[( Y - ie)' - Q2]-' I t+o (11.6) 

= (2v2/3c3) - i(4v/3sc3)Jom Q2dQ(  v2 - a')-' 

where the substitution f2 = kc has been made. Thus, the effect of free space is 
characterized by ( i vZv ) - ' .  The equivalent distribution of oscillators coupled to  
j ,  is 

G(Q) = (4Q2/37rc3) (11.7) 
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U. SPONTANEOUS EMISSION PROBABILITY OF AN ATOM IN FREE SPACE 
To compute the transition probability for this atom, we use second order 

perturbation theory developed in Appendix I for a system initially in state 
4,(X,) and finally in state 4m(XT) when acted on by an influence functional for a 
linear system at zero temperature. The expression is 

P,,m = 27' I j n m  1' ( f i v n m - l  Re(ZV,,,,,-', vnrn > 0, n z WL 
(11.8) 

= 0, vnm < 0 
From Eq. (11.7) we find 

Re(Z,,,)-' = (a/2)G( vnm)  = 2virn/3c3 (11.9) 
Using this in Eq. (11.8) 

(11.10) 

where to obtain the last, more familiar form, the substitution j,,, = vn,X,, 
has been made. This is the first order spontaneous emission probability for an 
atom in free space. 

Now we can form. an expression for the intensity of radiation per unit time. 
The power radiated from the dipole is 

(11.1 1)  

an expression which is almost the same as that for power radiated from a classical 
dipole. The expression becomes exactly the same if we apply the correspondence 
principle by replacing the matrix element of the time average of the coordinate 
of the oscillator by its corresponding classical quantity. Thus, if X is the coordi- 
nate of the corresponding classical oscillator ( X O  is its maximum value) then2' 

2 1 x,, l 2  + (X') = 36x0' 
26 That this correspondence is true can be seen easily as follows. Consider the dipole, a 

harmonic oscillator as above, to be in a high quantum state, +,, . Classically the motion of 
the dipole can be described as X = Xo sin w t .  We wish to relate the classicltl value of  ( X z )  
to its matrix element. In a quantum mechanical sense, 

( X z )  = ( X ) X 2 & ( X )  dX  = JJ&* (X)XCi+k(X)+i*(X')X'+n(X') d X  d X '  
Since matrix elements exist, in the case of a harmonic oscillator only for k = n - 1, k = 
n + 1, we have 

For very higli quantum numbers these two terms become nearly equal since 
( X 2 )  = I Xn-n-1 I' + I S n . n + i  1' 

I XT,,n-l = nh/2mw, 1 Xn,,,+l Iz = (n + l)h/2mw 
Thus, as n + 30 ( X z )  = 2 I X,,,"-l 12. But in the classical case, a* = >iXor. Therefore, 
I X"d-1 I* * 9ixoz. 
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If 1 X,, l 2  is replaced by X:/4 then Eq. (11.11) becomes the expression for the 
power radiated from a classical dipole. Our purpose, however, in doing this ex- 
ample, was to show for a specific problem that the effect of a distribution of oscil- 
lators interacting on a system is the same as the effect of loss on the ~ystem.~’ 
This has been done by relating the energy lost from the radiating dipole to the 
distribution. It is not surprising that a sea of oscillators should give this effect. 
If the dimensions of the box are allowed to be finite then energy emitted from 
the system under observation is reflected from the walls and eventually finds its 
way back to be absorbed again. This is equivalent to saying that the number of 
oscillators comprising the electromagnetic field in the box is infinite with a finite 
frequency spacing between the modes. Since the oscillators are independent there 
is no coupling between them and energy coupled into one of the oscillators from 
the test system must eventually return to it. If the dimensions of the box are 
allowed to get infinitely large, energy emitted from the test system never gets 
reflected and thus never returns. In  oscillator language this means that the 
frequency spacing between oscillators has become infinitesimal, so close that a 
little of the energy absorbed by each one gradually leaks into nearby modes and 
eventually is completely gone. 

APPENDIX 111. SPONTANEOUS EMISSION OF AN ATOM IN A CAVITY 

In this calculation as in the free space calculation the dipole approximation 
will be used in computing the spontaneous emission probability. The linear 
coordinates inside the cavity will be represented by the vector Q while the time 
varying coordinates of the single cavity mode being considered will be X ( t ) .  
The Lagrangian of the system may be written 

where Q P  is the atom coordinate, Qn + Q p  is the particle coordinate in the atom, 
and A is the vector potential of the cavity field. The interaction term is the one 
of interest, since from it we find the terms that we wish to solve for classically. 
This term will be put into more convenient form. Let us write 

A ( Q ,  t )  = a ( Q > X ( t >  (111.2) 
27 If the power radiated from the oscillator is related to the classical expression +41PR 

then from Eq. (11.11) it can be seen that I t  is proportional to  Re[l/Z(v)] which in turn is 
related to  the distribution of oscillators. One might expect Im[l/Z(v)] to  be replaced to  
the reactance seen by an oscillating dipole, a quantity which is known to  be infinite classi- 
cally. From Eq. (11.7), 

Im(l/Zv) = 4v/3acJJr V ( v *  - dQ = 4vQ/3rcJ In-= 
The integral is linearly divergent. This factor is also related to  the infinite self energy of a 
point charge which occurs both classically and in quantum electrodynamics. Here this di- 
vergence does not bothe- us  since it never enters into the calculation. 
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where 

J a ( Q ) . a ( Q )  dYQ = 4m2 (111.3) 

lf' A does not vary much over the atom, then A(Q,) % A(Qp + Q n )  and the 
iriteraction term is written 

c-IC,~ etLQn.a(Q,)X(t) = ( j /c )  I dQp) I X ( t )  (111.4) 

where j = (c c,'Q,,) . a ( Q p ) /  1 a ( Q p )  1, the component of the atom current in 
the direction of the cavity held. 

Let us iiow determine the ratio 

j,[l a(QP)  I X,c-']-' = i v Z ,  

V''A - (l/C2)A + (w/C2Q)A - ( ~ x / c ) P  = 0 

(111.5) 

(111.6) 

classically. The wave equation appropriate for this calculation (high Q)'* is 

'l'he atom is located at  Q, and, since the dipole moment is induced, its direction 
0 1 1  the ajrerage is the same as that of the field A in the cavity. We have then 

P = j S ( Q  - Qp)a(Qp)/ Ia(Qp) 

Sutwtituting (111.7) and (111.2) into (111.6) we obtain 

I -  w'X + ( w / Q ) X  - X]c-'a(Q) 

- (4~/c) js(Q-Qp)a(Qp)/ /  a 

(111.7) 

wlictrc w is the resoilatit frequency of the cavity. Multiplying by a(&), integrating 
over Q ,  and takiiig b'ourier transforms, (111.8) becomes 

( v ' ?  - d' + i v w / Q ) X ,  - c-l 1 a ( Q p ) l j y  = 0. (111.9) 

We fiiid that the ratio (111.5) 

iv%, = [u' - w'? + ( i v w / Q ) ] d 2 / I  a(Qp)' 

The influciice phase for this is (although it is unnecessary to write i t )  

From second order perturbation theory we know 

P,, = 27' I j,, 1' (6vn,)-' Re(Z,,)-' for v,, > 0 
5.3 Q is used here as the dissipation factor of the cavity, woL/R, while Q is a vector rep- 

resenting the linear coordinates inside tho cavity. 
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Noting that 

Re(Zv,,)-' = w v t ,  I a(Q,>I' Q-'c- ' [ (v~ ,  - w')' + w'vY"nwL(3-']-' 

and defining a cavity from factor J' = V 1 a( Q,)  /'/4nc2 

P,, = (8r Ij,, ~'~'wvn,~7')(JlV&)-1[(v~m - w') + w2v2nm&-'] (111.10) 

At resonance this expression reduces to 

P n m  = 8~ 1 j n m  I 'J 'QT/f iVv~m ( 1 1 1 . 1 1 )  

The quantity usually computed is the ratio of the transition probability in the 
cavity at resonance to that in free space. This ratio is 

P,, (cavity) - [8.rr 1 j,, I2~f2/v2nm ~ f i ] ~  - _ _ _ _  6rc3Qf' 
P,, (free space) [4 1 j rbm 1 * v n r n / 3 f i ~ ~ ] T  VV:m 

- 

At resonance, the ratio increases with respect to Q as one might expect and 
decreases with respect to the cavity volume V and v:,. This expression agrees 
with the one given by E. M. Purcell ( 2 3 )  although the form factor in his calcu- 
lation was left out. This does not matter since for a particle locat'ed near the 
maximum field point in a cavity the magnitude of j" is of the order of unity. 

APPENDIX IV 

It is to be demonstrated that 

G ( X )  = limw nL (1 + x, )  --+ exp[xk  X ~ I  ( I V . l )  

where the x k  are small but not necessarily equal to each other, and where the 
total sum z k X k  is finite. Rewriting the expression for G ( X )  we have (where 
the summations on all indices go from 1 to N )  

G ( X )  = 1 + x k  x k  + > 5 c j f k  xjxk + (1/6) C j + k + l  X j X k x t  f * ' * 

= 1 + X k X k  + > 4 ! ! C j , k X j X k ( l  - 6 j k )  + (? '$! )x j ,A . , t x jxkXt  

x ( 1  - 8 j k  - 6 k l  - 6 j f  + 2 8 j k s k C )  ( I V . 2 )  

As N is allowed to get very large the contribution of the terms involving quan- 
tities such as aik becomes less significant. .Vor instance, in the third term 

Cj,k (xjxk)(l - 6 j h )  - ( N X ) '  - ( N X ) ' / N  (IV.3) 

and for very large N only the leading term in this sum is important, Thus, we 
have the result that 

RECEIVED: April .5, 1963 
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IV. Liquid Helium 

This commentary is supplied by: Alexander L. Fetter, Physics Department, Stanford University. 

Between 1953 and 1958, Feynman published a seminal series of papers on the atomic theory 
of superfluid helium. Superfluidity in liquid helium had been discovered in the 1930’s, and the 
early understanding of this phenomenon relied on Landau’s phenomenological theory (1941, 
1947) of phonons and rotons as elementary excitations (“quasiparticles”). In this context, the 
Bose-Einstein statistics of helium atoms (and the existence of a Bose-Einstein condensate) 
played essentially no role. [For a summary of the early history see, for example, A. Griffin, 
in Bose-Einstein Condensation in A t o m i c  Gases, edited by M. Inguscio, S. Stringari, and 
C.E. Wieman (Italian Physical Society, 1999).] A significant part of Feynman’s central 
contribution was the demonstration that these phenomenological concepts arose directly 
from the fundamental quantum mechanics of interacting bosonic atoms with strong repulsive 
cores. 

One of his earliest helium papers [21] showed in detail how the symmetric character 
of the many-body wave function severely restricts the allowed class of low-lying excited 
states. Specifically, all such states correspond to density fluctuations (phonons), and he 

the symmetric exact ground state wave function of the N helium atoms with energy Eo, and 
pk = .Zy=l exp(irj 1 k) is the symmetric operator that creates a density fluctuation. Here, cp 
is real, nodeless, and vanishes whenever any two atoms approach each other closer than an 
effective hard core diameter, ensuring that $k indeed incorporates the proper many-body 
correlations arising from the hard cores and associated excluded volume. In addition, $k 
is an eigenstate of the total momentum operator with the eigenvalue Nhk,  so that states 
with different eigenvalues are orthogonal. Hence $k serves as a suitable variational trial 
function that yields an upper bound to the excitation energy ~k = Ek-Eo as a function of 
the continuous variable k. 

In this way, Feynman obtained the elegant and simple expression ~k M h2k2/2rnS(k) ,  
where S(k )  is the static structure function that had been measured independently (for ex- 
ample, with X-ray scattering). At long wavelengths (k -+ 0), S ( k )  -+ hlc/2rns, where s is 
the speed of compressional sound waves, reproducing Landau’s linear quasiparticle spectrum 
&k M tisk as k -+ 0. For large k, in contrast, S ( k )  -+ 1, but it has a peak at k - 2 A-l, 
associated with the nearest neighbor separation; this latter feature produces a dip in the 
quasiparticle spectrum, qualitatively similar to  Landau’s conjectured roton minimum. In 
practice, the calculated position A M 19.1 K of the minimum was roughly twice the value 
(9.6 K) that fit the heat capacity. Subsequently, Feynman and Cohen [32] improved the vari- 
ational trial function by including the hydrodynamic “backflow” associated with the rapid 
motion of a single atom through the fluid, and they found the much lower value A M 11.5 K. 
Finally, Cohen and Feynman [38] used their trial function to study the inelastic neutron 
scattering from superfluid helium, predicting that the scattering would be dominated by the 
excitation of a single quasiparticle, allowing a direct measurement of energy spectrum c k  
(subsequent measurements fully confirmed this behavior). 

Separately, Feynman [27] considered states with macroscopic superfluid flow, arguing 
that they must have the simple form $flow = e ~ p [ i C ~ ~ ~ s ( r j ) ] $ ,  where s(r) is a function 
that varies only slowly over an interatomic distance. The resulting single-particle current 

then proposed [24] the explicit model wave function $k = &(b, t where q(r1, 1-2,. . . , r N )  is 
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corresponds to a velocity field v, = hVs/m, which agrees with Landau’s assertion that the 
superfluid velocity is necessarily irrotational. Feynman recognized that the single-valuedness 
of the many-body wave function implies the quantization of circulation $vs - ds in units of 
27rhlm == h/m, as suggested by Onsager (1949). He then considered the detailed behavior 
of a single quantized vortex line, where the centrifugal barrier near the center creates a 
hole of radius a (a few atom.ic diameters); as a result, he proposed that bulk superfluid 
helium rotating at an angular speed w is filled by an array of such linear vortices with 
an areal density 2wm/h. Finally, he suggested that the creation of vortices can account 
for the observed low values of the critical velocity for the onset of dissipation. Landau’s 
original analysis of the critical velocity associated with the creation of a roton suggested a 
value of order 60 m/s,  whereas the measured values were at least 100 times smaller and 
depended on the geometrical configuration of the fluid. For flow from an aperture of lateral 
width d,  Feynman’s vortex model yielded 21, N (hlmd) ln(d/a), in reasonable agreement with 
experiments. 

In fact, Feynman’s first substantial paper [20] on helium dealt with the X transition at 
Tx M 2.17 K, which signals the formation of the new phase He I1 (and the onset of superflu- 
idity); this paper is necessarily quite different from those focusing on the low temperature 
behavior discussed above. Feynman expressed the exact quantum-mechanical partition func- 
tion as a path integral and then mapped it rigorously onto a classical polymer problem. The 
resulting picture of superfluidity near the X transition relies on the appearance of macroscopic 
ring exchanges that depend critically on the Bose-Einstein statistics. He showed that the 
strong interactions do not qualitatively change the transition temperature Tx. This paper 
was far ahead of its time, as the detailed implementation of its theoretical program required 
the development of high speed computers. Modern path integral Monte Carlo techniques (in 
effect , following Feynman’s formulation) have yielded a quantitative theory of bulk liquid 
helium. [For a review, see, for example, D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).] 
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[32] With M. Cohen. Energy spectrum of the excitations in liquid helium. Phys. Rev. 102 

[38] With M. Cohen. Theory of inelastic scattering of cold neutrons from liquid helium. 
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(1956): 1189-1204. 
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I t  is shown from first principles that, in spite of the large interatomic forces, liquid He' shouId exhibit a 
transition analogous to the transition in an ideal Bose-Einstein gas. The exact partition function is written 
as an integral over trajectories, using the space-time approach to quantum mechanics. It is next argued 
that the motion of one atom through the others is not opposed by a potential barrier because the others 
may move out of the way. This just increasss the effective inertia of the moving atom. This permits a 
simpler form to be written for the partition function. A rough analysis of this form shows the existence of a 
transition, but of the third order. It is possible that a more complete analysis would show that the transition 
implied by the simplified partition function is actually like the experimental one. 

INTRODUCTION 

HE behavior of liquid helium, especially below T the A transition, is very curious.' The most suc- 
ressful theoretical interpretations; SO far, have been 
largely phenomenological. In this paper and one or two 
10 follow, the problem will be studied entirely from first 
principles. We study the quantum-mechanical behavior 
of strongly interacting atoms of He4. We shall try to 
Bow that the main features of these curious phenomena 
can, in fact, be understood from this point of view. 
because of the enormous geometrical complexity in- 
volved, we shall not attempt to obtain useful quantita- 
live results. The quantum mechanics will not supplant 
he phenomenological theories. It turns out to support 
&em. 

In this paper we begin the study of the statistical 
mechanics of the liquid.* 

London4 has proposed that the transition between 
liquid He I and liquid He I1 is a result of the same 
Pmcess which causes the condensation of an ideal 
Eos-Einstein gas. This idea could be criticized on the 
grounds that the strong forces of interaction between 

He atoms might make the ideal gas approximation 
(in which these forces are neglected) even qualitatively 
-eesom, Helium (Elsevier Publishing Company, Inc., 

'An excellent summary of the theories of helium I1 is to be 
*d in R. B. Dingle, Advances in Phys. 1, 112 (195.2). 

A preliminary report on this work has been published. R. P. 
'%man, Phys. Rev. 90, 1116 (1953). 

1942). 

'F. London, Phys. Rev. 54,947 (1938). 

incorrect. We shall argue that London's view is essen- 
tially correct. The inclusion of large interatomic forces 
will not alter the central features of Bose condensation. 

The principal point is an argument which shows that 
in a liquid-like quantum-mechanical system the strong 
interactions between particles do not prevent these 
particles from behaving very much as though they move 
freely among each other. 

The exact partition function is first written down as 
an integral over trajectories, by using the space-time 
approach to quantum mechanics.6 The observation 
that the atoms move very freely among each other is 
then made. This permits one to write a simpler form 
[Eq. (7)] for the partition function. This form should 
be fairly accurate, a t  least qualitatively. I t  becomes 
clear that a transition is to be expected, and that it 
involves the symmetrical statistics in an essential way. 

On the other hand, the geometrical complexity of the 
problem still prevents us, so far, from giving a very good 
estimate of the free energy behavior near the transition 
point and below. A relatively crude approach gives a 
transition like that of the ideal gas. That is, the specific 
heat is continuous, contrary to the experimental ob- 
servation that i t  appears to be discontinuous. Some of 
the geometrical problems which might have to be 
solved to obtain a more satisfactory solution are dis- 
cussed in an appendix (see also reference 3). 

The crude approach should, however, be quite satis- 
factory a little above the transition point. So there is 

R. P. Feynman, Revs. Modern Phys. 20,367 (1948). 
1291 
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no doubt that at least the existence of the rise of specitic 
heat’ of H e 1  on cooling toward the X point can be 
mderstood from first principles. 

A t  the opposite extreme of very low temperatures 
(say below OS’K), the situation again can be partially 
analyzed. This is done in the next paper.6 

EXACT EXPRESSION FOR THE PARTITION FUNCTION 

To study the thermodynamic properties we must 
calculate the partition function 

Q=Ci exp(-BEi), (1) 
where p = l / k T  and Ei are the energy levels of the 
system. In this form the calculation appears hopelessly 
dficult because the energies Ei are eigenvalues of such 
a complex Hamiltonian H .  The expression for Q is 
equivalent to the trace of the operator exp(-pH). In 
Eq. (1) the trace is written in a representation in which 
H is diagonal. We shall prefer to use the coordinate 
representation to describe the trace. 

To illustrate how this is done, we take the example 
of a one-dimensional system, of coordinate x and Hamil- 
tonian p2/2m+V(x)=H: The trace of exp(-pH) is 
thenQ=Jdz(zle-pH)z). The matrix element (z(e-BHIz) 
is similar in form to the matrix element (zIexp(-iitH/ 
h) lz) which represents the amplitude that the system 
initially at x=z, is a t  time t also a t  the point x=z. This 
latter is6 the sum over all paths [signified by 
J...Dz(t)] which go from z to z of exp(iS/h), where 
S is the action dt[+mk2-V(x(t))]dt. If we replace 
it/h by p ,  we are lead to expect 

the variable u=it/h replacing t ,  and the various signs 
adjusted accordingly. The integral J t r  is to be taken 
on all trajectories such that x(O)=z  and x@)=z. It is 
easily verified that Eq. (2) is exactly correct. The 
normalization of the path integral is to be such that 

where the trajectory tr‘ runs from x(O)=z to x@)=z’. 
The integral of (2) with respect to z then gives the 
partition function. 

To apply this to liquid helium two moditications are 
necessary. First, instead of one variable, we have 3A7 

‘R.  P. Feynman, Phys. Rev. 91, 1301 (1953). 

variables which we take as the N three-space coordinate 
vectors xi of each of the N atoms (i= 1 to N ) .  We desig- 
nate the entire set of coordinates by xN and the integral 
over them all by dNxi=dxldx2. . SdXN. The initial and 
final values of these we call z;. Secondly, He4 atoms obey 
symmetrical statistics. The trace of exp(-pH) is to be 
taken only over symmetrical wave functions. This 
means that if the initial coordinates are x;(0)=zi, the 
final coordinates need not be the same, but may be 
some permutation of these (signified by Pzi) .  That is, 

where the integral Jt,p is taken over all trajectories 
xi(.) of all the particles such that xi(0) = zi, xi(@= Pzi. 
That is, the final coordinates xi(@ may now be some 
permutation P of the initial coordinates zi. The sum is 
taken over all permutations P and the integral over all 
configurations zi. 

In Eq. (S), In is the mass of a helium atom, and V(R) 
is the mutual potential of a pair of He atoms separated 
by R .  The forces between He atoms are, very likely, 
fairly accurately two-body forces. This potential is 
given by Slater and Kirkwood.’ There is a weak attrac- 
tion of maximum depth (of energy equivalent to k7’ 
at T= 7°K) a t  radius about 3.OA. The atomic volume 
at the transition is (3.6A)3. At 3.6A, V(R) is about 
equivalent to kT for T= 3°K. There is, therefore, a \vc;ik 
attraction a t  the average atomic distance. There is 
violent repulsion if the atoms approach more closcl! 
than 2.6A (V=O a t  2.6A). 

The expression ( 5 )  is an exact* quantum-mechanical 
expression for the partition function (even though 11‘) 

imaginary unit i appears). We shall use it to develol) 
a qualitative understanding of this function for liquitl 
helium. 

The quality u is of course not the time. However \ I r  

shall obtain a vivid representation of ( 5 )  by irnaginini: 
that it is the time. We can say that a t  one time 0 l h r  
coordinates xi(0) of all the atoms form an initid u’”. 
figuration zi, and that as time u proceeds the parti: I c ’  
move about [xi(%)] in such a manner that at the 
/3 the configuration of atoms appears to be the Sin'' 
(although in fact some of the atoms may have kTn 
interchanged). Each mode of motion is weighed rhr  

negative exponential of the time integral of the enem* 
required for the motion, and the sum is taken for ’” 
such motions. Finally an average (or rather inteF’’ 
is taken over all possible initial configurations zi. 

We can see immediately that motions which ‘worn 
too large a displacement in the time p have little ‘vclgh‘ 

. 

’ J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 6% (’”’ 
* In  so far as the forces can be represented as two-bod!’ W“‘ 
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because of the high kinetic energy required. Likewise, 
motions in which the atoms come so close as to appre- 
ciably penetrate the radius of their repulsion are of small 
importance because of the large potential energy which 
mould result. For this reason, also, initial configurations 
[or which the atoms overlap, that is, have centers so 
close that they would repel, contribute only a small 
,mount. The method of approximation which we shall 
apply to ( 5 )  is to neglect the contributions from mo- 
tions x;(u) and configurations z; which give small 
contributions, and to study more carefully only those 
motions which give the larger contributions to the total 
in ( 5 ) .  That is, we shall have motions in which the atoms 
do not move too fast or far in the time (3 and in which 
the atoms never overlap. 

We emphasize again that these “motions” must not 
be construed as a real description of what the atoms are 
doing. It is simply a formal description of the expression 
for the partition function. An expression “the atom does 
not move too far in the time (3” does not refer to a real 
motion as u is not time, but is it/h. The true behavior 
of the atoms may have some analogy to the description 
of the formula ( S ) ,  but such an analogy need not con- 
cern US here. Our reason to continue to call u and (3 
“time” is to help to make our arguments as vivid as 
possible so that intuition will be most effective. 

THE CHARACTER OF THE IMPORTANT 
TRAJECTORIES 

Consider a particular motion in ( 5 )  in which some 
atom i moves to the site initially occupied by atom j .  
Call the displacement a= zj- zi. The atom j must, of 
course, move to some other site to leave room for i. 
The effect of the. motion of j we will associate with 
atom j .  We study here the contribution to be expected 
just from the displacement of the single atom i by a 
distance a. 

Near the transition temperature displacements larger 
than about d ,  the atomic spacing (cube root of atomic 
volume 3.6A) are not very important [exp(-mmd2/2flh2) 
=0.3 at 2.2’K]. Nevertheless we will try to get an idea 
of the behavior for larger displacements. These will be 
useful a t  lower temperatures. Actually our considera- 
tions apply to displacements of any size. 

Suppose, then, atom i must make a translation a of 
length a. We make this, for example, to be nearly along 
a straight line. Our arguments will apply for any other 
route. 

The central problem is, what is the effect of the 
potentials of interaction on this translation? As a 
simple model which retains the essential features 
imagine the atoms as hard impenetrable spheres. We 
are, during a time (3, to move atom i from zi to z j =  z i f a  

and at the end to leave all the other atoms in their 
original positions. The atoms may not overlap at any 
time. 

There may be atoms in the direct line from zi to 
z j .  Nevertheless, a moment’s reflection shows that they 

will not offer a real potential barrier to the translation 
of atom i. 

It is evident that it is possible to place atom i a t  
any position on the route from zi to z j ,  provided we 
readjust the positions of the other atoms to make room 
for it. In the readjusted positions the total potential 
energy of all the atoms can be made to be very nearly 
equal to the potential energy of the original configura- 
tion. Therefore, atom i can be moved to any inter- 
mediate position without violating any repulsive po- 
tential, in fact, without any appreciable modifications 
of potential energy a t  all. It is only necessary to move 
the other atoms around out of the way as atom i moves 
along. When i reaches the final destination z j ,  the other 
atoms (except j of course, as noted above) may all 
come back to their original positions (or to some per- 
mutation thereofg). 

The readjustment of the other atoms means that 
their coordinates xk(z1) change with time. They con- 
tribute just kinetic energy in the exponent in Q. Beside 
the kinetic energy h(~/(3)~ needed to move atom i a 
distance a in time 8, we have also to add the kinetic 
energy of the readjusting atoms. This we can expect 
will also vary directly as the square of the velocity of 
atom i. The net effect is an energy of the form fm’(~/ j3)~ ,  
where m’ is an effective mass, somewhat larger than the 
mass of a single atom m. The difference represents the 
effective inertia of the atoms which are readjusting. 

The time integral of the energy needed for readjust- 
ment varies with a and 8, as az//3. This is clear for small 
displacements of i, for then only a few atoms shift, and 
they do this with a velocity proportional to that of i. 
For large displacements (a>>d) the same form, of course, 
results. To verify this, imagine that as atom i moves 
a t  velocity v(=a/@) the time it passes near a particular 
atom is of order d/v. This atom must adjust through dis- 
tances of order d in this time, or move a t  speed about 
v. The time integral of energy needed for this passage 
is about md(d/v)=mdv.  The number of such atoms 
which must be jostled to move a total distance a is of 
order a/d .  Thus the total time integral of energy of 
readjustment for all these a/d  atoms varies as mdv a /d  
=mva=ma2/(3. It varies with a and b in the required 
manner. 

The effect of the other atoms is not to offer a poten- 
tial barrier (time integral varying as a@) but a kind of 
kinetic energy barrier (time integral varying as 
The effect of the interactions is taken into account by 
changing the effective mass of a given moving atom. 

To get some idea of the order of m’, we recall that 
the effective mass of a sphere moving through an ideal 
fluid of the same density is classically ($)m, the extra f 
being the energy of motion of the fluid making way for 
the sphere. The effect of the attractive forces may in- 

The effect of a moving atom in permuting other atoms might 
have to be considered in more detail if we were to apply these 
ideas to the case of Fermi-Dirac statistics. I t  may mean that the 
m’ (discussed further on) is somewhat larger in that case. 
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crease this somewhat. We may expect m’ not to be very 
much greater than m-perhaps not more than 2 or 3 m. 

The effect of the relatively weak attractive potentials 
may be to alter the motions a bit, in that adjacent atoms 
tend to stick together a little. Thus the atom i may 
have a tendency to drag some atoms with it from time 
to time, possibly increasing m’ a little more. On the other 
hand, in He the zero-point energy’o is high enough to 
shake these others loose readily. If the potential were 
much stronger the group attraction might become ac- 
cululative, raising m’ very much. It is possible that this 
would result in solidification. 

For short displacements a of order d, proportionately 
less adjustment need be made, so that i t  is likely that 
m’ may be somewhat less. For high velocities, i t  may 
represent less energy to violate the real potential re- 
strictions a little. Thus the readjustments need not be 
complete, so that m‘ again may decrease a little with 
velocity a/& approaching m as a/&xo. 

As this is meant to be a first approach to the prob- 
lem, we shall not attempt to calculate the m’. The geo- 
metrical complexity is very great. Further, we shall 
neglect the variation of m’ with a and velocity. It is to 
be expected that this neglect may not alter our con- 
clusions qualitatively. It is always possible, later, to 
include such finer details. Nor shall we discuss the 
variation (expected rise) of m’ with increasing density 
of the fluid. 

For every trajectory the atom acts like a free particle 
of effective mass m’. Hence we may take the integral 
over all paths xi  for atom i to go a distance a to be 
proportional to 

(rn’/27$hz)t exp (- m’a2/2ph2). (6) 
The normalization factor has been written as (m’/ 

2?rphz)f for convenience. That it varies as p+ may be 
shown by dimensional analysis [compare Eq. (3)]. 
Actually a change in this factor will just change the 
partition function by a factor. It will be easiest to dis- 
cuss the normalization of the entire partition function. 

Therefore, we can approximate Q by 

x p ( Z i ,  Zz,’. .ZN)dNZ;. (7) 

The factor K B  we shall estimate later. The function 
p(z1, . . - z N ) = P ( z ~ )  represents a density associated 
with each configuration. I t  is discussed in the next 

“The zero-point energy referred to appears in the integral for 
Q in the following guise. Suppose we restrict the motion of a cer- 
tain atom k SO that, for example, i t  tries to move along close to i 
to take advantage of some extra attractive potential between k 
and i. Then the trajectories of k are restricted, and we lose a great 
deal in the integral over possible paths of k because we are not 
adding contributions from very many paths. We lose “volume in 
path-space.” This will suffice to offset the attraction if, in the 
conventional language, the zero-point motion is sufficiently large. 

section. This expression (7) for Q may be rewritten, 
using Fourier transforms as 

Q= J F ( k N )  exp[- @h2/2m’)C k,2]dNk,(2~)-3N, (7a) 

where 

F(kN)=Kg(N!)-’ exp[i C k,. (z,-Pz,)] 

t 

1 

x P (zN)dN 2,. 

JG 
This form is especially useful near absolute zero, but 
we will not need it in this paper. 

It should be emphasized that the argument which 
leads to the free particle approximation for the motion 
of an atom is of greater generality. The argument re- 
sults simply from a consideration of the limitations to 
the true trajectories which result from the interatomic 
potentials. They therefore apply as well to the non- 
diagonal element of exp(-pH), as to the diagonal ele- 
ment which appears in Q. Likewise, they are applicable 
to the true quantum-mechanical kernel, which is the 
nondiagonal element of exp( - i tH/h) .  The imaginary 
weights in this case also restrict the atoms not to overlap 
a t  low energy, etc. 

This principle may have uses in other branches of 
physics, for example, in nuclear physics. Here there i \  
the puzzling fact that single nucleons often act like 
independent particles in spite of strong interaction5 
The arguments we have made for helium may apply t o  
this case also? 

THE CONFIGURATIONS OF IMPORTANCE 

Not all configurations ZN are to be weighed equally. 
If zi and z j  are closer than the distance at  which strong 
repulsion sets in (2.6A) the configuration should 1 ) ~  
given very little weight [i.e., p in (7) is nearly zero i f  
atoms overlap]. We shall discuss this effect first for t l l c  

case of low temperature (p large). 
Suppose initially in ( 5 )  two atoms overlap, say by 3 

distance 2, and suppose that this results in an extrernel!’ 
high (relative to l/@) potential V.  If they move :I (fi- 
tance 5 further apart, suppose V goes to 0, and t k ’  
J‘ independent of x for simplicity. During the inter\.:il 
U = o  to 8, if the atoms remain overlapped for a time 7 .  
the contribution is the negative exponential of v7. This 
contribution is extremely small unless 7 is very sh(lrr 
(if Vp>>1 then ~<q). The most important trajectorIc5 
are then those that release V as quickly as possi~~lc~ 
This can only be done by a high kinetic energy ?dx2/:?/271. 
Thus the integral of energy has the value m’x’/2rh’ 
~ V T ,  which is least if 7 =  (m‘x2/2~h2)*, in which c:lw 
it has the value (2m’V)tx/h. The contribution varies :5 

eXP[- (2m’J‘)b/h]. This is just the quanturn-rnecharl’- 
cal penetration factor. In p it appears twice, for w’” 
we must get into the overlapped condition at the  cil’J 
of the interval 8. This argument fails if p does not esl.rL’J 
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in that case a larger penetration results. I t  is due, !r. 
of rourse, to the high kinetic energy that such a small 

~ implies. For the large repulsions 17 a t  low tempera- 
involved here this penetration is very small. 

I,, &lition, p would not be quite uniform even if 
,here is no overlap of the atoms, and even if they are 
&idered as impenetrable spheres. I n  fact, p would be 
!,lrger if atoms are well spaced than if they are nearly 
,dincent (for large 8). If two atoms are adjacent ini- 
liR1lJr ,  the available paths are limited to those which 
move them apart-for they must not come to overlap. 
This decreases the effective volume of path space for a 
illort time. Actually this effect is offset partly by the 
(,-tual attractive potential which results upon the 
,i,,ser approach of the two atoms. Thus p represents 
llle effects of short-time adjustments (times<<P) while 
rt,e longer-time effects” are contained in the exponential 
j.lctor in (7) [that is, expression (12) below]. For large 
j. low T ,  p can be taken as nearly temperature inde- 
p d e n t ,  and the main temperature dependence comes 
from the other factor (12). This p as /3+0 is the density 
corresponding to the ground-state wave function. For 
;ipproximate purposes we can take it to be simply the 
density function p for a classical gas of impenetrable 
;itoms of diameter b.  That is, p = O  if any two zi’s are 
(.loser to each other than b, and is 1 otherwise. This 
neglects the variations with distance due to the quan- 
inm-mechanical effect discussed a.bove of restricted 
path-space volume, and due to the attractive part of 
the potential. 

For high temperatures, the exponential terms in (7) ,  
representing diffusion, are unimportant, and p should 
approach the classical distribution function. Now the 
attractive forces are weak and unimportant so again 
can be roughly represented by an impenetrable sphere 
model. The radius b should be somewhat smaller. We 
shall neglect this variation of b with temperature. 

To summarize, p is qualitatively similar to the density 
distribution of a classical gas. I t  changes somewhat 
with temperature. 

. ,  

PROPERTIES OF THE PARTITION FUNCTION 

A partition function has several formal properties, 
and we may test our approximate expression (7) to 
see how well it satisfies these conditions. Another im- 
important function is the nondiagonal element of 

“There is a kind of distortion that  takes a long time T to 
release, namely, a general increase in density over a large area. 
This restricts the path-s ace volume for each atom in the area and 

energy per particle induced by compression. The energy E can 
only be released by moving many particles, distributed over the 
area. These density fluctuations are sound waves. If the wave- 
length of the fluctuation is A=2=/K, the time needed to release 
i t  is T =  l/h= l/hcK, where c is the speed of sound. This exceeds 
B if A>2rrkT/hc or X>Za.SA for 2.2”K. (This exceeds the diffu- 
sion distance d=3.6A even a t  2.2“K, so will not be of concern to 
US near the transition.) Thus (7) is incomplete in that  i t  does not 
correctly describe long wave-sound fluctuations. This matter is 
discussed in a subsequent paper. 

results in a factor e-0 P for each particle, where E is the excess 

exp(-bH). That  is, G&’, z)= (z’lexp(-pH)/z), or 

i i  

the integral being taken over all trajectories trp’ such 
that xi(0) = zi, xi(@) = Pzi‘. The final configuration zi) 
may differ from the initial configuration. Of course, 

For large p we have given a n  argument for behavior 
of the function p ( z N ) ,  which represented it as the square 
of a function, say 4 ( z N ) .  One factor was for leaving an 
unfavorable (say overlappping) configuration. The 
second was for entering it again. At low temperature 
+ ( a N )  is the ground-state wave function. The same 
arguments give for Gp(zfN,  z N )  the approximate 
expression, 

Q= f GO(zN, zN)dNzi. 

GB(z”, z”)=Kp(N!)- ’C +(z’”)+(z”) 
P 

Since exp(-@,H) exp(-p2H)=exp[-(pl+@2)H],we 
have the condition of matrix multiplication, namely, 
that 

I 

Gp1+,q2(zfN, zN)=  J.G01(z”, zNN)G02(~””,  zY)dNZ,”. 

This requires that  @=&+Pz) 

x [4 ( Z’”)]2dNZif’. 

Now, in the exponent we can relable i (by permuting 
the names) as P’i, since the sum in on all i. That  is, 

= P”, and the sum on all P is equivalent to a sum on all 
P“. Finally, since zi)‘ are variables of integration in a 
symmetrical factor [ (4 ( z ” ~ ) ? =  p ( z f f N )  = ~(P’z’“) for 
any P‘, the z‘“ integral does not depend on P’, and 

Now the weight function p ( z f f N )  prevents various zi)‘ 
from being too close together. If, however, 01 and p2 
are so low that e~p(-m‘d~/2/3~h~) is fairly close to 1, 
the variations in the exponents due to this restriction 

E;(Pzi)-  z ~ ) ’ ) ~ = C ~ ( P P ’ Z ~ - P ’ Z [ ’ ) ~ .  NOW d l  PP’ 

just gives a factor N ! .  
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is very small. [That is, in the integrand, p ( z r r N )  varies 
rapidly while the other factor is smooth.] Therefore, 
we replace p ( z r r N )  by an average value and integrate 
over all drN.  The effect of p ( z r f N )  just restricts the 
volume available to the configuration variables. Let  us 
call 

VN’ S p ( z N ) d N z ,  (10) 

so that the average value of p is VN/V“. The integral 
on 2,’’ is now easy, and we find 

KBI+BZ= K B I K B z V N / V ~ .  

[This verifies our choice of the /3-+ dependence in (6).] 
This means that K B  must have the form 

K 8-  - VNVN-le-BEa (1 1) 

where EO is a constant. Such a constant means, in Q, 
a constant energy (the energy a t  absolute zero). We 
will not try to determine this energy. Let us measure 
energies above this as a zero level. Then it can be ig- 
nored. Our final partition function is then (17) with 

For extremely large p, Q should approach 1 from its 
original definition as Cie-pEi and the choice Eo=O. 
For such large p ,  the sum on permutations P means 
that Pz; goes successively over every site, while the ex- 
ponential e q [ -  (nz’/2ph2) (zi--PzJ2] varies smoothly. 
I t  is approximated by writing it as exp[- (m’/2Ph2) 
X (zi- z:)~] and integrating over all z/ but dividing 
by the atomic volume V A  = V / N  for each z/. However, 
this does not take into account the restriction that all 
the zil are on different sites. So an additional N ! / N N  is 
needed. Thus the total factor is N ! / ( N V A ) ~  or N ! / k “ .  
The integrals give (27rph2/m’)f per degree of freedom, 
so we see that Q approaches 

Q- ( K b / V N ) S p  (zN)dNzi= 1 

Kg= V N / v ~ .  

as p--+w, as required. 
This value of KB was obtained by an argument in- 

volving large p .  Let us study its behavior for small 
values of p .  For small /3 (high T )  no permutation is im- 
portant in (17) except the identity. For no atoms are 
closer than b= 2.6A, and (m’/2phz) (zi-  PzJ2  would be 
at  least b2nt’/2ph2, if Pz;# zi. For small p this results in 
a large negative exponent. Thus Q approaches the value 

Q= K~ ( ~ - 1  ( ” : / 2 T p i 2 ) 3 ~ / 2 J p  ( 2 ~ ) d ~ z ~ .  

The correct limit, according to the classical theory, 
should be 

Q= . \ ‘ ! - 1 ( n z / 2 ~ ~ ~ 2 ~ ) ) 3 ” ” S p ( z ~ ) d ~ z ~ .  

Since m‘ approaches m, K B  must approach 1 as p-0. 

This means that Kp must be a function of p which 
varies from L“/VN to 1 as 0 varies from large to small 
values. 

An accurate quantitative analysis of this problem 
would require close attention to the variation with 
temperature and density of m’, of K and of b (or, more 
completely, of p ) .  

EXISTENCE OF THE TRANSITION 

We can use this partition function (7) and the ide;ls 
associated with it to understand many of the propertics 
of liquid helium. The behavior of the liquid a t  very lolv 
temperature (below O.S°K) will concern us in the fo]- 
lowing paper.6 Here we will study the behavior in 
region of a few degrees and shall show that a transitioll 
should occur. 

I n  the qualitative study of such a transition we riec(I 
not  concern ourselves with the continuous variations 
i n  the effective constants m f ,  KO, b. I t  might be well 1 0  
remark, ho\vcver, that 2.2”K the expression mx2/2p/? 
is unity for n’= 3.4.A. This is just the order of the averaxc 
spacing of the atoms. Therefore, we are not going to 1 ) ~ .  
involved in  very long displacements, and it may be tli;ir 
m’ does not differ too much from m. 

ives a tninsi- It is not h m l  to understand that (17) g’ 
tion. If p rrerc a constant it would be the same as thc. 
partition function for an ideal gas. The fact that p i z  
not perfectly uniform cannot change this much. 

To see i n  more detail how this transition arisc-5. 
consider the factor 

C p esp[ - (ntr/2ph2)C i (z i -  P Z ~ ) ~ ]  ( 1  .? 1 

in the partition function (7) .  
Each permutation may be divided into cycles. A 

cycle of length s is a chain of permutations, such ;I\  

1 goes to 2, 2 goes to 3,  3 goes to 4, etc. until S-1 PC. 

to s and finally s goes to 1. Such a cycle contributes t o  
a term in ( 1 2 )  the factor 

(1.’) 

where z,,= 2,- z j  and zl, z2, etc., are the positions of 

the particular atoms in the cycle. The total contrilll’ 
tion from a given permutation is the product of 
these factors, one from each of its cycles. For a givc*‘l 
configuration we are to sum such a product over.’”’ 
permutations, that is, over all possible ways of la!’’”$ 
out cycles on the configuration. 

Consider a permutation of a certain “type,” that i’. 
having a certain number of each kind of cycle. That ’” 
P has nl cycles of length 1 (i.e., nl atoms are not Fr- 
muted), i z z  cycles of length 2, . . . f z s  of length sf et‘.. 
The total number of atoms is N ,  so that 

f l 4 ‘  

To these cycles there correspond nl atoms, 722 POl~’b‘o’i” 
of 2 sides, n3 triangles, . . . , etc. drawn on the confiPr;‘- 
tion, and each contributes its factor (13). 

expc- ( m ’ / 2 ~ ~ 2 )  (z122+ zZ32+ . . . + z d 1 ,  

l v = ~ , s I z , .  
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Next we may sum over all permutations of the same 
t!.pe. This means that each polygon will change its 
sllsPe and location (but not its number of sides) as we 

from one permutation to another in the sum. Eventu- 
illy a given polygon can be considered as taking up all 
possible forms-that is, a polygon of s sides will have 
llnd every possible set of s atom sites for its vertices.lZ 
is a given polygon changes, of course, the others must 
,jlange too, for no atom may be a member of more 
than one polygon in any given permutation P. This 
psents an enormously complicated mathematical 
problem. 

We shall try to simplify it by an assumption that 
the various geometrical forms that a given polygon 
m n  take are roughly independent of the shapes of the 
other polygons. That is, we shall assume that the con- 
tribution of a polygon of a given size is the average for 
such a polygon over all possible forms the polygons can 
take without restriction. That is, we assume the average 
{actor contributed by a given polygon does not depend on 
slliat type the other polygons are. This assumption is 
probably not sufficiently accurate to give an exact 
description of the order of the transition. 

We shall actually use, for the contribution of a poly- 
gon, the total effect it would have if it were alone. In  
the various integrations over many polygons, the fact 
that no atom may be used twice actually restricts the 
volume of configuration space. I t  is V N  [Eq. (lo)]. To 
include this effect we will have an additional factor 

Making these assumptions the total contribution to 
v,/ VN. 

(12) of all permutations of a given type is 

VNV-NC(nl,  nz. * .)f1nlf2nz. . .fsna. . . 1 (15) 

where C(nl ,  n 2 . .  . )=N!/n ,n ,!sna is the total number 
of permutations of a given type, and fs  is the contribu- 
tion of a polygon of type s, for a given configuration 
calculated as though it were alone. We may average 
this over the possible configurations also. That is, 

Xp(')(Zi, Z Z *  . .z ,)dzz. .  .dz,, (16) 

where p(*)(zl...z.) is the chance of finding s atoms 
with their centers at  zl, zz, .z.. That is, 

Z,)= p(Zl, Zz, . . & + I . .  . Z N ) ~ & + I .  . .dZN, J . 

where p(zN) is the configuration density of (7). The 
factor V comes in (16) from the fact that z1 can be 
anywhere and has been integrated out. 

'*Actually the only contributions (near 2°K) come from poly- 
gons formed from nearly adjacent atoms. The factor (13) is very 
small if any of the sides are very long. The polygons of importance 
may be of any total perimeter (for large J), of course. It is only 
their individual sides which are limited. 

Next we must sum over all permutation types. That 
is, over all values of nl, n2,- . . subject to (14). Signifying 
this by 2' and substituting into (7) we find 

Q= ( K p l i ~ / V ~ )  ( m ' / 2 ~ f i h ~ ) ~ " ~  C' nI l ( f sn8/n8!sna) .  

The factor KpVn/VN presumably varies exponentially 
with N. We could write it as exp(Na) where a is inde- 
pendent of N and varies slowly with temperature, 
vanishing as T+O. It will make no essential difference 
in our study of the transition (it just adds NkTa to the 
free energy A )  so we will not bother to carry it along. 

The sum is very difficult because of the restriction 
(14). However, we may use the usual methods of steep- 
est descents. We multiply Q by a factor of the form 
exp(pN/kT) (p  is the chemical potential) and sum 
over N. If we then put N = X s m , ,  we can sum on all 
n, without restriction. Further, if the free energy A is 

A = - kT 1nQ 

and the sum is written exp(--B/kT), we can deter- 
mine A from 

and 

in the usual way. (N is the mean number of atoms.) 
Hence, putting 

we can write 

exp (- B/kT)  = C xN n Uana/n, ! sna)  

x= (m'/2rfih2)f exp(p/kT), (20) 

all I.'S a =n C (fsnax3na/n,!sna) 
a nr 

= II exp cf.xa/s), 
or 

and (19) gives 

- B= kT C a f.x"/S; (21) 

N =  C. f,x". (22) 
This pair of equations together with (20),  (18) deter- 

mines A and thereby all the thermodynamic functions. 
The x is determined from the second Eq. (22) ,  by the 
condition that m equal N ,  the actual number of atoms. 

To proceed further we shall have to evaluate fa .  This 
we do approximately, for the calculation f a  from (16) 
is difficult. The distribution p( ' )  does not permit atoms 
to be too close together. This is important for atoms 
adjacent in the polygon, such as 1 and 2. On the other 
hand, it is not of great geometrical importance for links 
much further apart (like 1 and 5). The important poly- 
gons correspond to random walks of s steps from each 
atom to a neighbor, finally returning to the origin. In  
three dimensions the chance, after a few steps, of 
coming back to the origin before the final step is not 
large. I n  averaging (16) over the polygons, if we include 
self-crossing polygons in the average we may not be 



322 

1298 R .  P .  F E Y N M A N  

far off. There are not many of them so they probably 
do not alter the average very much. This is a second 
assumption. I t  is similar to the first. T o  be more ex- 
plicit we shall approximate p ( * )  in (16) by 

where p(z12) is the probability per unit atomic volume, 
of finding an atom located at z2 if one is known to be 
a t  z1 (and z ~ z = z ~ - z z ) .  It is a function only of the 
radial distance p ( r ) ,  r2= zlZ2, which approaches unity 
as r gets beyond a few times the atomic spacing d 
Cp(z12) is proportional to p(2)(z1, z2).] 

Thus, approximately, 

This formula is wrong for s= 1, for, of course, f l=  V. 
For s= 2, (24) is not very good, for (24) averages with 
weight p(z12)* while the correct weight in (16) should 
be p(zlZ). Short rings are not important in determining 
the existence nor order of the transition, however. 

The expression (24) is nearly in the form of a con- 
volution and can therefore easily be simplified. If the 
last point of the polygon were not 1 but  some other 
location, say zo [i.e., replace zB1 by Z*O in (24)], the 
expression (+ V )  would depend on zl-zo or zl0. Call 
it g,(zlo). Its Fourier transform, Jgd(zlo) exp(iK.zlo) 
Xdzlo, is the s power of the Fourier transform, 

IT( K) = exp(- m'z2/2Ph2jp(z) exp(iK- z)dz. (25) 

Therefore g.(z) = J exp( - iK.  z) (r (K))dK(2~)-3,  and 
since f.=g,(O), we find 

s 
(26) 

This is not true for s= l .  For s = l  the true jl is V, 
while this gives f l= V J I ? ( K ) ~ K ( ~ ~ ) - ~ =  Vp(0) from 
(25). This p ( 0 )  should be practically 0, but  for gen- 
erality we retain it. Substitution of this into (21) we 
get cf1= V )  

- B = k T V  C (x*r(K)*//s)dK(2?r)-3+kTVlx, 
-2 s 

or 

- B= KTV In(1- xr (K))dK ( 2 ~ ) - ~  

+kTV[1 - P ( O ) ] x ;  (27) 
s 

s 
and, similarly, 

R / V =  [l --xr (Kj]-'dK(2~)-~+ [l-p(o)]x. (28) 

To study the transition more closely, we study the 
effects of the longer cycles. We need f a  for very large s. 

Since r ( K )  in (25) falls as K rises and is maximum for 
K-0, we expand Inr(K) in powers of K2 and carry 
only the first two terms in the form 

l n r  (K)-ln6- +dP. 
Here 

6 =  exp(--m'r2/2ph2)p(r)4~r2dr,  (30) 

and 

d 6 = -  r2 exp(-m'r2 /2~h2)p(r )4xr2dr .  (31) 
3 's 

Then for large s, asymptotically, 

fa- V6 8 s  exp ( - + s d  K2)d K (21r)+ = VA6 */d, (3 2) 

with A =  (2m2)-+. If we use this asymptotic form for all 
s> l ,  we make errors for the first few terms. But the 
transition occurs because of the character of the con- 
vergence of the series for large s. Therefore the pre- 
dicted character of the transition may be found by 
studying the sums (21), (22) with_ the asymptotic form 
(32) for f 8 .  For example, the N / V  sum is [putting 
P(0) =01 

m/v= A (6x)"/sf+ (1 - AS)%, ( 3 3 )  
S=l 

and the expression for B is 
- B = kTV[A (6%) '/s5/'+ (1 - AS)%]. (31) 

S=l 

The same situation exists here as for the ideal gas case. 
The sum in (33) cannot exceed 2.612 (for x=1/6) and 
2.612A+(l-A6)/6 may be less than the actual l lr/ l .  
desired. This will not occur for high temperature (6 
small), but on lowering T the difficulty suddenly sets i l l .  

What one must do, as is well known) is to note tha1 
the dK integral in (32) is really a sum over the value< 
of K which fit in the box of volume V. The lowest state 
(K=O, using running waves) is distant d K =  ( 2 ~ ) ~ / 1 '  
from the next. I t  suffices to sum on this one and in- 
tegrate the others. Thus we should add a factor 
1 + ( 2 ~ ) ~ V - ~ 6 ( K )  to the integrand of (32),13 so that 
sum is more closely 

fa= VA6ass-~+6a,  (323) 

and (33) becomes 

R / V = A  ~(6x)"s-f+(l-AaS)z+~-"(1-66x)-'. (3.'n' 

Now 6% can become very nearly 1, to order 1 / V  (Z.F.. 
put Gx=l-l/gV) and the sum in this region is N / ' .  
=2.612A+(1-A6)P1+g which can be satisfied for 
proper choice of g. For higher temperatures (smaller ') 
we can use the original expansion (33). This change in 

S=l 

l3 The validity of this procedure has sometimes been, VcS' 
tioned. A method of arrivinp a t  the result (329 which avoids L h e  
use of this procedure is g i v 6  in the Appendix. 
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,.ior for the two regions of T reflects in R (34) !<I15 ,]lase transition. This shows the existence of the 
15 3 1 ,finsition. As temperature falls 6 in (30) rises without 
, ;n11 ' L . Since p(r)-I for large r ,  as p rises 6 eventually 
i~,haves as (2@h2/?n')+. Likewise, eventually wz be- 
L,,nleS ph2/m', SO that A =  (2m2)-1 approaches 6-l, 
plcrefore 2.612A+ (l-A6)6-' tends toward zero (as 
T I )  and must eventually fall below Ar/V. Actually by 
I, , lr t i l~g in very reasonable values for the parameters, 
1; i j  easy to obtain a transition a t  about the right place. 

If  we do not use the asymptotic form (29) for r, 
!:,,llling is fundamentally changed. In  (28) the integral 

K should have its factor 1+(2~)~V-'6(K) as ex- 
;~;,ilied, and the equation to determine x becomes 
,-nlling r(0)=6) 

f / b l =  [ 1 --xr ( K ) ] - l d K ( 2 ~ ) ~ +  [ 1 - p (0)]2 J + V1(l-6x)-'. (36) 

\hove the transition the !.+st term is not required. 
1ieiow, 6x= l-l/gV and N/V=J[1--6-lr(K)]-ldK 
x (2?r)-3+[1-p(0)]6-1+g, with analogous expressions 
lor B.  

RELATION TO EXPERIMENT 

It would not be worth while to substitute numbers in 
1 hese expressions as too many small approximations 
have been made. In  addition, it is difficult to estimate 
1 1 1 ' .  The function p ( r )  might be calculated roughly for 
I the smaller Y by using the corresponding function re- 
quired for the quantum-mechanical second virial co- 
efficient. This assumed that any two colliding atoms 
are independent of the others. Alternatively, p ( r )  could 
lie taken experimentally from x-ray or neutron scatter- 
ing data. 

On the other hand, the formulas (27), (28) have even 
qualitative faults when compared to experiment. They 
predict that helium, like the ideal Bose gas, would 
show a third-order transition (specific heat continuous 
but discontinuous slope). The experimental data' do 
not agree (apparently the specific heat is discontinu- 
ous). This disagreement probably stems from the 
neglected geometrical correlations among the rings.14 

In order to study this in greater detail, it was thought 
that a careful study of the situation a t  extremely low 
temperature would be of value. The character of the 
transition must depend on an accurate description of 
the phase into which the liquid changes as it cools past 
the X point. This phase is represented in an extreme 
form near absolute zero. I n  this region Eqs. (27), (28) 
fail very badly. They predict a specific heat varying 
as Tt while experimentally it varies as T3. In  the follow- 
ing paper6 we shall see that this discrepancy is a result 

"Assumptions about the temperature variation of the pa- 
rameters m, $(r), K,q cannot alter the order of the predicted 
transition. The effect of modifying (7) in the manner indicated 
in footnote 11 is discussed in the paper to follow. The change, if 
anything, is in the wrong direction. 

of the error produced by the geometrical approxima- 
tions made in passing from (7) to (27), (28). The ap- 
proximations here permit much larger fluctuations in 
density than is available to the true liquid, and this 
qualitatively alters the behavior of the specific heat at 
low temperature. 

The experimental specific heat curve shows' a slight 
rise in the He I region as the X point is approached from 
above. This is also a property of our expression (34). 
In  this region only a few chains are starting to form. 
The restriction that no atom may be in more than one 
chain is not yet of importance. Therefore, in this region 
our geometrical approximations should be valid. The 
very least we can say, then, is that the rapid rise in 
specific heat of He I with falling temperature is com- 
pletely explained. 

SUMMARY 

Starting with an exact quantum-mechanical parti- 
tion function, we have derived an approximate expres- 
sion [Eq. (7)] which should be qualitatively accurate. 
I t  has been shown to be in agreement with experiment 
in predicting a transition which depends in an essen- 
tial manner on the statistics. 

Further mathematical approximations have not been 
accurate enough to show whether (7) will correctly 
predict the order of the transition and the temperature 
dependence of the specific heat near absolute zero. 
They do suffice at high temperatures to show the rise 
in specific heat of He I as the transition is approached. 

I t  is proposed that a more careful analysis of (7) 
would show more complete agreement with the experi- 
mental facts.' In  the next paper6 the situation near 
absolute zero is studied in detail, and it is found that 
(7) (corrected for the effect mentioned in footnote 11) 
very likely does predict the correct behavior in this 
region. 

The physical idea which plays a central role is that 
in a quantum-mechanical Bose liquid the atoms behave 
in some respects like free particles. 

The author appreciates conversations with Edward 
Kerner and with M. Kac, as a result of which he became 
interested in the problem. He also is grateful for dis- 
cussions with E. Wigner, H. Bethe, and R. F. Christy. 

APPENDIX 

We give here another derivation of the approximate 
partition function (33a), (34). I t  has the advantage of 
showing more clearly the origin of the transition. We 
will treat it in a very approximate manner as we have 
already given more complete formulas. (It is the first 
derivation that the author made.) 

Near the transition only permutations involving 
shifts of each atom to the position of its neighbor, at 
some mean distance d,  are important. The exponential 
factor from such a shift is y=exp(-m'd2/2ph2). 

Each permutation can be broken into cycles. We now 
only count those cycles for which all atoms are adjacent, 
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forming a closed chain or ring. If a ring contains s 
atoms, its contribution is y'. If we have n2 rings of 2 
atoms, ng of 3 atoms, etc., the contribution is Yn+C3n+*.. 

The part of the partition function which determines 
the transition is then 

q=C G(nz, n3, -)yE*-zan*, ( 1 4  

where G(n2, n3, - - a )  is the number of ways we can lay 
out polygons, n2 of 2 sides, n3 triangles, etc., on the 
configuration-the sides of the polygons consisting of 
lines joining nearest neighbors (length d). The sum is 
restricted for the number of single atoms n l = N  
-Cp2sn. must not be negative. 

Here again we shall make the error of neglecting the 
geometrical interference of polygons due to the re- 
striction that each atom be a vertex of only one polygon. 
We shall include the competition among the polygons 
for the total number of available atoms by saying that 
there is an average probability t that any site is un- 
occupied. This t will later be determined so that the 
average number of atoms occupied is m= N .  (This can 
be done in detail by steepest descents, but it amounts 
to the same thing.) Therefore, instead of q we calculate 
t N q  and call it exp(--B/kT). 

The polygons can now be considered as independent. 
If R. is the total number of s gons that can be drawn 
on the configuration, each s gon can be chosen in R, 
ways, and all n, of them in RSn*/lna! ways. The nl single 
atoms can be chosen in Nnl/nl! ways. Thus 

exp(-B/KT) = C li,n*(na!)-lysn~tan~tnlNnl(nl!)-l 
ni n2 . .  . a-2 

= expCNfSC R, 0 ~ 1 ~ 1 ,  

-B=KT[Nt+C R,(ty)"]. (2-A) 

8-2 

or 
a-2 

The average number of atoms m used in sites is t(aq/ 
8 t )p1,  so we have 

N = N t + C  ~R.( ty)".  ( 3 4 )  
8-2 

Now we calculate R,. We call ha the total number of 
ways that we can, starting a t  an atom and making suc- 
cessive steps to adjacent atoms, return after exactly s 
steps. This forms a closed s gon. We may start a t  any 
of the N atoms. The total Nb, measure the total number 
of s gons, but counts each s times (for you could start 
a t  any of the s atoms as the "first"). Hence we have, 
R.= Nh,/s,  and 

--B= KTN[t+C / ~ ~ ( t ~ ) ~ / l ~ ] ,  (4-A) 
a-2 

where t is a parameter determined from i?-N, in 
(3-A) , or 

1=t+C h*(ty)'. ( 5 4 )  
C 2  

We shall bother to determine the form of h, for large 
s only. In  the random walk, each step is length d,  and 
may be made to any of the adjacent atoms, which 
shall say are Z in number, on the average. Each step 
can be made in 1 ways, the entire s steps in 1 8  ways, 
There are Is walks in total but only a certain number 
return to the origin. AS is well known, the probability 
of being a t  a given point, per unit volume, radius 7 from 
the starting point is 

(2rd2s/3)-* exp (- 3r2/2sd2) = As-* exp (- 72/2m2), 

putting w2=d2/3 and A =  (2d ) -+ .  The chance we arc 
back at the original atom (that is, within a space of 
one atomic volume V A =  V / N  near the origin) is 
VAAS-?, so that 

ha= VAAS-V.  
The reason for the dependence on the s-5 is easy to scC 
After s steps we have wandered out to a mean radius 
of order s*, or over a volume s*. Hence, the chance that 
in this volume we are back a t  the original atom varies 
as s-3. This is correct except for enormous chains 
sF'N*, which are long enough to wander all over the  
liquid. Then the available volume no longer increases. 
The chance that one is back a t  the original atom instearl 
of one of the other roughly equally likely atoms is l/:V. 
For such large s, then, h,= Za/N. The formula, 

he= (VaAS-t+l/N)Za, (6 :\) 

takes care of both cases, because for small s the fin! 
term dominates, and for large s the second takes over. 
as it should.1K Substitution into (3-A) gives 

l=t+ VaA C (Z~t)'~sr+N-~(1-Zyt)-'. (7-11) 
a-2 

This may be compared to (33a). To do so, note 
our interpretation of 3w2 as the mean square length of 
a step agrees with (31). Further ly is the number Of 

atoms available per step, 1, multiplied by the lv.CiRf1t 

y=exp(-~'d2/2~hz).  In the more general case it I* 
comes ~ / V A  as an inspection of (30), the expression for 
6, shows. Finally, the parameter t can as well be cdlfl' 
V A X ,  and Eq. (7-A) is seen to be identical to (333) 
(times V A ) .  Likewise, substitution of (&A) into (4-;'' 
gives the corresponding equation (34) for B .  

This derivation throws some light on the mathe- 

'' According to (6-A) the chance to return is higher than for 3" 
infinite medium. It might be objected that there should be !C\ve' 
paths available when there are a finite number of atoms In an 
enclosed space. What we have done corresponds to working with 
a periodic boundary condition, and the excess arises from the 
chance to return to one of the images of the origin, instad of l o  
the origin itself. With the more physical boundary condition- 
that paths cannot cross the liquid s u r f a c e t h e  total number '' 
paths for high s is not F, but is reduced. It becomes eventual1?. 
proportional to e-Y', where 6 is a very small number of order 
N-1. It makes no essential difference in the result. In the m". 
mentum representation of the text i t  corresponds to t@'6 Ihc 
lowest state to have a wavelength controlled by the 5:s Of Ihc 
box. I am indebted to Herman Kahn for pointing out this POvib1' 
objection to (6-A). 
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o,atical “cause” of the transition. As T falls y rises, 
the enormous number of possible orientations of a 
long ring more than compensates for the small 

,,tribution of each (y’<<l, for 1 large). 
‘rilere is no doubt of the geometrical fact of large 

of orientations for long rings, even if these 
rings may never use the same atom twice (i.e., cannot 
closs themselves).16 Therefore there can be no doubt 

16  ~ o r  example, the number of ways in which a single polygon 
does not cross itself can S t i l l  be oriented in an infinite 

------- 

p,cdjum=constantXla~-~, but the value of 1 is reduced. 

that (1-A), and its more complete expression (17), will 
show a transition from this cause. But the order of the 
transition need not be the same as that of the approxi- 
mate evaluations we have made. They neglect the geo- 
metrical correlations. For example, if a large chain of 
K atoms is already formed, are the remaining N - K  
atoms more (or perhaps less) likely to be contiguous 
and therefore more easily able to make other chains, 
than if these A T -  K atoms were chosen a t  random from 
among the A T ?  Our assumption in deriving (5-A) was 
that it was equally likely either way. 
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Atomic Theory of Liquid Helium Near Absolute Zero 
R. P. FEYNMAN 

California Inslilirte of Tecltnology, Pasadena, California 
(Received June 1, 1953) 

The properties of liquid helium at  very low temperatures (below 05°K) are discussed from the atomic 
point of view. It is argued that the lobvest states are compressional waves (phonons). Long-range motions 
which leave density unaltered (stirrings) are impossible for Bose statistics since they simply permute the 
atoms. Motions on an atomic scale are possible, but require a minimum energy of excitation. Therefore 
a t  low temperature the specific heat varies as T3 and the flow resistance of the fluid is small. The arguments 
are entirely qualitative-no calculation of the energy of excitation nor of the low-temperature viscosity 
is given. In an appendix an expression, previously given, for the partition function is modified to include 
the effects of phonons. 

- 

INTRODUCTION 

ISZA‘ has suggested the very fruitful concept T that He I1 might be thought of as a mixture of 
two fluids, “superfluid” and “normal.” At zero temper- 
ature the helium is pure superfluid. With rising temper- 
ature some sort of “excited molecules” form. These 
constitute the “normal fluid” which behaves very much 
like a gas. The proportion of normal fluid increases a t  
first slowly, and then rapidly, with temperature until 
at the transition temperature of 2.19”K (A point) the 
liquid, now H e  I, contains no more superfluid. 

Landau2 has made even more detailed suggestions. 
He suggests that there are two kinds of “excited 
molecules,’’ phonons or quanta of longitudinal com- 
pressional waves (sound) and “rotons.” The latter are 
not well understood. I t  is suggested that they have a 
minimum energy A needed to excite them. For this 
reason below O.S°K there are practically only phonons. 
The rotons can become excited when more energy is 
available; i.e., at higher temperature. This idea is in 
agreement with the fact that below 0S”K the specific 
heat varies as T3 in just the manner (and with the 
correct coefficient) to be expected if only longitudinal 
sound waves could be excited. 

L. T i m .  Phvs. Rev. 72. 838 (1947). An excellent summarv of 
the theories’of f;elium I1 is’to be‘found in R. B. Dingle, Supple- 
ment to Phil. Mag. I, 112 (1952). 
‘L. Landau, J. Phys. U.S.S.R. 5 ,  71 (1941). 

Tisza’s view is frankly phenomenological. No serious 
attempt is made to justify the description from first 
principles. Landau has made such an attempt by 
studying the quantum mechanics of a continuous liquid 
medium. The role of the statistics is not clear in his 
arguments, however. Furthermore, the magnitudes of 
energy and inertia that the “rotons” appear to have 
correspond to a few atoms. A complete understanding 
of the “roton” state can therefore only be achieved by 
way of an atomic viewpoint. 

A more complete study of liquid helium from first 
principles might attempt to answer a t  least three 
important questions: 

(a) Why does the liquid make a transition between 
two forms, He I and H e  II? 

(b) Why are there no states of very low energy, 
other than phonons, which can be excited in helium I1 
(i.e., below O.S°K)? 

(c) What is the nature of the excitations which 
constitute the “normal fluid component” at higher 
temperatures, say from 1 to 2.2”K? 

The first question was answered in a preceding 
paper.3 We showed that London’s suggestion, that it is 
the analog of the transition in an ideal Bose gas, is 
correct. 

I n  this note we hope to make a qualitative argument 
from first principles to answer the second question. 

R. P. Feynman, Phys. Rev. 91,1291 (1953), hereafter called I. 
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(We have not yet found the answer to the third.*) It is 
to be understood, therefore, that we are aiming here 
to explain the properties of the liquid anly a t  extremely 
low temperatures. 

We take, as a model, helium atoms obeying the 
Schrodinger equation and the symmetrical Einstein- 
Bose statistics with forces between pairs similar to that 
worked out by Slater and Kirkwood,’ an attraction a t  
large distances and a strong repulsion a t  small.5 (It is 
sufficient for qualitative purposes, if one wishes, to 
imagine impenetrable spheres of radius about 2.7A 
packed into a space so the mean spacing (cube root of 
atomic volume) is about 3.6A. 

At absolute zero the system is in the ground state. 
Why this is not a solid has been explained by London.6 
The large zero-point motions of the atoms are capable 
of “melting” any ordered crystalline arrangement that 
may be temporarily set up. We begin by describing 
the wave function for this ground state. 

DESCRIPTION OF THE GROUND-STATE WAVE 
FUNCTION 

Wave functions can be described qualitatively in 
words by giving the amplitude for every configuration 
of the atoms. The ground state has a positive amplitude 
for any configuration since the lowest state has no 
nodes. The amplitude is negligible if any two atoms 
are so close together that they ove r l ap tha t  is, that a 
large negative potential has set in. Thus for any atom 
surrounded by neighbors, considered for a moment 
fixed, the amplitude falls to zero when the atom moves 
over to touch any of the neighbors and is probably 
bound in such a way that it is maximum when the 
atom is near the center of its “cage.” (This curvature 
makes a strong kinetic energy tending to blow apart 
the cage, an energy effect canceled by the long-range 
attraction of the atoms.) Compressing the atom into a 
smaller cage requires more kinetic energy, and expan- 
sion works against the attractive potential so there is 
some mean density of equilibrium. Fluctuations away 
from that mean density are of amplitude distributed 
in a Gaussian manner. For wavelengths exceeding the 
atomic spacing they are analogous to zero-point fluctu- 
ations of the vacuum electromagnetic field (but are 
wholly longitudinal, scalar waves, of course). 

There are a large number of configurations with 
densities near the most likely density, in all of which 
the atoms tend to keep separate from one another. 
They differ from one another mainly in the location of 
the atoms. The various configurations differ only in 
that one may be “stirred” into another with a little 
reshuffling or stirring of the atoms. We may take it 

* Note added in proof:-This problem has now been solved. I t s  
solution will appear in a forthcoming publication. 

J. C. Slater and J. G .  Kirkwood, Phys. Rev. 37, 682 (1931). 
6 For a detailed account of the pro erties of helium see W. H. 

Keeson, Helium (Elsevier Publishing Eompany, Inc., Amsterdam, 
1942). 

‘F. London, Nature 141, 643 (1938). 

that all configurations which have nearly the same 
type of density fiuctuations and which can be essentially 
just stirred from one to another have the same ampli- 
tude in the ground state. 

T H E  CHARACTER OF LOW-ENERGY STATES 

We must next determine the character of the low- 
energy states near the ground state. We aim to show 
that the only states which differ from the ground state 
by an infinitesimal energy are the phonons. 

First we can take it that the lowest states are those 
involving large numbers of atoms or large distances. 
Consider, for example, a tiny region of the liquid, say 
a cube 3 or 4 atomic spacings on a side. If the atoms 
in this region are confined in this region (so we have a 
submicroscopic sample of liquid He) the excitations 
above the ground state will all involve one node some- 
where among the configurations and hence a wave- 
length of order of a. This must mean an excess kinetic 
energy of the order h2/u2m, or a t  least of order E2/Ne27n, 
where N is the number of atoms and m is the mass of 
each-leaving an appreciable gap from the ground state. 

This argument fails if in the ground state there are two (or 
more) regions of configuration space in both of which the arnpli- 
tude is large and which are completely separated by a region oi 
very small amplitude. (Analogous to a particle in a potential 
with two wells separated by a barrier.) If the nodal surface i:. 
passed through the region of small amplitude (the barrier) very 
little change in energy results. But we have seen that the statch 
of large amplitude are just all those in which the atoms art’  
reasonably well separated. We can assume that we8 can g“ 
from one to any other without crossing any high potential barrier. 
We suppose all possible rearrangements may be achieved withaul 
the atoms coming too close together at any time, That this i‘ 
reasonable can be seen by comparing the size of the atoms to 
their spacing. For example, if a t  some point they are loc:lll!. 
roughly on a cubic close-packed lattice, the nearest neighbors :Lrc 
4.0A apart (corresponding to the observed atomic volume’ l i  

45Aa). The diameter of the atoms is 2.?A, the radius at d&+ 
Slater and Kirkwood’s potential passes from minus to plus. Thc 
cube edge of the lattice is 5.6A, so a face-centered atom c(ntl‘l 
even pass between those a t  the comers of the cube! Clearl!’, i i  
they are allowed to vary their mutual distances a little, all ki l l l l> 

of rearrangements can be made. It is likely that the coiiditiiJ(l 
that there be no. effective barrier between configurations I.* 
equivalent to the condition that the He I1 is liquid in  the l w r t  
state. We assume it valid for He 11. 

If we are to find extremely low-energy states we must 
therefore look to excitations involving large groups Of 

atoms or long wavelengths. One possibility is in t i le 

compression waves. Suppose the atoms are cornpressell 
to a small excess density over a large volume 2 n d  ‘‘ 
rarefaction left adjacently. The only way this fluctu- 
ation could even out is for a considerable number (d 
atoms to move, each a little bit. This involves, e5ec- 
tively, the motion of a large mass and can have lo” 
kinetic energy. There is, therefore, little doubt 
such compressional waves represent a true mode ‘’I 
excitation in the helium, and a mode of very low ener&?. 
If the speed of sound is called c and the wave number 
of the waves K ,  the frequency w=cK and 
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hcK can be as small as desired. Thus there is 
no reason why we should not expect the specific heat, 
“arying as T3, from these modes.7 

We have assumed that the way to release a density 
fluctuation in a given time which requires the least 
kinetic energy is to move many atoms a short distance. 
If only a fraction j of the atoms move, the velocity 
required is l/f times higher. This means a higher kinetic 
energy if the kinetic energy varies as the velocity 
squared. 

There are cases, however, in which the kinetic energy 
does not vary in this way. In a degenerate Fermi gas a 
single atom excited by a small excess momentum p 
above the Fermi surface of momentum PO has an energy 
( pf ) /2m or ( p ~ / m ) p .  This linear dependence 
of energy on momentum means that the group velocity 
of such waves is energy independent. It is po/m. The 
speed of sound calculated from the compressibility and 
density of the ideal gas is 3-ip0/m. The single atoms 
will run ahead of the sound. Fluctuations are reduced 
by a process more like diffusion than souqd. The specific 
heat near T=O varies as T instead of T3 because the 
density of states for exciting single R toms exceeds that 
for sound. As we shall see, for Bose helium there are 
no states, except phonons, whose energy approaches 
zero as their momentum approaches zero. The sound 
has no competitor capable of discbarging pressure.8 
LOW-ENERGY STATES DISREGARDING STATISTICS 

The Bose statistics play an essential part in the 
discussion of other possible states of very low-excitation 
energy. To make this role clear by contrast, we shall 
first analyze the situation, disregarding the statistics. 
More precisely we consider in this section an imaginary 
quantum liquid made of atoms which are, in principle, 
distinguishable (“Bolzman” statistics). The ground 
state for Bolzman statistics is the same as for Bose 
statistics, since the lowest state is, in either case, 
symmetrical. 

We must try to find modes of excitation involving 
long wavelengths which do not involve changes in 
mean density. The density fluctuation modes have 
already been considered. To simplify the argument 
consider first the following crude model. We consider a 
set of cells, each of which contains one atom. Each 
atom is free to wander in its cell and may occupy 
therefore some ground-state wave function, say constant 
amplitude in the cell. We are to consider states which 
can be made solely by rearranging the atoms among the 
cells. No two atoms may go into the same cell, for that 
corresponds to a density fluctuation, and we do not 
wish to consider those. 

The partition function discussed previously (reference 3) is 
extended to include a description of the phonons in the Appendix 
to this paper. 

* For an ideal Bose gas, as T 4 ,  the sound velocity approaches 
zero, so that the expected P specific heat does not appear. It is 
replaced by TI. Density fluctuations are much more restricted 

liquid helium than they are  in the ideal gas. This is the origin 
of many differences in behavior for the two cases. 
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In the ground state, the amplitude is the same for 
any rearrangement of the atoms among the cells. The 
lowest states can now be analyzed as follows. We 
neglect the statistics, that is, we assume Boltzmann 
statistics to apply. We can describe a wave function 
which corresponds to a very low excitation as follows: 
Pick out a certain atom, A ,  say. Put it in a given cell. 
Then all rearrangements of the other atoms among the 
other cells can be taken to have the same amplitude. 
If atom A is in a different cell, the amplitude may be 
different, but again independent of the arrangement of 
the other atoms. We thus can specify this wave function 
by giving just the amplitude for various positions of 
atom A .  The function is independent of the position 
of the others. We may take this as eXp(iK.&), where 
RA is the position of the center of the cell in which 
atom A is. We may, with enough accuracy, let R A  be 
just the position of atom A .  The K can be a long wave 
fitting into the volume V in which the helium is con- 
tained. The energy of this state is h2K2/2m’ where m’ 
is the effective mass needed to move atom A .  This 
energy can be very small, for K can be small. 

This effective mass is not far from the mass of one helium atom. 
I t  is discussed in a previous paper.’ We summarize the argument 
here. To push a single atom along, we need not go over any 
potential barriers. The other atoms may move out of the way. 
No matter where atom A is located the other atoms can arrange 
themselves into a state of minimum energy and this minimum 
energy is independent of the location of atom A .  However, as 
A moves, the others must readjust themselves into the state of 
minimum energy for the new position of A .  That is, in addition 
to the kinetic energy of A there is a kinetic energy of the other 
atoms which must move away to make room for A .  

Thus there would be low-lying states, of energy 
hK2/2m‘. The number of such states would be very 
large, for the wave function could depend in similar 
ways on the coordinates of other atoms also. [For 
example, we could choose two atoms A ,  B and have 
the wave function vary with their location as 
exp(iK1.RA) exp(iK2.Re) and be otherwise independ- 
ent of the distribution of the others in the cells, etc.] 
The large density of low-lying states would result in a 
large specific heat near absolute zero. 
LOW STATES WITH SYMMETRICAL STATISTICS 

However, if the atoms obey Bose statistics none of 
these states can exist. For in our model, whether atom 
A is a t  one location or another is merely an interchange 
of which atom is which. This cannot change the wave 
function. In  fact, for the model of one atom in a cell 
no excited state a t  all can exist for Bose particles 
without excitation of the atom within the cell. 

For the real liquid a similar situation holds-aside 
from the phonons, there can be no low-lying state. The 
wave function must have the property that any change, 
that just means an interchange among the atoms, must 
not alter the wave function. The excited state must 
be orthogonal to the ground state, of course. Starting 
a t  any configuration and supposing the amplitude is 
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the same as for the ground state, we must find a new 
configuration that represents a kind of stirring of the 
old configuration (to omit phonon states) such that the 
amplitude is now reversed in sign. It is clear that every 
configuration is close to the original one, albeit with 
some atoms interchanged. So it is hard to  find a con- 
figuration to give the minus amplitude which is suffici- 
ently far (in configuration space) from the original 
positive amplitude configuration to have a slow rate of 
decay and thus a low energy. 

There are some possibilities of this kind which might a t  first 
sight seem allowable. Consider among the atoms a set of adjacent 
ones forming a large ring. Suppose 1 atoms are in the ring and 
let us imagine the wave function is such that, if all move together 
half an atomic spacing a, the phase changes by 7r, so when they 
turn about another a/2 the phase changes by 27r, as required by 
the Bose statistics. (For a shift of a just changes each atom for 
the one behind.) The mass moving is m‘l, and the momentum is 
h/a (for the wavelength is a) so that the energy is 3(m’l)-l(h/a)Z. 
This may be made low by choosing I very large. (If it were not 
for the Bose statistics we could have taken the wavelength to 
be la and the energy would be even lower, varying as l / P . )  

The argument for calculating this energy is incorrect, however. 
By assuming that all the atoms must move together, degrees of 
freedom (in which parts of the ring turn by themselves) have been 
restricted. This tacitly adds a considerable energy by the uncer- 
tainty principle. 

To understand better the failure of the argument, consider by 
the same reasoning the case that one had two equal rings parallel 
to each other. We may argue as before that now the entire mass 
2m’Z moves together with momentum h/a and thus expect an 
energy +(2m’Z)-’(h/a)’ for the energy of the lowest state. But 
this is certainly wrong, for if we consider the rings as independent, 
the lowest state but one is surely that one for which one of the 
rings is excited and the other not (momentum 0), an energy 
+(m’l)-l(h/a)*, larger than our previous lowest estimate! The 
error for the hrst figure of +(2m’l)-’(h/a)* consisted in this. In 
describing the wave function, the possibility that the two rings 
could turn independently was omitted. To force the rings to 
move together would be to force the difference between their 
displacements to be fixed at  zero. Thus the momentum conjugate 
to t h i s  difference coordinate would be very high, and the energy 
associated with this coordinate very large. Thus the system does 
not have just the energy estimated but, in fact, a very much 
higher one. We have not completely specified the wave function. 
We have not said what the amplitude is to be for configurations 
in which only one of the rings moves. 

In an analogous way, the estimate of energy for the single ring, 
t(m’Z)-’(h/a)*, is incorrect. We have specified the amplitude for 
the case that all of the atoms are simultaneously in the mid 
positions. What is to be the amplitude if only a few move to 
mid positions? (This may be accomplished without doing violence 
to the potentials by using the atoms adjacent to the ring and by 
turning on smaller rings of 4 or 5 atoms.) If the motion (all to f 
position) can be made up of smaller parts moving in concert, and 
if these smaller parts could also have moved independently, the 
energy cannot be lower than that corresponding to just one of 
independent parts being excited. 

Since we may well imagine that any motion of the 
atoms could be made up of combinations of motions of 
small groups (say 3 or 4 revolving about each other) 
the lowest energy is the excitation of one of these small 
groups. These we can identify with Tisza’s excited 
molecules or Landau’s rotons (but see next paragraph). 
Any such small ring of r atoms must, of course, have 

its first state of excitation of angular momentum rh (or 
p =  A/e) because of the statistics. Landau’s arguments2 
that such angular momentum must have an excitation 
energy was made in a way that does not involve the 
statistics of the atoms. I t  is possibly equivalent to our 
argument that large rings need not be considered if 
their motion is analyzable in smaller parts. The central 
importance of the statistics would not seem to be here, 
but rather in the previous argument which shows that 
no states corresponding to the slow linear motion of a 
single atom are permitted. 

It is not obvious whether the lowest excited state, 
excluding the phonons, is actually a small ring of atoms 
turning. The arguments do not exclude the possibility 
that these are all higher than another type of mode; 
namely, the rapid motion of a single atom. In  our cell 
model a state which depends on atom A as expiK.RA 
with K a =  27r is, of course, possible. Another possibility 
is the analog of the excitation of a single atom in ;L 
cell. (This may be the same as the single atom motion.) 
All of these states differ from the ground state by 3. 

finite energy. But which is lowest is hard to determine. 
Any such excitation can, of course, move through the 

fluid. (In fact, the lowest state is that in which it has 
equal amplitude of being anywhere in the fluid.) That 
is, the wave function could vary asexp(iK.R), whereR 
is the location of the center of excitation. Then the 
energy of these excitations might have the form, 
suggested by Landau,? A S K 2 / & ,  where A is the energy 
needed to excite the ring or other excitation, and i t  is 
a sort of effective mass. 

Our primary purpose was to show that no states 
close to the ground state exist, exclusive of the phonons. 
We are not yet able to calculate the energy, nor to give 
a clear picture of the other modes of excitation. 

DESCRIPTION O F  SOME PROPERTIES OF THE LIQUID 

In concluding that only phonons exist a t  low temper- 
ature, we concur with the opinion of the phenomeno- 
logical theories. Therefore, a description of how wnle 
of the properties of helium arise, according to this 
model, will repeat much that has already been pointed 
out by others.’,* We limit ourselves, therefore, to 3 

very brief summary from a kinetic theory point of vie\!. 
First, consider the motion of an object, such as ;I 

small sphere through the liquid. If the object is sta- 
tionary a t  a fixed position R, the liquid may get into 3 

certain state which, omitting phonons for a moment. 
is like the ground state (except that  now part of the 
space occupied by the object is not available to the 
helium). Let the wave function of the helium be J / H .  
It is a function of all the helium atoms and depends, 
say parametrically, on R. If R is changed, $ is also. 
but the energy of the fluid is not changed. For, re- 
arranging the fluid to a new shape at the same densit>‘ 
does not alter the energy. Now if we alter the R from 
R1 to R 2  nearby, we will only need to add a little 
kinetic energy to push the helium atoms out of the 



330 

L I Q U I D  H e  

way. The overlap of + R ~  and + R ~  will be nearly perfect 
(except near the surface of the object which is a 
different volume of space in the two cases, R=R1 and 
x=Rz) .  The object can move therefore with an energy 
equal to just the kinetic energy of itself and the liquid 
,chich flows around it. The fluid will move so that the 

of the velocity is zero, because circulation corre- 
sponds to permutation of atoms, and the Bose statistics 
,vill not permit such motions, as we have seen.9 

What will be the losses of energy suffered by such an 
object? If it loses energy it can do so only by exciting 
the helium. First, can it excite the molecular excita- 
tions? These take a certain energy A to excite, but a 
,nassive object even moving very slowly may have 

energy. On the other hand, for such an object 
to change energy by A its momentum must change by 

enormous amount. To create an excitation of very 
high momentum may take much more energy than A. 
.IS Landau has shown: if the energy to excite a roton 
of momentum p is taken to be of the form A+$’/&, 
the laws of conservation of energy and momentum 
show that slowly moving objects [velocity less than 
(2pA)tl can produce no excitations. Likewise, objects 
moving at velocities below that of sound cannot lose 
energy by creating phonons. Therefore, a t  absolute 
zero and for not too high velocity, a moving object 
\rill suffer no viscous drag. 

At low temperatures, there are, however, some 
phonons already existing in the liquid. They can scatter 
off of the object (changing their energy by the Doppler 
effect) and in this way the object can lose a little energy. 
.4 phonon of energy hw carries momentum h / c  and 
hehaves very much like a particle of mass h / c 2  moving 
a t  velocity c. The phonons act in most respects like a 
gas of such particles, and the resistance suffered by our 
object is just like the viscosity that would be suffered 
by an object moving through such a gas. 

The actual calculation of this energy loss means a 
calculation of the viscous drag of such a gas. This 
requires a knowledge of the mean free path for collision 
among the phonons. The phonons scatter from one 
another because the medium is not linear. The speed of 
sound depends a little on the density. Therefore speak- 
ing classically, if a wave is present, another wave 
impinging finds the index of refraction varying sinus- 

gFor a liquid contained in a simply connected region, the 
circulation vanishes everywhere if i t  vanishes locally. But in a 
region of connectivity like the inside of a torus, although the 
curl is everywhere zero, the circulation around the ring may not 
be zero. Such a circulation cannot be compounded of smaller 
i?dependent units. Therefore, it should be possible to demonstrate 
circulatory motions in such a vessel which will maintain them- 
selves for a long time. Circulation may be created by rotating the 
vessel containing He I and cooling to the temperature desired 
below the X point. Stopping the rotating vessel should leave the 
h i o r  liquid with a nearly permanent angular momentum, 
Which could be demonstrated, for example, by its gyroscopic 
effects. The liquid must be completely confined with no free 
Surface because the exchange of atoms between the rotating 
liquid and the statiunary gas above it might cause a rapid damping 
of the angular momentum. 
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oidally and is thereby scattered. The same thing 
happens in the quantum mechanical system. 

The mean free path should rise rapidly as the temper- 
ature falls, because the density of phonons decreases 
(the scattering cross section also decreases). Interesting 
phenomena should result when this free path becomes 
comparable to the dimensions of the apparatus. 

If the viscosity is measured by connecting two 
vessels with a capillary, a different situation arises. The 
phonons cannot readily work their way through the 
long capillary, but the bulk liquid can move through it. 
There is work done on the phonons as the piston moves 
down in one of the vessels, again by the Doppler effect 
on the phonons bouncing off of the moving piston. 
But this work just goes into increasing the phonon 
energy-that is, the liquid in one vessel is heated, in 
the other cooled. If isothermal conditions are main- 
tained it goes as heat to the walls of the first container 
and from the walls of the second. No net work is done 
in this case and the viscosity appears to vanish. There 
is essentially no energy loss because there is no real 
viscous flow of our phonon “gas” through the capillary. 
The reason that, experimentally, resistance appears6 if 
the flow velocity exceeds a certain critical velocity is 
not clear. Perhaps in passing sharp protuberances in the 
capillary wall the velocity locally exceeds that needed 
to create excitations or new phonons. I t  cannot very 
well be a kind of turbulence because presumably the 
velocity field should be always free of circulation. 

In two volumes of liquid helium connected by a 
capillary, the hotter one will exert the higher pressure 
(fountain effect). The larger number and higher average 
momentum of phonons in the hotter region results, 
from wall bombardment, in a higher pressure there. 
The pressure can only be released slowly by phonons 
passing through the long capillary. This would be the 
mechanism of heat conductivity through capillaries. 
The rate of such conduction would depend on the 
relative size of the capillaries and the phonon mean 
free path. 

If temperature varies from one point to another in 
the bulk liquid, then the phonon density varies. What 
happens depends on the mean free path. If it is long 
compared to the distances over which the variations 
occur, the variations are almost immediately evened 
out by the difTusion of phonons rushing from one place 
to another (at the speed c). If the mean free path is 
shorter than the distances involved in the variation, no 
single photon can go directly from a high- to low-density 
region. Instead, a cooperative movement sets in. If we 
consider the analogy to a gas of phonon “particles,” a 
pressure variation is released by body motion-that is, 
by sound waves. The speed of this sound is 3-* times 
the individual particle velocities. In our case, this 
“second sound” representing waves of phonon density 
(i.e., temperature) should travel a t  a velocity 3-4c. At 
low temperatures it will be experimentally hard to keep 
the mean free path very small compared to the wave- 
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length, so that second sound would show appreciable 
damping and dispersion. At extremely low temperatures 
the free path may be larger than the apparatus. Then, 
if a pulse of heat at one point creates extra phonons, 
these will rush away at speed t so that temperature rise 
will begin a t  a distant point delayed only by the time 
required for first sound to traverse the apparatus.i0 

EFFECTS OF He* ATOMS AT LOW CONCENTMTIONS 

If a foreign atom, say an atom of He3, is in the liquid, 
our arguments indicate that it will move about essenti- 
ally as a free particle, albeit with an effective mass m” 
larger than its true mass. (This m” should be about one 
atomic mass unit less than the effective mass m’ of a 
He4 atom.) Such He3 atoms put into He4 a t  low concen- 
tration should behave as a perfect gas. Consider, as an 
example, a concentration of 0.1 percent. The mean 
spacing of the atoms is so large that the gas is not 
degenerate, except at a few hundredths of a degree. 
(The statistics can only be of importance if the atoms 
can permute. This occurs only if exp(-m”PKT/2h2) 
is not too small. Here, D is the mean spacing of the 
atoms, which is 36A in our example.) The specific heat 
contributed by the He3 is then k per atom. This can 
exceed the specific heat of the phonons (below 0.4’ in 
our example). A temperature pulse would then go 
mainly into increasing the energy of the He3 gas. The 
speed of sound in this gas is of the order of the He3 atom 
velocity, and therefore the observed second sound 
velocity should vary as (KT/m”)$ in this region.’O A 
more detailed analysis of the intermediate region in 
which both He3 and phonons contribute requires a 
study of the collision cross sections for phonon-phonon, 
phonon-He3, and He3-He3 collisions. Higher concentra- 
tions of He3 require a study of the degenerate Fermi 
gas. The entire analysis of this paper fails to apply to 
pure He3, because the ground state from which we 
begin is different. 

An atom of HeJ should show an appreciably higher 
free energy when dissolved in He4, than if that atom is 
replaced by He4. This is because, as discussed in a 
previous paper: for pure He4 the partition function is 
the sum on all trajectories which start a t  some con- 
figuration of the atoms zi  and return to m y  permu- 
tation of the original configuration Pzi. With a He3 
atom at z1 say (and no others nearby), the final 
configuration is limited to only those permutations for 
which this atom returns to zl. We can estimate the 
effect as follows: Neglect the mass difTerence of He3 
and He4. Consider the nondiagonal matrix element 
(z’Ie-flH[z) in which the final state diEers from the 
initial state only in that the atom z1 is moved to another 
site 2‘1. All the other atoms may go to some permutation 
of the original positions. From what we have said in I, 
this should depend upon el and z ’ ~  approximateiy 

I am indebted to F. G. Brickwedde for calling my attention 
to this phenomenon. 

through a factor (a= l/KT), 

(m‘/2?rBh2) + exp[- m‘ (zl - ~ ’ ~ ) * / 2 8 h 2 ] ,  (1) 
since the atom acts essentially as a free particle of mass 
m’. To get the partition function if the atom 1 is He4, 
we must sum this over all possible sites z‘~.  At low 
temperatures, where the difhsion distance ( 2 ~ h 2 / ~ ’ ) t  
exceeds the atomic spacing d= ( V A ) ~ ,  this is approxi- 
mately the integral of (1) over all z ’ ~  divided by V A ,  
the atomic volume. This gives V A - ~  for He4. For He3, 
z‘1 must coincide with ZI so (1) gives (rn1/2~ph2)!.  
The ratio of the partition function for He4 to that in 
which a He4 atom is replaced by He3 is therefore 
( r n ’ k T / 2 ~ h ~ ) - 4 V ~ - ~  (at low concentration). The extra 
free energy per atom of He3 is therefore (3/2)kT ln(2&/ 
m”kTV~4) a t  low temperatures. (Since He3 is lighter 
than He4, m’ is repIaced by m”.)I1 

DISCUSSION 

A number of problems are suggested by this work. 
First, a detailed quantitative analysis of all of thc 

properties of liquid He4 below OS’K should be under- 
taken with the confidence that the problem is relatively 
simple. Only the phonons should be involved. Their 
wavelengths are long compared to atomic dimensions, 
and we have to do essentially with a continuous 
medium. The statistical mechanical aspects are con- 
sidered in the appendix. The mean free path for phonon 
collisions could be computed if the nonlinearity of the 
medium is included. Work in this direction has been 
done by Landau and Khalatnikov.’2 An extension coultl 
be made to include the effects of small concentrations 
of He3. 

A more diflicult class of problem, and one which we 
have left completely untouched, is the answer to 
question (c) of the introduction. Namely, what is thc 
detailed nature of the excitations involved a t  the higher 
temperatures of 1 to 2.2”K? Most of the experimental 
work has been done in this region. The atomic view- 
point cannot claim a real understanding of the situation 
in liquid He II until this problem is solved. (See note 
added in proof.)* 

There is a third group of problems which has ’10‘ 

been touched upon. They involve the question, 

(d) What is the mechanism of the Rollin film? 
This seems to be a problem of the very low-temperatufc 
behavior and should properly have been discussed I n  

this paper. A suggestion of Bijl, de Boer, and Michelsi3 
involves the idea that the energy of a layer of the 

l1 To the effect considered in the text, there must be added the 
large free-energy difference a t  absolute zero, which arises from the 
difference in zero-point energy occasioned by the difference ’” 
atomic mass. In first approximation, the wave function is unaltered 
but the kinetic energy, - (h*/2m)P,  is higher, for m is 3 inste3? 
of 4. This difference is, therefore, close to t of the mean kinetic 
energy, per He4 atom, in the ground state. 

Physlk (U.S.S.R.) 19, 637, 709 (1949). 
“4.  D. Landau and I. M. Khalatnikov, J. E d .  Theoret‘ 

la Bijl, de Boer, and Michels, Fhysica 8, 655 (1941). 
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liquid depends strongly on the thickness of the layer, 
decreasing for thicker layers, even up to 100 atoms 
thick. If this view is correct, we should look for the 
answer by studying the energy of the ground state, to 
see if it is dependent on the shape of the container. 
It is possible that such a dependence exists, even for 
thick layers, because of the very long permutation 
rings involved a t  low temperatures in the condensed 
phase. These rings are long enough to wander over the 
entire volume of the liquid, so that the energy may be 
sensitive to the shape. We have not yet been able to 
verify quantitatively the correctness of this idea. 

Finally, the problem of critical flow velocities, and 
the resistance to high-speed motions, remains unsolved. 

The analysis of pure liquid He3 requires a new start 
because our physical arguments so far have depended 
SO strongly on the Bose statistics. 

The author has profited from conversations with 
E. Wigner, H. A. Bethe, andR.  F. Christy. 

APPENDIX 

In a previous paper: I, an approximate partition 
function was proposed for liquid helium. Without 
modification it will not describe the phonon states 
correctly. The necessary modifications are discussed 
here. 

In I, it was noted that the partition function of 
helium is the integral over all configurations zi of the 
quantity 

1 1  +c V(xi-xj) Idu\WXi(u), (2) 
i j  J I  

using the notation of that paper [I, Eq. (S)]. The 
integral Jtrp is taken over all trajectories xi(.) of the 
atoms which start from the positions xi(0) = zi and end 
up at some permutation xi(@) = Pzi of zi. The sum is 
taken on all permutations P. I t  was pointed out that 
if a configuration zi contained atoms nearly overlapping, 
or in some other unfavorable arrangement, the im- 
portant trajectories xi(.) would almost immediately 
move to release the energy of the unfavorable arrange- 
ment (for example, overlapping atoms would spring 
apart). The time for this was generally much less than 
p. Thus the various configurations could be given a 
weight p(zl, z2- .  . z , ~ , ~ ) = p ( z ~ ) .  The slower motions of 
atomic diffusion contributed an additional exponential 
factor, so an approximate expression [I Eq. ( 7 ) ] ,  

?r@ h2 
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was proposed. The factor p was to be (for low tempera- 
tures, large @) nearly independent of @, as it represents 
the effect of rapid local motions. I t  is + ( z ~ ) ~ ,  where 4 
is the ground-state wave function. 

On the other hand, it was remarked (footnote 11 of I) 
that general variations in density over large distances 
would not be so rapidly released. We now consider in 
detail the effect of these compressional waves. 

To a sound wave of wave number K, and frequency 
w=cK, where c is the speed of sound, correspond 
phonons of energy hw. A density fluctuation of this 
wavelength X=2?rK-’ would take a time 7 of order 
l/h to decay (calling u “time” as in I). This time 
will exceed 8, for wavelengths A> 2?rhc/kT= 2 ~ .  17A/ 
7°K. Since this distance exceeds the atomic spacing 
3.6A and thediffusion distance (20h2/m)+= 4.8A/(TQK)t, 
there is clear separation of these waves from local 
atomic motions. Therefore, an expression like (3) is 
correct locally, for a density fluctuation over a small 
region is rapidly released so that its effect can be 
contained in p (by having p smaller for such fluctu- 
ations). But a fluctuation over long distances will not 
even out in a time fi  and is not correctly described in (3). 

Choose a length 1/Ko exceeding the atomic spacing, 
but below the wavelength of sound excited a t  the given 
temperature (hcK&>>l). For distances inside l/Ko no 
new considerations are necessary, and ( 3 )  is locally 
correct. For long distances it must be altered. Let 
n(R)  be the average number density a t  R in the 
configuration z,-the average being taken over a region 
of volume 1/K&. We shall determine how the proba- 
bility of this configuration depends on n(R) [the result 
is (9) below]. 

We may describe the motions xi(u) as local atomic 
movements (within distances KO-’) and general drift 
motions of the center of gravity of the atoms in a 
volume Ko4. It is convenient to describe the initial 
density distribution by imagining that it arose from an 
initially uniform distribution of density no by a dis- 
placement. If the atoms originally a t  R were displaced 
by Do(R), the density is n(R)=nO(I+V.Do), where 
no= VA-I is the density averaged over the entire fluid. 
As the trajectories in (2) move, there is a general drift 
which we will describe by giving the displacement 
D(R, u) as a function of u. What is the energy associ- 
ated with this drift? First, to the kinetic energy of the 
atoms due to local motion there is an extra contribution 
from the general drift (m/2V~)(dD/du)~ per unit 
volume. Further, suppose a region temporarily has an 
extra high local density. This will limit the path-space 
volume available (and also change the average mutual 
potential energies). Therefore there will be an extra 
factor accumulated in each little interval of time. This 
we can write as a factor cEdudV for the volume dV in 
time du. This E (the energy resulting from the com- 
pression) depends just on the density, hence on V.D. 
We expand it in powers of V.D. The constant term 
may be omitted by changing the zero from which we 
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measure energy. The linear term gives nothing for its 
integral over all the liquid vanishes J V -  DdV=O from 
the conservation of mass. The quadratic term is 
written conveniently as (1/2)?7x2V,4'-'(V* D)2, for c 
defined this way becomes the speed of sound. Higher- 
order terms produce phonon-phonon scattering, but we 
neglect them here. Thus, in addition to the features 
which go to make up (3 )  locally, there is a factor 
controlling the large scale motions, 

4-&r.r((3 
+h2c2(V.D)2 dVdu DD(R, u), (4) 

where the D are to be summed over all displacement 
fields such thati4 D(R, 0)= Do= D(R, a), with 

> I  
V . Do= VMZ (R) - 1. 

This is best analyzed in momentum space. We put 
,. 

D(R, u)= j A(K, u) e~p(iKeR)d~K(2n)-~.  

The A field can be separated into transverse components 
A, and A2 and a longitudinal component B= A .  K/K. 
Thus 

V . D =  K B ( K ,  ~)~-d3K(2~)-3, (5) s 
and (4) becomes 

exp[ -"J'J[ (BR)'+h2c2K2B2+ (-) aA, 2 

2 V ~ h '  au au 

The transverse displacements act as free particle 
motions, for there is no restoring force. They contribute 
a factor (m/2roh)i per mode. This is already contained 
in (3 )  (but with m' for m, which makes little difference 
for the small fraction V a O 3  of modes involved). We 
need not count them again in (6). 

For each longitudinal mode, we must integrate an 
expression of the form 

where 6 is the K-space volume per mode for all B(u)  
which begin and end a t  Bo. This may be easily done by 
a method explained in another connection by the 

l4 In principle the final displacements could differ from the 
initial by an atomic spacing d (because atoms may be permuted). 
But the actual displacements permitted by (4) are very much 
smaller than d, so that the only important term from (4) is that 
for which the configuration is restored atom by atom. 

author.*6 There results (w=cK), 

/ m6w /wBh\ 1 

The complete partition function is the integral (2) 
over ail initial configurations. We therefore integrate 
(7) over Bo to get the contribution from this mode. 
The integral yields 
[2 sinh(w0h) tanh(fwph)r f=  [2 sinh(3wph)P 

the usual partition function from such a mode. All the 
modes together contribute 

exp[ -s ln[2 sinh(f~opA)]d~K(2a)-~V , (8) 

the integral extending over all modes of wave number 
less than KO. This factor in the partition function gives 
the usual Debye specific heat, varying as T3 as long as 
our temperatures are, as we have assumed, small enough 
that Kochp>>l. 

Multiplication of the factors (7) for all modes tells 
us that density fluctuations have a probability propor- 
tional to 

= exp (- +wBh)[ 1 - exp (- wph)]-1, 

I 

where KBo is the Fourier transform of the density 
fluctuation [from ( 9 1 ,  

K B ~  ( K) = v,, J (. (R) -no) e i ~ w ~ .  (10) 

Since, for large wph, tanh(;wph) is nearly 1, the density 
fluctuations of short wavelength are independent of 
the temperature. For these the factor (9) could just as 
well be combined with the temperature independent 
factor p to make a new effective p. This shows that 
the results do not depend on the exact choice of KO. 
For long waves tanh($wph) falls below 1 and wider 
fluctuations are permitted than would be expected from 
(3). A more accurate representation of (2) is then ( 3 )  
with p containing general variations in density, these 
variations being weighed by multiplying by the factor 
(9), normalized. A factor ( r n ' / 2 ~ p p h ~ ) ~ / ~  should be 
replaced by (8). 

The purpose of this appendix is just to note that (3)  
does not automatically contain the phonon effects, but 
must be modified to include them. The study of such 
questions as the nature of higher-energy excitations 
and the character of the transition can presumably be 
made using ( 3 )  without modification. It is convenient 
that the sound wavelengths are so long that a nearly 
complete separation can be made of the local behavior 
and the behavior of the overlying compressional waves. 

lsR.  P: ,Feynman,, Phys. Rev. 84, 108 (1951) Appendix c. 
The explicit answer is given in R. P. Feynman, Revs. Modern 
P b s .  20, 367 (1948) on page 386, by substituting y=O, q j = @  
=Bo, h= -iV.4hz/m6, w = w h .  T=& 
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Atomic Theory of the Two-Fluid Model of Liquid Helium 
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It is argued that the wave function representing an excitation in liquid helium should be nearly of the form 
Z;f(r;)+, where + is the ground-state wave function, f(r) is some function of position, and the sum is taken 
over each atom i .  In the variational principle this trial function minimizes the energy if f(r)=exp(ik.r), 
the energy value being E(k)=h*k*/ZmS(k), where S ( k )  is the structure factor of the liquid for neutron 
scattering. For small k, E rises linearly (phonons). For larger k, S ( k )  has a maximum which makes a ring 
in the diffraction pattern and a minimum in the E ( k )  vs k curve. Near the minimum, E(k)  behaves as 
A+hx(k-~~)'/2p, which form Landau found agrees with the data on specific heat. The theoretical value 
of A is twice too high, however, indicating need of a better trial function. 

Excitations near the minimum are shown to behave in all essential ways like the rotons postulated by 
Landau. The thermodynamic and hydrodynamic equations of the two-fluid model are discussed from this 
view. The view is not adequate to deal with the details of the X transition and with problems of critical 
flow velocity. 

In  a dilute solution of He3 atoms in He4, the He3 should move essentially as free particles but of higher 
effective mass. This mass is calculated, in an appendix, to be about six atomic mass units. 

N a previous paper,' 11, a physical argument was I given to interpret the fact that the excitations which 
constitute the normal fluid in the two-fluid theory of 
liquid helium were of two kinds. Those of lowest energy 
are longitudinal phonons. The main result of that paper 
was to give the physical reason for the fact that there 
can be no other excitations of low energy. It was shown 
that any others must have at least a minimum energy 
A. No quantitative argument was given to obtain this 
A nor to get an idea of the type of motion that such an 
excitation represents. I n  this paper we expect to deter- 
mine A and the character of the excitations. 

The physical arguments of I1 are carried a step 
further here to show that the wave function must be 
of a certain form. The form contains a function whose 
exact character is difficult to establish by intuitive 
arguments. However, the function can be determined, 
instead, from the variational principle as that function 
which minimizes the energy integral. 

THE WAVE FUNCTION FOR EXCITED STATES 

In  I1 the exact character of the lowest excitation was 
not determined, but various possibilities were suggested. 
One is the rotation of a small ring of atoms. A second 
is the excitation of an atom in the local cage formed 
around it by its neighbors. Still a third is analogous to  
the motion of a single atom, with wave number K about 
2?r/u, where a is the atomic spacing, the other atoms 

FIG. 1. Typical configuration 
of the atoms. If an excitation 
represents rotation of a ring of 
atoms such as the six in heavy 
outline the wave function must 
be plus if they are in the (I posi- 
tions and minus if they are 

0 
0 
0 
0 ;2nfn:o the intermediate j3 0 

* R. P. Feynman, Phys. Rev. 91, 1291, 1301 (1953), hereafter 
called I, 11, respectively. 

moving about to get out of the way in front and to close 
in behind. I t  is not clear that they are really distinct 
possibilities, for they might be merely different ways of 
describing roughly the same thing. 

We shall now try to find the form of the wave func- 
tion which we would expect under the assumption that 
one or another of these possibilities is correct. I t  will 
turn out that all of the alternatives suggest the same 
wave function, a t  least to within a function f(r), of 
position r, which is determined only vaguely. 

First, suppose that the excitation is the rotation of a 
small ring of atoms. The number of atoms in the ring 
is determined, according to 11, by the condition that it  
is the smallest ring that can be considered to be able 
to turn easily as an independent unit in view of the 
interatomic forces. For illustrative purposes we suppose 
this means that there are six atoms in the ring. 

We can describe the wave function for this excitation 
by giving the amplitude associated with every configura- 
tion of the atoms. Suppose Fig. 1 represents a typical 
configuration, the six atoms of the ring in question (say 
ring A )  being indicated by heavy outline. We discuss 
how the amplitude changes as we rotate this ring, 
leaving the other atoms out of account for a moment. 
Suppose the wave function is positive, say +1, if the 
atoms are in the position shown by the full circles 
Fig. 1, which we arbitrarily call the a position. Suppose 
all the six atoms move around together, and let the 
ring turn about 60". The atoms then appear again in a 
position, although which is which has been changedl 
so the wave function, by the Bose statistics, is still 
On the other hand, for a 30" rotation, if the atoms are 
located as indicated in the figure by dotted circles 
(/3 position), the wave function will change to -1 for 
the first excited state. We need only discuss the rea' 
part of the wave function-the imaginary part, if any? 
can be dealt with in a similar way. (Actually since 've 
deal with an eigenstate of the energy, the real part Of 

262 
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the wave function is a n  eigenfunction also.) For orienta- 
tions intermediate between a, p the function is corre- 
spondingly intermediate between fl and -1, but to 
simplify the remarks we describe it for just the con- 
figurations a, @. The wave function for excitation of this 
ring we call $ A .  It is + 1 if the A ring is at a, and - 1 if 
at p, and does not depend on how other rings of atoms 
are oriented. We can describe this wave function as 
follows. Consider a function of position r in space, 

(r) which is + 1/6 if r is at one of the six positions of 
the centers of the atoms for the a position of ring A ,  is 
-116 if it  is a t  a @ position, and is zero if r is at any 
other place in the liquid far from the A ring. Then 
consider the quantity CifA(r;) where the sum is taken 
Over all the atoms, i, in the liquid. For a configuration 
of the liquid for which there are atoms a t  the six a 
positions the quantity is +1, while if six atoms are at 
p position, it is -1. This suggests that we can write 

Actually this is incomplete because it does not 
correctly describe what happens if atoms in other parts 
of the liquid move. If ring A is in the a position, we 
wish the complete wave function to be + 1 as far as this 
is concerned, but to drop to zero if two atoms overlap 
in other parts of the liquid, etc., just as for the ground 
state. That is, we expect (disregarding normalization) 

$a = CffA (Ti). 

where 4 is the ground-state wave function, a function 
of all the coordinates. This takes care of another matter 
also. What happens if some atoms are on a and some 
on p? This should be of very small amplitude because 
we do not wish the atoms to overlap on account of the 
repulsions. This is not correctly described by Cif~  (Ii), 
but the 4 factor does guarantee such a behavior. I t  is 
small for such overlaps. Of course, if the ring contained 
many atoms it could readjust just a little and the 4 
would not prevent, for example, all those near one side 
of the ring being a, and those on the opposite side of the 
ring being @. We are not guaranteed that (1) will de- 
scribe well the amplitude for such a configuration. In  
fact, it wouldn’t be expected that a function of just one 
variable could describe the motion of several atoms. 
However, by the arguments of I1 the ring is supposed 
to be small, in fact, so small that one part of the ring 
cannot move independently of the rest. The ring is so 
small that if one atom is a t  a, there cannot be a large 
amplitude for finding atoms a t  fl because of the inter- 
atomic repulsions. This is represented in (1) by the 
factor 4 which falls if two atoms approach (see I1 for a 
full description of the properties of 4). 

Not knowing the exact size and shape of the ring we 
cannot say what the exact function fA(r) should be. 
But a t  least we conclude in this case the excited-state 
wave function is of the form 

where f(r) is some function of position. 

We might try to improve (1) by noting that, of 
course, the energy should be essentially the same if the 
excited ring were somewhere else in the liquid, say a t  B. 
The function 

+B= L f s  (ri)+ (3) 
would describe this if fB(r) is +1/6 for r a t  some one 
of the six a positions of some other ring B, and -1/6 
for intermediate @ positions, and zero elsewhere. Or we 
could locate the ring at still another position, etc. 
Any one atom might be thought of as belonging to more 
than one ring. This produces a kind of interaction be- 
tween adjacent rings. Because of this interaction, a 
better wave function than (1) might be some linear 
combination of thesepossibilities, sayca$A+c~$~+.  . . . 
But we can still conclude that the form of the wave 
function is given by (2), but now, with the function 
f(r)=CAfA(r)+c8fB(r)+. . ., for any linear combina- 
tion of functions of the form (2) is still of this form. 

If the lowest excited state which we seek were some- 
thing like the excitation of a single atom in a cage 
formed from its neighbors we would guess the wave 
function to be of the form (2) also. Because there 
would be a nodal plane across the cage, and we would 
take f(r) to be positive if r is in the cage on one side of 
the plane, and negative if on the other, and to fall off 
to zero if r goes outside the cage. We do not care which 
atom is in the cage so the sum on i is taken over all 
atoms. Those which are outside the cage contribute 
nothing to the sum, because f(r) is zero there. Further, 
there is no appreciable amplitude for there being more 
than one atom in the cage, because of the action of the 
factor 4 which is very small if the atoms penetrate each 
other’s mutual potential. The 4 also takes care of the 
fact that the atoms in remote parts of the liquid behave 
independently of what the excited atom is doing, and 
act just as in the ground state. Further, linear combina- 
tions, representing the alternatives that the excited cage 
may be located at different places in the liquid, are 
still of the form (2). 

The third possibility was only crudely described in 11. 
I t  was noted that if the atoms were considered as 
roughly confined to cells, then a wave function repre- 
senting the motion of an atom A could be exp(ik-rA), 
where rA is the position of A ,  and it is assumed that as 
A moves about, the other atoms move around to make 
way for it so that the density is maintained roughly 
uniform. This would correspond in the liquid to a wave 
function 

exp(ik. r&, (4) 

where 4 is the ground-state wave functions of all the 
atoms including A .  The factor 4 does the equivalent of 
keeping the atoms in cells so that the density is nearly 
uniform no matter where r A  is. For small k this is a 
possibility only if atom A is different from the others 
and does not obey the Bose statistics. If the symmetry 
is taken into account then we must replace this by 
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the symmetrical sum 

xi exp(ikarJ4. (5)  
If $I had no large scale density fluctuations this would 
be no wave function at all, because there would be 
just as many atoms in the region where exp(ik.r) is 
positive as where it is negative and the sum cancels out? 
This is in concert with the idea that the wave function 
cannot depend on where atom A is on a large scale. For 
if A moves a long distance and the others readjust to 
keep the density uniform, on a large scale (the scale 
l /k  for small k ) ,  the result is just equivalent to the 
interchange of atoms and the wave function cannot 
change as a consequence of the Bose symmetry. On the 
other hand, if while the atom moves from one position 
to that of its neighbor the wave function changes sign 
and returns, then (5) may be allowed. That  is, some- 
thing like (5) with k of order 2r/a may be a possibility. 
This again is of the form (2), but with f(r)=exp(ik-r). 
The argument just given for this alternative is ad- 
mittedly not as complete as for the others, mainly 
because the original idea of what the state is, was 
based on such a crude model of atoms in cells. Insofar 
as the idea can be carried over to the case of the true 
liquid perhaps we can say the form (S), or (2) will 
represent it. 

Since all the examples have led to the same form, we 
might expect that a more general argument could be 
made for the validity of (2). This is, in fact, possible 
starting from the general argument given in I1 to show 
why the excited states, other than phonons, can be 
expected to have an excitation. It was pointed out 
there that the excited-state function fi must be orthog- 
onal to the ground state. For some configuration, say 
a, of the atoms it acquires its maximum positive value. 
Then it will be negative for some other, say 8, which 
represents some stirring from the a conjiguration with- 
out change of large scale density (to avoid phonon 
states). But stirring reproduces a configuration nearly 
like a although with some atoms interchanged. Thus it 
is hard to get the configuration p to be very far (in con- 
figuration space) from a to keep the gradient of # small 
in going from a to p. 

.- tions must be as far as possible 
from a positions, therefore. 

*We shall see later that (5), for small k, is actually a satis- 
factory wave function because + does have the long wave density 
variations of the zero point motion of the sound field. We are 
trying to get excited states orthogonal to phonon states, and (5) 
for small k is not orthogonal. I t  is, in fact, just the wave function 
for such a phonon state. This is discussed later. 

The lowest state would have the @ codguration as 
far as  possible from a. This means that in p as many 
atoms as possible are moved from sites (call them a 
positions) occupied by atoms in a. Hence B must be a 
configuration in which the atoms occupy sites ( p  
positions) which are placed as well as possible between 
the a positions. (See Fig. 2.) I n  all these configurations, 
of course, the gross density must be kept uniform and 
the atoms should be kept from overlapping, to avoid 
high potential energy terms. If all atoms are on 
positions # is maximum positive, and if all on 8, maxi- 
mum negative. The transition is made as smoothly as 
possible, and the kinetic energy thereby kept down, if 
for other configurations the amplitude is taken to be 
just the number of atoms on a positions minus the 
number on /3 positions. The number is just Cif(ri) 
where f(r) is a function which is +1 if r is at an a 
position, and - 1 if a t  a /3 position (and varies smoothly 
in between these limits as r moves about). It is of course 
a modulation to be taken on 6, because we wish to give 
small amplitude to configurations in which atoms over- 
lap, etc., just as in the ground state. We are led, there- 
fore, to (2). We can add the information that f(r) must 
vary rapidly from plus to minus in distances of half an 
atomic spacing. That  is, we expect that j ( r )  will consist 
predominently of Fourier components of wave number 
k of absolute magnitude k = 2 ~ / a .  

In  the above argument it is not self-evident that 
in going from the con6guration of all atoms at a posi- 
tions to that of all a t  /3, the amplitude must be just 
linear in the number on a, N, minus the number of 
p, N p  Perhaps some other smooth function of this 
number, like sin[?r(N,-Np)/2N] might be better. 
However, for the majority of possible configurations 
N ,  and Np are nearly equal; in fact, for almost all, 
(N,-Np)/N is of order &N-h. For such a small range 
of the variable, the function, whatever it is, ought to 
behave nearly linearly. If the wave function (2) is 
wrong for a very few special configurations it will not 
be important as we shill determine the energies by the 
variational method, and the special configurations will 
contribute only a small amount to the integrals because 
of their small share of the volume in configuration space. 

THE EXCITATION ENERGY 

We have concluded that a function of the form (2) 
should be a good approximation to the wave function 
of the excited state." The function f(r) is known only 
imperfectly, however. We shall determine this function 
f(r) by  using the variational principle. The H a d -  
tonian of the system is 

H=-(h /  2rn)CiVi+V-Eo, (6)  
*a Wave functions of this form have been proposed before, for 

example by A. F j l ,  Phy,sica 7,869 (1940). However, an argument 
establishing their validity for large k has been lacking, and." 
has not been clear that functions of other forms might not Pvc 
much lower states. 
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where V is the potential energy of the system, and we 
measure energies above the ground-state energy Eo, 
Eo is subtracted in (6). Therefore the ground-state 

wave function satisfies 

If we write 
H+=O. (7) 

$= F4, (8) 

where F is a function of all the coordinates, then we 
can verify, using (7), that 

H$ = H (F4) = - (h2/2m)Ci (4T;F 
+2V,$. ViF) = e l (  -hZ/2m)CiVi. ( ~ N V ~ F ) ,  (9) 

where pN(rN) =42 is the density function for the ground 
state, that is, the probability of finding the configura- 
tion rN (we use rN to denote the set of coordinates ri 
of all the atoms, and J. * .dNr to represent the integral 
Over all of them). 

The energy values come from minimizing the integral, 
(note 4 is real) 

&= +*H$dNr 

= (h2/2m)xi J(ViF*). (ViF)pNdNr, (10) 

s 
subject to the condition that the normalization integral, 

n n 

is fixed, The energy is then E = & / S .  
In these expressions we must substitute 

Consider the normalization integral first. I t  is 

n 

S=CiC j f*(rj)f(ri)pivdNr. J 
For a fixed i and j we can integrate first over all of the 
other atomic coordinates. This integral on p N  gives the 
probability for finding the i th  atom a t  ri and the j t h  
at rj; therefore 

9= Sf(rl)f(rSp.(rl,r2)d"rldar2, (13) 

where pz is the probability of finding an atom a t  rl per 
cmS, and a t  r2 per cm3. These density functions can 
be defined in general by 

Pk(r:,ri.. . r i ) = C i x j * * - x n  Ja(ri-r:) 

XG(rj-rz') a .6(r,-rk')pN(rN)dNr. (14) 

For example, pl(r) is simply the chance of finding an 
atom a t  rl', for the liquid in the ground state. This is in- 
dependent of r and is the number density pa in the 
ground state. I n  the same way pZ(r1,rz) can be written 
as pop(rl-r2) where p is the probability of finding a n  
atom a t  r2 per unit volume if one is known to be a t  rl. 
Except near the liquid surface it is a function of only 
the distance from rl to r2, so (13) is 

g = p o  f"(rl)f(rz)P(r~-rz)d3rld3rZ. (15) S 
The energy integral (lo), with the substitution (12) 
becomes 

E= ( ~ / 2 m ) ~ i  JV;f*(r;). vif(r;)pNdNr. 

The integral of P N  over all atomic coordinates except ri 
gives a result involving only pl(ri)=po. Therefore we 
have simply 

~ = p o ( ~ / 2 m ) J ~ ? ( r ) .  ~f(r)dar .  (16) 

The best choice of f i s  that which minimizes the ratio 
of (16) to (15). The variation with respect to f* gives 
the equation 

where the energy E is &/g. This has the solution 

f(r) = expi (k . r), (17) 

E (k) = h2k2/2mS(k), (18) 

with the energy value 

where S(k) is the Fourier transform of the correlation 
function, 

S(k)= Jp(r) exp(ik.r)d3r. (19) 

It is a function only of k, the magnitude of k. 
I t  is readily verified that the solution is orthogonal 

to the ground state if we exclude k=O. In fact, the 
solutions for different values of k are orthogonal to each 
other. This is because they all belong to different eigen- 
values, hk, of the total momentum operator 

P= (h/i)XiVi, 

as is directly verified from (2) with (17), taking P$=O 
since the ground state has zero total m o r n e n t ~ m . ~  Since 

a The argument is not rigorous because the momentum of the 
entire liquid can be changed without appreciable energy change 
by moving the center of ravity This multiplies the wave function 
by a factor like exp(-i5ikN-'.&ri). This function is so different 
from (2), however, that the orthogonality is probably not 
destroyed. 
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this operator commutes with the Hamiltonian, we have 
in (18) an upper limit to the energy for each value of k .  
(In fact, we could have obtained (17) from (2) by  this 
argument.) Since we expect that (2) is a good wave 
function for functions which vary from plus to minus 
in a distance of order a/2,  we expect that (18) is not 
only an upper limit, but also a good estimate of the 
energy in a range of k’s in the neighborhood of k =  2?r/a. 
In  fact, our arguments suggest that  E(k)  should have a 
minimum as a function of k in that region. These ex- 
pectations are verified in the next section. 

DISCUSSION OF THE ENERGY SPECTRUM 
To find the consequences of (18) we shall have to 

discuss the behavior of S ( k )  defined in (19). 
The function p(rl-rp) gives the probability per unit 

volume that a particle is a t  r2 if one is known to be at rl. 
If r2 is close to rl it is zero, for the atoms cannot overlap. 
On the other hand, if r2 coincides with rl there is an 
atom there, so p contains a delta function 6(rl-r2). 
For large r2 it approaches po. Since the structure of the 
liquid ought to be more or less like that in a classical 
fluid, as r increases from zero, p ( r )  probably rises to a 
maximum a t  the nearest neighbor spacing, falls, then 
rises again to a lower and wider maximum for next 
nearest, and with rapidly decreasing smaller oscillations 
approaches unity? The integral J @(r)- l)d3r vanishes 
since the integral of p2(rl,r2) with respect to r2 is exactly 
p1 times the number of atoms N=poTr. 

The Fourier transform function S ( k )  is just the liquid 
structure factor which determines the scattering of 
neutrons (or x-rays, after multiplication by the atomic 
structure factor) by the liquid at absolute zero. It is 
therefore a quantity which can be directly determined 
experimentally. For large k it approaches 1 because of 
the delta function in p(r). It has a delta function a t  
k=O, but this value of k is not of interest to us in (18), 
because the wave function + must be orthogonal to  the 
ground state. The behavior a t  small k depends on the 
variations of p ( r )  over long distances, that is, on long 
wavelength density fluctuations. These are the zero 
point fluctuations of the sound field in the ground state, 
since for wavelengths longer than the atomic spacing 
the approximation of a continuous sound field is good. 
This may be analyzed as follows. The operator repre- 
senting the density a t  a point r is 

p (r) = C (r - ri). (20) 
Its Fourier transform is 

qk= rp(r) exp(ik.r)djr=Ci exp(ik.ri). (21) 
J 

Evidently, the S(k) is the expected value of IqkIz in 
the ground state. For long wave sound qk is just the 
coordinate of the normal mode, so its mean square can 

4 J. Reekie and T. S. Hutchison, Phys. Rev. 92,827 (1953), have 
determined $(r) by x-ray scattering. 

be easily determined, for example, by noting that the 
mean potential energy is half of the ground-state energy 
3hw. In  this way one finds S(k)=hk/Zmc for small k ,  
where c is the velocity of sound. 

The behavior of S(k)  for intermediate k is familiar 
to us from the x-ray studies of classical liquids. The 
density distribution in the ground state is roughly 
similar to such a liquid. There is some local structure 
produced by the tendency of the atoms to stay apart. 
This quasi-crystalline local order makes a maximum 
in the S ( k )  curve for k near 2?r/a. There may be smaller 
subsidiary maxima for near multiples of this k .  For 
helium, because of the large zero point motion, these 
maxima may be broader and less marked than in other 
liquids. The main maximum is responsible for the main 
ring in the x-ray diffraction pattern. It is shown clearly 
in the preliminary neutron diffraction data reported 
by Henshaw and HursL6 

To summarize: with rising k ,  S ( k )  starts linearly as 
hk/2mc, rises then to a maximum near k=2?r/a, and 
falls again to approach, with possible minor oscillations, 
the limit unity. Consequently the quantity E ( k )  = h2k2/ 
2mS(k) should start linearly as hkc, but should then 
show a dip with a minimum at k = ko say, near 2?r/a, 
finally rising, eventually as hk2/2m. These relations 
are shown in Fig. 3 .  

We have argued that ( 2 )  should be a good approxima- 
tion to the wave function for functions that contain 
wave numbers in the vicinity of 2?r/a. Therefore we can 
expect the energy values (18) to be good in the neigh- 
borhood of this wave number. It is gratifying to  see 
that there is a minimum in this region. The minimum 
value we shall call A .  Ordinarily the variational method 
only permits one to interpret the minimum value of E 
as one varies a parameter such as k .  On the other hand, in 
our case eachvalue of k has significance since these values 
correspond to different eigenvalues of the momentum 
operator, as has been remarked. Therefore we can 
believe the behavior of the curve through a range of 
k near ko, where it behaves parabolically, so we can 
write E ( k )  in Landau’s form A+h2(k-  k @ / 2 p  where 
p is a constant determining the curvature. 

It is at first disconcerting that values of the energy 
lower than A can be obtained by going to very small 
values of k .  But the energy here varies as Akc, just that 
expected for phonon excitation. In  fact, a moment’s 
reflection shows that, for small k ,  the wave function (2) 
is just that which represents phonon excitation. Excita- 
tion of a given phonon means that the harmonic oscilla- 
tor representing the corresponding normal mode ;S in 
the first excited state. The wave function is therefore 
q&, if qk is the normal coordinate of the mode excited. 
This coordinate is the Fourier transform of the density, 
so (21) shows that ( 2 )  with (17) represents a phonon 
for small k .  Since the wave function is correct the 
energy must be exact, and is therefore hkc. 

8 D. G. Henshaw and D.G. Hiirst, Phys. Rev. 91,1222 (1953). 
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Although we have made an argument only to show 
that ( 2 )  should be valid for high k ,  we see now that it 
is also valid for small k ,  that is for f(r) which vary 
slowly. Since the energy curve is valid for the smaller k 
and for a range about 21r/a, we can accept it as reason- 
able for all k from zero up to and slightly beyond the 
minimum. 

On the other hand, for still larger k ,  another state of 
lower energy exists with the same total momentum. 
I t  is the state of double excitation, one of kl, the other 
of kz, such thatkl+kz=kandstillE(kl)+E(kz)<E(k). 
This becomes possible for k so high that the slope dE/dk  
of the energy curve exceeds hc, the initial slope. The 
curve for very large k ,  therefore, does not have the same 
validity as that for lower k ,  but we need not enter into 
this matter, because at temperatures of a few degrees 
such high-energy states would not be appreciably 
excited. Such questions may be of importance in dis- 
cussing nonequilibrium phenomena. One process by 
which the number of excitations can change is for a n  
excitation to pick up enough momentum that it can 
divide spontaneously into two. 

I t  is easy to misinterpret the meaning of the wave 
function $=xi exp(ik.ri)+, ( 2 2 )  

so a few remarks might be appropriate here. I t  looks 
at  first, on inspection of the first factor, that this repre- 
sents the excitation of a single particle. This is correct 
a t  very high k(ka>>21r) and it is also correct for the 
ideal gas case for which the atoms do not interact 
(4 is constant then). But our arguments for inter- 
mediate k show that this is not the case. Because of the 
correlations in position implied by the factor 4, the 
motion of one atom implies the motion of others. Thus 
the factor in front of 4 selects from that function certain 
correlated motions, in spite of the fact that each term 
in the factor depends on just one variable. 

We can get a better idea of how this works by  taking 
the extreme case of very low k .  Here ( 2 2 )  represents a 
sound wave but a t  first sight there is no sign of the 
density variations that such a wave usually brings to 
mind. Let us take the real part and consider 

for small k .  Now, for most configurations, allowed by 4, 
the atoms are fairly uniformly distributed, so that 
there are just as many in the regions where the cosine 
is positive, as where it is negative. Therefore the sum 
over all the atoms of cos(k.ri) is zero. The wave func- 
tion is zero for nearly all configurations. It is only for 
the rare configurations in which the number in positive 
regions exceeds that in regions where the cosine is 
negative that the wave function daes not vanish. In  this 
way (23) selects configurations for which the mean 
density varies as cos(k.r). Since such density fluctua- 
tions are, according to the behavior of 4, most likely 
produced by small cooperative motions of large numbers 
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FIG. 3. The upper curve gives the liquid structure factor deter- 
mined from neutron diffraction (reference 5) and extrapolated to 
zero k. The lower curve gives the energy spectrum of excitations as 
a function of wave number (momentum.h-') which results from 
the formula E= h2k2/2mS(k) derived in the text. The initial linear 
portion represents excitation of phonons while excitations near 
the minimum of the curve, where it behaves as A+hP(k-koF/2p, 
correspond to Landau's rotons. However, data on the specific heat 
indicate that the theoretical curve should lie lower, closer to the 
dashed curve. 

of atoms, the state described is very far from the one 
particle state it would be if the cosine factor appeared 
alone, not multiplied by 4. 

I n  the region of the energy minimum a t  ko the wave 
function represents a situation intermediate between 
the cooperative motion of phonons, and the excitation 
of a single particle. Several atoms move together be- 
cause of the correlations implied by4 .  It is hard to make 
a dear picture out of this vague idea. There is nothing 
to indicate that the state carries an intrinsic angular 
momentum. One must be careful because the state is 
degenerate, as all directions of k with the same magni- 
tude k d  give the same energy A. Perhaps, if more com- 
plicated wave functions were tried, some special linear 
combination representing a kind of microscopic vortex 
ring or one with intrinsic angular momentum has in fact 
a lower energy. States of low k will be called phonons, 
and states of momentum near ko will be called rotons in 
this paper, in accordance with the terminology of 
Landau,E although we do not necessarily mean to imply 
that rotons carry intrinsic angular momentum or repre- 
sent vortex motion. 

MULTIPLE EXCITATION 
We have obtained the energy spectrum E ( k )  of what 

we may call single excitations. They have the form of 
EL. Landau, J. Phys. U.S.S.R. 5, 71 (1941); 8, 1 (1941). See 

also R. B. Dingle, Supplement to Phil. Mag. 1, 112 (1952). 
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plane waves through the liquid. By taking linear com- 
binations we can make wave packets that are more or 
less confined to a local region. Unless the region is very 
small there would be only a negligible energy addition 
required to do this. The remainder of the liquid is quiet 
as in the ground state. It is conceivable that another 
packet could be located somewhere far away and the 
energy would be close to E(k,)+E(k,) if kl  and kz are 
the momenta of the majority of the waves in each 
packet. Thus we should expect states with several 
excitations, the energy being the sum of the energies 
of each packet separately. This neglects a kind of in- 
teraction energy between them. I t  will be valid if the 
density of excitations is very small, but one cannot 
expect to apply it to situations in which the number of 
excitations is any appreciable fraction of the number 
of atoms in the liquid. 

Mathematically, if the function 

gives E(kl) for the energy, we might expect the wave 
function for two excitations to correspond to $=P@, 
with 

P= [Xi exp(ikl.ri)][Cj exp(ikz.rj)]. (24) 
It is readily verified, by substitution into the variation 
integral, that the energy is E(kl)+E(k,) within correc- 
tion terms of order 1/V, where V is the volume of the 
entire fluid. This is just what one would expect if 
the excitations behaved like interacting particles, for 
the relative probability of their being within their range 
of interaction varies inversely as the volume. The ex- 
pression (24) is unaltered on reversing the order of the 
factors, so the state in which the first excitation has 
momentum kl and the second has kz is the same as that 
in which the momenta are reversed. Thus the excitations 
obey Bose statistics. The expression (24) is not orthog- 
onal to (17) with k=kl+kz,  so there undoubtedly are 
matrix elements between states of different numbers of 
excitations, and collisions must be possible which change 
this number. In summary, the excitations behave much 
like interacting Bose particles which may be created 
and destroyed, and whose energy as a function of mo- 
mentum is given by E(k) = h2k2/2mS(k). 

THERMODYNAMIC PROPERTIES OF HELIUM I1 

From this we may determine the thermodynamic 
behavior of liquid helium a t  low temperature. At suffi- 
ciently low temperatures the number of excitations will 
be small, so the interactions between them can be 
neglected. The approximation of independence leads 
in the usual way to the formula for the Gibbs free energy 
(taking the ground-state energy as zero), 

F= kTV f ln[l-e~p(-flE[k])]d~k(2?r)-~, (25) 

with fl= l/kT. The number of excitations of momentum 
k is 

%k= [exppE(k)- lp. (26) 

We need not enter into further details as this has been 
thoroughly analyzed by  Landau,s who first proposed 
the form of energy spectrum we have deduced here. 
low temperatures only the lowest energy excitations 
can become excited. That  is, only the phonons are 
excited and the specific heat varies as P. At higher 
temperatures some of the states near the minimum of 
the curve, at ko become excited. The specific heat then 
rises rapidly, controlled predominantly by the exp (-pa) 
factor, governing the number of rotons excited. For 
temperatures of a few degrees few rotons are excited and 
only the phonon part, and the part of the curve near the 
minimum, are important. Landau7 has shown that one 
obtains good agreement with the spec5c heat (and with 
the measured values of the velocity of second sound) 
if one chooses the parameters A=9.6"K, ko= 1.95 A+, 
and p=0.77. This means the energy curve near the 
minimum behaves as 2mE/h2= 1.6+1.3(k- 1.95)2, with 
k in reciprocal angstroms (one A-z corresponds to a 
temperature of 6°K). I n  the phonon region the curve is 

2mE/h2=2.6k, 

in the same units, if the speed of sound is 240 meters/sec' 
Henshaw and Hursts have published some preliminary 
data on the neutron scattering by  liquid helium at 
4.2"K. From it S(k) may be directly determined (see 
Fig. 3). The curve for E(k) calculated in this way 
behaves as 

2mE/h2=3.0+1.0(k-2.0)2 

near the minimum (and is consistent with 2.6k for 
small k). This corresponds to a value of A of 18" which 
is impossibly large. Such a discrepancy may be due 
to the inaccuracy of the trial function (2), the true 
energy being lower than that calculated with this trial 
function. Such a large discrepancy in energy is dis- 
couraging, because the physical arguments did seem to 
indicate that (2) should be a reasonably good first 
approxima tion. 

The expression (25) should not hold at high tem- 
perature because it neglects the interactions among the 
large number of excitations which (26) demands at 
such a temperature. Without an estimate of these inter- 
actions it is hard to judge the region in which deviations 
are to be expected. We shall make a very rough pre- 
liminary argument here. 

To  the approximation that the energy in a mode is 
proportional to an integer 12, this mode behaves like a 
harmonic oscillator. The coordinate of this oscillator 
q k  has a mean square value 2n+ 1 times its value in the 
ground state. For what size q k  is the harmonic oscillator 
approximation poor? If we knew this we could put a 
limit on the ranges of q k  and hence of f l k ,  for which (25) 
might be expected to be valid. I n  our case the various 
q k  from (21) are not independent, because they can 
all be defined in terms of the same 3N variables ri. 

7L. Landau, J. Phys. U.S.S.R. 11, 91 (1947); Phys. Rev. 751 

884 (1949). 
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Thus, for example, if q k  is known for 3N values of k ,  it is 
known in principle for all others. It is very difficult to see 
what this interdependence means to (25). 

But one can notice that one restriction is 
" 

J I Qk 1 2d3k(2~)-3 = N ,  (27) 

where the integral is taken over all k. Hence we may 
guess that we should restrict (25) by the condition that 
the excess I q k  1 '  over that for the ground state, summed 
on all states, cannot exceed N .  This excess for a given 
mode is 2nk times the ground-state mean value of 
/4kl2. This latter is S(k)=h2k2/2mE(k), so we obtain 
the restriction 

h2m-lS ( k2/E (k))nkd3k( 2 ~ ) - ~  = 1 .  (28) 

The thermodynamics which would result (by adding 
a chemical potential p to E ( k )  in (25), (26) to allow for 
(28)) will show a second-order transition.8 But without 
ii deeper analysis we are in no position to take Eq. (28) 
literally. We can only use it as a rough criterion for 
validity of (25). If the integral on the left is much less 
rhan 1, then (25) should hold. At 2°K the integral 
,imounts to roughly 0.2, so perhaps we are entitled to 
[rust (25) even to within a few tenths of a degree of the 
transition temperature. 

MOTION OF THE FLUID AS A WHOLE 

'The existence of such excitations moving as nearly 
free particles in a background fluid is the central con- 
cept of the two-fluid model of Tiszag and Landau. The 
consequences of these ideas for excitations with a 
spectrum such as (18) have been carefully analyzed in 
a general manner by Landau and Dingle.'j There is 
nothing to add that is new in this direction. However, 
we shall review briefly how the equations of this model 
arise, emphasizing the behavior of the wave function. 

Beside the states which represent local internal excita- 
tion of part of the fluid, there are, of course, states in 
which the entire body of fluid moves. In  general, in 
these cases the boundaries of the fluid move also. For 
example, a t  absolute zero, the entire fluid may move as 
a body with velocity v. This center-of-gravity motion 
is described by 

#= exp(imv. C,r,)+, 

if we assume 9 corresponds to the ground state a t  rest 
in the laboratory system. 

Suppose we wish to represent a situation in which 
the velocity v(r) varies from point to point, but only 
very gradually on an atomic scale. We might try some- 
thing like this. The atoms in a region about some point 
P have their center of gravity moving a t  velocity VP 

This conclusion is modified if the interaction of the rotons and 
the hydrodynamic modes is taken into account. 
*L. Tisza, Phys. Rev. 72, 838 (1947). 

corresponding to this point. They must contribute a 
phase mvp.C;ri where the sum is taken only over those 
near P. Corresponding contributions would come from 
sums near other points so the total factor ought to be 
exp[imC,v(r,). r;]. The wave function is, therefore, of 
the form 

#= expCiCis(ri)]+, (29) 
where s(r) is some function of position. We have sug- 
gested that it is mv(r).r. However, as is usual when one 
has waves whose wavelength varies from point to point, 
the wave number is not the phase divided by Y ,  but 
more accurately it is the gradient of the phase. There- 
fore (29) represents the fluid in motion, the velocity at 
any point being given by 

v(r)=m-IVs. (30) 
As a consequence of (31),VXv=O. Velocity fields for 

which this is not true cannot be represented in such a 
simple manner, and represent, as we have seen in 11, 
states involving large numbers of excitations. The prob- 
lem they present is being studied. For regions which are 
not simply connected, such as a torus, s need not be 
single-valued. For example, in the torus we could take 
s=+, the cylindrical angle. This would represent a 
permanent circulationlo even though VXv= 0 locally. 

Substitution of (29) into the variational principle to 
obtain a steady-state solution leads [see (lo), (11) with 
F =  exp(iCis(ri))] to the energy expression 

which is the kinetic energy pamv2/2 per unit volume. I t  
is minimum for variations in s if V .  (Vs)=O, that is, 
V.v=O. The flow must be incompressible. We have not 
allowed, in (29), for variations in density. For a singly 
connected region this has but one solution v=O, unless 
the boundaries move. In  a multiply connected region, 
like a ring, circulation of angular momentum in mul- 
tiples of N h  is possible. There are so few of these special 
states that the statistical mechanics is not aEected. The 
variables, v(r), representing such motions can be 
specified as external known variables like pressure and 
volume. 

EXCITATIONS IN A MOVING FLUID 
Next we study the motion and energy of an excitation 

in a moving fluid. The wave function is 

#=Cif(ri) expCiC js(rj)]+. 
lo I t  was suggested in 11, reference 9, that to observe this experi- 

mentally one might have to avoid letting the liquid have a free 
surface. But R. Peirels has pointed out (private discussion) that 
although the atoms evaporating from the moving liquid to the 
gas carry angular momentum out, only those of the gas which are 
moving along with the liquid can condense, bringing back angular 
m o m e n t u m s o  in equilibrium there would be no damping of 
the motion from this effect. There are other effects, however, 
such as those which cause resistance to capillary flow a t  high 
velocities, which might be expected to damp the motion. 
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When this is put into the variational principle, one 
finds directly 

E/S=  E(k)+mJj (r) .v,(r)d3r 

+?mSp(r)v.(r).v,(r)h, (32) 

where E(k)  is given in (18), v,(r)=m-lVs, and we have 
defined 

p(a)= ~3(a,r,,r~)f*(r~)f(r~)d~r~d~r~/1, (33) s 

These p ,  j, are the expected values of density and 
current density that belong to the state representing a 
single excitation. 

We shall analyze this for the case of a single excita- 
tion of nearly definite momentum in the form of a large 
wave packet, large compared with the central wave- 
length. That is, we take f(r)=exp(ik.r)g(r) where g(r) 
is a smooth amplitude function, such as a Gaussian, 
with width very large compared to I l k ,  but small 
compared to the size of the vessel, Such a packet will 
drift and spread slowly in a way completely determined 
by E(k)  and the principle of superposition. We wish to  
determine the additional effects of the possibility of 
general liquid flow. 

The current density associated with this excitation 
is found from (34). We make the approximation that 
V j =  ikf since g varies so slowly, obtaining, 

j(a) = hkm--lJp2(a,r)( g*(r)g (a) exp[-zli. (r- a)] 

+g(r)g*(a) exp[+ik. (r- a)]}d3r/l. 

Now, because of the variation of the exponentials, con- 
tributions to this integral come only from r within a 
limited distance from a. Within such a distance g(r) is 
nearly the same as g(a), so all the g factors can be 
evaluated at  a and taken outside the integral. The 
integral on r is then easy by (19) and one finds 

j (a) = hkpoS(k) I g(a) I 2 /mI .  
The normalization integral may be done in a similar 
manner. I t  is 

Since r2 must be near rl for a large contribution, we may 
replace g(r2) by g(rl), integrate r2 directly and obtain 

I=pd(k)JIg(r)Iz#r. 

If we assume g(r) is normalized, J/g(r)12d3r= 1, so 
that Ig(a) Iz=d(a) is the density in the packet a t  a, or 
roughly the probability of finding the excitation at a, 
the current is 

j(a) = (Wm)d(a) ,  (36) 
that is, a total current Ak/m distributed a t  densityd(a). 

The particle density a t  a is 

P (a) = ~3 (a,rl,rz)g* (a)g(rd 

XexpC-ik. (rl-rz)]dJrld3r2/1. (37) 

The points rl and r2 must be close. If point a is not close 
to these points we can use the asymptotic form, 

s 
pda,rl,r2) =pm(rl,r2), (38) 

to show directly that p(a) is the density p o  of the fluid, 
far from the packet. I t  is nearly so, even in the region of 
the packet, for since its dimensions are large, a is nearly 
always far from rl,r2, and further, the integral over all 
a of p3(a,r1r2)-pop2(r1,r2) is exactly zero. 

I t  is true that the distance of influence in p may not 
be very small, because of the correlations in the sound 
field. That  is, the excitation produces a small strain in 
the fluid which makes a field of stress in the vicinity. 
Such fields provide a mechanism of interaction between 
excitations (as well as a correction to the energy of one). 
In  a more detailed analysis such effects should be 
taken into account. Here we proceed to a first approxi- 
mation and neglect them. To the approximation of 
neglecting compressibility, then, we find p(a) = P o ;  the 
presence of an excitation does not change the fluid 
density. 

Thus we picture an excitation in the form of a 
drifting wave packet as carrying a total current hk/m, 
and drifting (if v=O) a t  the group velocity v,=aE/ak, 
but as not appreciably altering the density. 

This clearly violates the conservation of matter. For 
a moment we overlook this difficulty. It is discussed in 
the section following the next. 

If this packet is in a general velocity field v.(r) we 
may determine its energy from (32). I n  integral 
Jj(r).v,(r)d3r we shall assume that v. does not vary 
appreciably over a region as small as the packet, and 
may be taken outside the integral sign. The integral 
of j is then hk/m= p / m ,  giving the following results: 

The energy of an excitation in a moving fluid is 

E = E (PI + P . va, (39) 

where vI is the velocity of the fluid where the excitation 
(considered as a Dacket) islocated. The total momentum 
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associated with the packet is p, and it contributes a 
current p/m to the total in the fluid. The energy con- 
tributed by the moving fluid has density pomva2/2, and 
it contributes to the current density pov,. 

The group velocity of the excitation is aE/ap so that 
vI=v,0+v, where voo is the group velocity in liquid a t  
rest, aE(p)/ap.  Thus the excitation just drifts along 
with the background fluid motion, of velocity vII. Equa- 
tion (39) can be obtained much more simply by a 
Galilean transformation of coordinates. Indeed, it is in 
this way that it was obtained by Landau and Dingle.6 

RELATION TO THE TWO-FLUID MODEL 

The two paragraphs at the end of the previous section 
contain the main relations by which the hydrodynamics 
and thermodynamics of the two-fluid model is derived. 
we  review here a few of the steps, very briefly, in order 
to make clear the relation of the excitations to what 
is called the normal fluid. For further details see 
reference 6. 

Thermodynamic equilibrium results, for a system 
with Bose statistics, if the excitations are distributed so 
that the number of those with energy E is 

n=[exp@E)- I]-'. 

This may be obtained, for example, by maximizing the 
entropy, keeping the total energy constant. Another 
distribution which is also in equilibrium can be got by 
maximizing the entropy, keeping both total energy and 
total momentum constant. I t  is 

n= (expm(E-pp.u)]- (40) 

where u is a constant. 
In our liquid, the density of excitations per unit 

volume at a point r in this case would be, substituting 
(39) into (40), 

In order to interpret u, we study the total current 
density. Since each excitation contributes a current 
p/m the total current density contributed by the 
excitations is 

,- 

J 

At this stage we shall only consider the case of low 
macroscopic velocities. Expanding to the first order in 
in v,-u this may be written in the usual way as 

pn(U-v*), 

where p, is defined as 

fz(exp[pE(f)]- 1)-2d3p(2~)4. (42) 

To this we must add the current of the background 
pov., SO that the total macroscopic current density can 
be written 

j = m + P s v a ,  (43) 
if we put pa=p~-pn.  

I n  view of these separations we can say, artificially, 
that the liquid behaves as though there were two parts, 
superfluid at density p. moving a t  velocity v,, and 
normal at density p, and velocity u (which we write 
hereafter as v,). The current is the sum of these two 
partial currents. In  a similar manner the change of the 
internal energy, at constant entropy, produced by the 
velocities can be shown to second order to be the sum of 
the kinetic energies $p,v.2+$p,vn2. 

In a vessel with fixed walls in thermal equilibrium, if 
the liquid background is flowing, its velocity v, must 
have no component normal to the wall. Further, the 
total current normal to the wall must vanish, so that 
the normal component of v, must also vanish a t  the 
walls. But in equilibrium v, is constant everywhere and 
must therefore vanish everywhere. We say the normal 
fluid is stationary in equilibrium with fixed walls, even 
though the superfluid moves with the velocity v,. 
Incidentally, the superfluid velocity is irrotational, 
v x v , = o .  

If the walls move together a t  constant velocity, then 
equilibrium resu!ts if v, is this velocity; the normal 
fluid moves a t  the same velocity as the walls. 

We extend Eq. (40) to situations slightly out of 
thermal equilibrium by  assuming v, is not constant but 
varies from place to place. The failure of equilibrium 
will bring in various irreversible processes associated 
with the normal fluid, such as viscosity. If we leave 
these out of account, the remainder of the hydrodynamic 
equations which result can be derived in exactly the 
manner already given by Dingle.5 We need enter no 
further in this direction, as nothing new is gained. 
The resultant hydrodynamical equations can most 
easily be interpreted from the model of helium as con- 
sisting of two interpenetrating fluids. 

Nevertheless, it is difficult to understand these partial 
fluids from a detailed kinematic point of view. Kine- 
matically we have a general, or background fluid in 
which excitations move. The velocity of the superfluid, 
v., is the general velocity of this background, but the 
density of superfluid is not PO. The velocity of the normal 
fluid, v,, appears as a parameter in the distribution 
function. It can be shown to be the average group 
velocity of the excitations. But the difficulties arise if 
one tries to interpret the formula (42) for pn from a 
direct kinematical point of view. I t  is not the average 
value of any quantity that can reasonably be ascribed 
to an individual excitation. It appears to have meaning 
only for the entire group of excitations in, or near, 
thermal equilibrium. 

The division into a normal fluid and superfluid, 
although yielding a simple model for understanding 
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oppose the liquid passing them (Fig. 4 (b)). Now if the 
liquid is in motion (v,=v), and all the rotons drift with 
the liquid in the same direction (v,=v), there is no 
relative motion and no tendency to polarize (Fig. 4 (,-)), 
This situation isnot in equilibrium with stationary walls, 
Collisions of the rotons with the walls will stop their 
drifting motion and they will remain a t  rest relative to 
the walls. However, they will become polarized Opposite 
to the fluid passing them (Fig. 4 (d)). 

This interpretation of the velocities of the partial 
fluids of the two-fluid model is fairly simple and direct. 
I t  is otherwise with the current. The natural way to dis. 
cuss the current (or momentum) from the microscopic 
view is to split it  into two parts. First the current 
produced by  the flow of the moving fluid, pova, and 
second the current produced by  the polarization. I t  is 
then easy to see what the current is in each case. In the 
first two cases, 4a, 4b, we have no general fluid motion 
so that the current is due to polarization, zero in 
case a, to the right in case b.  If the fluid moves, but the 
rotons remain unpolarized, as in 4c, the current is pov,,  
purely due to liquid Illotion. When the polarize, 
as in 4d, to oppose this background motion the total 
current is reduced. But this natural separation is not 
the same as that utilized in the two fluid view. I t  is 

(0) VCO, v;o (b) V,: 0, V, - 

---- J/ 
(c) vs= vn‘ - 

FIG. 4. At intermediate temperatures the main excitations are 
rotons which carry an intrinsic momentum, indicated by the 
arrows. If they drift relative to the background fluid, they tend 
to polarize upstream. This is illustrated for various values of 
v ,  the background fluid velocity, and un the absolute drift  velocity 
of the rotons. The total current is poi’. plus the polarization current 
of the rotons. Although mathematically correct, the separation of 
this current into the two parts, p,v. and pnvn, characteristic of the  
two fluid model seems somewhat artificial from the miCrOSCOpiC 
viewpoint. 

the final equations, appears artificial from a micro- 
scopic point of view. This opinion is shared by Landau 
and by Dingle.5 

I t  is interesting to look a t  what is happening on a 
microscopic scale for various conditions of the velocities 
vI, v,. Consider a temperature not too low so that the 
predominant excitations are rotons. If the fluid is a t  rest 
a roton created with exactly the minimum energy A has 
no group velocity, but it has a momentum, of magnitude 
pa pointing in some direction. We will call it the direc- 
tion of polarization and represent our roton by an 
arrow in this direction in Fig. 4. Not all rotons have 
exactly this energy A, but may differ by order kT from 
it, and have therefore nonzero group velocity. (Inci- 
dentally, the group velocity is parallel to or opposite 
to the polarization.) The rotons therefore may move 
about in a random manner like the molecules of a gas. 
Like gas molecules they can also have an average drift 
velocity relative to the fluid. Now we will assume [as 
required by (39), (41)] that if the rotons are drifting 
relative to the fluid in a certain direction, they tend 
(as a result of collisions among themselves) in equilib- 
rium to polarize themselves in the direction in which 
they drift (that is, opposite to the velocity of the liquid 
moving past them). The general drift velocity of the 
rotons in space we call the normal fluid velocity, v,,. 
The motion of the fluid as a whole we call the super- 
fluid velocity, v8. Let us consider some examples. 

First, with the fluid a t  zero velocity (v,= 0), and no 
drift of the rotons ( vn=O) ,  they remain unpolarized 
(Fig. 4 (a)). If they are drifting to the right (v,,>O) 
they will tend to polarize in this direction, lining up to 

difficult to identify, for example, what is called the 
current of the normal fluid. It is not current carried by 
the rotons as they drift from one place to another 
(which they do with the velocity v,) because the roton 
as such carries no mass but is only a disturbance in the 
liquid. Certainly the value of p ,  would be hard to obtain 
this way because the rotons contribute to the current 
mainly by their polarization, and not by  their drift 
motion. (Of course in a case such as 4b the polarization 
is in the direction of the drift so we could say the drift 
acts as ij it  carries current, because it induces polariza- 
tion. pn is then the ratio of the polarization current to 
the drift velocity which produces it.) 

On the other hand, it is evident that the entropy 
flow is produced entirely by the drift motion (and not 
the polarization) of the rotons. Hence it is easy to see 
why all the entropy flows with the velocity v,. 

THE CONSERVATION OF CURRENT 

In the last section we considered a packet of solutions 
(2) and found that we could picture an excitation in the 
form of a packet carrying a total current Ak/m, and 
drifting a t  a group velocity aE/dp,  but as not appreci- 
ably altering the density. But such a picture is incon- 
sistent with the conservation of matter. To  take an 
extreme example, for a roton of the minimum energy A 
the group velocity dE/ak is zero, but the current 
hkolira is large. If such a current is distributed over a 
finite region in such a way that the direction is every- 
where the same, we evidently cannot conserve material. 

On the other hand, it is well known that  one can 



345 

A T O M I C  T H E O R Y  O F  2 - F L U I I >  M O D E L  O F  L I Q U I D  H e  2 73 

demonstrate the conservation of matter, 

ap (a ) /&  = V . j (a) ,  (44) 

from the Schrodinger equation. The reason that our 
,rave function does not satisfy (44) is that it is not an 
exact solution of the wave equation. This shows an 
inaccuracy in our approximate wave function (17). 

One way that suggests itself to resolve it, in the case 
of rotons with k=ko ,  is to propose a superposition of two 
Ivaves with opposite momenta k and -k, like g(r) 
cos(k.r). In  this case the current density is zero, and 
everything is all right. Furthermore, if the same small 
momentum 1 is given to each, so the momenta become 
k f l  and -k+l with k = h ,  the drift velocity aE/dk 
i j  the same for each partial wave, so that the packet 
stays together. 

On the other hand, with stronger collisions with walls 
and phonons perhaps the two momentum components 
Ivould become separated. Further g(r) sin(k.r) is just 
as good a solution, and it must have almost exactly the 
same energy even if interactions are taken into account, 
because the exact position of the nodes in a large packet 
cannot be important. Therefore, a linear combination 
must again be a possibility and we are led back to the 
esponential, and to the difficulty of current conserva- 
tion. This lack of conservation is a symptom that all is 
not too well with our wave function. I t  is true that in 
the cosine case the symptom is hidden, but the con- 
clusion should stand that the wave function could be 
improved. 

The problem can be resolved by considering more 
complicated functions representing interaction of the 
excitation with the flow of fluid in  its surroundings. One 
way the current could be conserved would be to have a 
general return flow of fluid in the region outside the 
packet. We therefore try the solution 

with the hope of finding an s which produces a velocity 
distribution v=m-‘Vs which shows such a reverse flow. 
Let us first consider such a packet in otherwise sta- 
tionary liquid. Then as a boundary condition s should 
go to zero as we go far from the packet. Substitution into 
the variation integral gives (32). For the current and 
density we use our approximations, that j(a) is given 
by (36), and p(a)=po. There results 

Vsd3r, (46) 

where we have put, for the packet energy, E ( k ) ,  which 
is nearly correct. Variation of s to find a minimum gives 
the equation 

V.  (j+poVs)=O. (47) 
This equation determines s if we impose the boundary 
conditions s+O far from the packet. Call this solution so 

and the velocity distribution V O =  Vso/m. I t  is like the 
field produced by the charge density V.j, that is, at 
large distances the field of a dipole. I t  represents the 
back flow expected. Furthermore the total current 
operator has for our function the value 

JO = j + P O V ~ O  (48) 

so that (47) says that now the total current is conserved. 
There is a small shift in energy. Substitution of (47) 

into (46) gives the extra energy (reduction) 

If the order of the dimensions of the packet are L, the 
current hk/m is distributed over a volume L3, so the 
velocities are of order hk/mL3 and the kinetic energy 
(poh2k2/mL6)L3 varies as f/L3. But to confine the packet 
to such a dimension wave numbers of order 1/L in g ( r )  
must be used, so we find from (18) (for the case k =  KO) 
excess energies of order 1/L2 needed to confine the 
packet. Thus, for large packets, spreading the packet 
over even larger dimensions will decrease the energy, in 
spite of the energy of the currents we have just cal- 
culated. For extremely small packets our analysis does 
not hold because of the approximations made. 

Here we have just gone far enough to save the 
theorem of conservation of current. We have only dealt 
with the background current in a semiclassical way. 
More complex states consisting of superpositions of 
expressions like (45) should be considered if a correct 
calculation of the quantum-mechanical “self-energy” 
of a roton due to coupling with the general velocity 
field is to be carried out. Since the “self-energy” is 
negative, the corrected value of A will be nearer the 
experimental result. This problem is being studied. 

A more correct picture of a packet excitation, then, 
is that of a kind of region of polarization (that is, j) 
which induces a distribution of velocity field around it, 
poVs0. The field is analogous to that produced by elec- 
trical polarization, the electric field E corresponding to 
the velocity field Vs/m, and the electric displacement 
vector D being analogous to the total current density, 
since its divergence vanishes. We can use this analogy 
to determine the behavior of the system directly, as it 
is easily verified that all the equations correspond. 
There is, however, one important difference. The signs 
of interaction are reversed. Thus (39) shows that rotons 
tend to line up opposed to the external field v, while 
electric dipoles line up with the field. The analogy must 
therefore be completed with the remark that the 
rotons are dipoles of a gravitational type; that is, like 
poles attract, unlike repel. 

The energy of a dipole in an external field is still the 
moment times the external field, even though the dipole 
itself creates some field of its own. None of the con- 
clusions of the previous section are changed, therefore. 
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ROTON INTERACTION VIA THE VELOCITY FIELD 

The fact that one roton creates a velocity field in 
which another may interact produces a kind of inter- 
action between rotons. This is possibly one of the major 
sources of interaction, especially for not too high roton 
density. I t  is interesting to try to see what effect it 
has. Suppose we consider rotons as small packets all 
separated from one another and acting as dipoles of 
strength p/m. Let us suppose there is an average 
polarization P per unit volume, and an average back- 
ground velocity vI. The mean current density is then 

J=pov,+P. (49) 

The actual field a t  any point is not v. because of the 
local variations produced by the individual dipoles. 
Call the w velocity that an average dipole feels both 
from the average effect vI and from its neighbors. The 
latter contribution is proportional to the polarization. 
In fact, as Lorentz showed for dipoles in random posi- 
tions, it is fP/m, hence 

w = v,+aPpo-1, (50) 
where%= +. The case a= 0 is the case previously studied 
which neglects direct effects between the dipoles. 

The energy of a roton in this field is E(p)+p.  w. The 
statistical mechanics will then be governed by the 
function, 

Here u is zero for equilibrium with fixed walls, and is 
the normal fluid velocity, u= vn. The average polariza- 
tion then is given by 

P =  m-la j/aw. (52) 

(53) 

The internal energy of the system is 

U =  +mpov,2+mP. w- (am/2po)ln+ (E(p)), 
where the average value of E(p)  is 

J 

+ P . (w- u))I- 1 )-VP/ ( ~ ~ 1 3  

= j+TS- (w-u).mP. 

The entropy is S= - 8 j /aT.  
Expanding up to second order in the velocities one 

finds that the current can still be written as pav,+pnu) 
and the excess internal energy (at constant entropy and 
total current) as +p,v,2+3pnu2, provided that one writes 

'I Onsager has shown that if one deals with permanent dipoles, 
mutually impenetrable and roughly spherical, this value of ct is in 
error. If his analysis applies to our case, the value a=po(Po+2p.)-' 
results [L. Onsager, J. Am. Chem. SOC. 58, 1486 (1936)J. 

pa= Po-pn and 

where pno is the old expression (42) valid for the case 
a=O. Therefore the expression for the velocity of 
second sound 

Pn = pno (1  + apno/po)-', (54) 

cz= (;y 
is unaltered when expressed in terms of pn, etc. Only 
the theoretical formula for pn is slightly modified. How- 
ever, the modification is appreciable only when pnO/po 
is not small, that is, near the transition. At the transi- 
tion where C P  goes to zero, p n  must equal po so that pnO 
given in (42) must equal l / ( l - a )  or 1.5. Actually pnO 
varies very rapidly in this region so this makes no 
appreciable change in evaluating A and $0 from the 
data. Furthermore in this region there may be other 
interactions which should alter our statistical me- 
chanical analysis anyway. (Actually we cannot even 
be sure that rotons act as small individual dipoles until 
we have improved the wave function to include the 
interaction with the velocity field, as a quantum field.) 

With interacting dipoles we would expect the ana- 
logue of a transition corresponding to the Curie point 
for electric dipoles. The analog of the condition for the 
Curie point comes out to be exactly the criterion that 
the expression (54) for pn (with pno substituted from 
(42)) becomes equal to PO.  There are a few surprises 
here, though. Firstly, ordinarily the Curie transition 
occurs as we lower the temperature, but here it appears 
on raising the temperature. That  is because the Curie 
point depends markedly on the density. Dipoles 
polarize if they are cold and dense. In  our case a t  low 
temperatures they are cold, but not dense enough. 
As the temperature rises, the density does also, very 
rapidly, until a point is reached where spontaneous 
polarization appears even though the temperature has 
been raised. Another surprise is the fact that there is 
a transition even if the local field effect is neglected 
(a=O). This difference is a result of the change of sign 
of the forces. Our dipoles polarize most easily if arranged 
in a flat region, while for electrical dipoles a needle-like 
region is preferred. With all the dipoles polarized 
parallel in the sheet the outside field is zero if the 
internal field opposed the polarization. But this oppo- 
sition of polarization and field is just the stable condi- 
tion for the rotons. In fact, the mutual local field a 
tends to depolarize them and raises the transition 
temperature. (For Onsager's value of a, (54) shows no 
transition for any temperature.) 

One might be tempted to speculate that we could 
carry the statistical mechanical analysis right up to the 
transition point and beyond, by simply assuming that 
the only interaction of importance among rotons is the 
coupling with the general velocity field. One would just 
hope that other interactions or limitations to the 
number of degrees of freedom are not as important as 
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one would otherwise guess. Aside from the amusing 
that helium I would then be the polarized, 

organized state, serious difficulties arise. One can 
these things from the statistical formulas, if 

the velocities are not considered small and are not 
One can, without loss of generality, take 

states of total current zero, and for simplicity take a= 0. 
\vhat happens is this. For any temperature below the 
transition there are two equilibrium states possible, one 
,,npolarized with v,=O, and the other polarized a t  
finite v,. Since the latter has higher free energy it is an 
unstable equilibrium, but the v ,=O is stable (actually 
only metastable12). As we approach the transition point 
the polarization of the unstabIe state approaches zero. 
.4bove the transition point (more correctly, the point 
when pn=po) only the v,=O state is in equilibrium and 
that is unstable. The instability arises this way, There 
is a high density of rotons. If a little polarization 
develops, their energy is reduced. This increases the 
number of rotons in equilibrium a t  a fixed temperature 
as well as the polarization, so that if there is no limit 
to the number of rotons there is no stable state. 

On the other hand, if a limitation of roton number 
such as (28) is imposed, stable polarized states exist a t  
the higher temperature. But the transition to that state 
occurs as a first-order transition, and there is another 
transition a t  still higher temperatures when the polar- 
ization disappears again. 

I t  is therefore evident that we do not correctly 
describe the region very close to the transition by the 
usual energy expression (53) (with or without a=O). 
The interactions between rotons is playing a more 
complicated role than (53)  can describe. 

In a previous paper an expression was given for the 
partition function which was presumably reasonably 
satisfactory right across the transition. However, the 
analysis was too difficult to carry out. Now that a more 
detailed picture of the behavior below the transition is 
available it may be easier to see how that expression 
can be treated. We still lack a clear picture of what 
happens in the few tenths of a degree on either side of 
the X point. 

INTERACTIONS BETWEEN EXCITATIONS 

Interactions between the excitations will lead to 
various irreversible processes, such as viscosity, attenua- 
tion of second sound, etc. These questions have been 
studied by Landau and Khala tn ik~v. '~  The most 
important factor in the various mean free paths which 
are involved is the change in density of the phonons and 
rotons with temperature. The absolute cross sections 
depend on the details of the interactions. Interactions 

'* That is, the conventional free-energy expressions for arbitrary 
3, are, strictly speaking, not self-consistent. For any temperature 
there is always some value of 3, for which the free energy is less 
than its value for u.=o. '' L. Landau and I .  Khalatnikov, J. Exptl. Theoret. Phys. 
(U.S.S.R.) 19, 637, 709 (1949). 

between phonons can be thought of as arising from a 
nonlinear equation of state. An interaction between a 
phonon and a roton would result if rotons have a 
different energy for different pressures. According to 
the theory presented here their energy is hzk2/2mS ( k ) .  
If the liquid is compressed kz increases. On the other 
hand S ( k )  probably increases even more rapidly from 
the increase in local order produced by squeezing the 
nearly impenetrable atoms into a smaller space. There- 
fore we expect A to decrease with pressure. This pro- 
vides a mechanism for roton-phonon interaction. It also 
has other effects. The presence of a roton would cause 
a small increase in density in its neighborhood with 
the effect falling off inversely as the distance from the 
roton. This provides a mechanism of long-range inter- 
action between rotons in addition to that due to 
coupling with the general velocity field. The roton- 
roton interaction at short distances is a more difficult 
problem, which probably cannot be adequately solved 
until a more accurate wave function is available for 
the roton state. 

If the roton energy A decreases when the liquid 
density increases then we would expect that in equilib- 
rium the liquid would shrink if the number cf rotons is 
increased. The volume decrease as the X point is ap- 
proached is probably a consequence of this effect. The 
fall of the X temperature with rising pressure is thermo- 
dynamically related. It may also be seen directly from 
(42) (supposing the X point to be p , , = p ~ )  considering 
that A decreases as the density rises. 

SUPERCONDUCTIVITY 

I t  has been suggested that superconductivity is 
analogous to superfluidity. What can we learn of the 
former from our study of the latter? I t  is interesting 
that if the He atoms were charged (and their net charge 
canceled by a uniform fixed background charge of 
opposite sign) the liquid would imitate many of the 
features of a superconductor. In  a magnetic field at 
absolute zero the London1* equation, i = eA/mc, would 
hold. This is because stirring of atoms is equivalent to 
interchange so that in the lowest state the wave func- 
tion cannot vary if atoms are stirred, and the part of the 
current depending on the wave function gradient 
vanishes. Other states would take a finite energy to 
create, there would be states of permanent circulation 
in multiply connected rings, there would be a second- 
order transition, etc. How this close analogy is to be 
interpreted is not clear. The things which, it has been 
argued here, apply physically to helium cannot be 
justifiably taken over to the case of Fermi particles, 
or such particles in interaction with lattice waves, 
without a complete investigation of their validity in the 
new environment. For example, a t  present there is 
not, in the author's opinion, justification for assuming 

York, 1950), Vol. I. 
'4F. London, Superjiuids (John Wiley and Sons, Inc., New 
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that the form (2) is a reasonable wave function for an 
assembly of Fermi particles, with 4 the ground-state 
function for such particles. In  fact, there are definite 
arguments against it. Possibly the close analogy should 
only be used to tell us what the problem of supercon- 
ductivity is. It is, from this point of view, the problem 
of showing that, in the metal, aside from phonons there 
are no (or only very few) states of very low energy just 
above the ground state. 

DISCUSSION 

We still have left unsolved at least three basic ques- 
tions. One is to find a clear description of the neighbor- 
hood of the transition. A second is to obtain a more 
perfect roton wave function. The third is to describe 
states for which the superfluid velocity is not vortex- 
free. So far we have VXv,=O. At high velocities when 
more energy is available, more complicated motions 
might be excited. The evidence of high resistance to 
capillary flow a t  the higher velocities indicates this. A 
new element must presumably be added to our picture. 
We hope to publish some views on this third problem 
at  a later time. 

We have limited ourselves to a qualitative analysis 
of the more curious features of the behavior of liquid 
helium. The problem of obtaining S(K) or the correla- 
tion function for the ground state quantitatively from 
first principles is beyond the scope of this work. 

I t  has been argued’ that He3 atoms in low concentra- 
tion, in He4 mould act as a gas of free particles, but 
with an effective mass m“ higher than that of one atom. 
This mass m” is calculated in the appendix, where it is 
found to be about six atomic mass units. 

The author has profited from conversations with 
R. F. Christy and with Michael Cohen. 

APPENDIX 

According to I1 an impurity atom of He3 (at infinite 
dilution) should behave as an essentially free particle 
except that its effective mass m” should exceed the 
true mass of He3 due to the inertia of the He4 atoms 
which must make way for it as it moves. We shall 
calculate this excess mass here. First we suppose the 
impurity atom had the same mass m as the other He4 
atoms (i.e., we neglect the difference in mass of He3 
and He4). 

The wave function for such an atom (coordinates rA) 
moving with momentum hk might be conjectured to be 
exp(ik.r&, where C#I is the ground state of the system 
(which is the same as if all the atoms were identical). 
This, as a trial function, gives the variational energy as 
h2k2/2m and shows no mass correction. It does not 
represent with sufficient accuracy the other atoms 
moving back when atom A moves forward. This 
suggests the trial function 

#=exp(ik.rA) exp[iCis(ri-rA)J~, (I-a) 

where the velocity field Vs(ri- rA) represents a backflow 
which depends only on the distance from the impurity. 
To  omit the term i = A  in the sum we take s(O)=o. 
Substitution into the variational principle gives 

with g = l ,  as $ is normalized. We write p2(ri,rA) 
=mp(r;- rA), and m(ri , r j , r~)  = ~ 0 p 3 ( r i - r ~ , r i - r ~ ) ,  and 
measure all distances from the point rA, so that (2-a) 
becomes 

2mhP2 & = kZ - 2 k . Vs (r) p (r)d3r s 
+ Vs(r)-Vs(r)p(r)d3r. (3-a) s 

Then s is to be chosen to minimize this expression. 
The function pg(r,r’) is the probability of finding one 

atom a t  r and another a t  r’ if there is an atom a t  the 
origin (p(r) is just the probability of finding one at 
r if one is a t  the origin). We do not know what this 
function p3 is, but in this problem we can approximate 
it by p(r)p(r’) (except a t  the origin). A given atom is 
surrounded by many (eight or ten?) nearest neighbors, 
and the distribution along one radius r and another r’ 
must be nearly independent except for the relatively 
small solid angle where the atoms at r and r’ are close 
together. Even here, if the functions s(r), s(r’) are 
smooth enough the average of p 3  over such angles may 
still give nearly the same result as p ( r ) p ( ~ ’ ) .  With this 
substitution our problem is that of minimizing 

+JVs(r).vs(r)p(r)@r. (4-a) 

The error made by this approximation is 

A & =  (h2/2m)JJ~s(r). Vs(r’)[p3(r,r’) 

- p(r)p (r’)]d3rd3rt. (5-4 

The s(r) which minimizes (4-a) behaves as a dipole 
field (as k*r/+) at large distances and this produces 
some convergence difficulties in the first integral in 
(4-a). They may be easily straightened out as follows. 
The minimum energy is only very slightly altered if the 
function s(r) is altered at very large distances in such 
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a way that it falls off eventually more rapidly than 
1/79. For such a function the integral may be done by 
,,arts, the integrated part vanishing, so we may write 

+ Vs(r).Vs(r)p(r)d3r. (6-a) 

I3ut in this form all the integrals have a definite limit 
even if s ( r )  has no convergence factor (and therefore 
\raries as l/r2). We may therefore use (6-a) and avoid 
ambiguities from conditionally convergent integrals. 

The variational principle shows that s must be a 
solution of 

S 

v. CP (r) ((1 -P)k- Vs(r)>I = 0, (7-4 
\\here we have set 

- /s(r)Vf (r)d3r =pk. (8-4 

.\Iultiplication of (7-a) by s(r) and integration, using 
(%a), tells us further that 

so (6-a) says 

and the effective mass is m/( l  -p), an increase over m of 

Am = om/ (1 - 8). (9-4  
If the direction of k is taken as the z axis, the solution 

(10-a) 
where V ( Y )  is a function of radius r =  (r.r)j  only, 
satisfying 

of (7-a) may be written in the form, 

s ( r )  = (1 - p) k (z- zv ( r ) / r ) ,  

and such that v approaches r a t  large distances. This 
is easily solved numerically. We used the values of 
p ( r )  determined by Reekie and H u t ~ h i s o n . ~  Starting 
for small Y where p(r)=O,  so that dv/dr=O, we chose 
v at  some convenient value and integrated out to radii 
SO large that P ( Y )  was effectively its asymptotic value 
PO. Asymptotically v has the form c(r+B/rZ) where 
B, c are constants. Since the equation is homogeneous 
we may divide the entire solution by c to obtain one 
with the correct asymptotic form. By substitution of 
(10-a) into (8-a) one can show, using (11-a), that the 

expression for (9-a) can be written 

Am/m= 47rpoB- 1, (12-a) 

where we have used the fact that 

J: bo--p(r))47rr2dr= 1 (13-a) 

[the origin, where p ( r )  has a 6 function being excluded 
in this integral]. Actually it is difficult to obtain 
accuracy with this method because the asymptotic 
form of v is sensitive to the values of p ( r )  used. Those 
of Reekie and Hutchinson4 extended only up to r = 6A 
and had to be taken from a graph, so that (13-a) was 
not accurately satisfied without some small arbitrary 
readjustments of the values. 

On the other hand, the solution showed that s ( r )  was 
nearly proportional to z/+. Since (6-a) is a variational 
principle we can therefore obtain a good value of the 
energy much more simply. We substitute the trial 
function, 

s(r)  = Az/r?,  (14-a) 

directly into (6-a) and determine the parameter A to 
minimize &. This gives 

-1 

Am/m= 3 ($.)'[ [ r-6fi (r)4rr2dr] , (15-a) 

or, with the data of reference 4, Am=0.70m, or 2.8 
atomic mass units. (The numerical solution of the 
differential equation gave the same result within its 
accuracy of about 10 percent.) 

It is difficult to evaluate the small correction arising 
from the term A& of (5-a), for 9 3  is unknown. If the 
atoms locally are nearly on a lattice, say face-centered, 
or body-centered, of cubic symmetry, A & vanishes 
with the trial function (14a). 

If the mass of the impurity atom is not four atomic 
units it is readily shown that Am is unchanged, pro- 
vided that the distribution f ( ~ )  of atoms around the 
impurity is assumed to be unchanged. This is also 
expected physically for the extra mass is due to the 
motion of the He4 atoms in the environment of the 
impurity. Therefore for a He3 atom the effective mass 
should be 5.8 atomic mass units. The higher zero-point 
motion of a lighter atom changes p ( r )  by pushing the 
neighbors farther away, thereby raising Am a little 
(but this effect must be a fraction of a mass unit because 
the effective mass is almost certainly less than the 6.8 
which it would be if the He3 had the larger mass of 
4 units). 

This result is not in good agreement with the deter- 
minations which have been made from experiment, as 
summarized by Daunt.I6 These give values nearer 8 or 
9 atomic mass units. 

J. G .  Daunt, Advance in Physics (Phil. Mag. Supplement) 
6, 209 (1952), particularly p. 258. 
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1. Introduction 
Liquid helium exhibits quantum mechanical properties on a large 

scale in a manner somewhat differently than do other substances. No 
other substance remains liquid to a temperature low enough to ex- 
hibit the effects. These effects have long been a puzzle. It is supposed 
that they can all be ultimately understood in terms of the properties 
of Schrodinger’s equation. We cannot expect a rigorous exposition 
of how these properties arise. That could only come from complete 
solutions of the Schrodinger equation for the loz3 atoms in a sample 
of liquid. For helium, as for any other substance today we must be 
satisfied with some approximate understanding of how, in principle, 
that equation could lead to solutions which indicate behavior similar 
to that observed. 

Since the discovery of liquid helium considerable progress has been 
made in understanding its behavior from first principles. Some of the 
properties are more easily understood than others. The most difficult 
of these concern the resistance to flow above critical velocity. If we 
permit some conjectures of Onsager however, perhaps a start has 
been made in understanding even these. The aim of this article is to 
describe those physical ideas which have been suggested to explain 
the behavior of helium which can most easily be related to properties 
of the Schrodinger equation. 

We shall omit references to the phenomena involved in the Rollin 
Temperature Physics 2 
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film. It appears that the film can be understood as being maintained 
by van der Waals attraction to the wall. The flow properties of the 
film are interpreted as a special case of flow properties of helium in 
leaks in general. 

The article falls naturally into two main sections. First, there are 
phenomena in which the superfluid velocity is irrotational. Here we 
can give a fairly complete picture. The second part concerns the case 
in which vorticity of the superfluid exists. Our position here is less 
satisfactory and more uncertain. It is described here in considerable 
detail because of the interesting problems it  presents. 

2. Summary of the Thearetical Viewpoint 
The first striking way that helium differs from other substances is 

that it is liquid even down to absolute zero. Classically a t  absolute 
zero all motion stops, but quantum mechanically this is not so. In 
fact the most mobile substance known is one at absolute zero, where 
on the older concepts we should expect hard crystals. Helium stays 
liquid, as London has shown, because the inter-atomic forces are 
very weak and the quantum zero point motion is large enough, since 
the atomic mass is small, to keep it fluid even a t  absolute zero. In 
the other inert gases the mass is so much higher that the zero-point 
motion is insufficient to oppose the crystalizing effect of the attractive 
forces. In hydrogen the intermolecular forces are very much stronger, 
so it, too, is solid. In  liquid 4He there is a further transition a t  2.2"K, 
the ktransition, between two liquid states of different properties. A 
transition is expected (at 3.2'K) for such atoms if the interatomic 
forces are neglected, as Einstein noticed. London has argued that 
the I-transition corresponds to the transition which occurs even in 
the ideal Einstein-Rose gas. The inter-atomic forces alter the tempe- 
rature and, in a way as yet only imperfectly understood 536  the order 
of the transition, but qualitatively the reason for the transition is 
understood. We will concern ourselves here, only with the liquid He 
11, below the A-point, and shall try to elucidate the qualitative reasons 
for some of its strange behavior. Also we explicitly limit our conside- 
rations to a liquid made purely of 4He atoms so that the wave function 
must be symmetric for interchange of the atoms. We do not mean 
to imply anything about liquid helium 3He, nor about superconduc- 
tors, either by analogy nor by contrast. That is, we shall use the fact 
that the wave function is symmetric in many arguments without 
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stopping to inquire whether the symmetry is necessary part of the argu- 
ment. 

The central feature which dominates the properties of helium I1 
is the scarcity of available low energy excited states in the Bose li- 
quid ’, 8 .  Thcre do exist excited states of compression (i.e.: phonons) 
but states involving stirring or other internal motions which do not 
change the density cannot be excited without expenditure of an nppre- 
ciable excitation energy. This is because, for quantum energies to be 
low, long wave lengths or long distances are necessary. But the wave 
function cannot depend on large scale modifications of the liquid’s 
configuration. For a large scale motion, or stirring, which does not 
alter the density, only moves some atoms away to replace them by 
others *. It is essentially equivalent to a permutation of one atom for 
another ,and the wave function must remain unchanged by a permu- 
tation of atoms, because 4He obeys the symmetrical statistics. The only 
wave functions available are those which change when atoms move 
in a way which is not reproducible by permutation, and therefore 
either, (1) movements accompanied by change in density (phonons), 
(2) movements over distances less than an atomic spacing, thereforc 
of short wave length and high energy (rotons and more complex states), 
or (3)  movements resulting in a change in the position of the con- 
taining walls (flow). We shall discuss these states in detail presently. 

The scarcity of low energy excited states is the seat of many of the 
phenomena in the liquid. This has been known since the work of Lan- 
dau who developed a theory of the liquid on the assumption of such 
scarcity. The specific heat is very low at low temperature and only 
rises rapidly above about 1 OK when enough thermal energy is available 
to excite an appreciable number of the higher energy states (rotons). 
There are so few states excited that the excitations may be localized 
in the fluid like wave packets. These move about, collide with each 
other and the walls, and imitate the appearance that in the perfect 
background fluid there is another fluid or gas. This ‘‘gas’’ of excitations 
carries all the entropy of the liquid, may carry waves of number den- 

* I n  the ideal gas the low excitations are those in which one or t\vo atoms 
arc excited to low states. These involve density changes and are more analagous 
to phonon states (but are even lower in energy than in the liquid because the 
ideal gas has infinite compressiblity, and therefore vanishing sound velocity). 
The interatomic forces in the liquid make it more imperative that if atoms 
are moved an.ay from one point others move in to take their place, i f  high re- 
pulsive energies bet\veen nearby atoms are to be avoided. 
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sity (second sound, analagous to sound in an ordinary gas), finds i t  
difficult to diffuse through long thin channels, tries to even up uneven 
velocity distributions among its roton “molecules” (viscosity), and 
acts in many ways as a normal fluid. Meanwhile the background in 
which the rotons travel, that is, the total body of fluid itself, can flow. 
It flows, a t  low velocity, without resistance through small cracks. 
The reason is that to have resistance, flow energy and momentum must 
go into heat, that is internal excitations (eg. rotons). The energy re- 
quired to form a roton is not available (at the necessary momentum 
change) unless the fluid velocity is very high. 

Actually it appears likely that helium in flow doesn’t form rotons 
directly at all. Resistance sets in a t  a relatively low velocity (critical 
velocity) because apparently a kind of turbulence begins in the per- 
fect fluid *. This cannot occur at lower velocities because energy is 
needed to create vorticity. And, if we accept Onsager’s suggestion, 
the vorticity is quantized, the line integral of the momentum per 
atom (mass of atom times fluid velocity) around a closed circuit must 
be a multiple of h. Below the critical velocity not enough kinetic ener- 
gy is available in the fluid to produce the minimum vortex lines. 

We shall discuss first the way that the scarcity of states accounts 
for many of the properties of the liquid. Here we are summarizing 
work of many others, particularly Landau. I t  is thought best to reem- 
phasize this viewpoint, since it is the one which is directly supported 
by quantum mechanics. Furthermore, in this way we are starting over 
the more familiar ground. Next we discuss the quantum mechanical 
view of the reason for the scarcity of states. Finally in the second part 
of the paper we discuss the quantized vortex lines proposed by Onsager. 

3. Landau’s Interpretation of the Two Fluid Model 
One of the most fruitful ideas in interpreting the behavior of the 

liquid is the two fluid model. I t  was developed by Tisza from ana- 
logy to the structure of an ideal Bose gas. It is often spoken of as 
a vague association of two penetrating fluids. Landau lo has inter- 
preted it in a definite manner. We review his interpretation here, al- 
though an excellent review by Dingle l1 already exists. He has strongly 
emphasized the fact that one might picture the helium as a background 
fluid in which excitations move. At absolute zero one has a perfect 

* The author now considers his statement (reference 7) that  the reason for 
flow resistance “cannot very well be a kind of turbulence”, to be in error. 
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ideal fluid which may flow frictionlessly with potential flow. If heated, 
the heat energy excites the liquid. This it does by creating here and 
there within i t  excitations of some sort. These excitations can make 
their way from one place to another, collide with the walls and with 
each other, and give to helium some properties associated with the 
so-called normal fluid component, such as viscosity. Landau as a re- 
sult of his study of quantum hydrodynamicas was lead to suppose 
the excitations to be of two kinds. Of lowest energy are the phonons, 
or quantized sound waves, whose energy E eqdals p c  where p is the 
momentum and c the speed of sound. Above these separated by an 
energy gap A are those of another kind, called rotons. At first he sup- 
posed the energy of these to be given by A + p2/2,u if they have mo- 
mentum p ,  where p is an effective mass. Later he found that this did 
not agree with the experiments of Peskhov on second sound, and he 
proposed instead the formula 

Erot =: A 4- ( f i  - p,-,)2j2p ( 1 )  

where Po is some constant. He went further and suggested that all 
these excitations really are of the same class and differ only in  monien- 
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Fig. 1. The energy of excitations as a fnnction of their momentum. Solid line 
as envisaged by Landau with parameters set to  fit specific heat  data: dotted line, 
a n  approximate curve derived from quantum mechanics. 
Excitations in linear section for low momentum correspond to phonons. Those 
near the minimum of the curve are called rotons. 
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tum. The energy E($)  of those of momentum $, depends only on the 
magnitude of $, rising a t  first linearly as $c,  but later falling to a niini- 
mum at $, and rising again, as in Fig. 1, solid curve. The curve in 
the vicinity of the minimum is given by (1) .  A t  the low temperatures 
encountered in He I1 only the states near $ = 0, and those close to 
the minimum are excited. Therefore we do not have to know the rest 
of the curve accurately. Furthermore, the only important excitations 
are one of the two classes, phonons and rotons. 

Supposing the excitations to obey Rose statistics the number, at 
temperature T ,  of momentum in the range d3p is, according to statisti- 
cal mechanics, 

n p  = (exp PE - 1)-1 d3p(hf i )3  (2) 

\vith B = (k7J- l  and E = E($) .  From this the average energy E($)  
and the specific heat can be calculated. In agreement with experiment 
it begins at  low temperature as T+3 as expected, according to Debye, 
since only phonons are excited. At higher temperatures the higher 
energy rotori excitations become excited, and the specific heat rises 
much more rapidly. The thermodynamic properties are in excellent 
agreement with the theory if l2 

c =: 240 meterslsec 
A l k  =-= 9.6"K 

p = 0.77 
$Jh  = 2.0 -4-1 

\\.here 111 is tlie atomic mass of helium. 
The hydrodynamic equations of the two fluid model arise as follows. 

Suppose the fluid a t  absolute zero has density e,, and velocity 'us. 
In the first part of this paper we shall take b, to be irrotational 
p~ x T, =': 0. Later we discuss the problem of local circulation. The 
mass current density is Q,V, and the kinetic energy is +p,,a,2. Suppose 
that as a result of a rise in temperature a limited number of excitations 
arc formed in the fluid. Landau has shown that the energy to form 
excitations in ii moving fluid is not E($)  but is 

1; = I { ( $ )  -1.- p . 0, (3) 

This results from simple considerations of the relations in moving and 
still frames of reference.The mass current density equals the momentum 
density of the fluid since all of the atoms have the same mass. I t  now is 
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.i = e0v, f < P >  (4) 
wherc < p  > is thc mean momentum of the excitations per unit volumc. 
Now the mean c p >  depends on how the excitations drift. If the)- 
are in equilibrium with the fixed walls of the vessel the mean p is 
not zero. The energy is E ( p )  + p  . us. It is lower than E($)  for those 
excitations, whose momentum is directed oppositely to us. Therefore 
in equilibrium morc excitations align oppositely to vS than parallel 
to it. For this reason the mean p is directed oppositely to v, and for 
small v, is proportional to it, let us say < p >  = - pnvUr. This defines 
en. If e, is defined as c0 - p n  we have a total current esvs in a situation 
in which the excitations are in equilibrium with fixed walls. The equi- 
librium is established by collisions of thc excitations with the walls 
and with each othcr. 

The number of excitations of momentum p is again determined bj. 
(2) but now with E given by (3 )  so that the averagep is 

c p >  = Jp(exp P(E(p)  + p  . v,) - 1)- 'd3p(2nhk3 
or expanding to first order in v,, find < p >  = - envs where 

P en = - 1 pZ(cxp ( p E ( p ) )  - I)-* expBE(p) d3p ( 2 ; c f i ) 7 3  (5) 
J 

The density en determined from experiments in second sound is in 
reasonable agreement with this expression (evaluated with the con- 
stants given above it fits above 1"K, but below 1°K the values p,/fi = 
2.3 A-1 and ,u : 0.40 m fit better, and do not alter the good fit to the 
thermodynamic data). This explicitly shows that p, is a derived con- 
cept, and does not represent the density of anything which has micros- 
copic meaning. 

The excitations can drift also. The distribution for equilibrium in 
a drifting gas is, according to statistical mechanics, 

n ( E )  = (exp P(E - p  . ZL) - l)-I 

< p >  = - en(vu,--21). 

(6) 
where tt is a parameter. In  this case the mean momentum is 

If we write 'LC = v,& we have for the current 

j = e o v s  - ~ n ( r , ,  - (0 = esvs + e n v n  (7 1 
This can be interpreted macroscopically as saying that the current is 
like that in a mixture of two fluids, one of density e,  moving at  velo- 
city v,, the othcr of density o , ~  and velocity t ~ , ~ .  
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Actually (6) is not an equilibrium distribution unless the walls move 
at velocity u, and furthermore u is constant throughout the liquid. 
It is generally taken as a good approximation in the case that u, that 
is, vn, is not constant. The lack of equilibrium in this case produces 
irreversible effects, such as viscosity, which can be associated with the 
“normal fluid component”. The distribution is in equilibrium even if 
v, is not constant. 

The entropy of the system is that of the excitations. It is easily 
verified that the mean group velocity of the excitations (the mean 
of 6 (E(9)  + p  .vJ/dp) is just v,~. The entropy can therefore be con- 
sidered as flowing with the “normal fluid”. 

It is also possible to work out the expected value of the energy of 
the system. If one calculates the internal energy and subtracts the 
internal energy the system would have a t  the same entropy but with 
v, = v, = 0 the excess expanded to the second order in the velocities 
can be written &,o,v~ + +,onvn2. This is just what the two fluid 
model would expect. 

Therefore Landau shows that a liquid system with excitations as 
described will behave in many ways like a mixture of two fluids. 

Furthermore, considerable progress has been made by Landau and 
Khalatnikov l3 in the interpretation of many irreversible phenomena, 
such as viscosity, attenuation of second sound, etc. from the kinetic 
theory implied by such excitations. It is not possible as yet to find the 
crosssection for collision, say between two rotons, from first principles. 
But if a few such quantities are considered as unknown parameters, 
a great deal can be said. The number of rotons varies very rapidly with 
temperature, in the manner given by (2). For this reason the mean 
free path for collision and the resultant viscosity resulting from roton- 
roton collisions has a known temperature dependence. In  a similar 
way the contribution of collisions between rotons and phonons or 
between phonons can be worked out. There are also collisions in which 
the number of excitations change. The results are often in excellent 
agreement with experiment. 

There is, therefore, little doubt that in liquid helium there are such 
excitations, with the energy spectrum that Landau suggests, and that 
this picture supplies the complete interpretation of the two fluid model 
for helium 11. 
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4. The Reason for the Scarcity of Low Energy States 
The next question that concerns us is to try to see from first prin- 

ciples why the excitations of the helium fluid have these characteristics. 
Landau has, in fact, tried to obtain some justification for the spec- 

trum from a study of quantum hydrodynamics. This is not a complete- 
ly detailed atomic approach. One attempts to describe the liquid by 
a few quantities such as density and current, or velocity. Then one 
makes these quantities operators with reasonable commutation re- 
lations, and tries to find the excitation energies of the fluid. The pro- 
blem has not been analyzed in sufficient detail to establish the energy 
spectrum (1).  Such an approach cannot give us an ultimate detailed 
understanding for two reasons. First, the numerical values of A ,  Po, p 
show these quantities to be characteristic of the atomic structure of 
the liquid. A theory which describes the fluid simply by average varia- 
bles and which therefore cannot represent the fact that the liquid 
does in fact have atomic structure cannot lead to definite values for 
excitation energy. A more serious problem is this. It is necessary to 
show not only that the excitations E(p)  exist, but that there are not 
a host of other possible excitations lying lower. If we describe the 
liquid with average variables we have no assurance that there are no 
excitations at  a level below the coarsness of our averages. Possibly 
excitations exist which represent no gross density variation and no 
mean current. If many other lower excitations exist they dominate 
the specific heat curve and the properties of the fluid. (Perhaps in 
3He we have an example of a system capable of excitations at an atomic 
level which are not describable by the variables used in quantum 
hydrodynamics). 

However it is possible from first principles to see why there are 
no other excitations but those supposed by Landau and why the 
energy spectrum of these excitations has, qualitatively, the form 
which he supposed. 7, 8 

In order to do so, we should, rigorously, have to solve the Schro- 
dinger equation for the system. 

-rzj V(R,, )y  = E y  

where nL is the atomic mass, V(Rij) is the mutual potential of two 
atoms separated by the distance Rij = R i -  Rj,  and vi2 represents 
the Laplacian with respect to the coordinates Ri of the 2'' atom. 
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The sums must be taken over all of the IV atoms in the liquiu. We 
cannot solve this equation directly but we can make surprising head- 
way in guessing the characteristics of the wave functions y which 
satisfy it. 

We shall have to picture the wave function y.  I t  differs from one 
state to another. But we will consider its value for only one state a t  
a time. Then it is a definite but complicated function y (R , ,  R,  ... R,,,,) 
of the 3N variables R,. To picture it we must have a scheme by which 
we clearly represent i t  in our minds. Now such a function is a number 
associated with every set R” of values R,, or, as we shall say, with 
every configuration of the atoms. We can represent a configuration 
RN by imagining each of the N atoms in the vessel containing the 
liquid to be located with its center at one of the R,. That is, each con- 
figuration is represented, as classically, as a particular definite location 
for each of the atoms. Then y ( R N )  is a number associated with each 
such arrangement of the atoms. We can call it the amplitude of the 
configuration. For a given state, this amplitude for some atomic ar- 
rangements is large - these arrangements then have large probability - 
for others small and the configuration is unlikely. When we wish to 
speak of how the amplitude changes as the values of R, change, we 
shall use the more vivid language of asking how the amplitude changes 
as the atoms are “moved” about. Such motions are not directly related 
to any real classical motions, of course. In fact we cannot describe 
classical motions directly. All such classical ideas must be interpreted 
in terms of the mathematical behavior of y ,  if we are to be consistent 
with quantum mechanical principles. Most of our task, therefore, is 
trying to describe the y functions which correspond to the various 
kinds of states of energy, or motion, of which the liquid is capable. 

Start by considering the ground state wave function which we shall 
call SP .We use the intuition which wc have acquired from knowing 
the solutions of the Schrodinger equations for simpler systems. For 
stationary states, y can be taken to bc a real number. The lowest state 
always has no nodes (except for the exclusion principle, which does 
not operate here). Therefore 0 is everywhere positive. I t  is symme- 
trical, that is, SP depends only on where atoms are, not on which is 
which. The energy V(R)  of interaction of two helium atoms, as wor- 
ked out by Slater and Kirkwood,l4 for example, consists of a very weak 
attraction a t  large distances, but a powerful repulsion inside of 2.7 A 
(see Fig. 2). The atoms in liquid hclium at thc normal density have 
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a volume of 45 cubic Angstriinis each so they are not tightly squeezed 
together. If one wishes a rough approximation, consider the atoms 
as impenetrable spheres of 2.7 diameter, and forget the attraction, 
whose effect is, after all, mainly just  to hold the liquid together at 
the normal density even if thc external pressure falls to zero. Then 
configurations of atoms in which some overlap each other, that  is, 
are closer than about 2.7 A, are of very small amplitude. In  the most 
likely configurations the atoms are well spaced. As for a particle in 
a box whose wave function bows highest in the center and falls gra- 
dually to zero at  the walls, we may imagine the amplitude highest 
for good separation and falling toward zcro i f  a pair of atoms approach 
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Fig. 2. The potential of interaction of t\vo helium atoms ;IS function o f  their 
separation as worked out from qnnntum mechanics by Slnter and Kirkwood. 

too closely. Our structure is a liquid, as a consequence of the zero- 
point energy, so that no particular lattice arrangement is strongly 
preferred. All configurations for which the spacing is ample have high 
probability. \Ye can get from one arrangement to another without 
ever crossing a forbidden configuration of overlapping atoms because 
of the large spacing (cube root of atomic volume is 3.6 A). Although 
not crystalline, there is a little local order induced by the tendency of 
atoms to stay apart, so that X-ray or neutron scattering experiments 
show a structure very similar to that of other simple liquids like liquid 
argon. 

For the configurations of high amplitude the density is fairly uni- 
form, at  least unt:l we look over such small volumes that we can see 
the fine grain atomic structure. If the density in a region is raised the 
atoms comc closcr togetlicr so that the “bow” on the waT’e function 
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which occurs as one atom is moved from contact with a neighbour on 
one side to one of the other side, is confined to a smaller space. The 
increased curvature represents increased kinetic energy and it is not 
as likely to find a configuration in which such an energy barrier is 
penetrated. As a matter of fact, this feature is easily analyzed quanti- 
tatively. Long range density fluctuations are sound waves. The rise 
of energy on compression is described by the compressibility coeffi- 
cient, or equivalently by the speed of sound. Classically, standing 
density waves oscillating as a normal mode behave as an harmonic 
oscillator. Likewise, in quantum mechanics these are quantum os- 
cillators and have zero point motions, although the most likely con- 
figuration is that of uniform constant density. The wave function for 
the zero-point motion of an oscillator is a gaussian so that the ampli- 
tude Qi for a given kind of density fluctuation falls off exponentially 
with the square of the fluctuation. To summarize, the ground state 
function is large for any configuration in which the atoms are well 
spaced from one another at nearly constant average density. If falls 
off if these conditions are violated. 

Next we turn to the excited states. Right away one obvious exci- 
tation is that of the standing sound wave. If the classical frequency 
is w the quantum excitation energy of such a mode is fiw. Usually 
one prefers by linear combinations to make states of running waves, 
or phonons. If the wave number is k ,  the energy is rtkc if c is the 
sound velocity. 

We may readily obtain the wave function for such a phonon exci- 
tation. If the density is Q(R) the classical normal coordinate going 
with such a mode is 

qlC = Je(R) exp (ik . R) d3R (8) 
Quantum mechanically for an oscillator the wave function for the 
ground state is a gaussian, and the first excited state is just the coor- 
dinate times this gaussian (the first hermite polynomial HI(%)  is just 
x ) .  Hence the wave function is 

Yfphoiioii z= ‘ 1 1 ~ ~  (9) 
if 0 is the ground state wave function of the system, which we have 
described in the preceding paragraphs. We have not bothered to nor- 
malize our function. The liquid consists of many atoms so if Ri is 
the position of the ith, the density in any configuration is 
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e(R) = L',6(R-Rn,) (10) 

the sum extending over all the atoms. Putting this in (8) and then (9) 
we find 

(1 '1 yphonol, - -- (2, cxp. ik . R,) @ 

This is valid if the wave length (2n//z) is much larger than the atomic 
spacing, for then our description by compressional waves is adequate. 
The state energy is hhc. Since k k  is the momentump of the state, this 
means E = pc .  Since the wave lcngth can be very long this energy 
can be exceedingly low. 

The central problem is to see why no states other than these pho- 
nons can have such low energies. We try to construct the wave func- 
tion y of an excitation which should be as low in energy as possible 
and yet not represent a phonon. We must associate a number which 
may now be positive or negative with each configuration. I n  fact, 
since y must be orthogonal to the ground state @ which is everywhere 
plus, y must be plus for half the configurations and minus for the 
other half. Furthermore, y must be orthogonal to all the phonon states. 
This simply means that y must vary from plus to minus for changes 
in the configurations which do not appreciably alter the large scale 
density. Configurations can alter without variation of mean density 
by simply stirring the atoms about. Of course, since y must represent 
as low an energy as possible we must give low amplitude to configu- 
rations in which atoms seriously overlap, just as in the ground state @. 

The function y takes on its maximum positive value for some con- 
figuration of the atoms. Let us call this configuration A ,  and the parti- 
cular locations of the atoms a-positions. We said that the u-positions 
must be well spaced so that the atoms do not overlap, and further 
that they are, on a large scale, a t  roughly uniform density. Equally, 
call configuration B, with atomic positions p,  that for which y has 
its largest negative value. Now we want B to be as different as pos- 
sible from A .  We want it to require as much readjustment over as 
long distances as possible to change A to B. Otherwise y changes 
too rapidly and easily from plns to minus, our wave function has a 
high gradient, and the energy of the state is not as low as possible. 

Try to arrange things so that A requires a large displacement to 
be turned into B. At first you might suppose it is easy. For example 
(see Fig. 3) in A take some atom in the left side of the box containing 
the liquid and move it way over to the other side of the vessel, and 
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call the resulting configuration B. One objection to this is that an atom 
is moved from one side to another, so a hole remains at  the left and an 
extra atom is a t  the right. This represents a density variation. To avoid 
this we may imagine that another atom has been moved at  the same 
time from right to left, and the various holes and tight squeezes have 

Fig. 3. Two configurations (solid 
and clotted) that  result from large 
displacements (long arrows) of the 
atoms, can actually be accom- 
plished by much smaller adjust- 
ments (short arrows) because of 

the identity of the atoms 

been ironed out by some minor 
adjustments of several of the neigh- 
bouring atoms. This movement of 
two atoms each a distance o f  the 
size of the vessel. one from left to 
right and the other from right to 
left, is certainly a long displacement, 
so B and A are very different. But 
they are not. 

The atoms must be considered as 
identical, the amplitude must not 
depend on which atom is which. One 
cannot allow y to change if one 
simply permutes atoms. The long 
displacements can be accomplished 
in two steps. In the first step per- 

mute the atoms you wish to move to those a-positions closest to 
the ultimate position they arc to occupy in the final configuration 
H .  This step does not change y because all the atoms are still 
in the same configuration of a-positions. Then the change to 
the B configuration is madc by small readjustments, no atom nio- 
ving more than half the atomic separation. In this minor motion y 
must change quickly from plus to minus and the energy cannot be 
low. For the reason that the wave function is unchanged by perniu- 
tation of the atoms it is iinposible to get a B configuration very far 
from the A configuration. No very low energy excitations can appear 
(other than phonons) a t  all. 

In  thc phonon case we consider configurations in which, as y changes 
sign, the density distribution changes. A change in density cannot be 
xcomplished by permuting atoms. That is why the Bose statistics 
does not affect phonon states. But it leaves them isolated as the lowest 
states of the system, so the specific heat approaches zero as T appro- 
aches zero according to Debyes T3 law. This is the key argument for 
thc understanding of the propcrties of liquid hclium. It is given in 
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somewhat more detail in reference 7. Since it is a negative argument, 
attempting to prove that a low energy state does not exist, it is difficult 
to convey conviction in a few words. The reader should try to invent 
wave functions of low energy for himself. After a few attempts he will 
see much more clearly what we have tried to explain here. 

5. Rotons 
The qualitativc argument is complete in itself. Nevertheless it is 

gratifying that it may be pushed even further to produce a quantita- 
tive estimate of the energy of these other excited states. We give only 
a summary of the considerations here (see reference 8 for details). 
We try to clarify our picture of the wave function y ~ ,  until we can 
write a mathematical expression for it. This expression put into the 
energy integral jyyHydNT~/Jy*ydNTf will give us an estimate for the 
energy. 

As we said, in order to get the cnergy as low as possible we wish 
the gradients of y to be small. Therefore the configuration B (where 
y is maximum negative) must be as 
far as possible from configuration A .  
Yet we noted that no /?-site is more 
than half the atomic spacing from 

generally nearly the same. They are 
furthest from each other if as many 
atoms as possible must be moved. 
That is accomplished when, as illus- - A 

. 

c-jo I' 0 "@ 
'./I 

1 

an u-site. The two configurations are ~. L 4  

'- 0 0 

trated in Fig. 4, all the /?-sites are Fig. 4. The excited state wave 
function must be positive for one 
configuration, solid circles (a-posi- between a-sites, SO every atom must 

configurations, not only for A and B 
when all atoms are on x-sites, or all 

leaves no atom unmoved: dotted 
circles (,+positions) 

on /?-sites. The lowest energy results if the transition from plus to 
minus (hence A to B )  is as gradual as possible. First for configurations 
in which each of the atoms is either on an u or on a /?-position, this 
is most naturally accomplished if y is proportional to the number 
on u-sites minus the number on /%sites. This difference passes smoothly 
from plus to minus. It can be expressed mathematically this way: 
Consider a function, f(R), of position, which is + 1 if R is at an u- 
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site and - 1 if R is at a p-site. Then Zif(Ri)  summed on all the atoms 
is just the desired number on u-sites minus number on /?-sites. For 
intermediate positions y will vary as smoothly as possible if f(R) 
is taken to vary in some smooth way between its extreme values of 
+ 1 and - 1 ,  which it takes on at  a and /?-sites. This suggests that 
we take y to be of the form 

But this is incomplete for we tacitly assumed that in all the confi- 
gurations the atoms did not overlap, the mean density did not vary 
very much and so on, just as in the ground state. This feature can be 
taken into account if we take instead 

Yroton = &f(Ri) @ (12) 
where @ is the ground state function. l5 Then y will fall rapidly if the 
atoms overlap, etc. We actually do not know what the function f(R) 
is but we expect it to vary rapidly, so that if expanded in a fourier 
integral the dominant wave lengths would be the atomic spacing. 

According to the variational principle the best wave function is 
that which minimizes the energy integral. In  this way, by variation 
of f(R) it is readily found (see reference 8) that the minimum results 
if the function is 

f(R) = exp (ik . R.) (13) 

E(K) = h%2/2mS(K) (14) 

and that the corresponding energy is 

where m is the atomic mass. The function S(K) is the form factor for 
the scattering of neutrons from the liquid. That is, it is the Fourier 
transform of the function p(R)  which gives the probability per unit 
volume of finding an atom at  a distance R from a given atom in the 
liquid in the ground state. 

The local partial order of the liquid in the ground state shows up 
as in other liquids as a ring in the diffraction pattern (of neutrons, 
or X-rays). That is to say, there is a maximum in the function S ( k ) ,  
which occurs when k represents a wavelength near the nearest neigh- 
bour spacing. The maximum in S(K) represents a minimum in E(K) 
here. This confirms the expectation that the low excitation would 
have wave numbers in this vicinity. 

The state ( 1  2) and (1 3) has the momentum p = filc. Ordinarily not 
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every value of a parameter in a wave function has significance in the 
variational method. But states of different momenta are orthogonal, 
and the energies (14) are significant not only for k near the minimum, 
but also in the neighbourhood of this value. The range of values for 
which (14) is useful is limited only by thc range for which (1 2) can be 
expected to be a good wave function. For small k ,  (12) is identical 
to the wave function ( 1  1) representing phonon excitation, and (14) 
can be shown to give htkc in that region. Therefore the espression 
should be reasonable not only for k near the reciprocal atomic spacing, 
but fcr low k as well. I t  predicts a spectrum at first linear in f i  (= kit) 
then falling to a minimum, just as anticipated by Landau, and in 
agreement with experiment. 

The curve S ( k )  taken from neutron data of Henshaw and Hurst 16, 
or from the X-ray scattering data of Reekie l7 agree. The E ( k )  which 
results is shown in Fig. 1 by the dashed line. The general behavior 
and minimum are clearly shown. 

The actual value of the energy a t  the minimum is twice too high 
to agree with the experimental value (solid line) for A .  The theoretical 
value lies above the true value, as it should according to the variation- 
al principle. 

The inaccuracy of the wave function (12) prevents us from giving 
a complete description of what the roton wave function must look 
like. The function (12) does not satisfy the conservation of current. 
It appears as though a more accurate function would represent a 
current distribution large and unidirectional in one region, with a 
field of return currents surrounding it, somewhat in the nature of 
a smoke ring. These and other arguments suggest a trial function of 
the type 

y = .Ci exp ik . Ri . exp i Zjg(Rj - Ri) @ (1 5) 

with the g, representing the back flow, to be determined. It is very hard 
to perform the integrals required in the variation problem with ( 1  5), 
so it has not been verified whether (15) represents a substantial im- 
provement. 

One way to understand the low energy for k near the reciprocd 
atomic spacing is this. One might consider these as sound waves of 
very short wave length. To obtain a density variation of long wave 
length is hard. To make the compression work must be done against 
opposing forces. For wave lengths closer to atomic spacing, however, 
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such density variations are easier to arrange. In fact, one can create 
variations of wave length equal to the atomic spacing simply by ar- 
ranging the atoms, doing no appreciable work against repulsions, the 
energy being purely kinetic fi2k2/2m. Actually the energy is even lower 
( S ( k )  at  maximum is I .3) for there is a positive tendency in the liquid 
to have such variations; if some atoms are correctly arranged the 
others are more likely to be also satisfactory because of the local 
order. Therefore the energy does not continue to rise as fikc but falls 
lower for wave lengths near the atomic separation. 

I t  is easy to  verify that these excitations behave in just the way 
that has been assumed in developing the statistical mechanics and the 
two fluid model. To represent a state with two excitations, say with 
momenta k ,  and k ,  one has the approximate wave function 

y = ( Zi exp ik, . Ri) ( Zi exp (ikz . R,j)) CD 

and so on. Since the order of the factors is irrelevant this is the same 
state if k, and k, are reversed.The excitations obey the Bose statistics. 
In moving fluid the energy of the excitations can be shown to be ( 3 ) .  

6. Irrotational Superfluid Flow 
So far we have only described the wave function for states repre- 

senting internal excitation. We turn next to a description of the wave 
function which represents the state of the fluid when macroscopically 
we say it is flowing. We will assume that the flow velocity does not 
vary appreciably over distances of the order of an atomic spacing. 

It is not dfficult to represent by wave functions states which re- 
present the motion of the superfluid. Suppose the system is a t  absolute 
zero so there are no excitations. If the entire system moves forward 
as a body, since the center of gravity coordinate can be separated 
out from Schrodinger’s equation, the wave function is 

7y = (exp ik . ( Z i R i ) )  0 

where NAk is the momentum of the system, if there are N atoms. In 
case the velocity is not uniform we can construct a wave function 
somewhat as follows: If the velocity varies only slowly from place 
to place, those atoms temporarily in a macroscopic region where the 
velocity is, say, v must surely have a wave function very much 
the same as though the liquid in the region were isolated and moving 
at a uniform velocity. This suggests that the phase contains a term 
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fi-1mv . ZtRa, the sum being taken only over those atoms in the region. 
Other regions where v differs make similar contributions to the phase 
so the total phase is mZc,v(R,) . R ,  where v(R) is the velocity a t  R. 
This suggests a wave function of the form 

Wflow =-[exp i(,W&))l @ ('6) 
where s(R) is a function which varies only very little over distances as 
small as the atomic spacing. We have suggested that it is fi-lmv(R) . R, 
but as is usual for waves whose wave length varies with position, 
the momentum is the gradient of the phase, not the coefficient of R. 
Thus (1 6) does represent the helium flowing, but the velocity is given by 

v = hm-q7s. (17) 
I t  is readily verified that the current density is Q ~ V ,  and the energy 
(from the variational integral) is +povz, as expected classically. There 
is no change in density, as in (16) we have not allowed these small 
effects to be represented. 

If excitations exist in the moving fluid the wave function is (16) 
multiplied by the factor Zz/(Rz) in (12). The excitation enetgy turns 
out to be (3) as expected, interpreting v as the superfluid velocity 
12,. 

Equation (17) implies that the motion is irrotational, that  is, 
(7 x vs = 0. In a simply connected region this has only one solution 
for given motion of the boundaries. For fixed boundaries it is v, = 0. 
In a multiply connected region the situation is different. Since (7 x 
v ,  = 0, the circulation about any closed curve which can be shrunk 
to a point is zero. On the other hand, in the case of a toroidal region, 
if the curve encloses the hole the circulation need not vanish. Although 
the wave function must be single valued, s may be of the nature of 
the azimuthal angle, increasing by 2n, or a multiple thereof if one goes 
around the hole. That is, for a circuit enclosing a hole (into which 
liquid may not freely flow) the circulation must be an integral multiple 
n of a quantized unit 2nrYzlm, 

$ vs . ds = 2nh~?n-~ . n = 2nn . 1.5 x 10-4 cm2/sec (18) 
These states do not influence the previous statistical mechanical ar- 
gument. There are too few of them. The velocity may be considered 
as a macroscopic variable, such as density. For a macroscopic torus 
even the lowest of the states given by (18) is very much higher than 
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a roton energy A .  Thus if the torus area is A ,  radius R, the mass 
moving is iieA . (3nR)!d3 where d3 is the atomic volume. I t  moves 
at  velocity given by v, . 2zR ='2dinr-l, from (18), so the kinetic 
energy is (li2/2nzd2) . (2zA/Rd).  The factor h 2 / 2 m d 2  is an energy of the 
order of n roton, but the second factor is very large, being the torus 
dimension over the atomic spacing. Incidentally the total angular 
momentum is ti per atom. 

If the fluid must flow irrotationally, at first sight, it cannot lose 
energy, unless it is moving very rapidly. This has been pointed out 
by Landau. If a body of fluid is moving at  velocity v ,  and loses a small 
energy dE, it must do so (to keep the flow irrotational) by the entire 
fluid changing its velocity. Let the change in v be dv. If M is the effec- 
tive fluid mass the momentum change dp is Mdv and dE=Mvdv=vdp. 
Now this energy loss must go into heat; that is, into internal exci- 
tations of rotons. But if the momentum transferred to excitations is 
S p  the energy cannot be small. It must be at  least about (Sp/p,)A 
where A and p, are the energy and momentum of an individual roton. 
That is, 6E must be at least (d/p,)dp and energy cannot be lost unless 
v exceeds A/p,, about 70 meters per second. (More accurately v must 
be high enough that a line drawn from the origin at  slope v can cut 
the E ( p )  vs p curve). This suggests the reason for the frictionless flow 
of superfluid. But we have proved too much, for in actuality the 
resistance sets in at velocities a few hundred times smaller. 

The only way that gross slowing down can occur for lower velocities 
is for small parts of the fluid to stop or slow down without the entire 
fluid having to slow down at once. That is, energy loss must be accom- 
panied by flow which is not irrotational; that is, flow which involves 
local circulation. To understand such effects we must add a new element 
to our picture of phonons, rotons and potential flow. These are the 
quantized vortex lines suggested by Onsager. 1 We proceed to des- 
cribe them. 

7. Rotation of the Superfluid 
The problem which now faces us is to extend (16) so that we can 

also represent states for which x v does not vanish, or at least 
where there is circulation in the superfluid. We analyze the situation 
at absolute zero for simplicity. We must present ourselves a problem 
in which such circulation is necessary and try to  find the lowest energy 
state. The situation first considered by the author was the slip-stream 
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between two regions of fluid moving at different velocity, but it is 
easier to arrive at the result by considering the problem of helium with 
high angular momentum in a cylindrical vessel. Suppose, for example, 
the helium at absolute zero is initially under such pressure that it is 
solid and is set into rotation, then the pressure is released so that it 
liquifies. What is the final state of the helium? We ask then for the 
lowest state of a quantity of helium which has a definite, niacroscopic- 
ally high, total angular momentum. 

For a system of given angular momentum the kinetic energy is 
least if the angular velocity o is a constant throughout the liquid. 
This motion is not rotation free for v x D = 20. But it is very difficult 
for helium to manage a state of local circulation. In fact, without 
high excitation energy, local circulation is impossible. At first one 
might find it hard to see why the liquid cannot simply rotate as a 
rigid body. The energy is then low, But a liquid is not a rigid body. 
A part of it can turn independently of the whole. In  a rough way of 
speaking the liquid may be thought of as made up of many quasi- 
independent units of nearly atomic dimensions. Any motion of the 
body can be compounded of motions of the tiny parts. But to set any 
small part into a rotational state requires a high energy because the 
moment of inertia is so small. If only a limited energy is available 
nearly all the “parts” must be frozen out in their ground states.That 
is, nearly everywhere the local angular momentum is zero, i.e., 
v x vs = 0. It takes energy to create circulation and, furthermore, 
we can expect this circulation not to be distributed uniformly through- 
out the fluid. The rigid body type of rotation where 67 x D~ f 0 
everywhere is not possible, or if at  all, only with an enormous expen- 
diture of energy, an expenditure far higher than that gained by the 
uniform distribution of angular velocity. 

Another possibility thaf suggests itself is that the liquid, if the an- 
gular momentum is high, is not free of excitations like rotons and 
phonons even though the temperature is at  absolute zero. These ex- 
citations could carry the angular momentum. That is, in the language 
of the two fluid model, perhaps there is at  2‘ = 0 a mixture of superfluid 
and normal fluid, with the superfluid component not rotating, and 
with the normal fluid carrying all of the angular momentum, The 
energy to maintain thc normal fluid being sustained by the fact that 
if less normal fluid were present, for givm angular momentum the 
kinctic energy would h a r ~  to be larger. This turns out, for vessels of 
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centimeter dirxnsions turning at  about one radian per second, to 
be a state of nearly lo4 times the energy of a rigid body rotating a t  
the same angular velocity. Surely nature can find some lower state 
for the helium. 

11-e know (see 18) that if there is a hole in the liquid, circulation 
can exist. Therefore another solution suggests itself. The liquid cir- 
culates around a hole with constant circulation as in a free vortex 
(familiar from rotation of water around an emptying drain). The velo- 
city varies inversely as the radius, rising to such heights near the cen- 
ter as to be able to maintain the hole free of liquid by centrifugal force. 
Such a solution would be easy to verify in a striking manner by looking 
at the surface of the liquid. Instead of the usual parabola it would be 
the curve of the surface of a free vortex. The energy is still quite a bit 
higher than the rigid body case, because the velocity instead of being 
distributed proportionally to the radius, actually falls as the radius 
increases. Nevertheless it is orders of magnitude below the mixture 
of normal fluid suggested above. 

However, this is still not the lowest possible energy state, and the 
striking experiment will not succeed. To show this we construct a 
lower state. Suppose that the liquid has not only one vortex at  the 
center, but several vortices. For example, suppose beside the central 
one there were a number distributed about the circle of radius Rj2, 
half that of the vessel K, and all turning the same way. Viewed grossly 
this is like a vortex sheet so the tangential velocity can jump as we 
pass from inside Rj2 to outside. Then the velocity can be arranged a 
little more like the linear curve by two sections, each of which is a 
1 / r  curve. The gain in energy resulting from this improved distribution 
may more than conipensate the energy needed to make the additional 
holes (and, further, the central vortex need not now be so large and 
energetic). 

Continuing in this way with ever more vortices it soon becomes ap- 
parent that the energy can always be reduced if more vortices form. 
However there is a limit. Due to the quantization (18) of the vortex 
strength the smallest vortex has circulation 2zhm-l. The lowest 
energy results if a large number of minimum strength vortex lines 
(which we shall call unit lines) form throughout the fluid at  nearly 
uniform density. The lines are all parallel to the axis of rotation. Since 
the curl of the velocity is the circulation per unit area, and the curl 
is 2(o, there will be 
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2mo/272fi = 2.1 x I 030 lines per cm2 (19) 
with o in radians per second. For w = 1 rad per second the lines are 
about 0.2 mm apart so that the velocity distribution is practically 
uniform. 

Such weak lines will not form actual macroscopic holes. In fact, 
if one neglects atomic structure and assumes a classical continuous 
liquid with surface tension, a unit line makes a hole opposed by sur- 
face tension which figures out to bc only 0.4 A in radians. That means 
that there is no real hole in the liquid. Around such a unit line, for 
example a straight one along the z-axis, the wave function off the axis 
is roughly 

where pz is the anglc about the z-axis. This does not hold close to the 
axis. On the axis exp ip, is meaningless, and close to it has enormous 
gradients. A particle on the axis cannot have angular momentum, yet 
(20) implies that each atom has angular momentum Ti, nor can there 
be exceptions because the Bose statistics implies that they are equi- 
valent. Therefore a more accurate expression than (20) would be this 
expression multiplied by a factor which is unity except if any one of 
the atoms comes very close to the axis, in which case it falls rapidly 
to zero. The density of fluid falls to zero on the axis. This is the rem- 
nant of the classical hole. Actually quantum mechanically the line 
will not remain perfectly straight in one spot but will have some zero 
point motion of wandering and waving to and fro. 

It is not hard to get a reasonable estimate of the energy contained 
in these lines. First consider an isolated unit line along the axis of a 
cylinder of length L.  radius b. The velocity a t  radius Y is filmy and if 
e, is the fluid density in atoms per cc (eo = 1/45 A3) the kinetic energy 
is the integral 

K .  E .  = +Jpom(f i /mr)z .  2n.r dr . L.  
The upper limit of the integral is b. It diverges at the lower limit, but 
within about the atom spacing the velocity formula is meaningless. 
Furthermore, inside this radius some of the energy is potential, re- 
quired to keep to density down near the axis (that is, to make the par- 
tial “hole”). Therefore the energy needed to form such a line, per unit 
length, is 

y : (exp i Z t T t )  rf, (30) 

Line energy per unit length = p,nh2m-1Zn(b/n) 
== IO-%z(b,ln) ergs/cni. (21) 



313 

40 I<. P. FEYNMAN 

Here n is a length of order of the atomic spacing. I ts  exact determi- 
nation would require solving the difficult quantum mechanical problem. 
In almost all applications the ratio b/a will be very large, and the 
logarithm large enough to be insensitive to  the exact value of a. 
For this reason we will not attempt a detailed evaluation, but simply 
choose a to be close to the atomic spacing. We arbitrarily take a = 
4.0 A. I n  more complicated geometrical situations the lower limit 
will be the same, but the upper limit b will be some other characteristic 
dimension of the apparatus, or more usually the spacing between 
vortex lines, etc. It can be found by integrating the velocity distri- 
bution as determined for the given distriubution of singular vortex 
lines. 

For a cylinder of liquid rotating a t  angular velocity o = 1 rad/sec 
the vortices are about 0.02 cm apart. This is 0.5 x lo6 times a if 
a = 4 A, so we can take the Zn(b/u) in this case to be about Zn(0.5 x lo6) 
or 14. Neglecting the variation of this logarithm with o we find for the 
energy of all of the lines: 

where we have estimated Zn(b/a) as 14. The ratio of this to the kinetic 
energy for a rigid body is 4Hm-1Z?-20-%z(b/a) if the cylinder radius is R. 
For R = 1 cm, o = 1 rad/sec this ratio is For macroscopic labo- 
ratory dimensions the excess energy to form the lines is small. They 
would form if rotating solid helium is melted by releasing the pres- 
sure, the angular velocity distribution would differ imperceptibly from 
uniformity, and the surface should appear parabolic. 

I t  is not self-evident that there is no state of appreciably lower 
energy, and that the energy of the rotating liquid is correctly estimated. 
This subject has not yet been analyzed any more deeply than is re- 
ported here. Therefore this part of the paper is not on as firm a foun- 
dation as the rest. We must therefore still consider it conjectural 
whether the considerations on rotational flow reported here are ac- 
tually correct. It is interesting that all the conclusions were arrived 
at  independently by the author without knowledge of Onsager’s pre- 
vious work (with which they are in exact concordance). 

Total line energy per unit volume = eoofi. Zn(b/a) 

8. Properties of Vortex Lines 
In a situation more general than uniform rotation, in which the curl 

of the velocity is not constant, we can imagine a similar situation. We 
have a situation instantaneously with many vortex lines. Some are 
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closed on themselves in rings, and others terminate with their ends 
on the fluid boundaries. Viewed from a continuum approximation 
in which atomic structure is neglected, a velocity v, can be defined 
at  every point. The curl of this is zero everywhere, except a t  one of 
the vortex lines where it is infinite. These lines are real quantized 
vortex lines. The circulation around a small circuit surrounding only 
one line is 2n?im-1. The lines have a sense depending on the direction 
of rotation. The circulation about any curve whatosever is given by 

c j  2 ) ' .  as = 2nAm-ln 

where rt is always an integer, being the net number of lines linked by 
the circuit, account being taken to the sign of each. 

If v x v, is averaged over a large enough region that many lines 
are included, the number of lines per cm2 must be at  least < v  x v, > 
m/27di and the energy of these lines per unit volume is a t  least 

3 j <  v x v,>j @o?i.zrt(b/a) (22) 
where b is the spacing between lines, l / b 2  = < v x v, > m/2nh. This 
shows that in our liquid it takes energy to create circulation. Actually 
in real, complex situations the energy might exceed greatly the value 
in (22). There may be great complex activity with many lines twisting 
and turning so that several lines of opposite senses are close together. 
In this case, the case of developed turbulence, the number of lines 
present may be bigger than the average r x v s  would indicate. (Pro- 
bably in such a case it would be hard to define the average [7 x ?*, 

because the result may depend on the size of the region over which 
the average is taken). 

The discussion of the rotating cylinder of liquid with which we in- 
troduced the lines is rather special. We shall try to give a more com- 
plete and general description of the state of the superfluid with cir- 
culation. We continue to study the case at absolute zero. Let us try 
to characterize the state of a fluid in which we desire two things (which, 
it will turn out, are mutually incornpatable). We want (a) the liquid 
to be flowing with a velocity v, which is a smooth function of position 
without singularities (on a scale of distances large compared to  atomic 
dimensions) and (b) we want v x P:, not to vanish. 

Suppose the liquid in an element of volume d I/ (large compared to 
the atomic volume) is moving at  velocity u. Then as lye have seen the 
wave function should depend on the position of the aroms, if they are 
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within LIV as exp (imu . Z&) @. That is, if a number of atoms in the 
region are displaced, each by AR, from one allowed (by @) configu- 
ration to another allowed one, the main effect is that the wave function 
must change phase by 

q m v  . LIRi)kl (23) 

This can also be seen in another way. If a region of fluid can be con- 
sidered to have a velocity v it has a momentum density @,mu. It is 
characteristic of momentum in quantum mechanics, that if the center 
of mass is changed the wave function changes phase by an amount 
proportional to the momentum and to the displacement of the center 
of mass. Now if the atoms are displaced by AR, the center of mass 
moves so the phase change (23) results. This is true at  least if the dis- 
placement makes no other important change in the wave function. 
We will suppose that both before and after the displacement the atoms 

are well spaced and there are no 

Fig. 6 .  The wave function must 
not change as a result of a permu- 
tation. If all the atoms are  displa- 

gross densit y fluctuations, etc. such 
that in case the liquid were not in 
motion both configurations would 
have essentially the same amplitude. 

The same argument goes for atoms 
in other regions, etc. so the phase 
shifts accumulate to a sum in (23) 
over displacements of atoms all over 
the liquid, if v is now considered as 
a function of Ri. The displacements 
AR must be small compared to the 
distances over which v varies. We 
shall apply the formula in a case in 
which AR is the separation between 

ced around n ring, as shown, *the 
phasc change must be a multiple 

of 27 
atoms. 

Select, in a given configuration, a very long closed chain of atoms 
each of which is a nearest neighbor of the next in line (see Fig. 5). 
The last should have the first as nearest neighbor. The chain may 
consist of very large numbers of atoms and may even be so long that 
it passes through regions of varying velocity. Consider a displacement 
of each atom to its nearest neighbor next in line. The wave function 
cannot change, for it is simply a special permutation of the atoms. 
Further we will suppose that if all the displacements are made together 
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a little a t  a time, each intermediate configuration is allowed. This 
sliding of the chain along itself is not prevented by potential barriers, 
especially if we allow small temporary displacement of other atoms 
adjacent to the ring to permit passage in tight places. In the final 
configuration all atoms have returned to their original positions, ex- 
cept those of the ring which have moved one over. We suppose, be- 
cause of the ease in which the displacement can be made that we can 
assume the wave function does not vanish for any intermediate po- 
sition during the displacement. Then its phase shift is given by (23), 
but this must represent no change in the wave function. It is therefore 
necessarily an integral multiple of 23t. We conclude that 

$I.$. ds = 2xhrn-ln (24) 
where n is an integer and the integral is taken over any path which 
goes from one atom to the next neighbor, etc. If v, is now assumed con- 
tinuous at an atomic scale, the path can be smoothed out to any con- 
tinuous curve. Of course, it is impossible that (24) holds for all con- 
tinuous paths if n is an integer (depending on the path) if v, is free 
of singularities and continuous unless n = 0 (in a simply connected 
region). Because any path can be deformed continuously into an in- 
finitesimal path, the left side changing continuously to zero. The 
right side cannot change continuously so it must be zero for all paths. 
Likewise for a toroidal region ?z must be the same for all paths which 
surround the hole. 

We see therefore that v, cannot be continuous if we are to have 
circulation. There must be places where vs is discontinuous, and places 
in the fluid where a displacement of an atom to its neighbor may not 
be possible without passing through a node in wave function. In 
the neighborhood of such a node the probability of finding an atom 
is reduced. This decrease in density requires energy to maintain it. 
We shall therefore try to arrange conditions so that such places are 
as infrequent as possible. Under those conditions, for nearly every 
conceivable ring of atoms the atoms can be moved over to the next 
adjacent atom without the wave function vanishing. Its phase change 
must be a multiple of 2n. If two adjacent rings have a phase change 
which is different, differing by 232 say, then between them somewhere 
must lie a very small ring of three or four atoms for which the circu- 
lation is 2zh/m. For example, suppose for a certain ring A the phase 
is zero, but for a nearby ring B it is 2;c. Then shift ring B by a fen. 
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atoms at a time until it gets as close to ring A as possible, but still 
has phase shift 2n. Likewise shift A until it is as close to B as possible 
but so that it has still shift 0. Then A and B will contain many a.toms 
in common and only differ by a few, as illustrated in Fig. 6. Then 

2 3 4  

b 
--a 

1 @ 
Fig. 6. A displacement along ring B followed by a reverse displacement along 
an adjacent ring A with many atoms in common is equivalent t o  a displacement 
around the ring C. indicated by black circles (except for an inconsequential 

permutation 5-b). 

consider a permutation consisting of shifting B forward, then shifting 
-4 backward. It is readily verified that this change is the same as a 
shift of atoms around the very small ring C consisting of those parts 
of A and B which are not common, plus one of the common atoms. 
But the change in phase is 27c when B shifts and 0 when A shifts back, 
so that it must be 252 for the very small ring C. * This represents a 
highly concentrated angular momentum. Somewhere in the middle 
of ring C is a nodal point. It is readily appreciated geometrically that 
these nodal points must essentially form lines through the fluid. They 
are quantized vortex lines. It must be admitted that this argument is 
far from complete. We should consider states in which the location 
of the vortex line is uncertain, that is, a superposition of states with 
various locations for the line. Such a state would have a lower energy. 
Possibly we make a serious error in imagining that the velocity can 
be defined right up to atomic distance from the axes, if this axis itself 
does not have a definite location. Onsagcr has remarked, in private 
communication, on the possibility that these quantum effects might 
lower the energy to such an extent that the logarithm in (24) should 

* The change in phase cannot be determined only from the initial and final 
configuration, b u t  requires a description of the amplitude for intermediate con- 
figurations as well. Therefore this argument is not complete unless i t  is also 
assumed that partial rotations of C consisting of displacenients of less than one 
atom spacing can also be roughly imitated by partial displacements of U and A. 
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be absent. At any ratc, although our energy estimates may be incorrect, 
quantized vortex lines probably cxist. We continue our discussion 
of the consequences of this assumption. 

On a large scale according to the theorem of Helmholtz, vorticity 
moves with the fluid in such a way that the strength of a vortes fila- 
ment remains constant. This means that if the fluid drifts the lines 
drift with it, maintaining their quantized strength. This is trnc, a t  
least, if no forces act directly on the vortex line. In general the force 
per unit length on a vortex line equals the density, ,007n, times the 
vector cross product of the circulation, 2nhm-1, and the velocity of 
fluicl wherc the vortex is. 

9. Critical Velocity and Flow Resistance 

to flow found at sufficiently high velocities. 

wise being in perfect flow. Let us consider Y - 

We have suggested that this resistance 
cannot be understood in terms of a direct 
creation of rotons, the superfluid other- 

what would happen if liquid is flowing out 
of an orifice, or tube, into a reservoir of 
fluid a t  rest. In Fig. 7 is illustrated the 
distribution of flow for irrotational motion. 
A very high velocity develops near the 

We next turn to the role such vortex lines may play in the resistance 

corners and large accelerations develop 
there. An ordinary fluid, such as water, Fig. 7. Ideal potential flow 

from an orfice 
flows in a complicated manner such as 
illustrated in Fig. 8 (a few moments after flow starts). The water 
shoots out straight into the nearly still fluid in the reservoir, forming 
a vortex sheet, which is unstable and curls around, eventually in an 
extremely complex manner. Let us see how helium might try to  imi- 
tate some of the features of the type of flow illustrated in Fig. 8. 
Just for rough orientation and estimate suppose the fluid tries to  go 
out in a jet, let us say at  first of the same width and velocity as in 
the tube. Take the case that the tube is a long slot perpendicular to 
the paper, and the flow is roughly two dimensional. 

Then circulation is implied for the velocity is ZI in the jet and 0 
outside. This requires the formation of vortex lines, perhaps as illu- 
strated in Fig. 9. The spacing is x and if this is small compared to d,  
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the slot width, the velocity distribution is roughly uniform inside the 
the jet. Taking a line integral along the jet for unit distance, and re- 
turning outside the jet, the circulation is v so the number of lines per 
centimeter is 

1 
- = v/2nfim-l. 
X 

It takes energy to form these lines. If 
there is not enough kinetic energy in the 
fluid to supply the energy to make the 
lines, no resistance will appear. Once the 
lines can be formed they are, in a manner 
we shall soon discuss, ultimately dissipa- 
ted as heat and a resistance appears. Let 
us see what order of critical velocity we 
would estimate in this way. The lines move 

to see the necessity for this is t o  realize 

out at the velocity of the fluid at their 
own location, which is 1112. Another way 

that as the fluid passes from inside to  out- 
side the pipe vorticity is created, so new lines must continually come 
rolling out of the ends of the orifice. In our case-v/x lines are created 
per second. The energy needed to create these is (per unit length of slot) 

+ A!!? 
13 
Fig, 8.  Realflowfromanor- 
fice for ordinary liquids, pro- 
ducing an unstable vortex 

sheet 

where the argument in the l o p -  2 3 3 3 
rithm is only approximate. The d - + 9 
total kinetic energy available per J, V- - 
cc of fluid is *, so that per '-1 3 3 3 

2 I ! - x 4  
me,v2 I 

is If Fig. 9. Idealization of supposed vor- 
teu rings formed when superfluid heli- 
urn issues a t  high speed from an orfice. 

second vd ~ 

we define 0, as that velocity for 
2 

which the energy available is just 
large enough to create the vortices we find 

v,d = fiim-lZn(d/a). 

For example, for a slit of width d = cm, (which is about three 
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times the width of a Rollin film at a height of 1 cm) this gives v, =T; 

100 cmlsec, if Zn(d/a) is taken as 6. This is somewhat higher than the 
critical velocities observed. The calculation is only meant as an esti- 
mate because the actual situation must be complicated. For one thing, 
near the critical condition x comes out about 3d so our picture of a 
uniform jet is poor. Further, the velocity in the jet must of course 
be reduced as a result of the energy needed to form the vortex line. 
Actually probably the situation near the critical point must be very 
complicated and irregular. The flow for short momentary periods may 
be much like Fig. 7 but irregularly vortex lines peel off of the edges 
of the slit, probably starting at one point along the slit and progressing 
to other places, or perhaps if the hole is circular, one or two vortex 
lines is fed out continuously in a form roughly like a helix. It is pre- 
dicted that very close to the critical velocity when loss just begins, 
the resistance will be irregular and show fluctuations. These fluctua- 
tions are very small however and would be hard to  detect. Possibly 
some sound may be generated by the flow irregularities. It is difficult 
to estimate its intensity. When helium is driven, just above critical 
velocity, through an emery powder superleak, some noise should be 
generated as the various vortex lines suddenly form and pass into the 
stream. The irregularities are a result of the unpredictable quantum 
transitions between states of no vortex line and one with a section 
of line. 

Another possible source of vortex lines is the contact between 
flowing liquid and the walls. It is not necessary that all the loss occurs 
at  the exit end of the tube. The walls of the pipe are irregular. Vortex 
lines may be created inside the pipe also. 

It is difficult to go beyond this order of magnitude calculation in 
describing the conditions controlling the production of vortex lines. 
For example, if one studies the example given there are serious diffi- 
culties. As a particular vortex line leaves the end of the tube there are 
very great forces trying to pull it back resulting from its image in the 
tube wall. Let us imagine a line a distance b above the wall in a tube 
in which the velocity of flow is v,. I t  is readily shown that the 
forces acting on the line are these. First a force pulling away from the 
surface of strength 2nti~,v,. Second, from the image, an attraction to 
the wall of strength nti2&nb. A vortex line responds to forces by 
moving through the liquid to reduce the net force to  zero. In  this case 
it would drift upstream if the attraction is highest. But a vortex line 
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will interact with the wall, especially at  its ends which go into the wall 
surface. Suppose this results in a frictional force which keeps the line 
from moving upstream. Then the response is to move closer to the 
wall. The vortex only moves away from the wall if 2nfi~,v  exceeds 
nTz2p,/iitb. Even if z, is 100 cm/sec this requires b to exceed cm 
or 20 atomic spacings. We might expect a vortex line to fluctuate 
away from the surface by a few atomic diameters. But how can we 
expect to penetrate the enormous potential barrier, to create a line 
so far away from the surface that the flow velocity can pull it further 
out and create eventual vorticity and energy loss? 

More likely a line gets started somehow and has its ends tied on the 
wall. Then the forces of the fluid on the rest of the line cause it to 
wander about in such a way that more and more vortex line is fed 
out. It is not necessary to create bodily at  one instant a complete 
section of line. For example, for the case of liquid issuing from a tube 
perhaps the vortex lines are helices with contact points a t  the edge 
of the hole which turn round and round while the helix moves out- 
ward. Similar things could happen inside tubes. If the tubes are very 
narrow the line will hit the other surface easily and be attracted by 
the walls. I t  can never get very far from a wall. Even if started some- 
how it will fall back into the tube walls unless the velocity u, suf- 
fices to keep it in the stream. Therefore the smallest tubes have 
the highest critical velocities. 

10. Turbulence 
The patterns of vortex lines which we have studied are well known 

to be unstable. In the case of the rotating cylinder this is not true if 
the cylindrical vessel containing the helium rotates also. But if the 
container is stopped the situation is altered. There are forces between 
the wall and vortex lines. (This is because the fluid density is altered 
near the line axis, so the interaction with the wall is not the same as 
the average for the rest of the helium). The lines a t  the outside drag 
past the stationary wall and as a result get distorted from their ori- 
ginal vertical line position. This twists others, etc. Lines fall into the 
wall and others twist about each other in a complex way. It would 
be interesting to study this experimentally, to see how fast, and in 
what manner, the liquid eventually slows down. 

In ordinary fluids flowing rapidly and with very low viscosity the 
phenomena of turbulence sets in. A motion involving vorticity is 
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unstable. The vortex lines twist about in an ever more complex fash- 
ion, increasing their length at the expense of the kinetic energy of 
the main stream. That is, if a liquid is flowing a t  a uniform velocity 
and a vortex line is started somewhere upstream, this line is twisted 
into a long complex tangle further down stream. To the uniform velo- 
city is added a complex irregular velocity field. The energj- for this 
is supplied by pressure head. 

\Ve may imagine that similar things happen in the helium, Except 
for distances of a few Angstroms from the core of the vortex, the 
laws obeyed are those of classical hydrodynamics. A single line playing 
out from points in the wall upstream (both ends of the line terminate 
on the wall, of course) can soon fill the tube with a tangle of line. The 
energy needed to form the extra length of line is supplied by a pressure 
head, (The force that the pressure head exerts on the lines acts even- 
tually on the walls through the interaction of the lines with the walls). 
The resistance to flow somewhat above critical velocity must be the 
analogue in superfluid helium of turbulence, and a close analogue at 
that. 

There are some ways, however, in which the two cases differ. In 
a classical fluid there is a thin boundary layer near the wall of the pipe 
in which viscosity controls the situation. In this boundary layer there 
is a large vorticity, but it escapes into the stream to be xxplified, only 
from the edge of the layer. Inside it is damped by viscosity. As the 
stream velocity falls the boundary layer thickens, for the amplification 
is less and the damping overpowers it ever further from the wall. 
Below a critical velocity the turbulence ceases altogether and the 
flow is laminar, but with vorticity, the viscosity keeping the vorticity 
from amplifying itself. That is, viscosity is the mechanism which deter- 
mines whether vorticity will be amplified or not, and therefore whether 
turbulence is produced. If the viscosity goes to zero as a limit (and no 
other physical phenomena are added) a classical ideal liquid mould 
exhibit turbulence at any velocity, no matter how small. 

Superfluid helium is an ideal fluid of zero viscosity. I t  does not ex- 
hibit turbulence at  low velocity because of another, quantum mechani- 
cal, effect. The vorticiry is quantized and cannot begin at  as low amount 
as desired. One must supply energy enough to get the first one or two 
vortex lines started before the amplification process of turbulence can 
take over. There will not be a boundary layer with a structure ana- 
logous to that in classical flow (although near the walls the flow will 
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be somewhat different because of the dragging forces between the 
moving vortex lines and the wall). 

In a classical fluid ,if the turbulent stream empties into a reservoir, 
the turbulent motion continues for a while, but as a result of the vis- 
cosity, it gradually slows up and dies out, the energy appearing even- 
tually as heat. 

\Vhat happens to a turbulent mass of superfluid left to itself? If 
there is normal fluid present the rotons and phonons will collide with 
the vortex lines and take energy from them, gradually turning this 
energy gain into more rotons and phonons (as a result of collisions among 
rotons the number of these may change). But an interesting question 
arises if the experiment is imagined at  absolute zero. What can even- 
tually become of the kinetic energy of the vortex lines? 

(a) 
Fig. 10. A vortex ring (a) can break up into smaller rings if tlic transition be- 
t\reen states (b) and (c) is allowed when the separation of vortex lines becomes 
of atomic dimensions. The eventual small rings (d) may be identical to rotons. 

One possibility that suggests itself is this. Consider a large distorted 
ring vortex (Fig. 10a). If, in a place, two oppositely directed sections 
of line approach closely, the situation is unstable, and the lines twist 
about each other in a complicated fashion, eventually coming very 
close; in places, nearly within an atomic spacing. Consider two such 
lines (Fig. lob). With a small rearrangement, the lines (which areunder 
tension) may snap together and join connections a new way to form 
two loops (Fig. 1Oc). Energy released this way goes into further twis- 
ting and winding of the new loops. This continues until the single loop 
has become chopped into a very large number of small loops (Fig. 1Od). 
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The smallest ring vortex that can exist must have a radius about half 
the atomic spacing. Let us guess that this is in fact a roton. Then all 
the energy of the vortex will eventually end by forming large numbers 
of rotons, that is, heat. Perhaps eventually it will be easier to  under- 
stand the details of the complete transformation of organized flow 
energy into disorganized heat energy for liquid helium than for other 
substances. 

11. Rotons as Ring Vortices 
I t  is not unreasonable to guess that these smallest vortices are ro- 

tons. The velocity distribution around a roton, which is found by ana- 
lytic means (ref. 8) is similar to that around a vortex ring. It is quite 
reasonable that a vortex ring can be only so small. To increase the 
curvature of a vortex line beyond that of radius roughly a may take 
energy. Let us imagine a roton to be the circular quantized vortex 
of lowest energy. A large circular vortex has (from ( 2 1 ) )  energy 

E = 2nR . ~ QoIn Rja. I t  carries momentum p = n R 2 .  2nchp,. This 

momentum is that of a roton, P o ,  if K = 2.2 A. The energy is the 
right order (it corresponds to replacing In by 1.6). 

One might object that such a vortex drifts through the fluid, at 
velocity v = (?ij2mR)ln Ria, so one would expect rotons not to have 
a zero group velocity. Actually this drift, of a large vortex, has its 
seat in the force tending to shrink the vortex to decrease the energy 
of the line. The response to the radially directed force is a perpendicular 
motion. It is analagous to the ornery response of a gyroscope. In  fact, 
if a vortex line were a thin flexible mechanical tube with inertia, and 
were started with zero forward motion, it would first fall in a bit and 
then move forward in a halting fashion, like the nutation of a gyros- 
copic, or the motion of an electron in crossed magnetic and electric 
fields. In a roton we imagine that the forces tending to contract the 
ring are already opposed by a kind of stiffness of the ring. I t  is already 
as small as possible. No drift motion results. In fact forward drift 
would expand it and raise the energy, while reverse drift would try 
to compress it to smaller size, again raising the energy. The lowest 
energy is at zeio drift velocity. We may notice in passing that they 
can only drift in a direction perpendicular to their plane, that is, 
along, or opposite, the direction of the momentum. This agrees with 
a property derived for rotons from their energy-momentum relation 

z f i 2  

rn 
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( l ) ,  that the group velocity SE(p)jSp is in the direction cf the momen- 
tum, (or opposite). 

Having travelled so far making one unverified conjecture upon 
another we may have strayed very far from the truth. However im- 
prudent i t  may be, there is one further observation we would like to  
make. A detailed picture is not available which describes physically 
just what goes on as the transition is approached from below. The free 
energy expression arising from (6) does not of itself describe the tran- 
sition. The transition occurs when the number of rotons is very large. 
Some sort of interaction may occur between them, or there may be 
some limitation to the degrees of freedom. There is no doubt that  
it is the analogue of the transition in the ideal gas, but it would be 
nice if we could get a.less mathematical and formal description of 
the events. Of the following I am not sure, but it does seem to be an 
interesting possibility. 

If rotons are the smallest ring vortices, and those of lowest energy, 
A ,  then there are states of higher energy corresponding to larger rings. 
For example, a ring of twice the diameter may have twice the energy 
more or less. The relative number of these will be expected to be very 
low, however. Since d is 9.6"K, at the transition exp (- d / k T )  is 

so very few larger vortices will be expected in equilibrium. Cer- 
tainly none whose length is 1 0 2  or 1 0 3  atoms! This neglects an impor- 
tant feature, however. For a long line there are an enormous number 
of shapes and orientations available. Such a line is not infinitely flexi- 
ble, of course, for the curvature cannot well exceed a-1. It may be 
likened to a chain of a finite number of links. Adding one link requires 
an energy E ,  say of order d, but increases the number of orientations 
by some factor, asymptotically, say s. In equilibrium then, the number 
of chains of n + 1 links is a factor s exp (- E/KT) times the number 
with n links. For low temperatures this is less than unity. No long 
chains are important. The excitations consist of rotons and a few other 
rings of slightly larger size. As the temperature rises, however, there 
comes a time when the factor s exp (- c/KT) exceeds unity. Then 
suddenly the rings of very largest length are of importance. The state 
with one vortex line (or a very few) which winds arid winds throughout 
the liquid like a near approximation to a Jordon curve, is no longer 
of negligible weight. The superfluid is pierced through and through 
with vortex line. We are describing the disorder of Helium I. At 
first the curve doesn't make full use of all of its orientations and higher 
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entropy. But as the temperature rises a little more it squeezes into 
the last corners and pockets of superfluid until it has no more degrees 
of flexibility available. The specific heat curve drops off from the 
transition to a smooth curve and the memory of the possiblity the 
helium can exhibit quantum properties in a unique way is lost in the 
perfusion of states and in disorder, as it is for more usual liquids. 
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A wave function previously used to represent an excitation (phonon or roton) in liquid helium, inserted 
into a variational principle for the energy, gave an energy-momentum curve having the qualitative shape 
suggested by Landau; but the value computed for the minimum energy A of a roton was 19.1"K, while 
thermodynamic data require A.=9.6"K. A new wave function is proposed here. The new value computed for 
A is 11.5OK. Qualitatively, the wave function suggests that the roton is a kind of quantum-mechanical 
analog of a microscopic vortex ring, of diameter about equal to the atomic spacing. A forward motion of 
single atoms through the center of the ring is accompanied by a dipole distribution of returning flow far 
from the ring. 

In  the computation both the two-atom and three-atom correlation functions appear. The former is known 
from x-rays, while for the latter the Kirkwood approximation of a product of three two-atom correlation 
functions is used. A method is developed to estimate and correct for most of the error caused by this 
approximation, so that the residual uncertainty due to this source is negligible. 

1. INTRODUCTION 

IQUID helium undergoes a thermodynamic transi- L tion a t  2.19'K. Below this temperature, many of 
the properties of the liquid are explained by Tisza's 
phenomonological two-fluid model. Landau realized 
that the macroscopic properties of the liquid would 
resemble those of a mixture of two fluids, provided that 
a certain form is assumed for the energy-momentum 
curve of the elementary excitations in the liquid. 
Starting from first principles, one of the authors has 
recently computed an energy-momentum curve which 
is based on certain ideas about the nature of the wave 
functions representing the excitations.' The shape of 
the curve is in qualitative agreement with Landau's, 
but some serious quantitative discrepancies exist. The 
ideas of 111 are pursued further here, and a more com- 
plicated wave function is constructed to represent an 
excitation. The energy-momentum curve computed 
with this wave function will prove to be in better 
agreement with Landau's. In addition to the actual 

*This paper is based on a Ph.D. dissertation submitted to 
California Institute of Technology in November, 1955. A pre- 
liminary report of this work has appeared [R. P. Feynman and 
Michael Cohen, Progr. Theoret. Phys. Japan 14, 261 (195511. 

R. P. Feynman, Phys. Rev. 94,262 (1954), henceforth referred 
to as 111. 

computations, we discuss some approximate methods 
which may be useful in other work of this sort. 

2. LANDAU'S SPECTRUM 

The energy momentum curve proposed by Landau2Va 
rises linearly for small p ,  passes through a maximum, 
falls to a minimum, and rises steeply for large p .  (See 
Fig. 6.) The excitations in the linear region are quantized 
sound waves (phonons) ; their energy, measured relative 
to the ground-state energy, is 

E(P) =cP, (1) 
where c is the velocity of sound (240 m/sec). Near its 
minimum, the spectrum can be approximated by a 
parabola, 

E(P)=A+(P-Po)*/~~.  (2) 
Landau believed that excitations in this region represent 
some kind of rotation of the fluid, and called them 
"rotons." In the present paper we are led to the picture 
of a roton as the closest quantum-mechanical analog 
of a smoke ring. The remaining portions of the spectrum 
are not excited a t  low temperatures. For T<2"K the 
phonons and rotons are present in sufficiently small 

a L. Landau, J. Phys. U.S.S.R.) 5, 71 (1941). 
'L. Landau, J. Phys. [U.S.S.R.) 11,91 (1947). 

1189 
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h ( ANGSTROM -'I  
FIG. 1. The liquid structure factor S ( k ) ,  based on the x-ray 

scattering data of Reekie and Hutchison. The principal maximum 
corresponds to a wavelength equal to the nearest neighbor 
distance in helium. Appendix A describes modifications we have 
made in the data. 

numbers to allow them to be treated for thermodynamic 
purposes as noninteracting. The thermodynamic func- 
tions can then be computed ; Landau fitted the available 
(1947) data on specific heat and second-sound velocity 
with the values 

A / K = ~ . ~ ' K ,  pdh= 1.95 A-l, p=0.77 mne. (3) 

More recent measurements4 of the velocity of second 
sound down to T=0.015"K suggest the values 

A / K = ~ . ~ " K ,  fo/h=2.30 A-', p=O.@ mHe,  (4) 

although the values (3) also fit the data quite well. 
The value of A/K is quite well determined6 by the ther- 
modynamic data, since it enters formulas in the form 
eXp(-A/KT). The differences between (3) and (4) are 
probably a fair measure of the uncertainty in our 
knowledge of p o  and p.  

The reasoning which led Landau to  the general form 
of the spectrum, and his method of deducing the two- 
fluid picture from the spectrum, will not be reviewed 
here. He did not attempt to compute the values of A,  
PO, and p from first principles. 

3. A SIMPLE WAVE FUNCTION FOR THE 
EXCITATIONS 

In I11 a wave function of the form += cp C f(ri) is 
proposed to represent an excitation. The physical 
reasons for this wave function will not be reviewed here. 
The sum runs over all the atoms in the liquid, and cp is 
the wave function for the liquid in its ground state. 
The requirement that + be an eigenfunction of the total 
momentum operator6 P= -ih C Vi corresponding to 

' deKlerk, Hudson, and Pellam, Phys. Rev. 93, 28 (1954). 
Dr. J. R. Pellam (private communication) estimates the 

uncertainty in A / K  to be less than 0.2". 
6 If the liquid were confined to a box of side L, with fixed walls, 

then the walls could absorb momentum and the energy eigenstates 
would not be momentum eigenstates. Instead, we control the 
density by requiring the wave function to be periodic in all 
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the eigenvalue hk implies that f ( r )  = eik 'r, and thus 

+= cp C exp(ik.ri). (5) 

B= &/$, (6) 

Substitution of (5) into the variational principle 

where 

&= s +*H+dNr (7) 
and 

$= y5*+dNr, (8) S 
gives an upper limit' for the energy of the lowest excita- 
tion of momentum hk. The result is 

E ( k )  =h2k2/2mS(k), (9) 
where S ( k )  is the Fourier transform of the zero-tem- 
perature two-atom correlation function p ( r ) ,  

(10) 

The data which we have used for S ( k )  are given in Fig. 1 
and are essentially those obtained from x-ray diffraction 
by Reekie and H u t c h i s ~ n . ~ * ~  Figure 2 is the corre- 
sponding curve for p ( r ) .  S ( k )  exhibits a sharp maximum 
near k = 2 A-l, which corresponds to a wavelength equal 
to the nearest neighbor distance in the liquid. Accord- 
ingly, the spectrum (9) exhibits a minimum a t  approx- 
mately the correct wave number (see curve B of Fig. 6). 
It is shown in I11 that the wave function (5) is exact 
for phonons (small k )  and that  the limiting form of (9) 
is E(k)  = hck. The occurrence of a minimum a t  k = 2 A-' 
is in qualitative agreement with Landau's predictions, 
but the value of A/K computed from (9) is 19.1°K, 
which is twice the value given by experiment. 

4. ARGUMENTS FOR A NEW WAVE FUNCTION 

The excitation (5 )  can be localized in a definite 
region by the formation of a wave packet. If h(r )  is a 
function, like a Gaussian, which is peaked about some 

variables with period L. With this boundary condition, p 
commutes with H and the energy eigenstates can also be taken 
as momentum eigenstates. 

Eigenfunctions of P belonging to different eigenvalues fik 
are orthogonal. Hence, for different k, the trial functions (5) are 
orthogonal to each other and also to the true wave functions which 
minimize (6). The entire spectrum E(k)  therefore lies above the 
true spectrum. In  footnote 3 of I11 i t  is mentioned that the wave 
function rp exp(iN-'k. Z r,), which represents translational 
motion of the whole liquid, has momentum hk and energy 
hzkz/2mN, which is certainly lower than any energy we shall 
compute from (5). The periodic boundary condition, however, 
rules out such states unless k is as large as Ng. 

J. Reekie and T. S. Hutchison, Phys. Rev. 92, 827 (1953j. 
Their paper contains a curve for rzp(r), but does not include their 
data on S ( k ) .  We are indebted to Dr. Reekie for sending US the 
data, which are now generally available in reference 9. Append!x 
A contains a discussion of some changes which we have made In 
the data. 

L. Goldstein and J. Reekie, Phys. Rev. 98, 857 (1955) 
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location in the liquid and falls off smoothly in a distance 
large compared with 2x/k but small compared with the 
Size of the box, then the wave function 

+=C /c(r,) exp(ik.rJp (11) 

ppresents a localized excitation. The packet will spread 
time, and will- drift with velocity A-lVrE(k). The 

current and density associated with (11) were computed 
In 111. The number density is very close to the aver- 
age density PO, even in the region of the packet, and 
the current a t  a point a is j(a)=hm-lIh(a) I*. The 
\\rave function (11) therefore leads to the picture of a 
total current hkm-1 (assume J 1 /z(a) (*da= 1) distribu- 
ted over a small region and having everywhere the 
same direction, with no appreciable change in the 
number density anywhere. Such a picture clearly can- 
not represent anything like a stationary state, since 
in a stationary state the current is divergence-free and 
there would necessarily be a return flow directed oppo- 
sitely to k. 

One way to incorporate such a backflow into (11) 
is to multiply the wave function by exp[i g(r>)], 
obtaining 

Application of the velocity operator - ihm-’V, shows 
that, in addition to whatever velocity it had in ( I l ) ,  
the i th  atom now has an extra velocity hm-lVg(r,). 
Substitution of (12) into (6) shows that the energy is 
minimized if g(r) satisfies 

V.  (j+hpom-’Vg) =O,  (13) 

where j is the current computed from the old wave 
function (11). Furthermore, the current arising from 
(12) is J=j+hpom-lVg, so that (13) states that the 
best backflow g is that which conserves current. Equa- 
tion (13), with the physically reasonable boundary 
condition that g - 4  as r-+m, completely determines g. 
At large distances g has the form of the velocity poten- 

r ( A N G S T R 0 M S )  

FIG. 2. The radial distribution function p(r), based on the data of 
Reekie and Hutchison. 
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tial for dipole flow, namely y .  r/?; the dipole moment is 

p = m(4nhpO)-1 a [ ~ .  j(a)]da s 
= -?n(4nhpo)-’ [j(a)da= - (4npo)-’k. (14) 

J 

The negative sign of y indicates that the direction of 
the backflow is opposite to that of k, as expected. We 
shall refer to the value of y given by (14) as the 
“classical value,” since it is derivable from the equation 
of conservation of current plus the assumption that the 
momentum density is equal to the current density 
times the mass. The energy of (12) is only slightly 
lower than that of ( l l ) ,  the difference being of the 
order of the reciprocal of the volume of the packet. The 
important point to be learned from this calculation is 
that the energy is lowered if the wave function con- 
serves current. 

The solution of a somewhat different problem tends 
to support the same idea. Suppose we want to find the 
energy of a state in which a foreign atom moves through 
the liquid with momentum hk. The foreign atom is 
assumed to have the same mass as He atoms, and also 
to experience the same forces, but it is not subject to 
Bose statistics. The energy of this situation was com- 
puted in 111. The simplest trial wave function is 

$= p exp(ik.ra); (15) 

r., is the coordinate of the foreign atom, and p is the 
wave function for the ground state of the entire system 
(which is the same as if all the atoms obeyed Bose 
statistics). With this wave function, Eq. (6) gives 
E = h?k2/2nt. A possible way of lowering the energy 
would be to let the neighbors of the moving atom 
execute some pattern of flow around it, leaving space 
in front of it and filling in the hole behind it. Some such 
pattern is already contained in (Is), since the ground- 
state wave function p prohibits atoms from overlapping. 
But in the ground state, readjustments are made by 
pushing a few immediate neighbors of the foreign atom 
out of the way; these neighbors are crowded into less 
than their usual volumes, causing (15) to have a high 
kinetic energy. If, instead, room could be made for the 
moving atom by the simultaneous motion of many 
atoms, each being crowded only slightly, the kinetic 
energy of the state would be lower. In fact, there is no 
reason why the crowding cannot be eliminated entirely, 
since the amount of matter in the system remains 
constant. Roughly speaking, the requirement of no 
crowding means that  the current is divergence-free, 
and the no-crowding argument shows physically why it 
is energetically advantageous to conserve current. The 
argument is vague, however, and the exact form of the 
backflow will be determined by more accurate methods. 

A wave function of momentum hk which includes a 
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pattern of backflow around the foreign atom is 

+= p exp(ik-rA) exp[i C g(r;-rA)]. (16) 

When (16) is substituted into the expression (6)  for 
the energy, minimization of E leads to a differential 
equation which determines g(r). The solution at large 
r is proportional to k .  I/+. Accurate numerical solution 
is simple, but uncertain because of uncertainty in the 
values of $ ( Y )  ; since (6)  is a variational principle, we 
may take g(r)=Ak.r/rJ. Substitution of (16) into (6)  
gives 

i$A 

E = (2m)-’h2k2[1+11A + (14+15,)AZ], (17) 
where 11 and 1 4  are integrals defined by Eq. (25) and 
Ib is an integral defined by (57). The integrals are 
evaluated further on; only the answer interests us here. 
Equation (17) becomes 

E= (2m)-’h2K2( 1 +0.186A +0.0246A2), (18) 
with A measured in A3. The energy is minimum when 
A =  -3.8 A3; the “classical” value predicted by (14) 
is A = - (4.rrpO)-l= -3.6 A3. The close agreement of 
the two values seems to indicate that the reduction in 
energy is due to the physical effects we have mentioned, 
and is not simply the result of allowing an extra degree 
of freedom in the wave function. The improved value 
for the energy islo 

E =  0.648R2k2/2m. (19) 
Since the wave function ( 5 )  for a phonon or roton is 

just what would result for symmetrizing (15), one 
might hope to lower the energy of (5) by adding terms 
to represent a backflow around each moving atom. The 
resulting wave function would be the symmetrization 
of (16),  i.e., 

For large k, when this wave function is substituted into 
the energy and normalization integrals, there is little 
interference between terms with different i; the energy 
is therefore given by (19) and is a definite improvement 
over (9) .  For small k ,  (20) cannot lead to a lower energy 
than ( 5 ) ,  because (5) is exact for phonons. At inter- 
mediate k ,  one might thus expect to lower the energy 
by a factor between 1.00 and 0.65. In  fact, we do 
better than this. 

The attempt to find the function g(r) which gives 
the lowest energy when (20) is substituted into (6) 

‘OThis is somewhat higher than the value obtained in 111, 
where a rather inaccurate approximation was used for 1 4 .  With 
the new value for 1 4  we find that the effective mass of a He) atom 
moving through He4 is 5.0 atomic mass units, instead of 5.8. In 
the calculation it is assumed that the distribution of atoms around 
the HeS atom is the same as that around an He‘ atom. The higher 
zero-point motion of the lighter atom actually pushes its neighbors 
further away. This effect will increase the mass, but probably by 
only a small fraction of a mass unit. 
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leads to an intractable equation. We therefore take 
g( r) = A  k . r/rJ, where A will be chosen to  minimize the 
energy. The difficulty of handling integrals which 
involve e i g  leads one to consider the possibility of 
replacing exp(i C g) by l+i C g. The average value of 
Cj+i g(rj;) is p(r)g(r)dr, which is zero because 
g(r) is an odd function. The mean square value of 
xj+ig(rj i )  is k2A213, where the integral 13 is defined 
and evaluated further on. With the classical value for 
A (which is close to  the optimal value throughout the 
interesting range of k) the root-mean-square value of 
C g(rji) turns out to be 0.25k, where k is measured in 
inverse angstroms. Even with k =  2 A-I, replacement of 
exp(i C g) by l f i  C g is not unreasonable,” and we 
shall work with the wave function 

#= p C exp(ik.r;)[l+i C g(rji)], (21) 

where g( r )=Ak. r /e .  This wave function is still an 
eigenfunction of the total momentum operator P, with 
eigenvalue hk. 

The roton state represented by the function (21) can 
be described roughly classically as a vortex ring of such 
small radius that only one atom can pass through the 
center. Outside the ring there is a slow drift of atoms 
returning for another passage through the ring. There 
are a t  least three ways that the classical picture is 
modified. (1) The momentum of atoms passing through 
the center cannot be made smaller because the wave 
function must return to its original value when, after 
one moves through, another stands in its old place. 
The wavelength must be the atomic spacing. (2) The 
ring does not drift forward as  a large smoke ring. 
because as i t  is as  small as possible there is no force 
tending to shrink i t ;  such a force in a classical ring is 
balanced as a consequence of the forward drift. (3) The  
location of the ring is not definable. I n  typical quantum- 
mechanical fashion the lowest energy state corresponds 
to superposition of amplitude to find the ring anywhere 
in the liquid. The energy is less than the kinetic energy 
h2k02/2m of one atom with momentum hko because 
there is a correlated motion of many atoms moving 
together so the effective inertia is higher (the energy 
A / K  corresponds to 2.5 atoms moving together a t  total 
momentum hko). 

i#i  

l1 Of course, since a trial function is a free choice, i t  would be 
mathematically legitimate to insert l+i 2 g into the variational 
principle (6 )  even if Z g were not small, but there would be 
little physical reason to expect a good answer. If exp[i 2g(r;- IA)] 
is replaced by l+ i  Z g(r;-rA) in the foreign atom problem, the 
resulting integrals are among the ones defined and evaluated 
further on. The energy is given by 

k-- 
h*kZ 1 +O. 186.4 + (0.021 7 +0.0049k2)A* 

2m 1 +0.0049k2A2 
When k =  2 A-l, the fraction has the minimum value 0.689, which 
is 6% higher than the value given by (19). The associated 
value of A is -3.4 A3. When k =  2.5 A-l, the fraction is 0.716, COT- 
responding toA = -3.1 AS. We conclude that for k < 2  A-’, replace- 
ment of exp(i 2 g) by 1 +i 2 g does not seriously raise the energy. 
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5.  COMPUTATIONS WITH THE NEW WAVE 
FUNCTION 

(a) Definitions 

If  the wave function for an excited state is $=Fv, 
i t  is easily shown (see 111) that 

&= $*H+dNr= (hz/2m)C ViF.V,F*q2dNr. (22) 

'rhe only memory of the potentials is in the ground- 
State wave functioh co; the information which we need 
about cp will be taken from experiment, since our main 
interest here is to test some ideas about the nature of 
excited states and not to develop a detailed theory of 
the ground state." Substitution of (21) into (22) and 
(8) gives E= & / g  where 

s i s  

2m&/NA2= k2[ 1 + A  (Ii+ 12) 
+A2(kZIa+14+16+ kIs+17)] ,  (23) 

S/N=Is+AkIp+A'k2I1o, (24) 
;md 

I t =  -2k(pok)-l- Vgl(rzl)pz( 1,2)drzl, s 

'*R.  M. Mazo and J. G. Kirkwood [Proc. Natl. Acad. Sci. 
41, 204 (19SS)l have computed p(r) theoretically by solving an 
approximate integral equation. 
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We have written g(r)=Akgl(r). The mean density of 
atoms is PO= N / V .  The probability in the ground state 
that atoms are located a t  rl and rz is p2(rl,rZ)dr1drz. 
Except in the negligible region near the surface of the 
liquid, we have pz(rl,rz)=pop(rlz). In writing (25) we 
have made use of the fact that certain integrals like 
.f g(r1z)p2(rl,rz)drldr2 vanish because g is odd. A term 
pd(r12) is contained inpz(rl,rz), and hence p ( r )  contains 
a &function a t  the origin. We define pi and $2 by 

these functions have no singularities and p 2 ( r ) 4  as 
I - +  m. Strictly speaking, in the definition of Il we 
should replace pZ(r1,r-J by pz(rl,rz)-pd(rlz) since g is 
always a function of the relative coordinates of two 
distinct atoms. To avoid unnecessary confusion, how- 
ever, it is easier to think of g(r) as becoming zero for 
sufficiently small r.  Similar remarks apply to p3 and p4 
when they occur in Iz, . . a ,  Ilo. If one does not wish to 
think of g(r) as being modified near the origin, then the 
p's should be understood as containing delta functions 
of all coordinate differences except those which appear 
as arguments of g in the same integral. The probability 
in the ground state that atoms are a t  rl, r2, and r3 is 
p3(rl,r~,r~)dr1drdr3. The nonsingular part of p3,  which 
we call p3', is defined by 

p3(ri,rz, r3) = p31 (rl,rz,rd +pop1 ( 4 6  (123) 
+ p 0 P l ( r l ~ ) s ( r l z ) + ~ 0 P l ( r z 3 ) 6 ( r l 3 ) + p d ( r ~ ~ ) ~ ( r ~ ~ ) .  (28) 

No experimental data for p3' are available. If any of the 
mutual distances, say r12, is large, then 

~ 3 1  ( r ~ , r ~ , r d  =popi(r13)~1(r23). 

If any of the interatomic distances becomes less than 
2.4 A, then p i = O .  The appr~ximation'~ 

~3/(r1,r~,ra)~p1(r12)pl(r13)pl(r23) (29) 

has these correct limiting features. Much has been 
written about the validity of this approximation; for 
some, but not all purposes (29) is quite sufficient. We 
shall see that our answer is only slightly sensitive to the 
difference between the right and left sides of (29). 
Furthermore, we shall be able to estimate the magnitude 
and sign of the errors due to (29). 

11, 1 3 ,  and 1 4  are independent of k .  In the other 
integrals it will prove possible to extract most of the 
k-dependence rather simply in the roton region, the 
remaining complicated terms being very small. This 
means that the computation of the entire roton 
spectrum will not be much more difficult than the 
computation of one point on it. We now discuss the 
evaluation of the various integrals. 

1s This is sometimes called the Kirkwood approximation or the 
superposition approximation. 
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(b) Evaluation of I ] ,  I , ,  and I4 
I1 can be done exactly. We integrate by  parts over 

a volume bounded by two concentric surfaces, one 
lying inside the radius where p ( r )  = O  and the other very 
far from the origin. The inner surface contributes 
nothing, but the integrand gl(r)pl(r) falls off only as 
r2, with the result that the outer surface makes a 
finite contribution, which is easily computed to be 
- (8rp0/3). We eliminate this contribution by rede- 
fining g(r) to have a decay factor, say ecfr, with very 
small e, which makes surface terms vanish at infinity. 
This procedure is mathematically legitimate, since we 
are free to use any wave function we want in the 
variational principle, and is in accord with the physical 
idea that all the momentum of the backflow should be 
contained in a finite volume. It will generally not be 
necessary to represent e explicitly ; the convergence 
factor will be used only to justify certain operations. 
After the integration by parts, there remains 

TI= (2k/k). Jgl(r)Vpl(r)dr 

= (87r/3) J w [ d p  1 (r)  /dr]dr = 8?rp 0/3. (30) 

In  the last integral, the integrand should really be 
e-"(dpl/dr), but if E is small enough the convergence 
factor will be unity out to radii where d p l / d r  becomes 
negligible. 

After performing the angular integrations in 12, we 
find 

0 

12 = 16apoJ; r-ljz(kr)[l+pz(r)]dY 

= 1 &Po[ (kro)-lji (kro) + F ( k ) ] =  16?rpOrzo, (3 1) 

where ro is any radius inside the region where pl(r) = O  
[we take T ~ =  2.4 A, the radius where pl(r) first becomes 
positive] and 

F ( k )  = 1, r-1jz(kr)pz(r)dr. (32) 

In  order to do integrals like 1 4  and 16, we need to know 
the value of Zz, (k)  for all k .  Using tabulated values for 
the spherical Bessel function jz, F ( k )  was evaluated 
by numerical integration for 23 values of k between 0 
and 7 A-I. Figure 3 gives the results for I*,(k) .  For 
k <1.5 A-l, F ( k )  is negligible compared with (kro)-l 
X jl (kro) . 

One might expect from (25) that Iz-+ -11 as  
k -+ 0. As k approaches zero, F ( k )  approaches zero and 
j l (k ro ) /kro  approaches f. Comparison 9f (30) and (31) 
thus shows that I z  approaches 211 instead of -11. The 
reason for the discrepancy is that (31) is wrong when 
k is very small, of the same order of magnitude as e;  
in this case we must take account of the term rfr in g, 

and there will be a correction term which will cause I z  
to change from 167rp0/3 to - 87rp0/3 as  k decreases from 
e to 0. 
IZ can also be evaluated in momentum space, using 

data for S ( k )  rather than p ( r ) .  In momentum space the 
integrals converge best for small k rather than large k .  
The results are not very important because (31) is 
useful down to k = O ;  but they do provide a check of 
our numerical work and also of the consistency of the 
data for p ( r )  with that for S ( k ) .  S ( k )  was defined by 
(10) as the Fourier transform of p ( r ) ,  where p ( r )  
includes a delta function at the origin and a constant 
term PO a t  infinity. Therefore S ( k )  -+ 1 as k -+ 00 and 
S ( k )  includes a term ( 2 ~ ) ~ p d ( k ) .  We define 

Sl ( k )  = S ( k )  - 1 - ( 2 ~ ) ~ ~ ~ s  ( k )  . (33) 
It follows that 

pop2 ( r )  = (2*)-3Jeik (k)dk .  (34) 

Taking the Fourier transform of Vgl(r), we obtain 
after the angular integrations 

Iz= 16npo/3+ ( 2 / ~ )  Si(ki )k~~b(kl /k)dkl ,  (35) 

where 
5 x2 1 1-x 

b(x)=- - - - -(1-%2)2log __ . 
6 2 4x I l+r/ 

The numerical integral in (35) was evaluated for 
k=O.5, 1.0, 1.5, 2.0 A-l. Convergence is good, and the 
values are accurate to within a few percent. Never- 
theless, (35) does not give accurate values of IZ when 
k>  1.5 A-I, because for large k the cancellation between 
the two terms of (35) is almost complete (as it must be 
because I S + O  as k - +  m ) ,  and hence a 3% error 
in the numerical integral may cause a 30% error 
in 12. We take the volume per atom of liquid helium 

I \  

-.05O1 

FIG. 3.12.(k) is the Fourier transform of p ( r )  times the velocitY 
distribution in the pattern of backflow around a moving atom. In 
the most important region ( k  < 1.5 A-I), I Z , ( k )  would beunchanged 
if we took p ( r ) = O  for r<2.4  A and P ( r ) = p o  for r>2.4 A. 
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;,5 45 A3.14 The following table compares the values of 
/ ? ( k )  obtained from (31) with those obtained from (35). 

k ( A - ' )  n 0.5 1.0 1 .5  2.0 m 
- zh) (A-3) from (31) 0.372 0.322 0.194 0.054 -0.036 0 

from (35) 0.372 0.326 0.200 0.050 -0.060 0 

'rhe discrepancy at k = 2  A-' is not serious, for the 
just mentioned, and the agreement elsewhere 

is sufficiently close for our purposes. The values derived 
from (31) are used throughout our work. 
la presents no problem if 12. (k)  is known for all k .  

Using (28) and the approximation (29) for p:$', and 
Fourier analyzing pZ(~23) with (34) we obtain 

Xh(r)Vg1(r)drT. (36) 

The integral in square brackets is a generalization of 
Iz to the case where the k in the exponential has a dif- 
ferent direction from the k in gl. The angular integra- 
tions are easily performed, yielding 

Ia=87rpo [ l fp~(r ) ] r -~dr+  ( ~ w J o / ~ ) '  l: 
-k 16p0J'~ k?S1(kl)[lza (k1)l2dk1 

=0.01190+0.00867 - 0.00790 = 0.01267A-'. 

0 

(37) 

The value obtained for I4 may be in error because of 
uncertainties in the values of p ( r )  and S ( k ) ,  and also 
because the approximation (29) is not exact. Discussion 
of the error due to (29) is postponed until the evaluation 
of Z3. The uncertainty in p z ( r )  is unimportant because 
the magnitude of &om p2(r)rv4dr is only 1/10 that of 
JrOm rr4dr. Similarly, 90% of the contribution to 
fom k12S1(k1)[12a(k1)]2dkl comes from the region k1 
< 1.2 A-l. In  this region I ~ , ( k 1 )  is the same as would 
result if we took p l ( r ) = O  for r<2.4A and p ~ ( r ) = p ~  
for r>  2.4 A, and S1(kl) is largely determined by its 
value and slope a t  the origin, both of which are known 
theoretically. The important point to be learned from 
this discussion is that the values of 14, and of the other 
integrals which contribute significantly to the coef- 
ficient of A 2  in (23), depend mainly on the gross 

I4 The atomic volume of liquid He under its own saturated vapor 
pressure at  0°K is 46 AS, but 45 A3 is closer to the value a t  2.06"K, 
where the structure factor data was taken. Internal inconsistencies 
would develop if P O  and S ( k )  were taken a t  different temperatures. 
One might ask where the theory takes account of the external 
pressure. The ressure determines the values of P O  and, more 
important, S(kf  An increase in pressure is expected to sharpen 
the maxima and minima of p(r) and S ( k ) .  
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features of p ( r )  (i.e., its delta function a t  the origin, 
vanishing for r<2.4A, and its quick approach to the 
asymptotic value PO) and not on the details of its 
behavior. The coefficients of A are more sensitive to the 
detailed behavior of p ( r ) ;  it is the detailed behavior 
which determines the location of the minimum in the 
energy spectrum. The insensitivity of the quadratic 
coefficients to the exact form of p ( r )  can be similarly 
verified in the computations which follow, and will not 
be pointed out explicitly. 

(c) Approximate Methods 

The value of 1 4  and the size of the various terms which 
contribute to it can be understood fairly well in terms 
of some simple approximations for integrals involving 
the coordinates of three atoms. With the help of these 
approximations we can understand the sizes of all the 
remaining integrals; if we know that a n  integral is 
small, it will not be necessary to waste time in evalu- 
ating it very accurately. 

Suppose we want to do an integral of the form 

J 

(in this integral we shall understand p3 to include a 
delta function on coordinates 2 and 3, but not on any 
other pairs). If the positions of 1 and 2 are fixed and 3 
is not too close to 2, then p3(1,2,3) can be approximated 
very closely by POpl(t.Zl)pl(r31). We write 

~3(1,2,3)2i~opl(r21)pl(r31). (38) 
When 3 approaches 2, this is wrong because p3  goes to 
zero but $l(r21)fl(r31) keeps a finite value (assuming, 
of course, that rZ1> 2.4 A ;  otherwise both expressions 
are zero). When 2 and 3 coincide, however, p 3  exhibits 
a delta function and far exceeds pOpl(~2l)pl(r31). The 
strength of the delta function is such that if we integrate 
the difference between the two sides of (38) over the 
positions of 3, the result is exactly zero, i.e., 

scp,(1,2,3) -pop1 (rzl)pl(r31)1dr3 = 0. (39) 

We believe this equation not to be a relation among 
distribution functions in general, but to hold for the 
distribution functions for the liquid a t  absolute zero. We 
do not have a rigorous proof, but shall discuss our 
reasons for believing it in Appendix B. 

If f(r) is a slow-varying function, i.e., f ( r )  does not 
change much when r changes by 2.4 A, then for a fixed 
value of r12 the value of f(r31) is almost constant over 
the region where the two sides of (38) differ appreciably. 
Using (39), we see that the integral 

J 
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Similarly, if j M g is slowly varying, 

Actually, our criterion for a slowly varying function is 
too stringent. The behavior of f(r) for r<2 .4A is of 
no importance, since pl(r) is zero in that range; hence 
f m a y  be singular at the origin. The important question 
is, how much does f(rl+rz) d 8 e r  from f(rl) when rl 
and r2 are any two vectors of length 2.4 A? And even if 
the difference is large compared with f(rl), (40) is 
still good if f (r)  is such that the major contribution to 
Jf(r)pl(r)dr comes from r > 3  or 4 A. 

Another type of integral which interests us is 
” 

J /(r2l)g(r3l)h(r23)P3(1,2,3)dr~r3, 

where / and g are smooth and h(r) oscillates so rapidly 
that it produces almost complete cancellation when 
integrated against pl(r). p3 is still understood to contain 
a delta function on 2 and 3, and on no other pair. In  
this case, if 1 and 2 are held fixed and 3 is allowed to 
vary, the oscillation in h(rz3) make the contribution to 
the integral small. The major contribution comes when 
3 and 2 are tied together by the delta function and we 
find 

If Vgl(r) is sufficiently smooth, (40) can be used to 
estimate 14. The answer thus obtained is (‘hrp0/3)~ 
=0.00867 A-6, which is the middle term of (37); if 
Vgl were very smooth, the first and third terms would 
cancel completely. The first term (0.01190 AP6) is larger 
than the third term (-0.00790 A-6) because Vgl(r) is 
proportional to rV3 and therefore quite strongly peaked 
for small r ;  hence the delta function more than com- 
pensates for the “hole” in pa. The answer given by (40) 
is 3 the correct answer. 

With the aid of (40)-(42) we can discuss the remain- 
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ing integrals more intelligently. If Landau’s energy 
spectrum is even qualitatively correct, then the most 
important points to compute are those in the neighbor- 
hood of the roton minimum. The phonon spectrum is 
guaranteed to be correct ; and when the temperature is 
high enought to excite the portion of the spectrum 
lying appreciably above the roton minimum, then the 
picture of the liquid as a gas of independent excitations 
has broken down. Thus, even if we knew the exact 
form of the high part of the spectrum, we would not 
know how to do the thermodynamics. Furthermore, the 
high-momentum end of the spectrum computed with 
(20) or (21) is certainly wrong, since the slope dE/dp 
exceeds the velocity of sound when k 2 2.2 A-I; when- 
ever I dE(p)/dp I > c, there obviously exist states with 
two excitations, one of which is a phonon, which have 
total momentum p but energy less than E ( p ) .  We shall 
therefore compute the energy a t  several points in the 
region 1.6 A-’ 5 k 5 2.4 A-I, and also a t  k= 1.2 A-I in 
order to estimate the height of the hump between the 
phonon and roton regions. 

(d) Evaluation of 1, and Correction to the 
Kirkwood Approximation 

Since gl is smoother than Vgl, Z3  is a good candidate 
for the approximation (40), which predicts 13=0 
because Jpl(r)gl(r)dr=O. We infer that 1 3  is small; 
but it is important to know h m  small, because the 
factor k2 which multiplies 1 3  in (23) is fairly large. The 
exact value of 1 3  [i.e., no approximations beyond (29)] 
can be computed by the method used for 11. The result 
is 

1 3 =  1 3 o f 1 3 b  

= JCn1(r)ypl(r)dr+ gl (rz~gl(r31)pl (rz1) 

X~l(r31)~2(r23)dr~ldr31 
s 

= P O  ( 4 ~ / 3 )  [1+~z(r)]r-~dr I J- 
i- (8/3)Sm~i(k)[1~~(k)I?db 0 1 

= (1/4.5)(1.707- 1.470)=0.0053A-4. 

The integral Iga(k) is defined by Eq. (49). The approxi- 
mation (40) is based on the idea that IBa and l a b  should 
cancel each other. Since 1 3 0 - 1 3 6  is only 14% of 
130, the idea behond (40) is good, but (40) tells Us 
nothing about the size of 13 because Jgl(r)pl(r)dr=O. 

If I3=0.OO53 A-4, then in the roton region the term 
k213 contributes about half of the total coefficient of A’ 
in (23). Any possibility of serious error in IS ought 
therefore to be investigated carefully. The idea that 13 
is almost zero is based on the approximation (4011 
which in turn is based on the identity (39). Actually, 
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the approximate form which we have used for pa  does 
not satisfy (39) exactly. Slight departures from (39) 
ordinarily would not affect the validity of (40), were it 
,,ot for the fact that Jp1(r)gl(r)dr=O. In  this case 
the question arises; how much of the failure of I 3  to 
vanish is real, and how much is due to the fact that the 
qproximate p3  does not satisfy (39)? An exact ex- 
pression for 1 3  is 

If any one the mutual distances is less than 2.4A or 
more than about 4A, thenpl(r21)pl(r3l)pl(r~3) -p3/(1,2,3) 
IS very close to zero. Consequently, the integrand of 
is appreciable only if the three atoms are a t  the corners 
of a triangle, each of whose legs may vary in length 
from 2.4 to 4 A .  Therefore, if the spatial variation of 
gl(r) were slow, the replacement of gl(rzl)gl(r31) by 
[gl(rs1)7 would not greatly alter the value of Isc. The 
resulting integral is then easily evaluated. We can, 
however, find an even better approximation to 1% by 
taking the angular variation of gl(r) into account. 
Since 1% is independent of the direction of k, we can 
average the integrand over the directions of k. The 
average of (k. r12) (k. r31) is $k2r21. r31, and in the 
important configurations the three atoms almost form 
an equilateral triangle ; therefore, the average over 
these configurations of the cosine of the angle between 
rZ1 and r31 is very close to 4. Most of the angular 
dependence of the integrand is therefore correctly 
accounted for if we replace rZ1.r3l by +r21r31; a t  this 
stage we note that the radii r21 and 731 are almost 
equal in the important region, and we take rZ1 and 731 

to be the same in the integrand. This approximation 
differs from the preceding one through the presence of 
the factor B. We obtain 

I e I 3 d y  

FIG. 4. Ia.(r) measures the error in the Kirkwood approxima- 
tion, and would vanish for all r>2.4 A if the approximation were 
exact. The rapid decrease of l a & )  accounts for the high accuracy 
of the Kirkwood approximation in this computation. 
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where 

1 3 d =  (6p~)-1~r31-4Cp1(~21)~1 (r31)pi ( ~ 2 3 )  

-~3/(1,2,3)ldr~ldr~1. 

The identities (39) and (70) imply that 

S n r 2 ~ l ( r 2 1 ) ~ l ( r 3 ~ ) p ~ ( r z 3 )  --p3/(1,2,3) J 

= ~ ~ 2 ~ l ( ~ 1 3 ) ~ p 2 ( ~ 2 3 ) p 2 ( ~ 1 2 ) d r 2 .  

We find 

I 3 d =  (3rP0)-'Jm r-2@l(r)13e(r)dr, (44) 
2.4 

where 

Z3dr13) = 2 r 2 d  dr2p2(rlz)pz(r2J (454  s 
= JW(h13)- '  ~ i n ( k r ~ ~ ) [ S ~ ( k ) ] ~ k ~ d k .  (45b) 

I&) was computed from (45b) for 19 values of r 
between 2.4A and 5.6A. The numerical integrals 
converge well, and the results are shown in Fig. 4. 
Performing the final numerical integration in (M), we 
find I 3 d = o . o t @ 4 0  Ad and finally 

I3=0.0049 AP4. (46) 
The smallness of the correction to I 3  shows that the 
slight failure of (39) does not cause a significant error 
in 1 3 .  This fact was not intuitively obvious, however, 
and needed verification. It should be emphasized that 
we have gone beyond the Kirkwood approximation. We 
have written a n  exact expression 1% for the error due 
to the Kirkwood approximation, and we have estimated 
I B ~  quite accurately by a n  integral I 3 d  which is easily 
evaluated. We believe the inaccuracy in the approxi- 
mation I e I 3 d  to be about 2570, and therefore our 
lack of knowledge of p3 causes a residual uncertainty 
of O.OOO1 A4 in the value of 13. 

By exactly the same method, one can estimate the 
error in 11 caused by the Kirkwood approximation. The 
answer is O.OOO1 A+, which is negligible compared with 
the value given by (37). 

(e) Evaluation of Remaining Integrals 
I S  occurs in (24) as a coefficient of A ,  rather than A*, 

and ought therefore to be treated as accurately as is 
possible. I n  IS, p3 includes delta functions on r12 and 
r13. Using (29), and noting that several terms are zero 
because gl is odd, we obtain 

IS= - 2 i s  exp(ik- rlz>gl(r~~)pz(rl3)~1(rl~) 

Xpt(rpa)dr~ldr3~-2i exp(ik. rl&l(r12) 

Xp1(r1z)dr21. (47) 
s 
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FIG. 5. Zs,,(k) is the Fourier transform of $(r )  times the velocity 
potential for the backflow pattern. Like Zt . (k)  i t  is determined in 
in the most important region by the gross features of p ( r ) .  

First we consider the second integral, since we must 
know its value for all k in order to do the first integral. 
The integral, like ZZ, can be performed in coordinate or 
momentum space ; after the angular integrations are 
done, the result in coordinate space is 

exp (ikl. r)g1 (r)pl (r)dr = k/k12k)47rpoiI~, ( k l )  , 
(48) 

whereI6 

19,(k) = (2.4,k-l sin(2.4k)i-k pz(r)jl(kr)dr. (49) 

As before, the coordinate space formula proves suf- 
ficient over the entire range of k .  For small k ,  when the 
numerical integral cannot be done accurately, its value 
is so small as to be unimportant compared with 
(2.4K)-l sin(2.4k). Figure 5 gives the values of 19, (k) .  
As in the case of Is@),  some points were also computed 
in momentum space, using data for S ( k )  rather than 
p ( r ) .  The results were in good agreement with the 
coordinate space computations. 

Since pI(r12) = p o [ l + p z ( r 1 ~ ) ] ,  the first integral in (47) 
becomes 

PO! exp (ik . r12)gl (r32)Pi ( 4  C1 +pz(r12)lp2 (r13)dr21dr31 

l: 

= P ~ J  exp(ik. 

  PO^ exp (ik. r& (r32)pi ( 1 3 2 )  

Xpz(rlz)P~(rl3)dr2~dral.  (50) 
I6 Since Jg l ( r )p l ( r )dr=O,  one might expect the right side of 

(48) to approach zero as k1 becomes small. But Z S , ( ~ I )  approaches 
unity for small k l ,  and consequently the right side of (48) 
approaches + m , depending on the angle between k and kl. The 
trouble, as before, is resolved by noting that (48) and (49) are 
wrong for k t < c  (gl should really gave a factor e-- in it). In  the 
correct version of (49) the term (2.4k)-' sin(2.4k) is replaced by 
zero when k<<e; hence 19,(k1)  goes as kI2 when kl<<r, and the 
right side of (49) approaches zero. The "error" in (48) and (49) 
has no effect on our computations, but is worth mentioning lest 
the reader discover it and develop a distrust of the formulas. 

The first integral on the right in (50) can be evaluated 
by writing exp(ik. r12) = exp(ik. r13) exp(ik. r32) and 
using the new integration variables 1 3 1  and 132. The 
result is 

x s1 (u) (u2- k2- k12) udu. (53)  
Since 

lm dkli(kl)Jk;;;l g(u)du= J- d u d u ) J ~ " i ( k 3 d k 1 ,  ul 

a numerical integral like (53) can be done in several 
different ways. We look for the way which converges 
fastest, is least sensitive to information which we do 
not have [like the value of Sl(u) for large u] ,  and does 
not involve small differences of big terms. For example, 
we should avoid dealing with the indefinite integral of 
S1(u)u3, since it oscillates badly for large u ;  hence (53) 
is not convenient to use as it stands. Probably the best 
form of (53) is 

= (2TPOik2)--1[Isb(k) - I s c @ ) ] .  (54) 

In this form, the inside integral acts as a convergence 
factor for the integrand of the outside integral, and the 
answer is not sensitive to the values of Sl(u)  for large u. 
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The inside integral can be tabulated once and for all 
as an indefinite integral; thus, the evaluation of (54) 
involves only a single numerical integration for each 
value of k .  

If (41) were used to estimate 1 9 ( k ) ,  the result would 
be 

I g ( k ) * -  2 i  elk ,rpl(r)dr gl(r)pl(r)dr=O. 

AS in the case of 13, the question arises: how much of 
the failure of 19(k) to vanish is real, and how much is 
due to the failure of our approximate p 3  to satisfy (39)? 
The analysis proceeds exactly as with 1 3 ,  and we find 
that the quantity 

s S 

I 9 & )  = (2/rpo)Jrn pl(Y)jl(k,r)z3e(Y)dY (55)  
0 

should be subtracted from (47). Combining Eqs. 
(47)-(55), we obtain 

19(k)  = (8VO/k)IS , (k)S(k)  + ( T k 2 ) - ' [ Z 9 c  ( k )  - 1 9 6  ( k ) ]  - 1 9 4  ( k )  . (56) 
Table 1 gives values of 1 9 ( k ) ,  I g b ( k ) ,  I g , ( k ) ,  and 

I g d ( k ) .  In  the roton region the correction Zgd is about 
one-tenth as large as I9 (except near k =  2.4 A-l, where 
Is is negligible anyway). Since we believe that I g d  
estimates, within a n  accuracy of 25%, the error due to 
the Kirkwood approximation, the residual error in 1 9  

due to this source is probably only 2 or 3%. 
Using (29), we can write 1 6  as 

The oscillatory factor exp(ik.rg3) makes 1 6  a likely 
candidate for (42), which saysI6 16*.16o. At the cost of 
considerable labor we have computed Z s b + I ~ , c  when 
k=2A-' and when k=1.2 A-l, and verified that it 
could indeed have been neglected. 

has been evaluated in connection with 14. From 
(31) and (25) we obtain 

Z k ( k )  can be evaluated by the same methods used for I S .  
The resulting expression is similar in form to (54), and 
will not be exhibited here. Laborious computations give 

and 
z s b ( 2  A-')+1s0(2 A-')= -0.0010 A-6 

l a b (  1.2 A-') + Z k  (1.2 A-') =0.0010 A-6. 

Id  Compare (42) with the definition of 1 s  in (25). 

1.2 -0.019 0.172 0.0076 0.0444 
1.6 -0.387 0.089 -0.0002 -0.0054 
1.8 -0.406 0.031 -0.0035 -0.0386 
2.0 -0.364 -0.017 -0.0047 -0.0518 
2.2 -0.086 -0.028 -0.0039 -0.0307 
2.4 0.155 -0.054 -0.0020 -0.0044 

Since 1~,,=0.0119 A-6, the complete omission of 1 6 6  and 
I &  would not cause a serious error in the roton spectrum. 
We shall omit these terms while locating the minimum 
of the spectrum, and shall reinstate them in the final 
computation of A. 

1 6  is estimated by (41) as zero. As in the case of la, 
it  is important to find out whether 1 6  is really small 
enough to be neglected. To  obtain a more accurate 
estimate, we write 

1 6 = I 6 o + z B b j  

where 

(2i/k) e+' ''gl (r) k.  Vgl( r)pl(r)dr, S 

According to the discussion preceding (41), 16,,, and 1 6 b  

will cancel each other almost completely, so 1 6  is some 
fraction (probably about one-fourth) of 1 6 a .  Performing 
the angular integrations in 1 6 0 ,  we obtain 

16,3= 8 r i r n  d??-3p1 (Y) [ - 2 (by)-' cos (kr)  

+ ~ ( K Y ) - ~  sin(kr)+ 1 8 ( k ~ ) - ~  cos(kr) 

- 1 8 ( k ~ ) - ~  sin(Rr)]. 

A rough numerical integration gives 

Isa(2 A-')?-0.003 A-5. 

Hence I6(2 A-')*-O.OOl A-6, and ~ Z ~ E - O . O O ~  A-6 
when k =  2 A-l. Since k213+14+16=0.040 A-6 near 
k =  2 A-l, we can neglect k16 without much error. 

Estimation of 1, by (41) gives 

I-- 2( - 4rpo/3)8rpolna(k) = f (8rp0)212, (k) .  (58) 

Considerations similar to those used in estimating 1 6  

show that (58) is accurate to better than 0.001 AP6. 
When k is in the roton region, the major portion of Z ~ O  

comes from the term 6(r12)p3(2,3,4), which is contained 
in p4(1,2,3,4). When 1 ~ f 0 ,  the oscillations of eik.rl* 
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make the contribution to the integral very small." If 
we neglect all of p a  except 6(r12)p3(2,3,4), we are making 
essentially the approximation which was used in 1 6  and 
was shown to be very accurate there. We then obtain 

I I ~ I ~  (59) 
and our evaluation of the integrals in (25) is completed. 

The oscillation argument which leads to (59) fails 
when k is very small. For any value of k the require- 
ment that the normalization integral 9 have no roots 
when considered as  a polynomial in A leads to the 
inequality 

The failure of (59) for small k is most easily seen by 
noting that 1 3  becomes much smaller than the right 
side of (60) as k 4 0. 

For k 2 1 . 2  A-I, the coefficient of A2 in (23) is 

I IO> Is2/41s. (60) 

E(R) l + A [ 1 1 + I z ] + ~ 2 C ~ ~ 1 3 + I r + 1 6 ~ + ~ ( 8 ~ ~ ~ ) ~ 1 2 ~ l  

El ( k )  1 + A  [k19,/Zsl+A2[k2I3/1s] 
<- 

= E)(k)/El ( k ) .  

A N D  M .  C O H E N  

estimated well by 

k213+ 14+ 16o++ ( 8rpo)212a  (k) . 
We have omitted 1 6 6 ,  I b c ,  and kle, and have approxi- 
mated I ,  by (58). I ~ c  and k16 have both been shown to 
be very small, and are both difficult to compute; 
omission of these terms simplies the computation of the 
energy spectrum, and does not significantly change the 
location of the minimum. 1 5 6  has been omitted for the 
sake of consistency, since it is even smaller than Ibc. 
After locating the minimum, we shall reinstate the 
omitted terms in our final computation of A. We esti- 
mate I i 0  by (59). 

6. THE IMPROVED ENERGY SPECTRUM 

\Vith the omissions and approximations mentioned 
in the preceding paragraph, we obtain 

l + A  [0.186+ 1.1 liI,,(k)]+A2[0.0246+0.0049~2+0.1081~~(k)] 

1 +.4 [kIg ( k ) / S ( k ) ] f - , l  2[0.0049k2/S(k)] 
- - 

E ( k )  is the true lowest energy of a state having 
momentum hk; E l (k )  is the energy computed with the 
wave function ( S ) ,  i.e., El(k)=h2P/2mS(k) ;EZ(k) is the 
spectrum we have computed, subject to the omissions 
and approximations noted above. 

For k =  2 A-l, (61) becomes 

&(k) 1+0.149A+0.0406 A2 
(62) -= 

El(k )  1-0.08224 +0.0156 A2' 

The first attractive feature of (62) is that the coef- 
ficients of A in the numerator and denominator have 
opposite signs, so that the denominator increases while 
the numerator decreases. The optimal value of A is 
-3.5, which is very close to the classical value A , l =  
-3.6. The minimum value of E2(2)/E1(2) is 0.659, 
corresponding to E2(2 A-')/K= 12.6"K. 

Computation of the coefficients in (61) and minimi- 
zation of the resulting expressions yield the results 
given in Table 11. We estimate the minimum value of 
E z ( k ) / ~  as 12.0°K, corresponding to k= 1.85 A-I. If 

17 If the integral 

J (r12) = (po)3J'pr~1,2,3,4)gl (rr1)gi (rrz)dradrr, 

were to become large compared with J ( 0 )  as 112 grows large, then 
the growth of J might offset the oscillations of exp(ik.ri2) and 
(58) would be wrong. I t  is easy to see, however, that as 1 and 2 
go farther apart, J(ri2) approaches [Jpl(r)gl(r)drg, which is 
zero. Since the factorization of J into a product of two integrals 
becomes more nearly exact as r12 increases, it is very plausible 
that J decreases with increasing r l l  and is largest when 1 and 2 
coincide. In the latter case, J is equal to II. 

we estimate Zk(1.85 A-') and IS(1.85 A-I) by the 
values of the corresponding integrals at k = 2  A-I, we 
find that the coefficient of A 2  in the numerator of (61) 
should be diminished by 0.003 A-6 when k= 1.85 A-l. 
This change lowers the energy by 0.5"K and we obtain 
the following as the final result of this computation18: 

po/h= 1.85 AV, A/K= ll.SOR. (63) 
I t  is evident from Table I1 that E&)/E1(k) passes 

through a minimum near k= 1.2 A-'. In  any correct 
theory Ez(R)/El(k) must approach unity for very small 
k because we cannot lower the energy of a phonon. By 
studying the behavior of the integrals in (25) for very 
small k ,  we have verified that our spectrum does indeed 

TABLE 11. The energy spectrum computed from (61)." 

k (A-1) A , , Y ~ ( A 9  E , ( k ) / E i ( k )  E z ( k ) / x ( ' K )  

1.2 -3.6 0.569 14.08 
1.6 -3.7 0.576 13.44 
1.8 -3.6 0.594 12.00 
2.0 -3.5 0.659 12.59 
2.2 - 3.0 0.730 16.86 
2.4 -2.5 0.791 24.04 

* E t ( k )  is essentially the spectrum computed here. Some further Small 
corrections lower the minimum energy to  11.S0K. E l ( k )  is the SPeCtrUin 
previously computed with a simpler wave function. AOpi is the Optimal 
value of the strength of the return flow in the wave function (21). and \'; 
chosen so as to minimize E t ( k ) .  The values of Aop, are close to  the "classical 
value -3.6 A* computed from a current conservation argument. 

Is A similar result has been obtained from perturbation theor) 
by C.. G. Kuper, Proc. Roy. SOC. (London) 233, 223 (1955). As 
he points out, the perturbation theory is not reliable because of 
the large size of the energy change. 
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spectrum Ez(k) com- 
puted from Eq. (61). 
Curve B IS the sper- 
trum El@)  com- 
vuted with the sim- 
pler wave function 
(5 ) .  Curve C is the Y Z o .  
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have the correct Limiting beha~ior :~ A more direct way 
of seeing the result is to look a t  (21) [or (20)] when k 
,5 small. The correlation term g(r,,) is significant 
only when atoms i and J' are fairly close. But in this 

exp(ik. ri) and exp(ik. rl) are almost equal because 
k is small, and hence the correlation terms canceI 
,irnost completely because g is odd. Thus, (21) is 
almost the same as (5) for small k ,  and leads to the 
=me energy. 

For high k ,  Ez(k) /El(R) approaches unity because 
the approximation exp[i C g(r,,)]=l+i C g(rl,) fails 
badly. We noted earlier that if we could compute with 
the wave function (20), the interference between terms 
,,& different i would vanish when k is large. If E, (k )  
is the energy arising from (20), we should find that for 
large k ,  

AS in the foreign atom problem. I t  is amusing to con- 
lecture on how much &(k) might lie below &(k) 
when k= 1.8 A-l. The accuracy of the approximation 
exp(i C g) = l+i g in the foreign atom problem (see 
reference 11) suggests that E3 may be 0.5" less. 

The energy spectrum &(k) is shown in Fig. 6 as 
curve A .  We have also plotted B:  El(k)=hW/2mS(k) ; 
C: de Klerk, Hudson, and Pellam's spectrum [Eq. 
(4)]; D :  spectrum of the form (2), with A,/~=9.6", 
po/h= 1.85 A-I and p chosen so that p*po2 has the 
same value as in C. (The specific heat depends on p 
and PO only through the product p+po2.)  From the 
curvatures of A ,  C, and D it is clear that our spectrum 
& ( k )  predicts too small a value of p. I n  a computation 
of this sort, however, it is doubtful that the curvature 
has much significance. 

Curve A brings out the fact that the "hump" between 
the phonon and roton regions is not nearly so high as 
one might expect from (1). Consequently, when com- 
puting the specific heat or normal fluid density at 
temperatures high enough to excite rotons, it is probably 
also necessary to take into account the deviations of the 
phonon spectrum from linearity (and also the devia- 
tions of the roton spectrum from pure parabolic be- 
havior). Qualitatively, it  appears that such corrections 
might improve the agreement between the theoretical 
spectrum and the specific heat and second sound data. 

7. DISCUSSION OF ACCURACY 

Initially, the major potential sources of error in this 
computation were (a) the absence of information about 
the true form of p3(1,2,3); (b) absence of information 
about p,(1,2,3,4); (c) uncertainties in the data for S I ( k )  
at  large k (see Appendix A). 

The uncertainty caused by (a) has, we think, been 
minimized by the introduction of a correction to the 
Kirkwood approximation. The errors remaining in la 

&(k) /&(k)  =0.65, 

If g(r) falls off sharply at large r ,  the analysis is simple. In 
our case the analysis is complicated by the slowness with which 
k.r/rJ falls off, but the ultimate result is the desired one. 
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Landau-type spec- C I I. 
trum used' by-  de- * 
Klerk et d.' to fit the 
second specific sound heat data. and I , , , , & c = d a  
Curve Disa Landau- 

-C 

L-- 
type spectrum with 
PO taken the same as 
in A ,  and p and A 
chosen to fit the 
specific heat data. 

curves are asymp- WAVE NUMBER k ( A 1 )  
totic to the line 
E=llck. 

For small k, all 2.0 

and IQ after the correction are probably less than three 
percent; the resultant error in A/K is less than 0.3". 

The approximation (59), which gives rise to the 
error (b), ought to be about as accurate as the approxi- 
mation ZPZS,,, since both approximations are based 
on the same oscillation argument. The latter approxi- 
mation was found accurate to better than 10% in the 
roton region. A ten percent change in Ilo would alter 
the value of A/K by 0.2"; we regard this number as a 
fair estimate of the error caused by (b). 

Considerable pains were taken to arrange the nu- 
merical work in such a way that the answers are 
insensitive to the behavior of S l ( k )  for large k. The 
residual error due to (c) is found mainly in the coef- 
ficient of A' in the numerator of (61). This coefficient 
may be in error by 5%, and the resulting error in A/K 
might be as much as 0.4". 

We consider the value A/~=11.5'  to be accurate 
within 0.6", i.e., the lowest energy computable with the 
wave function (21) is between 10.9" and 12.1". 

A wave function which gives a good value of the 
energy may, of course, be inaccurate for calculation of 
other properties of the system. On the other hand this 
function was chosen by a physical argument, and 
achieved a very considerable increase in the accuracy 
of the energy, without in fact using any variable 
parameters. It might be argued that some of this 
increase should be associated simply with the fact that 
we have one extra parameter A to vary. But  had we 
used the A determined by the physical argument ( -3 .6)  
we would have obtained practically the same energy as 
if we let it  vary. 

For this reason we believe that the wave function 
(20) [or for practical calculations (21) J not only gives 
the energy well but is a reasonably accurate physical 
description of the excitations. On the basis of this 
optimistic hope, (21) is currently being employed in the 
calculation of other properties of helium. 
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APPENDIX A. DATA USED FOR S ( k )  AND P(r) 
The curve for S ( k )  given in Fig. 1 is essentially that 

obtained from x-ray scattering by Reekie and Hut- 
c h i s ~ n . ~ . ~  The proper normalization of the data can, 
in principle, be determined from the fact that S(k) -+ 1 
as k -+ m . According to Goldstein and Reekie? "limi- 
tations inherent in the very low scattering cross section 
of liquid helium and the experimental technique have 
prevented effective exploration (of the range k > 6  A-I)." 
Since S(k) is still oscillating strongly at k = 6  A-I, the 
normalization of S(k) is uncertain by a few percent. 
For k22.5 A-I, the percent error in S ( k ) - 1  is large, 
and our computations would be totally unreliable if the 
integrals had not been set up in such a way as to be 
insensitive to the behavior of S(k)  - 1 for large k. We 
feel that S ( k )  ought to oscillate about its asymptotic 
value, and have therefore taken S ( k ) =  1 a t  a point 
whose ordinate is the average of the values of S ( k )  a t  
the minimum near 3.4A-I and the maximum near 
4.6 A-l. With Reekie's normalization, S ( k )  is unity a t  
an ordinate much nearer to the minima of the oscil- 
lations. Our normalization maximizes the cancellation 
a t  large k when we are performing integrals whose 
integrand contains S(k)-1 as  a factor. Since S ( k )  is 
the Fourier transform of p ( r ) ,  we find [see (34)] 

- 27r?po= [: k2[S(k) - l ldk. (64) 

The relation (64) might serve as  a test of the nor- 
malization of S ( k ) ,  were it not for the fact that the 
numerical integral gives no sign of converging if we 
cut it off a t  k = 6  A-I. The left side of (64) is equal to 
-0.43 A+. With our normalization, integration of the 
right side out to k = 6  A-l gives $0.44Aw3, but the 
integrand is still oscillating wildly and there is a chance 
of ultimately converging to a correct answer. With 
Reekie's normalization, integration of the right side 
out to k = 6  A-' gives a positive value much larger than 
+0.44 A-3, and the contribution from k>  6 A-' will 
also be positive unless the successive minima of S ( k )  
cease to be closer and closer to the asymptotic value 
of unity. At any rate, the consistency of the results 
which we have obtained by performing the same 
integral in coordinate and momentum space convinces 
us that our S ( k ) ,  which is 0.97 times Reekie's, is suffi- 
ciently accurate for the present computations. 

Most of the curve in Fig. 1 represents data taken a t  
2.06"K. According to reference 9, there is very little 
change in the values of S ( k )  for k>0.9 A-' as the tem- 
perature decreases from 2.5"K to 1.25"K. Therefore, 
in the range k>0.9 A-I, it is probably safe to represent 
the zero-temperature structure factor S ( k )  by the data 
taken a t  2.06"K. For k<0.9 A-I, the temperature 
dependence of S(k)  is more important, and it is neces- 
sary to extrapolate S ( k )  linearly to zero by using (65). 
We have done this, using a slope about 20y0 higher 

than the theoretical value in order to join the experi- 
mental data smoothly. The error thus introduced is 
small. 

Reekie and Hutchisons have computed p ( r )  for 
756 A by inverting their data for S(k) .  The curve for 
p(7) which we have given in Fig. 2 is obtained from one 
of their graphsz0 and, as has been previously mentioned, 
seems consistent with our curve for S(k) .  The numerical 
inversion of diffraction data is not unambiguous, since 
the integrand of the relevant numerical integral is not 
small at the cut-off value k=6A-'. Furthermore, an 
arbitrary cutoff procedure must be used to make p ( r )  
vanish for r<2.4 A. More recently, Goldstein and 
Reekieg have employed an IBM 701 calculator to 
compute p ( r )  out to 20 A, using the data of Reekie and 
Hutchison. Their article was not published until after 
the completion of the present calculation; the authors 
state that the results out to 6 A "fully confirm" the 
results of reference 9. Goldstein and Reekie apply the 
integral test (69) to their curves for p ( r )  and find satis- 
factory results. Since the integrands do not become 
small until r>, 13 A, we found it impossible to apply 
the test to the curve in Fig. 2. 

APPENDIX B. IDENTITIES SATISFIED 
BY j ( r )  AND S ( k )  

To understand the behavior of S(k)  for small k, we 
note that as long as we are concerned with disturbances 
of long wavelength (small k) the liquid can be treated 
as a continuous compressible medium. If p ( r , t )  is the 
number density in such a medium and we define the 
normal coordinates 

q k =  p(r,t)eik.rdr, s 
then the energy is 

where Wk = ck and mk = m/Nk2. Quantum mechanically, 
p(r) is replaced by the operator CiS(r-ri)  and q k  

then goes over into the quantum-mechanical normal 
coordinate q k = C  exp(ik.r,). S ( k )  is just 1/N times 
the expectation value of q k 2 .  Since the average values 
of the potential and kinetic energies are equal for a 
harmonic oscillator, it follows that S(k) = (&)/?ncz, 
where (Ek) is the average energy of the oscillator repre- 
senting sound of wave number k. When T=O, all the 
oscillators are in their ground states, and hence (ek) 
=*hk=4fick and 

S(k)=hk/2mc (small k ) .  (65) 
When TZO, the oscillator representing phonons of 
wave number k is no longer necessarily in its ground 

Figure 2 was obtained by dividing the data of reference S,  
Fig. 1 ,  by r2. There are slight discrepancies between the resultant 
curve for p ( r )  and the curve given in reference 9, Fig. 3. Errors of 
this magnitude in p ( r )  would have a negligible effect on our 
results. 
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state, but may be in its nth excited state with prob- 
ability proportional to eXP(-E,,/xT). I t  follows that 
(p= 1/KT) 

S ( k )  = (hk/2mc) coth3Phck (66) 
= (@mc2))-’-t ( @ R 2 / f  2m)k l -  . . . . (66a) 

From (66) there follows immediately the famous formula 

limS(k) = p ~ T x r ,  (67) 
k-0 

,,There po is the number density and XT the isothermal 
compressibility of the liquid. When hck becomes 
greater than KT, (66) becomes essentially linear in k .  
Strictly speaking, however, S ( k )  starts quadratically 
from a nonzero value except when T=O. The possi- 
bility of a linear behavior of S ( k )  for small k ,  as pre- 
dicted by (65) when T=0, has been sometimes 
questioned on the basis of (10). From (10) it follows 
that 

S ( k )  - 1 = 47~ Cp ( r )  - p o l  (kr)-’  sin (kr)Y’dr. (68) J+* 
Since p(r)-po approaches zero for large r ,  it is argued 
that it is legitimate to expand (kr)- l  sinkr as 1 - (kr)?/6 +. . . . Integrating term by term, one finds 

where 
S ( k )  - 1 = Cl+C2k?+ ’ ’ ‘ , 

c1= 4r [ p ( r )  -po]r2dr, 

c2= -+r ~ ( r ) - p o ] r 4 d r  

(684 

1: 
IT 

Hence it appears that S(k)  always starts quadratically 
in k. The fallacy in the argument lies in the fact that 
f(r) may not approach its asymptotic value fast 
enough, and the expansion may be meaningless. For 
example, if f ( r ) - p o  decreases as r+ for large r ,  (68) 
converges perfectly well but C1 and C2 are infinite. 
When T=O, f ( r ) -po  falls off slowly enough to invali- 
date the expansion, and (65) is correct; a t  any finite 
temperature p(r) - po ultimately falls off exponentially 
and the expansion (68a) is legitimate. One might think 
that all the coefficients of (68a) can be determined by 
comparison with (66a) ; this is incorrect because (66) 
is wrong for large k. Using (67) and (68), however, we 
do obtain the important result 

1+4*Jr @ ( r )  -polrzdr= p o K ~ x T ,  (69) 

and when T= 0 

1+4*J: b ( r )  -po]r’dr = 0. (70) 

[ N  L I Q U I D  H e  1203 

The result (69) can also be obtained by rather simple 
classical arguments. I t  follom directly from the defi- 
nition of p ( r )  that the left side of (69) is ( (A-f l )2)Av/X,  
where N is the number of atoms in a large subvolume 
of the liquid, and the bar denotes “average,” but statis- 
tical mechanics shows that ( ( i \ T - m ) 2 ) A V / ~ = p O ~ T ~ ~ ,  
whence (69) follows. 

One might think that (70) is a simple consequence 
of the definition of fl(r). For if an atom is known to be 
a t  rl, the probability that there is an atom a t  ra is 
p2(rI,r2)/pl(rl). If rl is not near the surface of the 
liquid, then pl(rJ=po; if rl and r2 are both far from 
the surface, then ps(rt,rz) = p o p ( r 1 2 ) .  If we integrate 
p2(rI,r2)/pl(rl) over all locations r2, excluding the point 
rl, the answer must be exactly iV- 1. But if we integrate 
pl(r) over all positions of r, the answer is exactly N .  
Consequently 

Cp2(r1,r2)/p1(r1) -~~(r?) ]drz= - 1 .  (71) S rzt’r1 

If we take r l  far from the surface, pl(rl) can be replaced 
by PO. Furthermore, the integrand is appreciable only 
when r2 is near rl, in which case p?(r1,r2)/pt(r1)--pl(r2) 
=p(r12)-p0 (there are no complications a t  the surface 
of the liquid since the surface corrections to both terms 
of the integrand are identical). Then (71) reduces 
exactly to (70). 

Something must be wrong with the preceding argu- 
ment a t  finite temperatures, since (70) is false if T#O. 
The difficulty lies in the fact that, a t  finite T ,  the limit- 
ing value of p2(rl,r2)/po for large rI2 is not po, but is 
slightly lower by an amount of order l/LV. Since r2 runs 
over a volume proportional to IT, there is a finite 
negative contribution to (71) from the region of very 
large r12 (i.e., the region where p 2 ( r l , r ? ) / p o  has reached 
its asymptotic value, which is not exactly equal to P O ) .  

Since (71) is rigorously true, the integral 

47T1+m Cp(.) -poIr?n‘r, 

which represents the contribution to the left side of 
(71) from the region where rI2  is not very large, must 
be greater than -1;  thus we arrive a t  (69) instead of 

The slight lowering of the density a t  infinity when an 
atom is known to be at the origin is not hard to under- 
stand, since the localization of one atom decreases by 
one the number of atoms eligible to occupy the site a t  
infinity. I n  the classical perfect gas POKTXT= 1 ; since the 
atoms are independent, the localization of one atom 
simply lowers the mean density by 1/V throughout the 
rest of the volume. I n  a real liquid, however, p O ~ T x d  
as T+O. Finally, when T=O, (70) implies that no 
influence propagates to infinity, even in order 1 / N ,  
when an atom is localized a t  the origin. In  this case, a 

(70). 
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density excess a t  the origin is surrounded by a rare- 
faction slightly further away, so that no change occurs 
in the density a t  infinity. 

Thus, the simple counting argument used to prove 
(70) is actually correct when T=O, because there is no 

values of y12. If y12<2.4A, both sides of (39) are 
identically zero for all r3. If 1 and 2 are far apart, then 
p3 can be written as 

pop1 (Y31)fl (Y32)  +PO26 ( 1 3 2 )  

change in the density far away when we localize an 
atom a t  the origin. For the same reason, we believe 
that any identity based on a counting argument 
becomes correct when T=O. We therefore believe in 
the truth of the identity 

although we cannot give a rigorous proof of it. Equa- 
tions (70) and (72) are easily combined to give Eq. (39), 
which we have used in our work (one must remember 
that, in (39), p3  is defined to include a delta function 
on r d .  

Equation (39) is easily understood for small or large 

and the right side becomes p02p1(131). If 3 is far from 2,  
then both sides are equal. Hence the only contribution 
to the integral comes when 3 is near 2 ;  but then we can 
set pl(r31)=p0 and we are left with 

P I 
J 

which vanishes as a result of (70). 
Even if (39) is not rigorously true for intermediate 

values of ~ 1 2 ,  it cannot fail badly; for when 712 is greater 
than 2.4A,  but not very large, then for any fixed 
radius 7 3 2  the solid angle in which 3 interferes with 1 
is small (less than one-quarter of the total solid angle 
available to rZ3). 
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A measurement of the energy losses of monoenergetic neutrons scattered from liquid He I1 would permit 
a determination of the energy-versus-momentum relation for the elementary excitations (phonons and 
rotons) in the liquid. A major part of the scattering at  a fixed angle arises from production or annihilation of a 
single excitation and appears as sharp lines in the energy spectrum. From the position of these lines the 
energy-uersrcs-momentum relation of the excitations can be inferred. Other processes, such as production 
or annihilation of multiple excitations, contribute a continuous background, and occur a t  a negligible rate 
if the incident neutrons are slow (X>4A) and the helium cold (T<2'K). The total cross-section data can 
be accounted for by production of single excitations; the theoretical cross section, computed from a wave 
function previousIy proposed to represent excitations, agrees with experiment over the entire energy range, 
within 30y0. Line widths in the discrete spectrum are negligible at 1°K because of the long lifetime of 
phonons and rotons. 

I. INTRODUCTION 

HE possibility of a direct experimental determina- T tion of the energy-versus-momentum relation for 
phonons in a solid was pointed out by Placzek and 
Van Hove.' They proposed to study the energy distribu- 
tion of very slow neutrons scattered inelastically and 
coherently from the solid; if the incident neutron beam 
is monochromatic and if the scattering process involves 
only the production or annihilation of a single phonon, 
energy and momentum conservation imply that the 
neutrons emerging at a given angle can have only 
certain discrete energies. The energy-momentum rela- 
tion for the phonons can be inferred from the angular 
variation of this discrete spectrum. Other processes, 
such as multiple phonon production or annihilation, 
contribute a continuous background above which the 
discrete spectrum is still observable. 

The purpose of the present paper is to suggest that 
the same technique be used to determine directly the 
energy-versus-momentum curve for the excitations in 
liquid helium, and to predict some details of the 
experiment. A direct measurement of this curve would 
be of considerable interest, since the shape of the curve 
has already been predicted in some detail by indirect 

* Richard C. Tolman Fellow. 
'G. Placzek and L. Van Hove, Phys. Rev. 93, 1207 (1954). 

We have recently Iearned that some of the ideas in  the present 
paper have been discussed by V. V. Tolmachev, Repts. Acad. 
SCI. U.S.S.R. 101, No. 6 (1955). 

methods. Landau2 argued on theoretical grounds that 
the energy E(R) of an excitation momentum hk should 
rise linearly with slope hc for small k(c=speed of sound 
=240 m/sec), pass through a maximum, drop to a 
local minimum a t  some value Ro, and rise again when 
K >  K O .  For small R ,  the excitations are called phonons 
and may be thought of as quantized sound waves; 
the excitations with k-ko are called rotons, and seem 
to be the quantum-mechanical analog of smoke rings.3.4 
At low temperatures, only the linear portion of the curve 
and the portion near the minimum are excited; if the 
curve is represented near the minimum by E ( k ) = A  
+ h z ( k - R ~ ) 2 / 2 p ,  the speci6c heat and second sound 
data can be fitted best with the valuess 

A / K = ~ . ~ ' K ,  ko=2.30 A-', p=0.40 n t ~ ~ ,  

and almost as well with the values2 

A / K = ~ . ~ ' K ,  ko=1.95 A-', p=0 .77  mas. 

A Landau-type curve has recently been obtained 
from b s t  principles by the substitution of a trial 
function into a variational principle for the energy?.' 
The resulting curve is an upper limit to the true 
spectrum, and gives A/~=11.5'R, R0=1.85 A-I, p-0.20 

*L. Landau, 1. Phys. (U.S.S.R.) 5, 71 (1941): 11. 91 119471. 
SR. P. Feynman, Phys. Rev. 94, 262 (i954):' ' ~ ' 
'R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956). 
6 deKlerk, Hudson, and Pellam, Phys. Rev. 93, 28 (1954). 
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FIG. 1. A Landau- 
type energy-onsus-mo- 
mentum curve, with 
A=9.6”R, p=1.06 m ~ ~ ,  
ko= 1.85 A-I. 

Wove Number h ( A - ’ )  

mHe. In  the rough computations of this paper we shall 
use the curve of Fig. 1, which has A / K = ~ . ~ O K ,  ko=1.85 
A-l, p = 1.06 mHe. These values represent a compromise 
between theory and experiment, and also fit the 
specific heat data. Most of our numbers have only a 
qualitative significance, since the shape of the energy 
curve between the phonon and roton regions is highly 
uncertain. 

11. GENERAL THEORY 
Suppose the liquid is initially in state j ,  and we 

bombard it with neutrons of mass m and momentum 
hk;; the cross section for a process in which the liquid 
is left in one of a group of final states F ,  a?d the neutron 
emerges with a momentum in some region G of k space, 
is given by the Born approximation6*’ as 

where the sum and the integral extend over the regions 
F and G, respectively. The matrix elements V are given 
by 

N 

V,i(d=s$f*(rl ,’  ”rN) c ;-1 

Xexp(iq.r;)$j(rl,. . . r ~ ) d r l .  . .drN, 

where $j and J . j  are the wave functions for the liquid 
in states j and f. The scattering length a is independent 

9,O’ 

FIG. 2. Kinematics of production of single excitations. The 
curves give the wave number k, of the exit neutron, as a function 
of ki and 0 ;  k f  is the distance from the origin. On each curve k; 
is constant and has the value given on the B=O axis. Note that 
k / = k ;  when B=O (and k;>0.68 A-l). 
6G. Placzek, Phys. Rev. 86, 377 (1952). ’ For the justification of the use of the Born approximation in 

this problem see E. Fermi, Ricerca sci. 7, 13 (1936); G .  Breit, 
Phys. Rev. 71, 215 (1947). 

of energy a t  low energies, and is related to the total 
cross section u’ of a bound He nucleus by u’=4?raz. 
McReynolds* found u’= 1.1kO.15 barns. 

In elastic scattering, the final state of the liquid is 
the same as the initial state.g In  the matrix element for 
elastic scattering, the integral of $.,2 over all coordinates 
but one is equal to 1 /V  (V=volume of the liquid) 
except a t  points very close to the surface. Only the 
region near the surface contributes to the volume 
integral of exp(iq.r), and hence the only elastic scatter- 
ing from the liquid is diffraction from the surface.’O 
In a crystal, the integral of $: over all coordinates but 
one gives a function which is strongly peaked a t  the 
lattice points; hence for certain directions of q the 
matrix element V,j(q) becomes proportional to N ,  
and elastic scattering occurs. Therefore, although 
neutrons are scattered elastically from solids, virtually 
no elastic scattering should occur from the liquid. 

111. SCATTERING AT ZERO TEMPERATURE 

If the liquid is at zero temperature, then the initial 
state is the ground state $0, and the neutron must lose 
energy in the scattering. The simplest process which 
can occur is the creation of a single excitation of 
momentum k(ki-k,) in the liquid (if we impose 
periodic boundary conditions on the liquid, the station- 
ary states may be taken as momentum eigenstates). 
Energy conservation requires 

A2k,2/2m=?i*kj2/2m+E( / k ; - k j l ) .  ( 2 )  
If we fix ki and the angle B between ki and kj ,  then if 
ki>0.68 A-l (Xi<9.25 A) there is a unique k j  for each 
8. When ki is just less than 0.68A-l, ( 2 )  becomes 
insoluble for 8> 90”. As k ;  decreases further, the region 
of solubility of ( 2 )  is a cone of decreasing aperture 
about the forward direction. For each direction 8 in 
the cone there are two solutions for k,. Finally, when 
ki<O.38A-l, ( 2 )  becomes insoluble a t  any angle. 
The qualitative behavior of the solutions of ( 2 )  is 
shown in Fig. 2 ,  but not too much significance should 
be attached to the numbers, which are based on the 
uncertain curve of Fig. 1. 

The solutions of ( 2 )  should appear as lines in the 

8 A. W. McReynolds, Phys. Rev. 84, 969 (1951). 
9 This is true if the liquid is confined in a fixed box. If the box 

is free to recoil, then for elastic scattering the final state is the 
same as the initial state exce t for a translational motion of the 
whole with momentum Tz&i-k/) and infinitesimal energy 
Tz2(k;-k/)Z/2NmEe. The wave function for the final state is then 
$I=$; exp[iN-l(ki-k/). &I. The remaining arguments are 
still valid, with each ri being measured from the center of mass 
rather than from an origin determined by the location of the box. 

By “elastic scattering” we mean scattering processes in which 
the incident and exit neutrons have the same energy, and further- 
more the state of the liquid is unchanged. If we relax the latter 
requirement, then at finite temperature some neutrons can 
scatter without energy loss by colliding with excitations in the 
liquid. However, neutrons which are scattered by collisions with 
excitations emerge with a continuous distribution of energies 
(i.e., the number in any energy range dE is proportional to dE), 
and there will not be any “group” of elastically scattered neutrons. 
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energy spectrum of the neutrons emerging a t  a given 
angle. The energy-versus-momentum curve for the 
excitations can be obtained from Eq. (2) by measuring 
kf as a function of angle for fixed ki, or by looking a t  a 
fixed exit angle and varying ki. Processes involving 
multiple excitations contribute a continuous back- 
ground. When k;<0.38d-l, the right side of ( 2 )  is 
bigger than the left for any k,; furthermore, since E(k)  
is the energy of the lowest state of the liquid having 
momentum hk, production of multiple excitations 
will also be impossible when k,<0.38 A-l. Hence, when 
the liquid is a t  zero temperature, neutrons with k;<0.38 
A-I (X> 16.5 A) should pass through with no scattering. 
This conclusion seems consistent with the data of 
Sommers, Dash, and Goldsteinll on the transmission 
of neutrons by He. 

The strengths of the lines are given by (1). We take 
the region G of k space as K2AkdQ, where Ak includes 
the line under study. Momentum conservation man- 
ifests itself in the vanishing of Vfo(k-ki) unless the 
state f has the momentum h(ki-k). Integration of 
(1) over G gives 

hi kj  1 v,o(k,-ki) 
4 = a L  (3) 

mE'(lkf-kil) ki dQ 

k i l l + -  h2 Ikf-kil (I-,,,,) I 
as the cross section for scattering into dQ with the 
production of one excitation of momentum h(ki- kf) 
(and final neutron momentum hk,). In  reference 3 
the function 

# k =  g-*J/oc exp(ik.ri) (4) 

is proposed to represent a single excitation of momentum 
hk. This function is exact for very small k ,  and gives an 
energy spectrum qualitatively similar to Landau's, 
but with A twice too large. Normalization requires 
g=NS(K) ,  where S(K) is the Fourier transform of the 
zero-temperature radial distribution function p ( r ) ,  

S( k) = exp (ik . r)p (r)dr. s 
The resulting matrix element is 

I V'So(9) I*=flS(d. ( 5 )  
Actually, (5) is an over-estimate, as one can see from 
the exact sum rule 

Cf I V f d d  I 2 =  C V ( d  V*(s)loo= W d .  (6 )  
If (5)  were exact, then (6)  would imply that production 
of multiple excitations is impossible. A more accurate 
wave function for an excitation is given in reference 4, 
and leads to the matrix elements given in Fig. 3. In  
the roton region, these matrix elements are only ten 
t o  ateen percent smaller than those given by (S),  and 

I' Sommers, Dash, and Goldstein, Phys. Rev. 97,855 (1955). 

I m 

N- 

FIG. 3. Matrix elements < 
for production of single ex- ; 
citations, computed from -F 0.5- 
the wave functions of ref- 
erence 4. 

- 

1.0 2.0 

we infer that the most likely way for a neutron to lose 
a given amount of momentum is through the production 
of a single excitation. 

Substituting the matrix elements of Fig. 3 into Eq. 
(3), we obtain the curves of Fig. 4, giving the angular 
variation of line strength for different values of ki. 
The curves are given in units of a2, which is the differen- 
tial cross section per unit solid angle for scattering 
from a bound helium nucleus. When ki>0.68 A+, 
duJdQ vanishes a t  0-0 because the matrix element 
Vfo approaches zero when the momentum transfer is 
small. When ki<0.68 A-I, there are two curves for 
each ki, corresponding to the two lines which are 
observed a t  each angle within the cone of solubility of 
(2). At the edges of this cone, dol/dQ becomes infinite 
because the denominator of (3) vanishes. The total 
cross section, however, is finite. 

If we neglect the possibility of producing multiple 
excitations, the total cross section a t  zero temperature 
is obtained by integrating (3) over angles. The resulting 
cross sections are compared in Fig. 5 with the total 
cross sections measured1' a t  1.25"K (the temperature 
effect, which is negligible, is discussed in the next 
section). The agreement of theory and experiment 
within 30y0 is quite satisfactory in view of our in- 
complete knowledge of the wave function ll.I and the 
curve E ( k ) .  When Ki is large, Eq. (1) can be shown to 
lead to the total cross section ( 1 6 / 2 5 ) h a 2 N ,  which is 
just the cross section for free helium nuclei scattering 
incoherently. The theoretical curve has been extra- 

- I  I I 
A ,  '6.28 A ia5u k ,  *?.85A 

30' 60' 90' 120' 150' 180° 

FIG. 4. Angular distribution of neutrons which have been 
scattered by the process of producing a single excitation, a t  zero 
temperature. 
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FIG. 5. The broken 
line is the total cross 
section computed here. 
Circles are computed 
points. The solid line 
represents the measure- 
ments of Sommers et d. 
a t  1.25”K. 

polated to this value. As X decreases, the theoretical 
curve rises faster than the experimental one; the reason 
is probably that the matrix elements of Fig. 3 are too 
large when the momentum transfer is in the roton region. 
To see this more clearly, we note that there is an exact 
sum rule, 

which, in conjunction with Eq. (6), says that the 
“average” energy loss associated with momentum 
transfer k is hZk2/2mS(k). For small k, this “average” 
energy loss is the same as E(k)  ; hence the idea that 
multiple excitations are produced with negligible 
probability is correct. However, when k = 1.85 A-l, one 
finds that the “average” energy loss is 19.5’R, which is 
twice the size of E(k) .  If the matrix elements of Fig. 3 
are correct, then the sum rule (6) implies that there 
is only a 13% probability of producing multiple 
excitations when the momentum transfer is 1.85 A-l. 
Such a small probability of multiple excitation seems 
hardly consistent with a mean energy loss corresponding 
to the production of two rotons. We conclude that the 
correct matrix elements for single roton production are 
almost certainly smaller that those given in Fig. 3.12 

IV. EFFECTS OF FINITE TEMPERATURE 

If the liquid is a t  a finite temperature, some phonons 
and rotons are always present, and the neutrons can 
gain energy by annihilating excitations. The energy 
spectrum of the neutrons emerging a t  a given angle will 
contain a line representing annihilation of single 
excitations as well as a line or lines arising from their 
production. At  temperatures below the X point, the 
production process is far more important than annihila- 
tion if the wavelength of the incident neutrons is less 
than 10 A. Since phonons and rotons obey Bose 
statistics, the rate of annihilation of excitations of 
momentum hk is proportional to the number n(k) of 

= I t  is not entirely obvious that the total cross section is 
lowered by lowering the probability of producing single excitations, 
since the sum rule ( 6 )  implies that the probability of producing 
multiple excitations must be correspondingly increased. However, 
the density-of-states factor resulting from the delta function in 
Eq. (1) produces a decrease in the total cross section when 
probability is transferred from single t o  multiple excitations. 

R .  P .  F E Y N M A N  

such excitations already present, while the rate of 
production is proportional to n(k)+ 1. A t  temperature 
T, we have n(k)  = {exp[E(k)/~T]- l}-l; for rotons 
a t  2”, E(k)/KT=5, and we see that the “spontaneous 
production” factor 1 is much greater than n(k). 
Figure 2 shows that if the incident neutron wavelength 
is less than 10A (ki20.6 A-l), most of the excitations 
produced have wave numbers greater than 0.4 A-’ 
and consequently energies large compared to 2’R. 
Furthermore, Fig. 3 shows that the matrix elements 
for the production of low-energy phonons are small. 
Thus we see that in the range T ZZ”K, X S l O  A, 
spontaneous production is much more important than 
“induced production” and annihilation, and the lack 
of temperature dependence of the total cross section is 
understood. 

For incident neutrons of wavelength greater than 
-10 A, it is kinematically impossible to produce any 
except very low-energy phonons (and no excitations a t  
all can be produced when X>16.5 A). Hence the 
annihilation process is the most important one at long 
neutron wavelengths, and the total cross section in 
this region is strongly temperature-dependent. U1- 
timately, a t  very long incident neutron wavelengths, 
the kinematics becomes that of zero-energy incident 
neutrons. Figure 2 shows that a zero-energy incident 
neutron can annihilate only phonons with wave number 
k=0.68 A-l and energy l1°K.’3 The total cross section 
ultimately depends on the temperature as exp(- l l /T),  
and on the incident velocity as l / v  [arising from the 
factor 1/ki in Eq. (l)]. 

V. RESOLUTION AND LINE WIDTH 

In  order to obtain even a moderately accurate 
measurement of the roton energy A, the velocities of 
the incident and exit neutrons must be known very 
accurately. Figure 2 shows that the slowest neutron 
which can produce a minimum energy roton has a wave 
number k-1.04 A-I (energy=25’) ; the exit neutron 
in this case has k-0.81 A-’ (energy515’). To measure 
A with an accuracy of one degree, the neutron energies 
must be accurate to 0.7’; for the incident neutrons, we 
need 6X/X=6E/2E=0.7/50=0.014. Thus, to measure 
A with ten percent accuracy, the velocity spread of the 
incident neutron beam must be limited to about one 
percent. Nothing is gained by studying neutrons which 
have annihilated a roton ; the slowest incident neutron 
which can annihilate a roton has k-0.81 A-1, and we 
need 6X/X=0.7/30=0.023. The slight improvement in 
the resolution situation is far more than offset by the 
low rate of annihilation, as compared with production 
(see Sec. IV). The resolution situation is best when 
we observe neutrons scattered through 180’. If we study 

This is not entirely correct, since annihilation of multiple 
excitations is possible, though unlikely at  low temperatures. 
The total momentum of the excitations annihilated must be at 
least 0.68 A-l and the total energy at  least 11°K. At low tempera- 
tures and velocities, the cross section still vanes as u-l exp (- ll/T), 
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the 90' scattering, the slowest allowed incident neutron 
has k-1.5 A-I and we need SX/X-0.007. 

If one looks a t  the energy distribution of the neutrons 
emerging a t  a particular angle, how broad is the line 
corresponding to those neutrons which have created a 
roton? We have studied this question in some detail; 
in the Appendix we compute the detailed line shape 
which would result if we make certain assumptions 
about the interaction between phonons and rotons. 
The assumptions prove to be unrealistic, but the method 
of computation is of some interest. The result which we 
obtain for the line width is what one would expect 
from the uncertainty principle; the width is A / T ,  
where 7 is the lifetime of the roton until it collides with 
something. In  our model, roton-roton interactions are 
neglected; hence the lifetime we compute is that for 
roton-phonon collisions. This lifetime is very long, and 
the resulting width is less than 1WB0K (to be compared 
with a roton energy A=9.6"K) when the helium is a t  a 
temperature of 1 OK. Landau and K h a l a t n i k ~ v ~ ~  have 
computed the lifetimes for phonon-phonon, phonon- 
roton, and roton-roton collisions. They find that a t  
temperatures of 1 O and higher, the roton-roton lifetime 
is much shorter than the roton-phonon lifetime. 
When T = l o ,  the width of a roton line is 0.006"K, 
which is still very small compared with the roton 
energy, but large compared with 10-6OK. The width 
is proportional to Tk exp(-A/KT), which represents 
the temperature dependence of the number of rotons 
present; when T=2OR, the width is about 1'. Similarly, 
one can compute the width of a line arising from the 
production of phonons by neutrons; when T =  1°K, 
the lifetimes of a phonon for scattering by a roton or by 
another phonon are comparable, both giving rise to 
widths of about 10-60K. We conclude that for all 
practical purposes the lines in the neutron spectrum 
will be true delta functions if the helium temperature is 
near 1'K. 

To calculate the cross section for roton-roton colli- 
sions, Landau and Khalatnikov assume a delta-function 
interaction between rotons, the strength of the interac- 
tion being chosen to fit viscosity data. In  the appendix 
we show that such a delta-function potential, with a 
strength close to that of Landau and Khalatnikov, 
arises from the possibility that roton I can emit a 
phonon which is subsequently absorbed by roton 11. 
The result is only suggestive rather than conclusive, 
however, since we are also led to a velocity-dependent 
interaction between rotons, comparable in strength with 
the delta function. 
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APPENDIX 

The problem of the breadth and shape of the lines 
in the neutron spectrum caused us some confusion, the 
details of which are not worth recounting. Finally, we 
constructed a "model" Hamiltonian for helium, 
including a phonon-roton interaction, for which the 
line shape can be computed very accurately. Analysis 
of this Hamiitonian not only resolved our private 
confusion, but also showed what the line shape is in 
the case of real helium. The important features of the 
answer can be obtained from perturbation theory, 
provided certain linear terms are interpreted as the 
beginning of exponentials. We regard the more accurate 
computation as sufficiently interesting to be presented 
here. It is analogous to the Weisskopf-Wigner method 
in the theory of optical spectra. 

Suppose, for simplicity, that excitations with K <k, 
are phonons, with energy E ( k )  =Izck, and excitations 
with K >  k, are rotons with energy E(K) =A+Az(k- k$/ 
2fi. If there were no interaction between phonons and 
rotons, the Hamiltonian for the liquid would be 
H=Cak*akE(k), where ak* and a k  are the usual 
creation and destruction operators for excitations of 
momentum Ak; the operator at*& has integral eigen- 
values rtk, which represent the number of excitations 
present with momentum hk. The matter density at 
r is given by 

p(r)-po= (pdt /2Vc)*  C K* 
k<ks  

x [uk exp(ik. r) +uk* exp (- ik .r)]. 
We are interested only in the average behavior of the 
matter density over a region of finite size (the size of 
the roton) and have therefore omitted wavelengths 
smaller than 2 r / k ,  in the representation of p(r). 
We assume that if a roton of momentum Itk is a t  r, 
its energy is E(k)+ (aA/ap)[p(r)-po]. Atkins and 
Edwards16 have measured aA/ap and find aA/ap 
= -0.57A/p. The actual interaction between phonons 
and rotons involves further coupling terms, which will 
be discussed later. 

It is convenient to  use a mixed representation in 
which phonons are treated with creation and destruction 
operators, and rotons are represented as particles with 
coordinates and momenta. If the number of rotons 
present is m, the Hamiltonian is 

k<kc i-1 i-1 

X C k*[ak exp(ik.rJ+uk* exp(-ik.ri)]. (1') 

The interaction term in (1') creates and destroys single 
phonons, since the operators I& and uk* appear linearly. 

lsK.  R. Atkins and M. H. Edwards, Phys. Rev. 97, 1429 
(1955). 

k<kc 
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FIG. 6 .  Diagrams representing the phonon-roton interaction in 
the Hamiltonian (1'). The solid line is a roton, the broken line a 
phonon. Time increases from left to right. Diagram (a) represents 
emission of a phonon, and (b) represents absorption. 

Rotons only change their momenta, however, since 
the interaction merely multiplies the roton wave 
function by a plane wave. If we represent rotons by 
solid lines and phonons by dotted lines, the two terms 
in the phonon-roton interaction can be represented by 
the diagrams of Fig. 6. 

If the number of neutrons per second emerging in 
solid angle dQ with an energy loss in the range (E,  
E+dE) is n(E)dEdQ, the Fourier transform of n(E) 
is given by Eq. (1) as 

f ( s ) =  1: exp(--irlE)n(E)dE 

Since the energy needed to produce a roton is small 
compared with the energy of the incident neutrons, the 
term (Ej-Ej)  in the argument of the delta function 
can be ignored with negligible error. This approximation 
gets better as the incident neutrons get faster.'6 
Similarly, since the direction of k is fixed and its length 
is very close to ki, we can replace k-ki by a constant 
vector q, where I ql =2k;  sin(8/2). Furthermore, the 
liquid may be in different initial states j with probabil- 
ity exp(-j3Ej)/C exp(-@Ej), where /3=1/~T. Thus 
we obtain 

In Eq. (4) we have suggested that the wave function 
for a single roton of momentum q is the ground-state 
wave function multiplied by C exp(iq.r;). Since the 
wave function for an oscillator in its b s t  excited state is 
just the ground-state wave function multiplied by the 
normal coordinate of the oscillator, it would follow 
that C exp(iq.ri) is the normal coordinate for rotons 
of momentum q. In  particular, if 1 j )  is a state contain- 

18 We are only computing the shape of n(E) for energies near 
the roton ener y. Fast neutrons tend also to produce multiple 
excitations, wit% large energy losses, but we are not studying that 
part of the spectrum. 

R .  P .  F E Y N M A N  

ing no rotons of momentum q, then 

The wave function exp(iq.r) I j )  represents whatever 
was present in the initial state j ,  plus a roton of momen- 
tum q ;  r is the position coordinate of the roton. If l j )  
already contains rotons of momentum q,  then 
C exp(iq.ri) both creates and destroys rotons. 
Actually, C exp(iq.ri) is not the exact normal co- 
ordinate for a roton, and consequently this factor 
can also create and destroy multiple excitations. In 
keeping with the spirit of this computation, we deal 
with a fictitious model in which direct production of 
multiple excitations by neutrons does not occur. 
This does not mean that no multiple excitations are 
produced; a neutron can produce a single virtual roton, 
which then breaks up into a real roton and a real 
phonon through the interaction term in H. 

As a further simplification, we deal with a case 
slightly different from thermodynamic equilibrium. 
In the initial states j we allow an arbitrary number of 
phonons to be present, with the usual thermodynamic 
distribution; however, we consider only initial states 
in which no rotons are present. This picture is accurate 
at low temperatures. Consequently, for the initial 
states j the Hamiltonian is 

HQ- C Uk*UkhCk, (4') 
k<kc  

and for the final states f 

H = Ho+ E (k)+aA/ap(p&/2Vc)* C k i  
k < k c  

x [Uk exp(ik.r) +ak* exp( - ik .r)] (5') 

In  determining the traces of (2') we can use any states 
as a basis. For the initial states we use eigenstates of 
Ho, denoted by ]nklnk2.*.); as base vectors for the 
states with a roton present we use products of an 
eigenstate of Ho and a position eigenfunction (delta 
function) for the roton, denoted by Ix; fiklfik2'  . .). 
Since we deal only with initial states with no rotons, 

= Ho+Hi. 

[Tr exp(-j3H)r1= n [l-exp(-phck)]. 
k < k c  
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From (3') it follows that 

( f ik l f ik2 . .  ' I VI y ;  n k l n k l '  ")=[~S(p)/l']*exp(iq'y), 
(x; n k l n k 2 '  ' '  I V * l n k l n k 2 '  ")=[NS(q)/Vltexp(--iq.x). 

A great simplification is effected if we neglect the 
dependence of E(k) on k, i t . ,  let E(k)=A. We now 
make this approximation and shall later consider the 
effects of restoring the dependence. Since H does not 
involve the momentum of the roton, if the wave function 
is initially a position eigenfunction of the roton it will 
remain a position eigenfunction. Consequently, 

( y ; n k i n k n * * *  I exp[-iq(Ho+HJ](x; % k l n k Z . ' . )  

=6 (x- y) (x ; n k l n k 2 '  . ' 1 
exp[-iq(Ho+HJ]]X; n k i n k z . .  .). (7') 

The second factor on the right is simply a diagonal 
element of the Green's function (represented in 
occupation-number space) for a collection of oscil- 
lators forced by the function H1. The matrix elements 
G,, for a forced oscillator are easily worked out, by 
operator calc~lus '~ or other methods. If the Hamiltonian 
for a forced oscillator is 

H = a*ae+g (t)a+ g* (t)a*, (8') 

and Im) and In) are eigenstates of the unforced 
oscillator with energies me and ne, respectively, then 

I " > f > S > f '  

The trace is now easily obtained. We find 

C exp[ (- p+ it"- it') tn]Gnn 
n 

n! 
- -Goo C e-8'" (- BB*),-, 

n> r >  0 r![ (n-r)!? 

=Goo(l-e-fl')-' exp[-BB*/(&- l)]. (10') 

From (5') we have g(t)  = (dA/ap) (p&'2Vc)*k*eik .r .  

Replacing the sum over oscillators by IJ(2r)-3Jdk, 

l7 See, for instance, R. P. Feynman, Phys. Rev. 84, 10s (1951), 
Eq. (38). The present case is a trivial generalization of the result 
given there. 

FIG. 7. Interaction of neutron (double line) with helium. I n  
(a) the neutron produces a real roton. I n  (b) the neutron produces 
a virtual roton which decays into a real roton plus a phonon of 
frequency w .  I n  (c) the virtual roton absorbs a phonon and 
becomes a real roton. 

we find [letting a= (aA/ap) ( p & / c ) t ]  

f(q)= (u2hki/m)MS(p) exp(-iAq) 

4w sinZ(q/2) 

80- 1 
--w(e-'w~-l)+ 

The various terms in the exponent of (11') are easily 
understood by applying perturbation theory to (S'), 
treating CK as small. The coefficient of -ill is simply 
the energy A of a roton, plus a correction arising from 
the fact that the roton can emit and reabsorb, or 
absorb and re-emit, phonons. The rate of emission and 
reabsorption of phonons of momentum hk is propor- 
tional to n k +  1, while the rate of absorption and re-emis- 
sion is proportional to n k ,  with an energy denominator 
of equal magnitude but opposite sign. Hence, the 
energy correction is independent of the number of 
phonons present, and does not depend on the tempera- 
ture. The numerical value of the self-energy is 6E/A 
= -0.04 k:, with k,  measured in reciprocal engstroms. 
The cutoff k,  should correspond to a wavelength equal 
to the roton size, i.e., several interatomic spacings; 
we estimate k r 0 . 5  A-l. 

The remaining terms in the exponent represent the 
possibility of production of multiple excitations 
[Fig. 7(b)], or production of a roton which then 
absorbs a phonon [Fig. 7(c)]. In  all diagrams the 
neutron (double line) interacts with the liquid only 
once, and produces a roton. The roton may then emit 
or absorb an arbitrary number of phonons, each 
roton-phonon interaction contributing a factor a 
to the amplitude and 012 to the probability. The only 
processes with rates proportional toazare those shown in 
Figs. 7(b) and 7(c). In  7(b) the neutron suffers an 
energy loss A+w, while in 7(c) the energy loss is 
A-U. The rate of 7(b) is proportional to n ( w ) + l ,  
while 7 (c) is proportional to n ( w ) .  Hence a t  low tempera- 
tures the line shape is strongly asymmetric. If the 
exponent of (1 1') is expanded into complex exponentials, 
the coefficient of exp(-iq) is the rate of 7(b) as 
computed in perturbation theory, and the coefficient 
of e x p ( h )  is the rate of 7(c). The remaining term, 
which is independent of q, represents a change in the 
rate of single roton production 7(a) arising from the 
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FIG. 8. Shape of a line in the neutron spectrum resulting from 
roton production, computed from (11‘). I n  the actual case, the 
delta-functions (represented by arrows) are slightly smearedout, 
but the rest of the shape is as shown. 

distortion of the single-roton wave function by virtual 
phonons. 

Since a is small, the exponential in (11’) can be 
accurately replaced by the first two terms of a power 
series. Then n(E) is just the coefficient of exp(-iEq), 
and we can plot the line form (Fig. 8). If only the first 
two terms of the power series were retained, n(E)  would 
cut off sharply a t  energies more than hck, from the line 
center; the higher terms in the power series smear out 
the cutoff. The one-sidedness of the curve for T=O 
arises from the fact that the roton is the lowest excita- 
tion of momentum q. Since no annihilation is possible 
at zero temperature, the neutron cannot lose any less 
energy than that needed to  produce a roton. 

At high temperatures (ohck,<<l) the line becomes 
Gaussian with width 

It is readily shown that in thermal equilibrium the 
matter density fluctuates according to the Gaussian 
distribution. The width of the Gaussian a t  high 
temperatures is p ~ , k ~ / 6 ~ ~ / 3 c ~ .  Reasoning classically, one 
might say that although we do not know the value of 
the density at the place where the roton is created, 
nevertheless the density has an instantaneous value, 
which determines the amount of energy needed to 
create the roton. Accordingly, the line shape would be 
the same as the shape of the statistical distribution of 
the density fluctuations, as is indeed the case at high 
temperatures. 

The classical argument fails a t  low temperatures, 
especially near the line center. For large values of q, 
sinz(q/2) may be replaced by its average value. 
The integral J d w  w exp(--iwq) approaches zero 
because of the oscillation of the exponential, and we 
find that f(q)-constXexp[-i(A+6E)q]. Therefore 
n(E) contains a delta function at the center of the line 
(the strength of the delta function approaches zero for 
large T ) .  To understand this classically, we would have 
to say that there is a finite chance that the density is 
exactly equal to PO at the place where the roton is 
created ; this, of course, is wrong. Since the density 
operator does not commute with the Hamiltonian, a 
density measurement would change the state of the 
system. Consequently, as in the double-slit experiment, 

R. P. F E Y N M A N  

FIG. 9. Diagrams representing phonon-roton scattering. 

the different possible outcomes can interfere with each 
other. Amplitudes, rather than probabilities must be 
added. Part of our uncertainty about the density comes 
from the fact that we do not know what state the liquid 
is in, because the temperature is finite; and part of the 
uncertainty is the quantum-mechanical uncertainty 
which still exists when the system is in a pure state. 
The former is correctly analyzable by classical reason- 
ing, and the latter is not. Accordingly, one might say 
that a finite fraction of the density fluctuations is 
congenitally unobservable ; this fraction gives rise to 
the delta function. 

The uncertainty principle says that the width of a 
line arising from roton production is inversely propor- 
tional to the lifetime of the roton. Since there is nothing 
in the Hamiltonian (5’) which would allow the roton to  
disintegrate,’* the “lifetime” is the time till the roton is 
scattered by a phonon. The two diagrams of Fig. 9 
contribute to the scattering. If all rotons have the same 
energy, then energy conservation requires k l =  k z .  Then 
the energy denominators for the two diagrams are equal 
in magnitude and opposite in sign, and the scattering 
rate is zero. This result also holds true in higher orders 
and is well known in meson theory. Hence the lifetime 
of the roton is infinite, and the line width zero. 

We expect the delta function to spread out if we can 
analyze the Hamiltonian (S‘), including the momentum 
dependence of E ( k ) .  The width, presumably, will be 
the rate of scattering of rotons by phonons.l9 We 
thought it worthwhile to  extend our analysis to include 
this case, since it is not entirely obvious that the roton 
has a finite lifetime, in the sense required by the 
uncertainty principle, simply because it can scatter. 
Furthermore, the occurrence of delta functions is not 
clearly precluded by the uncertainty principle ; a line 
form consisting of a delta function super-imposed on 
the center of (say) a Gaussian would have a finite 
energy spread. Therefore we continue the analysis. 

The Lagrangian form of quantum mechanicsz0 is 
useful here. In reference 20 the problem of a particle 
interacting with an oscillator has been studied. Suppose 
the total Hamiltonian is 

a = apart+ a*ae+g(x,l) a+g* (x,t)e* = H,,+B‘, 
‘8A roton cannot emit a real phonon, since the roton is the 

lowest state of given momentum. 
l9 Another way to see that the delta function must spread out 

is to note that n(q,E) is the Fourier transform in space and time 
of the “time-dependent pair distribution function” p(r,t), which 
is the probability of finding an atom at  r at  time 1, if there was an 
atom at  the origin at  t = O  [see L. Van Hove, Phys. Rev. 95, 249 
(1954)l. If n(q,E) contained a delta function for some E, it would 
follow that Jp(r,t) exp(iq.r)dr does not approach zero for large 
1. But fi(r,t) clearly becomes independent of I and t for large t, 
and thd integral must approach z&o. 

R. P. Feynman, Revs. Modern Phys. 20, 367 (1948). 
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where x is the particle coordinate, and HDmt is derivable 
from a Lagrangian L. Then the amplitude for the 
oscillator to go from state n at time t' to state m a t  time 
t", while the particle goes from x to y, is given by the 
s u m  over all paths x(t) of the functional 

where the sum is taken only over paths such that x(t') 
= x  and x(t") = y. This sum is denoted by 

H' depends on the path x(t) through the forcing function 
g. For any particular path, however, the matrix element 
is given by (9'). Hence, if we save the sum over paths 
and the integration on x and y till the end, the oscillator 
sums in (6') can be carried out as before, and we obtainz1 

where 

- 
O < S < f < l  

The Hamiltonian A+ ($ -$$ /2p  comes from the 
Lagrangian L= - A-J-ip 1 dx/dt I 2+ I dx/dt] PO. AS p+ a, 
L becomes very large for all paths except the one with 
dx/dt=O. Consequently the main contribution to  (13') 
comes from paths whose end points x and y are very 
close to each other; furthermore, the entire path must 
stay close to x and y. If p is actually infinite, xt-x, 
may be set equal to zero in (141, and then (13') 
reduces to (11'), which we henceforth call fm(q). 
The actual value of p is large; consequently, only for 
large q can the paths stray far enough from the origin 
to  make f ( q )  appreciably different from f-(q). Hence 
the l i e  form is the same as that previously computed, 
except near the line center. 

We have replaced q by - q. This clearly does not affect I(?). 

x(0) ==x 
x(rl) ' 9  

The amplitude for a free particle to go from x to y 
in time q is 

and therefore ( l ) = l .  The operation ( ), may be 
regarded as a kind of average. We want to h d  

If we define (exp(-yA))=exp(-p), then Q can be 
expanded as a power series in y: 

cp=YQl+Y2Qz+. . * ,  

where 

exPC- imhl (exp (-- r A )  >. 

PI= ( A ) ,  - cpz=$((d2)- (A)2 ) ,  etc. (16') 
If the integrations on k, t ,  and s are postponed, then 

the kind of integral which must be done in evaluating 
( A )  is 

I= d(y-x)e"n'(x-Y) ax( t ) e i k . ( x r x . ) e - w ( t - . )  s 
x(0) =x 
X(') -9 

S 
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(a 1 (b) 
FIG. 10. Diagrams representing the two terms in ( A ) .  

This integral clearly describes the emission and re- 
absorption of a phonon of momentum Izk [Fig. lO(a)]. 
The second term in A ,  corresponding to absorption 
and re-emission [Fig. 10(b)], results in the integral 

I’=exp( -i[E(q) (q- 1) 

+ (E(q+k)--w)(t-s)+E(q)sI}. 

Similarly, (A2) gives rise to terms involving two 
phonons. To calculate (A”) ,  one must evaluate integrals 
of the form 

J,= J . . . J d t l .  . .at, exp(ixcuiti). 
O < t l < t Z < .  . .<;.<?I 

Defining new variables xl=tl, x2=t2-tl, . . ., zv=tv 
- tvw1, and introducing the function 

f (Y) = =?sm (,l>.i.vdi, e-isrl- 

2a -m 

R .  P .  F E Y N M A N  

we find 

To make the next to last integral converge, we have 
added a small positive imaginary part i e ;  to each 
pi. All the e i  will be taken as different, so that all poles 
are simple, even if some of the Pi are equal. Closing the 
contour in the lower half-plane, we have finally 

1 
i‘-2 

The integral resulting from I has the form J2 ,  with 
,%=O, 82=E(q)--E(q-k)-w. In  general, the pi are 
the energy differences between the initial state and 
various intermediate states. The time integral of I’ 
is similarly evaluated, and we find 

In the limit of infinite roton mass, (IS’) is the same as 
the exponent in (11’). This is to be expected, since if 
there is only one possible path, then (exp(-yA)) 
=exp(-y(A)). The various terms in (18’) have the 
same significance as in (ll’), and agree with the results 
of perturbation theory. None of the denominators in 
(18’) can vanish, since the roton is defined as the 
lowest state of momentum q. If we approximate 
(exp(-yA)) by exp(-?(A)) in our evaluation of 
f(q), then the delta function in n(E) still persists. 

One naturally thinks of going further with the 
series (16’) and replacing (exp(-yA)) by exp[- ( y ( A )  
+y2q2) ] .  This procedure is not obviously valid, 
however, since we are interested in f ( q )  for large q. 
Suppose, for instance, that qz is linear in q for large 7, 

FIG. 11. A diagram which 
,--.,k, ,*-.,k2 contributes a term to ( A % )  propor- 

/ , I  \ tional to f .  This term is canceled 
by the square of (10a). 

but some subsequent term in the series (16’) involves 
higher powers of 9. Then neglect of the subsequent 
terms would make f(7) entirely incorrect for large 7. 
However, by inspection of the diagrams which contribute 
to p,,, it is quite easy to see that (P,, is always linear in 
q for large q. For instance, the “bubble” in Fig. 10(a) 
contributes a term to ( A )  proportional to q because it 
can occur anywhere on the solid line. Among the 
processes contributing to ( A 2 )  is the one shown in 
Fig. 11. Since each of the bubbles can occur (almost) 
anywhere on the solid line, Fig. 11 contributes a term 
proportional to 7’; but since the two bubbles are 
independent if the separation between them is large, 
the square of (10a) cancels the term in q2. There is a 
correction term in ( A 2 )  proportional to  7 because the 
two bubbles may overlap. Hence q2 is linear in q ;  
similar arguments apply to qn. Another way to see 
that (p is asymptotically linear in 7 is to observe that 
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for large q1 and q 2 ,  f(q) obeys the functional equation 
f(ql+q2)Zz!constXf(ql)f(m). We omit the proof. 

The only part of y2p2 which interests us is the part 
proportional to q, since the rest is negligible compared 
with yp1. Furthermore, pieces of y2pz proportional to 
iq represent small corrections to the self-energy and 
can be omitted. Hence we are interested only in the 
piece of pz (if any) which is proportional to 7 with a 
real coefficient. Such a piece would cause attenuation of 
f ( q )  for large q, and would imply that the delta function 
is gone. 

The diagrams of Fig. 12 (and no others in this order) 
contribute the kind of terms we are looking for. For 
(124 we have &=O, Pz=P4=E(s)+w1-E(q+kl), 
83=E(q)+wl-E(q+kl-k~) -02, and 

p 1 n -  1 
-J4(12a)=- 

1 

it1 (8 $(p3+ie3-iel) 

e ( i e s e a ) v -  1 1 + b3+ie3 (-p3+iel-i*3) ( (Pz-p3)') +... ,  

where the dots indicate that uninteresting terms have 
been omitted. It is possible for 03 to vanish; in fact the 
condition p3=0 states that phonon-roton scattering is 
energetically possible. Since l / ( z + i c )  = P ( l / z )  --i~S(z), 
the first term becomes% 

The principal value term is a correction to the self- 
energy and is omitted. Omitting uninteresting terms 
again, we find for the second term 

C O S @ 3 d ) - l + i  s in (hd  [ - p (  i) - ~ T w ~ ) ]  
fi3(PZ-fi3) '  

(C)  (d) 
FIG. 12. Diagrams contributing attenuation to f(7). 

the same type of term, with 

Bz=E(q)--E(q-ki)-wi, 
Ba=E(q) +w-E (q+kz-ki) -mi, 
84=E(q)+Wz-E(q+kz). 

For fixed kl and kz we add the contributions of diagrams 
(12a)-(12d) to the contributions of the corresponding 
diagrams with kl and kz exchanged. Noting that 
S(P3)=-S(-p3), we find 

--Y2rPz= W (  (A2) - ( A ) 3  

where R is just the rate of roton-phonon scattering 
(Fig. 8) as computed in perturbation theory. Finally 
we find 

7nl 7nl The only appreciable change in the line shape c(E) 
is the replacement of the delta function by = - - d ( p 3 ) + 4 ( p 3 ) + .  ' .  =o+. ' .. 

8ZZ 8Z2 

The net contribution of (12a) is 

where A' is the corrected roton energy. The uncertainty 

As we remarked earlier, the real interaction between 
phonons and rOtOnS is more complicated than the one 
we assumed. The line width is determined by the life- 
time for roton-roton collisions, rather than roton-phonon 
collisions. Landau and Khalatnikov14 fitted the viscosity 
data by assuming a roton-roton interaction of the form 

Rll 

8ZZ principle is evidently satisfied. 
J4(12a)=---6($J+. . .. 

The contribution of (13,) has the Same form, with 
&=E(q)-E(q-kl)-wl, 83=~(q)+w2-~(q-k l+kz)  
-w1. Similarly, (12c) contributes a term (7nl/&84)S(83), 
with &= E(q)+wl- E(q+ k J ,  P3= E(q)+wl-E(q+ kl 
-kd-W?, 84'E(d -E(q-kkz) -UP; (1 2d) contributes 

zero in any order, so 

JTd (rl- r2) with vo = 0.5 x 10-38 erg-cm3. The interac- 
tion term in ( I r ) ,  which we call a', allows one roton to zz We are free to let L, and e3 

long as we are consistent. We let ea-0 first. emit a phonon which is absorbed by another roton. 
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In computing the equivalent potential, it is permissible 
to regard the rotons as distinguishable. If the initial 
state is $i=exp[i(kl.rl+kz.rz)] and the final state is 
$f=exp{i[(kl+k).rl+(kz-k) .rz]), then the ampli- 
tude to go from i to f is 

H‘SH‘I~ 

I E I - E ~  
-= v k .  

Roton 2 can emit a phonon k which is then absorbed 
by 1, or roton 1 can emit a phonon -k which is then 
absorbed by 2. Neglecting the dependence of roton 
energy on the momentum, we find v k =  (aA/ap)*(p~/c~). 

X6(rl2) (actually, the delta function is smeared out 
by the high-momentum cutoff). Using the value of 
Atkins and EdwardP for dA/ap, we find V0=0.66 
X lCas erg-ems. The p. v coupling between rotons and 
phonons (see next paragraph) gives rise to a velocity- 
dependent roton-roton interaction which seems com- 
parable in strength to the one we have computed. 
If the picture of a roton as a moving smoke ring is 
correct, then the interaction between rotons would 
depend strongly on their relative orientations. Accord- 
ingly, even though the delta-function interaction can 
be simply explained, we think the actual roton-roton 
interaction is more complicated. 

The interaction between phonons and rotons has 
been discussed by Landau and Khalatnikov, and 

The equivalent potential is C Vkeik’“*= (aA/aPY (P0/CZ> 

R .  P .  F E Y N M A N  

involves other terms besides (aA/ap) (p-PO). A phonon 
induces a velocity field v(r) which can be represented in 
terms of the ak and ak*. I n  the presence of such a field, 
the energy of a roton of momentum p is E(p)+p-v. 
Furthermore, there are terms in ( p - p ~ ) ~ ,  such as 
(a2A/ap2) ( p - p ~ ) ~ ,  which are responsible for most of 
the phonon-roton scattering. Nevertheless, a line 
arising from roton production will still have the shape 
pictured in Fig. 8, provided the delta function is 
replaced by a “witch” of the form (20’), where R is the 
rate of roton-roton scattering. As the temperature 
approaches zero, the rate R approaches zero because no 
other excitations are present to scatter the roton. 
Furthermore, a t  T=O, n(E) is “one sided” because it is 
impossible to produce an excitation of momentum q 
with less energy than a roton. The curve hits the 
axis with finite slope because the rate of production 
of rotons, plus a phonon of frequency of w, is propor- 
tional to w for small W. At finite temperatures, the 
background curve intersects the “witch” with finite 
slope on the right, and zero slope on the left,% because 
the rate of phonon production is proportional to 
w[ l+  (eS’-l)-l] while the annihilation rate is propor- 
tional to ~ ( 8 ~ -  l)+. All these statements depend only 
on the fact that the coupling is a power series in the 
a k  and ak*, with each creation or destruction operator 
accompanied by a factor Kt. 

25 This is not exactly true. Processes involving several phonons 
can give rise to a small finite slope on the left. 
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V. Physics of Elementary Particles 

Throughout his career, Feynman worked mainly in the area of physics denoted as “particles 
and fields,” and while his interests also roamed into wider pastures, his home base remained 
the study of the strong, electromagnetic and weak interactions of the so-called elementary 
particles. Thus it was inevitable that he would become a major player in the development of 
high energy physics, trying to explain the important experimental discoveries in cosmic rays 
of the decade following World War 11, and continuing with the “particle explosion” resuking 
from the use of the great accelerators and detectors as they came on-line in the subsequent 
decades. 

V.A Weak Interactions (V-A Theory) 

Since Becquerel’s discovery of radioactivity in 1896, before the discovery of the electron, 
the proton, or the atomic nucleus, the weak interactions were observed and studied in the 
form of @-decay. Enrico Fermi formulated a theory of this process at the end of 1933, which 
described the phenomenon and, while not perfect, gave a good measure of agreement with 
experiment. Like QED, and the atomic and nuclear theories of the time, Fermi’s four- 
fermion weak interaction theory obeyed the left-right symmetry known as parity. (The 
parity operation, switching from a left-handed to a right-handed spatial coordinate system, 
left the physics unchanged.) It was a shock, therefore, when a suspected violation of parity 
in weak interactions (such as P-decay and particle decays) was experimentally confirmed in 
1957, leading in a short time interval to theories and experiments that became known as the 
“parity revolution.” It was a real revolution, for after this no symmetry principle was taken 
as so sacrosanct that it was assumed to be valid without experimental confirmation.’ 

Feynman played a significant role in that revolution, publicly questioning the necessity 
for left-right symmetry at the 1956 Rochester Conference,2 by informally suggesting an early 
version of the V-A interaction at the 1957 Rochester Conference, and by coauthoring paper 
[41] with Murray Gell-Mann. 

Paper [41] was not without controversy as concerned its collaboration, priority, e t ~ . ~  
However, compared to its competition it uniquely emphasized certain features: the heuris- 
tic value of the two-component relativistic electron equation of second order in the time 
(Kramers equation) ,4 current-current interaction possibly mediated by heavy intermediate 
bosons (see p. 197 of [41]), and the conserved vector ~ u r r e n t . ~  

‘For a short discussion on the parity revolution, see Pions to Quarks, edited by L.M. Brown, M. Dresden, 
and L. Hoddeson (Cambridge: 1989), pp. 23-29. 
’The Rochester Conferences, organized originally by Robert Marshak, formed an important annual series 
of international conferences on high energy physics. At the 1956 conference, Feynman famously repeated a 
question asked of him by Martin Block, about whether parity might be violated in the decay of the K-meson. 
For his suggestion of V-A at the 1957 conference, see note 3 of [41]. 
3For various relevant accounts of the parity revolution and V-A by some of the participants, see Pions to 
Quarks (note 2), pp. 434-496 and note 88, on p. 38. See also the sections on the V-A theory in a recent 
biography of Murray Gell-Mann: George Johnson, Strange Beauty (New York: 1999). 
4See L.M. Brown, “Two-component fermion theory,” Phys. Rev. 111 (1958): 957-965. 
5V and A stand for vector and axial vector couplings, two of five interaction choices permitted by the special 
theory of relativity. V-A denotes a particular mixture of the two interactions, which have opposite parity, 
and it is their interference term in a weak interaction process that violates parity invariance. 
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Item [65] is a set of six pedagogical lectures on the weak interactions of hadrons (i.e. 
baryons and mesons) delivered by Feynman in 1964 at the International School of Physics 
“Ettore Majorana” in Erice, Sicily. The lectures discussed the consequences in P-decay and 
weak particle decay of the conserved vector current (CVC) and partially conserved vector 
current (PCAC). Feynman treated the decay of strange particles, based on Cabibbo’s theory, 
and derived the Goldberger-Treiman relation between the strong meson-nucleon coupling 
constant and the weak coupling constant. He discussed the consequences of the Gell-Mann- 
Ne’eman symmetry SU(3) for the weak interactions of hadrons. 

Selected Papers 
[41] With M. Gell-Mann. Theory of the Fermi interaction. Phys. Rev. 109 (1958): 193-198. 
[65] Consequences of SU(3) symmetry in weak interactions. In Symmetries in Elementary 
Particle Physics (Ettore Majorana). New York, Academic (1966), pp. 111-174. 
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Theory of the Fermi Interaction 
R. P. FEYNMAN AND M. GELL-MANN 

California Institute of Technology, Pasadena, Calijwnia 
(Received September 16, 1957) 

The representation of Fermi particles by two-component Pauli spinors satisfying a second order differential 
equation and the suggestion that in p decay these spinors act without gradient couplings leads to an essen- 
tially unique weak four-fermion coupling. I t  is equivalent to equal amounts of vector and axial vector coup- 
ling with two-component neutrinos and conservation of leptons. (The relative sign is not determined 
theoretically.) I t  is taken to be “universal”; the lifetime of the f i  agrees to within the experimental errors of 
2%. The vector part of the coupling is, by analogy with electric charge, assumed to he not renormalized by 
virtual mesons. This requires, for example, that pions are also “charged” in the sense that there is a direct in- 
teraction in which, say, a ff goes to K- and an electron goes to a neutrino. The weak decays of strange par- 
ticles will result qualitatively if the universality is extended to include a coupling involving a A or Z fermion. 
Parity is then not conserved even for those decays like K-2a or 37r which involve no neutrinos. The theory 
is a t  variance with the measured angular correlation of electron and neutrino in He6, and with the fact that 
fewer than 10- pion decay into electron and neutrino. 

HE failure of the law of reflection symmetry for T weak decays has prompted Salam, Landau, and 
Lee and Yang’ to propose that the neutrino be described 
by a two-component wave function. ‘4s a consequence 
neutrinos emitted in decay are fully polarized along 
their direction of motion. The simplicity of this idea 
makes it very appealing, and considerable experimental 
evidence is in its favor. There still remains the question 
of the determination of the coefficients of the scalar, 
vector, etc., couplings. 

There is another way to introduce a violation of 
parity into weak decays which also has a certain 
amount of theoretical raison d’dlre. I t  has to do with 
the number of components used to describe the electron 
in the Dirac equation, 

( i ~  - A)+ = m$. (1) 
\Vhy must the wave function have four components? 
It is usually explained by pointing out that to describe 
the electron spin we must have two, and we must also 
represent the negative-energy states or positrons, 
requiring two more. Yet this argument is unsatisfactory. 
For a particle of spin zero we use a wave function of 
only one component. The sign of the energy is deter- 
mined by how the wave function varies in space and 
time. The Klein-Gordon equation is second order and 
we need both the function and its time derivative to 
predict the future. So instead of two components for 
spin zero we use one, but it satisfies a second order 
equation. Initial states require specification of that one 
and its time derivative. Thus for the case of spin $ we 
would expect to be able to use a simple two-component 
spinor for the wave function, but have it satisfy a 
second order differential equation. For example, the 
wave function for a free particle would look like 
Uexp[-i(Et-P.x)], where U has just the two 
components of a Pauli spinor and whether the particle - 

‘ A .  Salam, Nuovo cimento 5, 299 (1957); L. Landau, Nuclear 
Phys. 3, 127 (1957); T. D. Lee and C. N. Yang, Phys. Rev. 105, 
1671 (1957). 

refers to electron or positron depends on the sign of E 
in the four-vector +,= (E,P). 

In  fact it  is easy to do this. If we substitute 
1 

m 

in the Dirac equation, we find that x satisfies 

+=-(iv--  A+m)x (2) 

( ~ v - A ) ’ x = [ ( ~ V , , - A , , ) *  ( iV, -AP)  
-~ur .Fpv lx=  m’x, (3)  

where F,, = aAv/ax,, - aA,/ax, and up” = &(y,yv - y;~,,). 
Now we have a second order equation, but x still has 
four components and we have twice as many solutions 
as we want. But the operator y6=yLyI/yzyI commutes 
with up”; therefore there are solutions of (3) for which 
i y6x=x and soiutions for i y 6 x = - x .  We may select, 
say, the first set. We always take 

i 7 6 X  = x .  (4) 
Then we can put the solutions of (3) into one-to-one 
correspondence with the Dirac equation (1). For each 
$ there is a unique x ;  in fact we find 

x=Hl+ira)$ (5 )  
by multiplying (2) by lfi-yf, and using (4). The 
function x has really only two independent components. 
The conventional I) requires knowledge of both x and 
its time derivative [see Eq. (2)]. Further, the six up, 
in (3) can be reduced to  just the three uZy, uyr,  uzz. Since 
~ , ~ = i ~ . ~ ~ = w , ~ . i ~ ~ ,  Eq. (4) shows that uZI may bc 
replaced by wZY when operating on x as it does in (3) 

Let us use the representation 

%=(l 0 -1 O ), .=( --(1 O ;), i y , = - ( O  1 0  I ) ,  

where us, are the Pauli matrices. If 

+= (l), 
193 
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where a, b are two-component spinors, we find from 
(5 )  that 

x=( -'p (o), 

where 'p=+(a-b).  Our Eq. (3) for the two-component 
spinor 'p is 

[ (iv, - A ,,)'+ u .  (B + i E )  ] 'p = m2 cp, ( 6 )  
where Br=Fu, ,  E,=Ft,, etc., which is the equation 
we are looking for. 

Rules of calculation for electrodynamics which 
involve only the algebra of the Pauli matrices can be 
worked out on the basis of (6). They, of course, give 
results exactly the same as those calculated with 
Dirac matrices. The details will perhaps be published 
later. 

One of the authors has always had a predilection for 
this equation.2 If one tries to represent relativistic 
quantum mechanics by the method of path integrals, 
the Klein-Gordon equation is easily handled, but the 
Dirac equation is very hard to represent directly. 
Instead, one is led first to (3 ) ,  or (6) ,  and from there 
one must work back to (1). 

For this reason let us imagine that (6) had been 
discovered first, and (1) only deduced from it later. 
It would make no di€ference for any problem in electro- 
dynamics, where electrons are neither created nor 
destroyed (except with positrons). But  what would we 
do if we were trying to describe @ decay, in which an 
electron is created? Would we use a field operator 
directly in the Hamiltonian to represent the annihi- 
lation of an electron, or would we use (o? Now every- 
thing we can do one way, we can represent the other 
way. Thus if + were used it could be replaced by 

while an expression in which 9 was used could be 
rewritten by substituting 

4 (l+h'K)$'* (b) 
If (o were really fundamental, however, we might be 

prejudiced against (a) on the grounds that gradients 
are involved. That is, an expression for @ coupling which 
does not involve gradients from the point of view of +, 
does from the point of view of 9. So we are led to 
suggest (o as the field annihilation operator to be used in 
@ decay without gradients. If (o is written as in (b), we 
see this does not conserve parity, but now we know that 
that is consistent with experiment. 

For this reason one of us suggested the rule3 that the 

a R .  P. Feynrnan, Revs. Modern Phys. 20, 367 (1948); Phys. 
Rev. 84, 108 (1951). 

R. P. Feynman, Proceedings a/ the Seventh Annual Rochester 
Cunjerence on High-Energy Nuclear Physics, 1957 (Interscience 
Publishers, Inc., New York, 1957). 

electron in @ decay is coupled directly through 9, or, 
what amounts to the same thing, in the usual four- 
particle coupling 

C % C *  ($nO*+p) ($YOI+J, ( 7 )  
we always replace II.. by +(l+iy~)+',. 

One direct consequence is that the electron emitted 
in @ decay will always be left-hand polarized (and the 
positron right) with polarization approaching 100yo 
as z u c ,  irrespective of the kind of coupling. That is a 
direct consequence of the projection operator 

0 = $ (1 + iy6) 

A priori we could equally well have made the other 
choice and used 

ci= $ (1 - iys) ; 

electrons emitted would then be polarized to the right. 
We appeal to experiment4 to determine the sign. 
Notice that a2=a, cia=O. 

But now we go further, end suppose that the same ride 
applies to the wave functions of all the particles enleritig 
the inleraction. We take for the @-decay interaction 
the form 

CCi(aJ.nOia+p) (ZOiaCe) 9 

and we should like to discuss the consequences of this 
hypothesis. 

The coupling is now essentially completely deter- 
mined. Since q = $ n ,  we have in each term expressions 
like ci0,a. Now for S, T ,  and P we have 0, commuting 
with y~ so that ciO,a=O,cia=O. For A and V we have 
aO,a= 0,a2 = 0 ,a  and the coupling survives. Further- 
more, for axial vector O,=iy,,ys, and since iysa=a, we 
find O,a=y,a; thus A leads to the same coupling as V :  

the most general @-decay interaction possible with our 
hypothesis.s 

This coupling is not yet completely unique, because 
our hypothesis could be varied in one respect. Instead 
of dealing with the neutron and proton, we could have 
made use of the antineutron and antiproton, con- 
sidering them as the "true particles." Then it would be 
the wave function II.; of the antineutron that enters 
with the factor a. We would be led to 

(8) tG($c~&n) ($y~,a+J. (9) 

(8)'G($n~@+p) ( $ n p a I I . e ) ,  (9') 

This amounts to  the same thing as 

and from the a priori theoretical standpoint is just as 
good a choice as (8). 

We have assumed that the neutron and proton are 

See, for example, Boehrn, Novey, Barnes, and Stech, Phys. 

A universal V ,  A interaction has also been proposed by E. C. G .  
Rev. 108, 1497 (1957). 

Sudarshan and R. E. Marshak (to be published). 
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either both “particles” or both “antiparticles.” We 
have defined the electron to be a “particle” and the 
neutrino must then be a particle too. 

itre shall further assume the interaction “universal,” 
so for example it is 

(8) kc (&x&J ($v.r,@e) (10) 

for decay, as currently supposed; the p- is then a 
,’article. Here the other ch_oice, that the p- is a n  anti- 
particle, leads to (8)iG($P~~&i) ($o,,&J, which is 
escluded by experiment since it leads to a spectrum 
falling off a t  high energy (Michel’s P = O ) .  

Since the neutrino function always appears in the 
form a$p only neutrinos with left-hand spin can exist. 
’rhat is, the two-component neutrino theory with 
conservation of leptons is valid. Our neutrinos spin 
oppositely to  those of Lee and Yang.6 For example, a 
6 particle is a lepton and spins to the left; emitted with 
it is an antineutrino which is an antilepton and spins 
( 0  the right. In a transition with AJ=O they tend to go 
parallel to cancel angular momentum. This is the 
angular correlation typical of vector coupling. 

We have conservation of leptons and double p 
decay is excluded. 

There is a symmetry in that the incoming particles 
can be exchanged without affecting the coupling. Thus 
i f  we define the symbol 

(AB)  (co)= ($A’Yra$B) ($CYra$D), 

we have (&S)(CD)= (CB)(AD) .  (We have used anti- 
commuting $’s; for C-number $’s the interchange gives 
a minus sign.’) 

The capture of muons by nucleons results from a 
coupling ( f i p ) ( ~ f i ) .  It is already known that this 
capture is fitted very well if the coupling constant and 
coupling are the same as in p decay.8 

If we postulate that the universality extends also 
to the strange particles, we may have couplings such 
as (sop)(@), (Top)(pe) ,  and (Top) (pn). The (Top) 
might be replaced by (%), etc. A t  any rate the 
existence of such couplings would account quali- 
tatively for the existence of all the weak decays. 
Consider, for example, the decay of the K+. I t  can go 
virtually into an anti-AO and a proton by the fairly strong 
coupling of strange particle production. This by the 
weak decay (To#) (pn) becomes a virtual antineutron 
and proton. These become, on annihilating, two or 
three pions. The parity is not conserved because of the 

’ This is only because they used S and T couplings in 0 decay; 
had they used V and A ,  their theory would be similar to ours, with 
left-handed neutrinos. ’ We can express (&?)(OD) directly in terms of the two-com- 
Ponent spinors C :  (AB)(CD) -4(43~* C B ) (  C $ $ ~ O ) - ~ ( C A * U C S )  

‘ ( c c * ~ c D ) .  If we put (PA= , etc., where A l  and A2 are com- 
numbers, we obtain 8 ( A r * C I * - A , * C ~ * ) ( B ~ D ~ - B , D ~ )  and 

the symmetry is evident. * See, for example, J. L. Lo es, Phys. Rev. (to be published); 
L. Michel, Progress in Cosmic-gay Physics, edited by J. G. Wilson 
(Interscience Publishers, Inc., New York, 1952), Vol. 1, p. 125. 

(3 

a in front of the nucleons in the virtual transition. The 
theory in which only the neutrino carries the a cannot 
explain the parity failure for decays not involving 
neutrinos (the 7-19 puzzle). Here we turn the argument 
around; both the lack of parity conservation for the 
K and the fact that neutrinos are always fully polarized 
are consequences of the same universal weak coupling. 

For P decay the expression (8) will he recognized as 
that for the two-component neutrino theory with 
couplings V and A with equal coefficients and opposite 
signs [expression (9) or (9’) makes the coupling 
V-tA]. The coupling constant of the Fermi ( V )  part 
is equal to  G. This constant has been determinedg from 
the decay of 014 to be (1.41f0.01)X10-49 erg/cm3. 
I n  units where A=c=l ,  and M is the mass of the 
proton, this is 

G= ( 1 . 0 1 ~ 0 . 0 1 ) ~ 1 0 - 5 / ~ ~ .  (11) 

At the present time several 8-decay experiments seem 
to be in disagreement with one another. Limiting 
ourselves to those that  are well established, we find 
that  the most serious disagreement with our theory is 
the recoil experiment in Hea of Rustad and Ruby’O 
indicating that  the T interaction is more likely than 
the A .  Further check on this is obviously very desirable. 
Any experiment indicating that the electron is not 
100% left polarized as OHG for any transition allowed 
or forbidden would mean that  (8) and (9) are incorrect. 
An interesting experiment is the angular distribution 
of electrons from polarized neutrons for here there is an 
interference between the V and A contributions such 
that if the coupling is V - A  there is no asymmetry, 
while if it is V+A there is a maximal asymmetry. This 
would permit us to choose between the alternatives (8) 
and (9). The present experimental resultsll agree with 
neither alternative. 

We now look a t  the muon decay. The fact that the 
two neutrinos spin oppositely and the p parameter is 9 
permitted us to decide that the p- is a lepton if the 
electron is, and determines the order of ( i i , v )  which 
we write in (10). But  now we can predict the direction 
of the electron in the r-+fi-+ m e - - +  v+ c sequence. 
Since the muon comes out with an antineutrino which 
spins to  the right, the muon must also be spihning to 
the right (all senses of spin are taken looking down the 
direction of motion of the particle in question). When 
the muon disintegrates with a high-energy electron the 
two neutrinos are emitted in the opposite direction. 
They have spins opposed. The electron emitted must 
spin to the left, but must carry off the angular mo- 
mentum of the muon, so it must proceed in the direction 
opposite to that of the muon. This direction agrees with 
experiment. The proposal of Lee and Yang predicted 

@Bromley Alm uist Gove, Litherland, Paul, and Ferguson, 

lo B. M. Rustad and S. L. Ruby, Phys. Rev. 97, 991 (1955). 
I t  Burgy, E stein, Krohn, Novey, Raboy, Ringo, and Telegdi, 

Phys. Rev. iOS, 958 (ld.57) 

Phys. Rev. 105, 1731 (1957). 
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the electron spin here to be opposite to  that  in the case 
of j3 decay. Our j3-decay coupling is V ,  A instead of S, T 
and this reverses the sign. That  the electron have the 
same spin polarization in all decays (8, muon, or 
strange particles) is a consequence of putting a+. in 
the coupling for this particle. I t  would be interesting 
to test this for the muon decay. 

Finally we can calculate the lifetime of the muon, 
which comes out 

T =  192r3/G2p6= (2.26hO.04)X lWs sec 

using the value (11) of G. This agrees with the experi- 
mental lifetime12 (2.22&0.02)X10-6 sec. 

I t  might be asked why this agreement should be so 
good. Because nucleons can emit virtual pions there 
might be expected to be a renormalization of the 
effective coupling constant. On the other hand, if 
there is some truth in the idea of an interaction with a 
universal constant strength it may be that  the other 
interactions are so arranged so as not to destroy this 
cowsfant. We have an example in electrodynamics. Here 
the coupling constant e to the electromagnetic field 
is the same for all particles coupled. Yet the virtual 
mesons do not disturb the value of this coupling 
constant. Of course the distribution of charge is altered, 
so the coupling for high-energy fields is apparently 
reduced (as evidenced by the scattering of fast electrons 
by protons), but the coupling in the low-energy limit, 
which we call the total charge, isnot  changed. 

Using this analogy to electrodynamics, we can see 
immediately how the Fermi part, a t  least, can be made 
to have no renormalization. For the sake of this dis- 
cussion imagine that the interaction is due to some 
intermediate (electrically charged) vector meson of 
very high mass Mo. If this meson is coupled to  the 
“current” ($,y,a$,,) and ($,,-y,,a+,) by a coupling 
(4?rf2)4, then the interaction of the two “currents” 
would result from the exchange of this “meson” if 
- I T ~ M O - ~ =  (8)rG. Now we must arrange that the total 
current 

(12) 
be not renormalized. There are no known large inter- 
action terms to renormalize the (fie) or ( f ip ) ,  so let us 
concentrate on the nucleon term. This current can be 
split into two : J,= 4 (J,’+JPA), where J,“=$,y,+., and 
JpA=$PiYPy6$,,.  The term Jrv=$y,r++, in isotopic spin 
notation, is just like the electric current. The electric 
current is 

The term $&,+ is conserved, but the term &,T~+ is 
not, unless we add the current of pions, i[p*T,V,(o 
- (V,,q*)Tzp], because the pions are charged. Likewise 
$y,,r+$ is not conserved but the sum 

J,= ($p~,a+d+ ($;v,a+J+ (hpdd+. . . 

J,e’=&,(++r.)+. 

J ,  = $Y,T+++ ic $9* T+V, (P - (V,  cp)*T+ $91 ( 13) 

l2 W. E. Bell and E. P. Hincks, Phys. Rev. 84, 1243 (1951). 

is conserved, and, like electricity, leads to a quantity 
whose value (for low-energy transitions) is unchanged 
by the interaction of pions and nucleons. If we include 
interactions with hyperons and K particles, further 
terms must be added to  obtain the conserved quantity. 

We therefore suppose that this conserved quantity 
be substituted for the vector part of the first term in 
(12). Then the Fermi coupling constant will be strictly 
universal, except for small electromagnetic corrections. 
That  is, the constant G from the p decay, which is 
accurately V - A ,  should be also the exact coupling 
constant for a t  least the vector part of the @ decay. 
(Since the energies involved are so low, the spread in 
space of JPv due to the meson couplings is not 
important, only the total “charge.”) It is just this part 
which is determined by the experiment with OI4, and 
that is why the agreement should be so close. 

The existence of the extra term in (13) means that 
other weak processes must be predicted. I n  this case 
there is, for example, a coupling 

by which a r- can go to a ro with emission of 8 and e. 
The amplitude is 

4G (P,+ P,”) ($”Y@+J, 

where p-, Po are the four-momenta of r- and TO. 

Because of the low energies involved, the probability 
of the disintegration is too low to be observable. To  
be sure, the process r--w0+e+ fi could be understood 
to be qualitatively necessary just from the existence of 
@ decay. For the T- may become virtually an anti- 
proton and neutron, the neutron decay virtually to  a 
proton, e, and 5 by /3 decay and the protons annihilate 
forming the ?yo. But the point is that  by  our principle 
of a universal coupling whose vector part requires no 
renormalization we can calculate the rate directly 
without being involved in closed loops, strong couplings, 
and divergent intervals. 

For any transition in which strangeness doesn’t 
change, the current JPv is the total current density of 
isotopic spin T+. Thus the vector part gives transitions 
AT=O with square matrix element T(T+l)-T,T,’ 
if we can neglect the energy release relative to  the rest 
mass of the particle decaying. For the nucleon and 
K-+K0+e+e the square of the matrix element is 1, 
for the pion and Z--@+e+fi it  is 2. The axial coupling 
in the low-energy limit is zero between states of zero 
angular momentum like the P meson or 0 1 4 ,  so for both 
of these we can compute the lifetime knowing only the 
vector part. Thus the r---wO+e+? decay should have 
the same ft value as OI4. Unfortunately because of the 
very small energies involved (because isotopic spin is 
such a good quantum number) none of these decays 
of mesons or hyperons are fast enough to observe in 
competition to other decay processes in which T or 
strangeness changes. 
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,l'l,is principle, that the vector part is not renormal- 
iZetl, may be useful in deducing some relations among 
, I l e  tlecays of the strange particles. 
sow with present knowledge it is not so easy to say 

\,llether or not a pseudovector current like &~Y,,T+$ 
be arranged to be not renormalized. The present 

eSi)eriments'3 in p decay indicate that the ratio of the 
(.oupling constant squared for Gamow-Teller and Fermi 
Is  about 1.3f0.1. This departure from 1 might be a 
rcnormalization effect." On the other hand, an interest- 
i n g  theoretical possibility is that it is exactly unity 
.Illd that the various interactions in nature are so 
;trranged that it need not be renormalized (just as for 
1 - 1 ,  It might be profitable to try to work out a way of 
,loillg this. Experimentally it is not excluded. One 
\vO&j have to say that the fir value of 1320f1.50 
myasured15 for the neutron was really 1.520, and that 
some uncertain matrix elements in  the p decay of the 
mirror nuclei were incorrectly estimated. 

The decay of the T- into a p- and t might be under- 
slood as a result of a virtual process in \vhicli the T 

Ijecornes a nucleon loop which decays into the p+p. 
111 any event one would expect a decay into c+ v also. 
'rhe ratio of the rates of the two processes can be 
(alculated without knowledge of the character of the 
c.losed loops. It is (me/m,)2(1--l,zr?/i)ir?)-?= 13.6X 
Ihperimentally'6 no w e +  Y have been found, indi- 
mting that the ratio is less than lop5. This is n very 
serious discrepancy. The authors have no idea on how 
i t  can be resolved. 

1i7e have adopted the point of view that the weak 
iiiteractions all arise from the interaction of a current 
.I, with itself, possibly via an intermediate charged 
vector meson of high mass. This has the consequence 
that any term in the current must interact with all the 
rest of the terms and with itself. To  account for p decay 
xnd p decay we have to introduce the terms in ( 1 2 )  into 
the current; the phenomenon of p capture must then 
; ~ I S O  occur. In  addition, however, the pairs eu, pu, and p n  
I11ust interact with themselves. In the case of the 
(Fv)  ( t e )  coupling, experimental detection of electron- 
lleutrino scattering might some day be possible if 
electron recoils are looked for in materials exposed to 
Pile neutrinos; the cross section1' with our universal 
coupling is of the order of 

A. Winther and 0. Kofoed-Hansen, Kgl. Danske Vidensakb. 
Selskab, Mat.-fys. Medd. (to be published). 

I' This slight inequality of Fermi and Gamow-Teller coupling 
constants is not enough to account for the experimental results 
of reference 11 on the electron asymmetry in polarized neutron 
decay. 

Spivac, Sosnovsky, Prokofiev, and Sokolov, Proceedings a/ Uze 
fnlernalional Con/erence on the Peace/& Uses o/ Alomic Energy, 
Ce?zma, 1955 (United Nations, New York, 1956), A/Conf. 8/ /650 ISc. Lattes and H. L. Anderson, Nuovo cimento [o bd 
Published). 

I' For neutrinos of  energy w (in units of the electron mass m) the 
total cross section is ~ & / ( 1 + 2 ~ ) ,  and the spectrum of recoil 
energies c of the electron is uniform dc. For antineutrinos i t  is 
"P(w/6)[1- ( 1 + 2 ~ ) - ~ ]  with a recoil spectrum varying a s  
( '+w--€ ) ' .  Here u o = 2 @ m * / ~ = 8 . 3 ~ 1 0 - 4 ~  cm'. 

cm2. 

To  account for all observed strange particle decays 
it is sufficient to add to the current a term like (FAo), 
($Zo), or (€F=lt), in which strangeness is increased by 
one as charge is increased by one. For instance, (FAo) 
gives us the couplings (FAo) ( E Y ) ,  (PAo) ( i iu ) ,  and 
(@Ao) ( f i p ) .  A direct consequence of the coupling 
($Ao) (Bu) would be the reaction 

Ao-p+e+ t (14) 
at a rate 5 . 3 ~ 1 0 '  sec-I, assuming no renormalization 
of the constants.I8 Since the observed lifetime of the Ao 
(for disintegration into other products, like p+?r-, 

I Z + T O )  is about 3X10-'0 sec, we should observe process 
(14) in about l.6Y0 of the disintegrations. This is not 
excluded by experiments. If a term like (%z) appears, 
the decay Z - - w + e - + u  is possible a t  a predicted rate 
3.5X108 sec-' and should occur (for T Z - =  1.6X10-10 
sec) in about 5.60/, of the disintegrations of the I;-. 
Decays with p replacing the electron are still less 
frequent. That  such disintegrations actually occur at 
the above rates is not excluded by present experiments. 
I t  would be very interesting to look for them and to 
measure their rates. 

These rates were calculated from the formula 
Kate= (2G2W5c/3O.rr3) derived with neglect of the 
electron mass. Here A;= ( M A ~ - M ~ ~ ) / ~ M A  is the 
maximum electron energy possible and c is a correction 
factor for recoil. If x= W / M h  it is 
c =  -+&5(1-2x)2 ln(1-22) 

and equals 1 for small x, about 1.25 for the 21 decay, and 
2.5 for M,=O. 

I t  should be noted that decays like Z+--tn+e++v 
are forbidden if we add to the current only terms for 
which A S =  +1 when A@= + l .  In order to cause such 
a decay, the current would have to contain a term with 
A S = - 1  when A@=+l ,  for example (%). Such a 
term would then be coupled not only to (fie), but also 
to all the others, including one like (PAo). But a coupling 
of the form (%)(xop) leads to strange particle decays 
with A S =  &2,  violating the proposed rule A S = = k l .  
I t  is important to know whether this rule really holds; 
there is evidence for it in the apparent absence of the 
decay E---+T-+Iz, but so few Z particles have been 
seen that this is not really conclusive. We are not sure, 
therefore, whether terms like (%) are excluded from 
the current. 

We deliberately ignore the possibility of a neutral 
current, containing terms like (ie), ( g e ) ,  (fin), etc., 
and possibly coupled to a neutral intermediate field. 
No weak coupling is known that requires the existence 
of such an interaction. Moreover, some of these 
couplings, like (Ee) (fie), leading to the decay of a muon 
into three electrons, are excluded by experiment. 

It is amusing that  this interaction satisfies simul- 
taneously almost all the principles that have been 

'8 R. E. Behrends and C. Fronsdal, Phys. Rev. 106,345 (1957). 

- 8.5 5 -4 (1 -x) (3 - 6%- 2x2), 
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proposed on simple theoretical grounds to limit the 
possible p coup1ing.s. It is universal, it  is symmetric, it 
produces two-component neutrinos, it  conserves leptons, 
it preserves invariance under CP and T, and it is the 
simplest possibility from a certain point of view (that 
of two-component wave functions emphasized in this 

These theoretical arguments seem to the authors to be 
strong enough to suggest that the disagreement with 
the He6 recoil experiment and with some other less 
accurate experiments indicates that these experiments 
are wrong. The r--te+fi problem may have a more 
subtle solution. 

After all, the theory also has a number of successes. 
It yields the rate of p decay to 2% and the asymmetry 
in direction in the 7r--tM+e chain. For p decay, it agrees 
with the recoil experiments19 in A36 indicating a vector 
coupling, the absence of Fierz terms distorting the 
allowed spectra, and the more recent electron spin 
polarization4 measurements in p decay. 

Herrmansfeldt, Maxson, Stahelin, and Allen, Phys. Rev. 107, 
641 (1957). 

paper). 

Besides the various experiments which this theory 
suggests be done or rechecked, there are a number of 
directions indicated for theoretical study. First it is 
suggested that all the various theories, such as meson 
theory, be recast in the form with the two-component 
wave functions to see if new possibilities of coupling, 
etc., are suggested. Second, it may be fruitful to analyze 
further the idea that the vector part of the weak 
coupling is not renormalized; to see if a set of couplings 
could be arranged so that the axial part is also not 
renormalized; and to study the meaning of the trans- 
formation groups which are involved. Finally, attempts 
to understand the strange particle decays should be 
made assuming that they are related to this universal 
interaction of definite form. 
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CONSEQUENCES OF SU, SYhlhETRY I N  WEAK INTERACTIONS 

R.P. Feynman, 

C a l i f o r n i a  I n s t i t u t e  of Technology. 

I n t r o d u c t i o n  

These l e c t u r e s  w i l l  cover  t h e  r e l a t  

1 s t  LECTURE 

onship  o f  SU3 and t h e  weak n t e r -  
a c t i o n s .  The l e c t u r e s  w i l l  b e  geared f o r  experimental  people  s o  t h a t  t h e y  

may g e t  a n  i d e a  of  how our  t h e o r e t i c a l  p r e d i c t i o n s  arise. A t  f i r s t ,  I will 

speak a l i t t l e  b i t  about  how c a l c x l a t i o n s  a re  made f o r  t h e  weak decays ,  then 

we s h a l l  c o n s i d e r  SU,, and f i n a l l y  t h e  e f f e c t s  of u n i t a r y  symmetry upon t h e  

weak i n t e r a c t i o n s .  The s u b j e c t  m a t t e r  is s p l i t  i n  t h i s  way so t h a t  one may 

g e t  a c l e a r e r  i d e a  of t h e  o r i g i n s  of t h e  v a r i o u s  problems i n  t h e  t h e o r y  of  

weak i n t e r a c t i o n s .  Not a l l  of our  d i f f i c u l t i e s  a r i se  from SU3 n o r  d o  a l l  

of t h e  s u c c e s s e s ,  and i t  i s  impor tan t  t o  r e a l i z e  t h i s .  

The theory  of  weak decays is  very u n s a t i s f a c t o r y  except  that i t  
a g r e e s  w i t h  experiment .  To unders tand  t h a t  remark l e t  u s  c o n s i d e r  t h e  muon. 

A muon is a p a r t i c l e  which has  e x a c t l y  t h e  same p r o p e r t i e s  as the  e l e c t r o n  

except  t h a t  i t s  m a s s  i s  207 times t h e  mass of t h e  e l e c t r o n .  This s t a t e m e n t  

completely d e s c r i b e s  o u r  experiments w i t h  t h e  muon, b u t  such  a comment is a l s o  

u n s a t i s f a c t o r y  f o r  a t r u e  t h e o r i s t .  E x p e r i m e n t a l i s t s  f i n d  a b e a u t i f u l  and 

s imple  t h i n g  which i s  e a s y  f o r  t h e  t h e o r i s t s  t o  d e s c r i b e .  N e v e r t h e l e s s ,  we 
must b e  unhappy about  t h i s  s i t u a t i o n  because we have no i d e a  o f  why t h i s  

p a r t i c l e  e x i s t s .  S i m i l a r l y ,  t h e  theory  o f  weak decay ,  up t o  t h e  p o i n t  where 

we e n c o u n t e r  s t r a n g e n e s s  changing  i n t e r a c t i o n s ,  is a c c u r a t e  b u t  u n s a t i s f a c t o r y .  

There a r e  v a r i o u s  myster ious  p r o p e r t i e s  which 1 s h a l l  ment ion a s  I go on ,  b u t  

I should l i k e  t o  remind you t h a t  t h e  most myster ious  a s p e c t  of t h e  weak decays  

is t h a t  they  e x i s t  a t  a l l .  I t  seems s o  much s i m p l e r  j u s t  t o  f o r g e t  them. 

There is no c l u e  from electromagnet ism,  from g r a v i t y ,  o r  from n u c l e a r  f o r c e s  

t h a t  t h e  weak i n t e r a c t i o n s  must e x i s t .  They seem t o  have no connec t ion  

with t h e  rest of  t h e  world. 
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Form of  t h e  four-fermion weak i n t e r a c t i o n  

The theory  of t h e  weak decays was o r i g i n a t e d  by Fermi. Fermi t r i e d  

t o  d e s c r i b e  mathematical ly  an idea  of P a u l i ' s  concern ing  t h e  n e u t r i n o .  For 

example, i n  K c a p t u r e  a n  o r b i t a l  e l e c t r o n  i n  t h e  K s h e l l  is e a t e n  by a pro ton  

i n  t h e  nuc leus  w i t h  t h e  r e s u l t  t h a t  a n e u t r o n  p l u s  a n e u t r i n o  is c r e a t e d .  

Fermi a t t e m p t e d  t o  w r i t e  down a n  a b s t r a c t  d e s c r i p t i o n  of t h i s  process .  He 

assumed t h a t  t h e r e  was a Hamil tonian which conta ined  a term of  t h e  form 

I n  t h i s  form t h e  Q* i s  a n  o p e r a t o r  which creates a n e u t r o n ,  Qp is a n  o p e r a t o r  

which des t roys  a p r o t o n ,  0; c r e a t e s  a n e u t r i n o ,  a n d  Q d e s t r o y s  a n  e l e c t r o n .  

Such a term is p r e s e n t  i n  a Hamil tonian of t h e  world w i t h  a c e r t a i n  s t r e n g t h  

c h a r a c t e r i z e d  by a coupl ing  c o n s t a n t  C ,  and g i v e s  r i se  t o  a c e r t a i n  ampl i tude  

f o r  t h e  K-capture r e a c t i o n ,  b u t  no mechanism is d e s c r i b e d  by it. Another  

way of d e s c r i b i n g  t h e  r e a c t i o n  is t o  draw a diagram w i t h  a f o u r - p o i n t  coupl ing  

n 

e 

ni( P 

and t o  a s s o c i a t e  w i t h  t h a t  diagram t h e  s t r e n g t h  c o n s t a n t  C ,  t o g e t h e r  w i t h  

c e r t a i n  wel l -def ined r u l e s  f o r  c a l c u l a t i n g  t h e  ampl i tude .  The decay ampl i tude  

i s  p r o p o r t i o n a l  t o  G and t h e  ampl i tude  f o r  f i n d i n g  the  p r o t o n  and t h e  e l e c t r o n  

toge ther .  Given t h e  ampl i tude  f o r  t h e  p r o c e s s ,  t h e  r a t e  a t  which t h e  r e a c t i o n  

proceeds is g i v e n  by a Golden Rule of t h e  form 

Rate = 2nlAmpl' (Dens i ty  of f i n a l  s t a t e s )  

A c t u a l l y  t h i n g s  are  a b i t  more complicated.  A fe rmion ,  d e s c r i b e d  by t h e  

Dirac  equat ion ,  is represented  by four a m p l i t u d e s ,  two s p i n  p o s s i b i l i t i e s  

times two charge p o s s i b i l i t i e s .  

p o s s i b l e  terms,  each o f  which might have i t s  own c h a r a c t e r i s t i c  c o u p l i n g  

The product  of f o u r  such  Q's w i l l  produce 4* 
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c o n s t a n t .  Actua l ly  such  a h o r r i b l e  mess i s  s i m p l i f i e d  by r e q u i r i n g  r e l a -  

t i v i s t i c  i n v a r i a n c e  o f  t h e  ampli tude.  This  reduces the  number o f  p o s s i b l e  

c o e f f i c i e n t s  t o  t e n .  Mathematical ly ,  i f  we r e p r e s e n t  t h e  four-component 

s p i n o r  wave f u n c t i o n  of a p a r t i c l e  by i ts  name, t h e  p o s s i b l e  forms f o r  t h e  

c o u p l i n g  can b e  r e p r e s e n t e d  as 

and s o  on. Fermi, however, w a s  no t  s a t i s f i e d  w i t h  w r i t i n g  down a l l  t h e  

p o s s i b i l i t i e s .  He made a guess  t h a t  the i n t e r a c t i o n  was v e c t o r  

Having l i m i t e d  t h e  form of the ampl i tude  by t h i s  g u e s s ,  he was t h e n  a b l e  t o  

c a l c u l a t e  t h e  p r o p e r t i e s  o f  t h e  be ta  decay. 

P a r i t y  non-conservat ion 

The most prominent f e a t u r e  is t h e  shape of t h e  spectrum, which 

depends a lmost  wholly on t h e  d e n s i t y  of f i n a l  s t a t e s .  E a r l y  exper iments  

f a i l e d  t o  confirm t h i s  spectrum, but  t h o s e  experiments  were i n c o r r e c t  because 

of r e s c a t t e r i n g  i n  t h e  f o i l s .  The subsequent  h i s t o r y  of  beta-decay i n v e s t i g a -  

t i o n s  i s  beclouded by two decades of i n a c c u r a t e  o b s e r v a t i o n s  and poor t h e o r e t i c a l  

sugges t ions ,  which I s h a l l  n o t  d i s c u s s .  The f i n a l  r e s o l u t i o n  of t h e  p u z z l e  

is s imply t o  m u l t i p l y  each wave f u n c t i o n  of a p a r t i c l e  by t h e  le f t -handed  

h e l i c i t y  o p e r a t o r ,  

a = ( 1  + iy5)/2 . 
T h i s  p r e s c r i p t i o n  reduces  t o  one t h e  number of independent  c o u p l i n g  c o n s t a n t s  

i n  b e t a  decay. 

The h e l i c i t y  o p e r a t o r  has c e r t a i n  p r o p e r t i e s ,  n a m e l y  

-- - - 
aa = a, aa = a ,  aa = 0 . 

Using t h i s  h e l i c i t y  o p e r a t o r  i n  t h e  i n t e r a c t i o n  a l s o  r e s u l t s  i n  a 

v i o l a t i o n  of p a r i t y  conserva t ion  i n  t h e  weak i n t e r a c t i o n ,  which w a s  found i n  

1957. The f i n a l  form f o r  the  beta-decay c o u p l i n g  i n  t h e  Lagrangian may then be  

w r i t t e n  as 
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With such  a c o u p l i n g ,  t h e  p a r t i c l e s  are e m i t t e d  p o l a r i z e d  a l o n g  t h e  d i r e c t i o n  

of t h e i r  motion. 

and t o  t h e  r i g h t  w i t h  a p r o b a b i l i t y  o f  ( 1  - v) /2 ,  where v i s  t h e  p a r t i c l e  

v e l o c i t y  i n  u n i t s  of  c .  The o p p o s i t e  p o l a r i z a t i o n  holds  f o r  the a n t i p a r t i c l e s .  

F o r  b e t a  decay t h e  above Lagrangian may b e  w r i t t e n  i n  t h e  form 

They a r e  s p i n n i n g  t o  t h e  l e f t  w i t h  a p r o b a b i l i t y  of ( 1  + v)/2, 

and i t  is common today t o  i d e n t i f y  the  v a r i o u s  terms i n  t h i s  formula w i t h  

c u r r e n t - d e n s i t y  - o p e r a t o r s .  

l e p t o n s  t o  be Jva = (;yae), and t h e  a x i a l  v e c t o r  c u r r e n t  of t h e  l e p t o n s  as 

J: = ( ;yaiy5e) ,  t o g e t h e r  with s i m i l a r  d e f i n i t i o n s  of t h e  n u c l e a r  v e c t o r  and 

a x i a l  v e c t o r  c u r r e n t s .  With t h i s  symbolism t h e  beta-decay i n t e r a c t i o n  t a k e s  

the  form 

People  l i k e  t o  d e f i n e  t h e  v e c t o r  c u r r e n t  of t h e  
ve - 

To d i s c u s s  t h e  decay o f  t h e  muon we need only r e p l a c e  t h e  p r o t o n  s p i n o r  by a 

n e u t r i n o  s p i n o r  and t h e  neut ron  s p i n o r  by a muon s p i n o r  i n  t h e  above coupl ing .  

I s h a l l  no t  go through t h e  c a l c u l a t i o n  of t h e  spectrum and p o l a r i z a t i o n  proper -  

t i e s  of the decay on t h e  b a s i s  o f  t h i s  proposed t h e o r y ,  b u t  s h a l l  o n l y  comment 

on t h e  r e s u l t s .  T h i s  spectrum a g r e e s  very  well w i t h  t h e  experiments  which I 
have seen .  In f a c t  the  agreement between experiment  and theory  today is so 

d e t a i l e d  t h a t  one has t o  take  i n t o  account  t h e  r a d i a t i v e  c o r r e c t i o n s  t o  t h e  

spectrum. The a b s o l u t e  value o f  t h e  coupl ing  c o n s t a n t  C can be  de te rmined  

from t h e  r a t e  of  the  decay of t h e  muon, and t h e  r e s u l t  is C M 2  = 1.01 - lo-*.  
( I  use n a t u r a l  u n i t s  i n  which fi = c = 1 . )  

S t r o n g  i n t e r a c t i o n  modi f ica t ion  of weak decay mat r ix  
e lements ,  and t h e  conserved v e c t o r  c u r r e n t  t h e o r y  

P' 

I J P  

Let us r e t u r n  t o  t h e  b e t a  decay o f  t h e  neutron.  I n  t h i s  c a s e  we 
have two k i n d s  o f  c u r r e n t s ,  v e c t o r  and a x i a l  v e c t o r ,  which c o u p l e  t o  t h e  

l e p t o n s .  In b e t a  decay the  nucleons a r e  n o n - r e l a t i v i s t i c  and we c a n  s i m p l i f y  
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t h e  c a l c u l a t i o n  of m a t r i x  elements. The four -d imens iona l  v e c t o r  c u r r e n t  f o r  

a n o n - r e l a t i v i s t i c  ? a r t i c l e  is  dominated by i t s  time component, which i s  j u s t  

t h e  o p e r a t o r  1 ,  \vilile the a x i a l  v e c t o r  c u r r e n t  is  dominated by i t s  s p a c e - l i k e  

teriiis, which a r e  j u s t  t h e  s p i n  o p e r a t o r s .  The v e c t o r  terin does not  change 

t h e  s p i n  of the  nuc leon  and is c a l l e d  t h e  Fermi c o u p l i n g ,  w h i l e  t h e  a x i a l  

v e c t J r  term,  c a l l e d  Caiiiow-Tetler c o u p l i n g ,  f l i u s  the s p i n  of t h e  nucleon.  

Because each ty:Je o f  coupl ing  1et:ds t o  d i s t i n c t i v e  s e l e c t i o n  r u l e s  i t  was 

known q u i t e  e a r l y  t h a t  b o t h  types  of c o u p l i n g  a r e  p r e s e n t .  I n  t h e  niuon decay 

t h e  r a t i o  o f  t h e  a x i a l - v e c t o r  term t u  t h e  v e c t o r  terii: i s  u n i t y ,  but from 

experiments  on t h e  d i s i n t e g r a t i o n  of t h e  n e u t r o n  and 0'4 i t  w a s  shown t h a t  

t h e  r a t i o  i n  n u c l e a r - b e t a  decay d i f f e r s  s u b s t a n t i a l l y  from u n i t y .  I f  w e  
c a l c u l a t e  t h e  ; ) r o p e r t i e s  of neut ron  decay u s i n g  t h e  c o u p l i n g  

= - Cv, t h e  A w e  come t o  the c o n c l u s i o n  that f o r  p o l a r i z e d  neut rons  i f  G 

e l e c t r o n  is e in i t ted  i s o t r o p i c a l l y ,  b u t  the  n e u t r i n o  i s  much more l i k e l y  t o  

come out  a long  the d i r e c t i o n  of  t h e  neut ron  s p i n  t h a n  o p p o s i t e .  The r e c o i l  

p r o t o n  i s  a l s o  a n i s o t r o p i c ,  b u t  the  e l e c t r o n  is not .  A c t u a l l y  t h e  e l e c t r o n  

is s l i g h t l y  unsymmetric i n  i t s  emission d i r e c t i o n .  From measurements on t h e  

decay of p o l a r i z e d  n e u t r o n s  one c a n  t h e n  f i n d  t h a t  the r a t i o  of t h e  c o u u l i n g  

c o n s t a n t s  i s  n e g a t i v e  and approximately 1.2. What a d e s t r u c t i o n  o f  t h e  

b e a u t i f u l l y  simi,le theory!  ( 1  + iys  )/2 i s  very  p r e t t y  because  i t s  sq . ia re  

equals  i t s e l f ,  and i t  p r o j e c t s  ou t  R c e r t a i n  h e l i c i t y  component, but  

( 1  + 1.2 i y 5  )/2 is d i r t y .  However, t h i s  s i t u a t i o n  is r e a l l y  not  unexpec ted ,  

because t h e  nucleons a r e  f a i r l y  complicated p a r t i c l e s  due t o  s t r o n g  i n t e r -  

a c t i o n s  about  which we know l i t t l e .  Indeed,  i n  t h e  sense  of  p e r t u r b a t i o n  

theory ,  i t  would be  expected t h a t  a fund;.iiiental simple-ty:,e of c o u p l i n g  

would no longer be  s imple.  I n  o t h e r  words, i t  is s t i l l  p o s s i b l e  t h a t  

i n  the ddep h e a r t  of m a t t e r  t h e  c o u p l i n g  forliiula f o r  the  nucleons i n v o l v e s  

the  h e l i c i t y  p r o j e c t i o n  o p e r a t o r .  bu t  t h a t  the s p i n o r s  which e n t e r e d  

ti0 not  re :Jresent  t h e  r e a l  proton and n e u t r a n  b u t  r a t h e r  some kind of 
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i d e a l i z e d  p and n. I n  c a l c u l a t i n g  m a t r i x  e lements  f o r  t h e  real nucleons,  

c o r r e c t i o n s  would t h e n  have t o  b e  made f o r  p i o n s  and o t h e r  s t r o n g l y  i n t e r a c t -  

i n g  p a r t i c l e s  which would renormal ize  t h e  r e l a t i v e  c o e f f i c i e n t  of t h e  v e c t o r  

and a x i a l  v e c t o r  c u r r e n t .  

S t r o n g  i n t e r a c t i o n s  i n  f a c t  would be  expected t o  renormal ize  n o t  

only t h e  a x i a l  c u r r e n t  b u t  a l s o  t h e  v e c t o r  c u r r e n t .  A f t e r  some mental e f f o r t  

one c a n  s e e ,  however, that i t  is  q u i t e  p o s s i b l e  that t h e  v e c t o r  c u r r e n t  need 

n o t  b e  renormalized a t  a l l ,  as exper imenta l  c l u e s  h i n t e d ,  when i t  was found 

t h a t  t h e  muon coupl ing  c o n s t a n t  w a s  t h e  same as t h e  Fermi coupl ing  c o n s t a n t  

t o  w i t h i n  a few p e r  cent .  The e x t r a c t i o n  o f  t h e  F e r m i  c o n s t a n t  from t h e  r a t e  

of 0'4 b e t a  decay involves  a n  a d d i t i o n a l  assumpt ion  a b o u t  n u c l e a r  f o r c e s  

u n l e s s  t h e  v e c t o r  c u r r e n t  f o r  t h e  weak i n t e r a c t i o n s  i s  n o t  renormal ized .  I n  

t h e  decay  t h e  p a r e n t  nuc leus  c o n t a i n s  e i g h t  pro tons  and s i x  n e u t r o n s ,  w h i l e  

t h e  d a u g h t e r  nuc leus  c o n t a i n s  seven pro tons  and seven n e u t r o n s .  Now, t h e r e  

i s  a s t a t e  i n  N'4 which is t h e  same as  t h e  ground s t a t e  i n  0'4 i n  t h e  sense 
of i s o t o p i c  sp in .  The n u c l e a r  f o r c e s  are independent  of whether  t h e  nuc leons  

are p r o t o n s  o r  neut rons ,  and t h e r e f o r e  i n  every  system o f  seven p r o t o n s  and 

seven n e u t r o n s  t h e r e  i s  a s ta te  which has  e s s e n t i a l l y  t h e  same character as 
any s t a t e  t h a t  e x i s t s  f o r  e i g h t  pro tons  and s i x  neut rons .  (The i n v e r s e  i s  
not  t r u e  because of t h e  exc lus ion  p r i n c i p l e . )  

s t a t e  o f  N", which has  i s o t o p i c  s p i n  1 ,  l i e s  lower i n  energy than t h a t  s ta te  
and s o  t h e  n i t r o g e n  nuc leus  does  decay t o  i t s  s i s t e r  s t a t e .  S i n c e  t h e  kine-  

mat ic  f e a t u r e s  o f  t h e  wave f u n c t i o n s  of  t h e  i n i t i a l  and f i n a l  s tates a r e  t h e  

same, t h e  mat r ix  element of t h e  i n t e g r a l  of t h e  beta-decay c h a r g e  d e n s i t y  

i n v o l v e s  s imply a n  i s o t o p i c  s p i n  Clebsch-Cordan c o e f f i c i e n t ,  which i s  j u s t  a. 
The c a l c u l a t i o n  i s  n o t  exac t  because t h e  v i o l a t i o n  of i s o t o p i c  s p i n  i n v a r i a n c e  

by electromagnet ism d e s t r o y s  t h e  p e r f e c t  o v e r l a p  o f  t h e  wave f u n c t i o n s ,  b u t  

t h i s  e f f e c t  is a t  most a h a l f  p e r  cent .  

The sister s ta te  of the ground 

T h i s  m a t r i x  element is almost  t h e  s o l e  example of a n  a c c u r a t e  calcula- 

t i o n  i n  n u c l e a r  phys ics ,  because one does n o t  have t o  know any n u c l e a r  p h y s i c s  

t o  c a l c u l a t e  i t .  T h i s  t r i c k  is p o s s i b l e  o n l y  a t  very low momentum t r a n s f e r  

where t h e  i n t e g r a l  of  t h e  f o u r t h  component o f  t h e  charge d e n s i t y  becomes t h e  
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o p e r a t o r  f o r  t h e  t o t a l  charge.  S i n c e  t h e  i s o t o p i c  s p i n  i s  conserved by t h e  

s t r o n g  i n t e r a c t i o n s  we have t h e r e f o r e  no r e n o r m a l i z a t i o n  o f  such m a t r i x  e lements .  

The assumption that the  v e c t o r  p a r t  of t h e  beta-decay c u r r e n t  i s  a 

component of t h e  i s o t o p i c - s p i n  c u r r e n t ,  i m p l i e s  a l s o  t h a t  two p i o n s  must have 

a wel l -def ined  weak coupl ing  t o  two l e p t o n s .  I t  is q u i t e  easy t o  see how 

s t r o n g  t h e  c o u p l i n g  is by u s i n g  our  e l e c t r i c i t y  analogue.  

s p i n  of t h e  p i o n  is t h e  same as  t h a t  f o r  0 ' 4 ,  namely one, we a g a i n  g e t  a f a c t o r  

of f i  f o r  the m a t r i x  element. S i m i l a r l y ,  t h e r e  w i l l  b e  m a t r i x  elements  of t h e  

c u r r e n t s  between two kaons,  two C hyperons, and s o  on. We propose t h a t  t h i s ,  

i n  f a c t ,  i s  t h e  way t h e  world works and,  consequent ly ,  t h a t  the v e c t o r  p a r t  of  

t h e  beta-decay coupl ing  which conserves  hypercharge i s  not  renormalized.  

S ince  t h e  i s o t o p i c  

E l e c t r o m g n c t i c  c o r r e c t i o n s  t o  weak 
i n t e r a c t i o n  m a t r i x  e lements  

When t h e  c o u p l i n g  c o n s t a n t s  f o r  t h e  Fermi  b e t a  decay and t h a t  f o r  

t h e  muon b e t a  decay a r e  determined i n  the manner i n d i c a t e d ,  they t u r n  out  not 
t o  be equal  as  w e  had expec ted ,  b u t  t o  d i f f e r  by a few p e r  c e n t .  To b e  more 

a c c u r a t e ,  t h e  v e c t o r  c o u p l i n g  c o n s t a n t  determined from t h e  ra te  of decay of 0" 

is  0.985 t imes t h e  muon beta-decay c o n s t a n t ,  whereas ,  that determined from t h e  

decay o f  At26 i s  0.975 G . In d o i n g  c a l c u l a t i o n s  w e  have a problem w i t h  ce r t a in  
r e l a t i v i s t i c  e l e c t r o m a g n e t i c  c o r r e c t i o n s .  We are t r y i n g  t o  i n v e s t i g a t e  a 
d i f f e r e n c e  of a few p e r  c e n t  and t h e  o rde r  o f  magnitude of e l e c t r o m a g n e t i c  e f f e c t s  

is t h e  same. Because t h e  agreement  between t h e  t w o  coupl ing  c o n s t a n t s  is so 

c l o s e ,  one i s  r e l u c t a n t  t o  guess  t h a t  the i d e a  of e q u a l i t y  is wrong ... . One 

would p r e f e r  t o  s p e c u l a t e  t h a t  the d iscrepancy  may b e  due t o  something e l se ,  such 

as a misunderstanding i n  t h e  c a l c u l a t i o n  of  t h e  e l e c t r o m a g n e t i c  c o r r e c t i o n s .  

I t  is  t h e r e f o r e  worth whi le  t o  d i s c u s s  t h e  q u e s t i o n  of how a c c u r a t e l y  w e  know 

such c o r r e c t i o n s .  In computing them f o r  t h e  decay o f  t h e  muon we have no 

problem; t h e  e l e c t r o m a g n e t i c  s t r u c t u r e  of t h e  muon i s  wel l  known and i t  h a s  no 

o t h e r  anomalous moments. The c a l c u l a t i o n  goes through s t r a i g h t f o r w a r d l y .  

However, i n  c a l c u l a t i n g  p r o t o n  c o r r e c t i o n s  t o  t h e  d i s i n t e g r a t i o n  of  t h e  neut ron  

we g e t  i n t o  d i f f i c u l t i e s  because t h e  i n t e g r a l s  d i v e r g e .  The d ivergence  is  due 

t o  the anomalous magnet ic  moment of t h e  nucleons.  Now, when w e  have t o  compute 

such i n t e g r a l s ,  f r a n k l y  w e  do n o t  g e t  completely s a t i s f a c t o r y  answers; depend- 

ing  on where one p u t s  t h e  cu t -of f  one might  a t  f i r s t  b e  a b l e  t o  account  f o r  any 

CC 
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discrei lancy.  However, i n  sp i r .e  o f  t h i s  a p p a r e n t  u n c e r t a i n t y ,  i t  t u r n s  out  that 
t h e  answer is not  very  s e n s i t i v e  t u  t h e  cu t -of f .  I n  f a c t ,  t h e  a n a l y s i s  is 

not  u n c e r t a i n  by more than  about  2 'L p e r  cent .  Even though t h e  e lec t romagnet ic  

e f f e c t s  a r e  l a r g e r  t h a n  t h i s ,  t h e  b i g g e s t  p a r t  o f  them can be unders tood  wi thout  

s e r i o u s  a ,nbigui ty .  

The u n c e r t a i n t y  i n  t h e  r a d i a t i v e  c o r r e c t i o n  is expec ted  t o  b e  q u i t e  

small because i t  is  r e a l l y  a c o r r e c t i o n  t o  a c o r r e c t i o n .  Let m e  e x p l a i n  t h e  

o r i g i n  of t h e  major p a r t  of t h e  c o r r e c t i o n  by r e f e r r i n g  t o  t h e  oxygen decay. 

I n  t h i s  c a s e  we would have t h e  f o l l o w i n g  types  of diagrams 

I n  t h e s e  diagrams we see that t h e  v i r t u a l  photon i n t e r a c t s  bo th  w i t h  a n  o b j e c t  

of charge 7 and one of  charge 8. The u s a a l  procedure  would be t o  u s e  a Coulomb 

wave f u n c t i o n  f o r  t h e  outgoing  p o s i t r o n s  ( t h a t  i s ,  f o r  a f i e l d  of a nuc leus  with 

charge 7 ) .  T h i s  r e s u l t s  i n  a well-known c o r r e c t i o n  t o  t h e  f value.  But t h e  

second diagram is n o t  inc luded  c o r r e c t l y  i n  t h i s  procedure.  The approximat ion  

a c t u a l l y  inc ludes  t h e  f o l l o w i n g  diagram 
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i n  which, o u t s i d e  t h e  n u c l e u s ,  a n  e l e c t r o n - p o s i t r o n  pair is c r e a t e d  by t h e  

v i r t u a l  photon which i n t e r a c t s  with a charge of seven u n i t s .  These two 

diagrams A and B have t o  be  added,  and are comparable i n  s t r e n g t h  f o r  a 

r e l a t i v i s t i c  p o s i t r o n .  I n  f a c t ,  f a c c o u n t s  f o r  t h e  s u m  of A and C. The 

e r r o r  is t h e  d i f f e r e n c e  of diagram B and C,  which i s  a diagram l i k e  C b u t  w i t h  

charge 1 on t h e  nucleus.  When t h i s  is c a l c u l a t e d ,  d i s r e g a r d i n g  r e c o i l  o f  t h e  

nuc leus ,  one o b t a i n s  (e2/2n)  I n  (.X/E) where E is t h e  p o s i t r o n  energy and X 

i s  0 0 .  A c t u a l l y ,  t h e  r e s u l t  should  be  modified f o r  r e c o i l  and magnetic- 

moment c o r r e c t i o n s  e tc . ,  t h e  r e s u l t  b e i n g  t o  r e p l a c e  X by some unknown o f  Lhe 

o r d e r  )rl . I f  I s t o p  t h e  i n t e g r a l  a t  about  2M I w i l l  t h e n  have t o  add a n  

unknown amount t o  account  f o r  t h e  high energy p i e c e  of  t h e  i n t e g r a l .  I t  is 

t h i s  unknown m o u n t  that i s  e s t i m a t e d  t o  be o f  t h e  o r d e r  o f  'A p e r  cent .  

F rom my exper ience  w i t h  such c a l c u l a t i o n s  I do not  b e l i e v e  t h a t  t h i s  c o r r e c t i o n  

could be s i g n i f i c a n t l y  l a r g e r  than 'A p e r  c e n t .  

p a r t  of t h e  r a d i a t i v e  c o r r e c t i o n  is well known ( t h e  l o g  i s  l a r g e  because the  

lower l i m i t  E is s o  much s m a l l e r  than  M ) and that the remaining , a r t  i s  very  
P 

u n l i k e l y  t o  a c c o u n t  f o r  the d iscrepancy  between t h e  n u c l e a r  and muon weak 

decay c o n s t a n t s ,  even though t h e  c a i c u l a t  ion i n v o l v e s  some u n c e r t a i n t y .  

P P' 

The p o i n t  is t h a t  t h e  major 

Can t h e  r a d i a t i v e  c o r r e c t i o n  c a l c u l a t i o n  e v e r  be m d e  more : , r e c i s e l y ?  

I b e l i e v e  t h a t  i t  c a n  and would l i k e  t o  propose a programme f o r  t h e o r i s t s .  

What i s  r e a l l y  needed i s  a n  e v a l u a t i o n  of  t h e  accuracy of the appros imat ion  of  

keeping only a o n e - p a r t i c l e  i n t e r m e d i a t e  s t a t e  i n  t h e  c a l c u l a t i o n  of  imt.rix 

e lements  f o r  t h e  product  of two c u r r e n t s .  Many t h e o r i s t s  p r o f e s s  to b e l i e v e  

t h a t  such a n  approximation is q u i t e  good, bu t  t h e y  r e a l l y  lack  aqy reason  t o  

suppor t  t h e i r  s t a n d .  I t  i s  n o t  p o s s i b l e  t o  compute t h e  degree  of v a l i d i t y  of  

t h i s  approximat ion ,  b u t  i f  we a n a l y s e  s u i t a b l e  experiments ,  we ought to  be a b l e  

t o  o b t a i n  a v e r y  good answer t o  our  problem. 

i n v e s t i g a t i o n  of high-energy Compton s c a t t e r i n g  o f f  a pro ton ,  and of t h e  wer- 
f i n e  s t r u c t u r e  of hydrogen. The ampl i tudes  involved  i n  t h e s e  phenomena a r e  

mat r ix  e lements  of t h e  square  of  t h e  e l e c t r o m a g n e t i c  c u r r e n t .  Now Platzman 

and Iddings  have computed t h e  hydrogen h y p e r f i n e  s p l i t t i n g ,  keeping only  t h e  

proton i n t e r m e d i a t e  s t a t e  and u s i n g  t h e  Hofs tader  form f a c t o r s  a t  each v e r t e x ,  

One should  conduct a c a r e f u l  
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and t h e i r  r e s u l t  d i s a g r e e s  w i t h  experiment .  However, t h e i r  work is v a l u a b l e  

because i t  provides  a n  e v a l u a t i o n  o f  t h e  accuracy o f  t h i s  t y p e  of approximat ion ,  

and i t  is on t h i s  b a s i s  t h a t  I b e l i e v e  o u r  e s t i m a t e  o f  t h e  r a d i a t i v e  c o r r e c t i o n  

t o  n u c l e a r  b e t a  decay is good to  'A p e r  c e n t .  

a n o t h e r  check on t h i s  approximation by s t u d y i n g  Compton s c a t t e r i n g ,  and i t  i s  

l i k e l y  t h a t  such  a s t u d y  w i l l  p rovide  a d d i t i o n a l  s u b s t a n t i a t i o n  f o r  o u r  e s t i m a t e  

of t h e  2 p e r  c e n t  accuracy .  

I t  would be u s e f u l  t o  have 

S t rangeness  changing weak decays  2nd LECTURE 

The b e t a  decay of nucleons and t h e  decay o f  t h e  iiiuon a r e  o n l y  two 

examples of t h e  weak decays. There a r e  many more and i t  i s  now o u r  task  t o  

o u t l i n e  t h e  p o s s i b l e  terms which a r e  requi red  i n  t h e  weak i n t e r a c t i o n  coupl ing  

i n  o r d e r  t h a t  a l l  t y p e s  of  decays may be accounted f o r ,  a t  l e a s t  q u a l i t a t i v e l y .  

To do t h i s  l e t  us  u s e  a more convenient  symbolism. Let us  a b b r e v i a t e  t h e  

V - A  c u r r e n t  term [7\ya(l + i y 5 )  B] by (b). I n  t h i s  language,  t o  d e s c r i b e  

n u c l e a r  b e t a  decay,  we need a coupl ing  term o f  t h e  form ( C e )  ( G p ) ,  t o g e t h e r  

wi th  i t s  Hermit ian conjugate .  I n  our  d i s c u s s i o n  o f  neut ron  decay  we have s e e n  

that such a form is c o r r e c t  o n l y  q u a l i t a t i v e l y .  I n d i c a t i o n s  a r e  t h a t  t h e  

v e c t o r  c u r r e n t  is n o t  renormalized and,  consequent ly ,  that a d d i t i o n a l  terms 
f o r  o t h e r  s t r o n g l y  i n t e r a c t i n g  p a r t i c l e s  such as  ? i o n s ,  K's, e t c .  must be p r e s e n t .  

IVe have s p e c u l a t e d  t h a t  t h e  v e c t o r  beta-decay c u r r e n t  which i s  

s t r a n g e n e s s  p r e s e r v i n g  is a s u i t a b l e  component of  t h e  i s o t o p i c  s p i n  c u r r e n t ,  

which i s  conserved. For t h a t  reason t h e  theory  we have d i s c u s s e d  is c a l l e d  

t h e  conserved v e c t o r  c u r r e n t  (CVC) theory.  ( I t  i s  w e l l  t o  remind o u r s e l v e s  

t h a t  o u r  main requirement  was t h a t  the v e c t o r  coupl ing  c o n s t a n t  should not  be 

modified by t h e  s t r o n g  i n t e r a c t i o n s .  An easy way to g u a r a n t e e  t h i s  is t o  

propose t h a t  the  v e c t o r  c u r r e n t  is conserved,  b u t  t h a t  may n o t  b e  t h e  only w a y . )  

The a x i a l  v e c t o r  c o u p l i n g  c o n s t a n t  d i f f e r s  from i ts  i d e a l  va lue  r1.26 i n s t e a d  

of I * ' ] .  Some people  c o n s i d e r  t h i s  a small d e v i a t i o n  s o  t h a t  they  a re  tempted 

* )  Bernard in i  has  t o l d  me t h a t  Miss Wu now f i n d s  t h e  r a t i o  o f  t h e  a x i a l  v e c t o r  
t o  t h e  v e c t o r  n u c l e a r  beta-decay c o u p l i n g  c o n s t a n t s  t o  be  1.16. 
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t o  supply  some r e a s o n  f o r  such  a r e l a t i v e l y  small r e n o r m a l i z a t i o n .  

a t t e m p t s  have been made t o  c o n s t r u c t  a conserved a s i a l  c u r r e n t ,  b u t  a l l  have 

f a i l e d  because  of m a s s  terms. However, i t  is by no means s e l f - e v i d e n t  t h a t  w e  
cannot s e t  up t h e  a x i a l  c u r r e n t  s o  that i ts  c o u p l i n g  is e s s e n t i a l l y  unchanged 

by r e n o r m a l i z a t i o n ,  even though such a c u r r e n t  w i l l  not  be conserved.  

Many 

The decay of  the  muon shows t h a t  t h e  weak c o u p l i n g  nust c o n t a i n  a 

term of  t h e  form ( i e )  (ii ), and today i t  is known d e f i n i t e l y  t h a t  v 
P I-1 

we might cal l  t h e  n e u t r e t t o ,  is d i s t i n c t  from v ,  t h e  n e u t r i n o .  S i n c e  bound 

muons d i s a p p e a r  f a s t e r  than f r e e  ones ,  we a l s o  know t h a t  t h e r e  must b e  a term 

l i k e  (i p )  ( n p ) .  
shor tened  i n  v a r i o u s  n u c l e i ,  we can g e t  a p r e t t y  f a i r  i d e a  of t h e  s t r e n g t h  of 

the  muonic l e p t o n  c o u p l i n g  t o  nucleons. The experimental  ev idence  allows one 

t o  assume that t h e  s t r e n g t h  of t h i s  c o u p l i n g  is t h e  same a s  t h e  e l e c t r o n  b e t a -  

decay c o u p l i n g  s t r e n g t h ,  which i s  a l s o  t h e  same as C to a few p e r  c e n t .  

, which 

By meascr ing t h e  d e g r e e  t o  which the muon l i f e t i m e  is 
I-1 

These t h r e e  terms a r e  s u f f i c i e n t  t o  g i v e  r i s e  to many o t h e r  observed 

decays. For example, t h e  modes n + p +  v and n + e +  v would b e  expec ted  

q u a l i t a t i v e l y  because  they can proceed through an i n t e r m e d i a t e  f i N  s t a t e  which 

is  coupled t o  l e p t o n s  . In f a c t ,  a l l  weak decays which conserve hypercharge 

a r e  p r e d i c t e d  by t h e  t h r e e  types of weak coupl ing a l r e a d y  cons idered .  B u t  t o  

account. f o r  t h e  observed s t r a n g e n e s s  chanzing  decays we need t o  p o s t u l a t e  a t  
l e a s t  t h r e e  more t y p e s  of weak coupl ing.  Consider  t h e  f o l l o w i n g  t h r e e  decays 

of t h e  K meson: K + p +  v , K * n +  e +  v ,  and K * n + n .  We s e e  t h a t  we need 

a s t r a n g e n e s s  changing  term, which, wi thout  p r e j u d i c e  as t o  i t s  t r u e  n a t u r e ,  

we s h a l l  a b b r e v i a t c  by (xp) ,  coupled t o  b o t h  t y p e s  o f  t h e  l e p t o n s ,  and t o  

s t r o n g l y  i n t e r a c t i n g  :)art i c l e s  with zero  s t r a n g e n e s s :  

and ( i n )  (Hp). 
changing weak decays ,  about  which t h e r e  i s  no d i s p u t e  e x p e r i m e n t a l l y ,  obey t h e  

s e l e c t i o n  r u l e  t h a t  t h e  change i n  s t r a n g e n e s s  e q u a l s  t h e  change i n  the  charge 

AS/AQ = + l .  Now one would guess  t h a t  the s t r e n g t h  of t h e  l a s t  t h r e e  types  of  

P 

* )  

P 

( Z p )  ( x p ) ,  ( i e )  (xp) ,  
These t h r e e  terms are  s u f f i c i e n t  because  all t h e  s t r a n g e n e s s  

* )  For example, n+ goes v i r t u a l f y  t o  p and a n t i n e u t r o n  v i a  s t r o n g  i n t e r a c t i o n s .  
The ;,roton t h e n  goes t o  N ,  e and v ,  t h e  n e u t r o n  and a n t i n e u t r o n  a n n i h i l a t i n g .  
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weak coupl ing  might  h e  t h e  same a s  t h e  f i r s t  t h r e e  which conserve  hypercharge,  

bu t  i t  t u r n s  o u t  t h a t  t h i s  is n o t  t h e  case. The s t r a n g e n e s s  c h a n g i n g d e c a y  
r a t e s  a r e  weaker by a n  o r d e r  of magnitude from what would be expec ted  if t h e  

s t r e n g t h  C were u n i v e r s a l .  

The c u r r e n t - c u r r e n t  theor2  

These six terms a r e  somewhat messy and t h e  q u e s t i o n  is whether  t h i n g s  

can be organized  i n  a more p l e a s i n g  way. One idea  t h a t  pops i n t o  view is t o  

combine t h e  f o u r  c u r r e n t s  i n t o  one grand weak i n t e r a c t i o n  c u r r e n t  

w i t h  t h e  c o e f f i c i e n t s ,  a and b ,  to be determined by some symmetry p r i n c i p l e s ,  

and t o  s u g g e s t  t h a t  t h e  weak coupl ing  i s  s imply a c u r r e n t - c u r r e n t  i n t e r a c t i o n  

I/& CTa Ja. 
r e q u i r e d  exper imenta l ly .  Such a proposa l  a u t o m a t i c a l l y  e l i m i n a t e s  n e u t r a l  

l e p t o n  c u r r e n t s ,  f o r  which t h e r e  is no evidence exper imenta l ly .  One may a s k  

w h y  we write charged c u r r e n t s .  The answer is t h a t  i f  we r e w r i t e  f o r  example 

( i e )  ( ; u p )  as - ( ; u  ) (Ce) ,  and then pursue t h e  i d e a  of  a c u r r e n t - c u r r e n t  coupl ing ,  

t h e  decay KO + p +  

seen ,  we f e e l  t h a t  the charged c u r r e n t  h y p o t h e s i s  is much t o  b e  p r e f e r r e d .  

I n  t h e  c ross -products  one f i n d s  t h e  s i x  t y p e s  of terms t h a t  are 

cc 
would be p r e d i c t e d .  S i n c e  such a decay is d e f i n i t e l y  not  

The c u r r e n t - c u r r e n t  i n t e r a c t i o n  not  only l e a d s  t o  t h e  s i x  d e s i r e d  

c r o s s  terms from t h e  f o u r  b a s i c  types  o f  c u r r e n t ,  b u t  a l s o  p r e d i c t s  f o u r  new 

types  of  p a r i t y  non-conserving i n t e r a c t i o n s ,  which a r e  the d iagonal  te rms  i n  

t h e  product .  Three of  them w i l l  b e  ex t remely  d i f f i c u l t  t o  observe ;  f o r  

example, t h e  d iagunal  term ( v e )  ( ; u )  l e a d s  t o  a d i r e c t  p a r i t y  non-conserving 

s c a t t e r i n g  c r o s s - s e c t i o n  between n e u t r i n o s  and e l e c t r o n s ,  bu t  s i n c e  t h e  c r o s s -  

s e c t i o n  i s  s o  t i n y  and n e u t r i n o s  are s o  hard  t o  d e t e c t ,  the  e x i s t e n c e  of such  a 
term has not  y e t  been v e r i f i e d  exper imenta l ly .  However, experiments  i n  n u c l e a r  

phys ics  c a n  b e  designed which a re  extremely s e n s i t i v e  t o  t h e  e x i s t e n c e  o f  a 
p a r i t y - v i o l a t i n g  c o n t r i b u t i o n  t o  t h e  n u c l e a r  f o r c e s .  Recent ly ,  F e l i x  Boehrn 

a t  Cal tech  has measured t h e  c i rcular  p o l a r i z a t i o n  of t h e  gamna r a y s  produced 

i n  a p a r t i a l l y  forbidded hl1 t r a n s i t i o n  i n  a heavy e l l i p s o i d a l  nuc leus .  This  

p o l a r i z a t i o n  can b e  non-zero only  through a n  admixture  of t h e  p a r i t y  f o r b i d d e n  
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El m a t r i x  element .  Boehm found good evidence f o r  a small p a r i t y  v i o l a t i o n  i n  

t h e  n u c l e a r  forces .  

term i n  t h e  c u r r e n t - c u r r e n t  theory .  Because of  s t r o n g  renormal i z a t i o n s  which 

are n o t  c a l c u l a b l e ,  i t  is imposs ib le  t o  s t a t e  whether  or not  t h e  s i z e  and s i g n  

of t h e  exper imenta l  e f f e c t  a g r e e  wi th  the p r e d i c t i o n  of t h e  c u r r e n t - c u r r e n t  

theory  of  weak i n t e r a c t i o n s .  

is c o r r e c t ,  and hence t h i s  does  c o n s t i t u t e  a q u a l i t a t i v e  v e r i f i c a t i o n  o f  t h e  

hypothes is .  

Such a n  e f f e c t  is p r e d i c t e d  by t h e  ( n p )  ( i n )  d i a g o n a l  

The o r d e r  of magnitude of  t h e  e f f e c t  n e v e r t h e l e s s ,  

I f  t h e  weak i n t e r a c t i o n  does have t h e  c u r r e n t - c u r r e n t  form a n  appea l -  

i n g  t h e o r e t i c a l  p o s s i b i l i t y  is t h a t  a new v e c t o r  meson e x i s t s ,  which m d i a t e s  

t h e  i n t e r a c t i o n  i n  t h e  same way that t h e  photon mediates  the i n t e r a c t i o n  between 

two charge c u r r e n t s .  Such a new f i e l d  will g ive  r i s e  through t h e  f o l l o w i n g  

type of  diagram 

t o  a weak i n t e r a c t i o n  between two c u r r e n t s  of t h e  form 

I n  t h i s  formula,  4 is t h e  mass of t h e  i n t e r m e d i a t e  boson, and eW is i t s  coupl- 

i n g  t o  t h e  weak i n t e r a c t i o n  c u r r e n t .  

t o  o u r  c u r r e n t - c u r r e n t  form once we i d e n t i f y  & %‘/I$ w i t h  g / J 2  ! 
For q < < Q, t h e  i n t e r a c t i o n  reduces 

The charged v e c t o r  meson theory ,  l i k e  t h e  four-fermion p o i n t  i n t e r -  

a c t i o n  theory ,  i s  not  r e n o r m a l i z a b l e ,  b u t  t h i s  never  b o t h e r s  me. A l l  o f  o u r  

t h e o r i e s  are wrong a t  high e n e r g i e s ,  and r e n o r m a l i z a b i l i t y  only r e f e r s  t o  

whether  € h i s  u n i v e r s a l  d i s e a s e  can be  swept under t h e  r u g  f o r  t h e  a n a l y s i s  of  

low-energy phenomena. I p e r s o n a l l y  have f e l t  no p a r t i c u l a r  favour  f o r  
renormal izable  t h e o r i e s ,  and w i l l  j u s t  as w e l l  accept  one t h a t  is unrenormaliz-  

a b l e  as  one t h a t  is renormal izable .  I t  h a s  never  been proved t h a t  renormal iz -  
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a b l e  t h e o r i e s  a r e  s u p e r i o r  because they a r e  c o n s i s t e n t ;  indeed ,  i t  seems t o  

me l i k e l y  t h a t  renormal izable  t h e o r i e s  s u f f e r  from ghos t  d i f f i c u l t i e s  a t  hi;:h 

e n e r g i e s .  I make a p o i n t  o f  t h i s  because i n  my l a t e r  a n a l y s i s  I s h a l l  con- 

t i n u e  t o  d i s c u s s  non-renormalizable  t h e o r i e s ,  t h u s  oppos ing  t h e  c o n v e n t i o n a l  

p r z c t i c e ,  and s h a l l  make no apology f o r  d o i n g  s o .  

From t h e  s i z e  of t h e  weak-bosun c o u p l i n g  c o n s t a n t  eW,  one can 

e s t i m a t e  t h e  product ion  r a t e  of t h e s e  par t ic les .  Once t h r e s h o l d  energy h a s  

been passed s u f f i c i e n t l y ,  they should be produced c o p i o u s l y  enough t o  b e  s e e n  

r e a d i l y  i f  they e x i s t  a t  a l l .  

Pion decay 

Let us now t u r n  to  the  q u e s t i o n  o f  t h e  e x t e n s i o n  of t h e  i d e a  of non- 

r e n o r m a l i z a b i l i t y  from t h e  v e c t o r  c u r r e n t  t o  the a x i a l  c u r r e n t .  A t  t h e  same 

time we w i l l  s t u d y  the  t r e a t m e n t  of another  prominent  non-strangeness  changing 

decay,  t h e  decay o f  t h e  pion.  To c l a r i f y  t h e  i d e a s  involved ,  we s t i c k  t o  a 

model of t h e  u n i v e r s e  i n  which nuc leons  and p i o n s  a r e  t h e  only s t r o n g l y  i n t e r -  

a c t i n g  p a r t i c l e s .  A s  a l r e a d y  e x p l a i n e d ,  one e x p e c t s  t h e  p ion  t o  decay i n t o  

l e p t o n s  j u s t  because  of the e x i s t e n c e  of t h e  f o l l o w i n g  type of diagram: 

I n  t h e  c o u p l i n g  of t h e  p i o n  t o  t h e  nucleon l o o p  one u s u a l l y  sees t h e  

Dirac  m a t r i x  gy5.  However, we s h a l l  come back l a t e r  and d i s c u s s  a n  a l t . e r m t e  

form f o r  t h e  v e r t e x ,  which I p r e f e r .  The nucleon loop is coupled t o  l e p t o n s  

by both  a y m a t r i x  and  a y ys matr ix .  For t h i s  problem only t h e  y y5 tern 
c o n t r i b u t e s ,  s i n c e  t h e  p ion  i s  a pseudosca lar  p a r t i c l e .  This  l o o p  cannot  be 

c a l c u l a t e d  because i t  is  d ivergent .  Even i f  i t  were n o t ,  one would n o t  

b e l i e v e  the  answer because p i o n  c o r r e c t i o n s  t o  i t  would b e  very impor tan t .  

LJ P I.1 
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However, t h e  form i t  g i v e s  f o r  t h e  m a t r i x  e lement  

where q is t h e  momentum of  the pion,  is t h e  only  p o s s i b l e  i n v a r i a n t  form f o r  

t h e  ampl i tude .  

do n o t  know i t  nor do we know how t o  c a l c u l a t e  i t .  
The number FII is t h e  r e s u l t  of a l l  p o s s i b l e  diagrams. \Ye 

Given t h i s  form f o r  t h e  ampli tude we can  c a l c u l a t e  t h e  decay r a t e  

u s i n g  t h e  Golden Rule given i n  t h e  f i r s t  l e c t u r e .  It  t u r n s  o u t  t o  be 

Using t h e  known decay rate of t h e  charged p i o n ,  one f i n d s  t h a t  

Fnm, = 5 . 9 5 ~  10- . 
I n c d i e n t a l l y ,  the  same mathematics hold for t h e  decay of kaons i n t o  l e p t o n s ,  

i n  which c a s e  Fk\ = 5 . 5 5 ~  lo-'. 

To d e s c r i b e  t h e  decay o f  n .+ e i  v ,  t h e  ampl i tude  would have t h e  same 

i n v a r i a n t  s t r u c t u r e .  You w i l l  n o t e  t h a t  i f  t h e  c o u p l i n g  c o n s t a n t s  a r e  of t h e  

same o r d e r  f o r  bo th  (;v) and ( i u , , )  t h e  r a t e  f o r  decay i n t o  ( ; v )  i s  s e v e r e l y  

i n h i b i t e d .  The i n h i b i t i o n  is due t o  t h e  f a c t  that t h e  charged l e p t o n  must 

come o u t  w i t h  i t s  s p i n  a l i g n e d  a l o n g  its d i r e c t i o n  of motion. This  is very 

d i f f i c u l t  f o r  e l e c t r o n s  s i n c e  t h e i r  v e l o c i t y  is q u i t e  h i g h  and ,  i n  t h e  weak 

i n t e r a c t i o n s ,  p a r t i c l e s  p r e f e r  to be p o l a r i z e d  i n  t h e  o p p o s i t e  s e n s e .  The 
p r o b a b i l i t y  of r ight-hand p o l a r i z a t i o n  g o e s  as I -  V/2. 

o t h e r  hand, are not  h i g h l y  r e l a t i v i s t i c  a n d ,  consequent ly ,  no t  so g r e a t l y  

i n h i b i t e d .  T h e o r e t i c a l l y  one f i n d s  t h e  r a t i o :  

The muons, on t h e  

.+ e +  = 1 . 3 6 ~  lo-' , 
' p + u P  

where t h i s  t h e o r e t i c a l  e s t i m a t e  i n c l u d e s  some r a d i a t i v e  c o r r e c t i o n s .  
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The t h e o r e t i c a l  e s t i m t e  for t h e  r a t i o  of the  decay  mtes  assumes 

that t h e  c o u p l i n g  o f  ( ; u ) a n d  ( i v p )  is the same f o r  weak i n t e r a c t i o n s .  

ment a g r e e s  with that r e s u l t  t o  w i t h i n  two p e r  c e n t ;  that means t h a t  w i t h i n  

one p e r  c e n t  the  e l e c t r o n  and muon couple  i n  the  same way i n  t h e  weak i n t e r -  

a c t i o n s .  The p ion  decay experiment  thus p r o v i d e s  t h e  b e s t  check o f  t h e  
h y p o t h e s i s  that t h e  s t r e n g t h  of the muon coupl ing  is t h e  same as t h e  e l e c t r o n  

c o u p l i n g  i n  t h e  weak i n t e r a c t i o n s .  T h i s  is a much b e t t e r  r e s u l t  t h a n  is 

obta ined  from s t u d y i n g  p c a p t u r e  i n  complicated n u c l e i .  Note that t h i s  check 

is e n t i r e l y  independent  of t h e  v a l u e  of  F which i s  not c a l c u l a b l e .  

Experi-  

n 
Is t h e r e  some t h e o r e t i c a l  argument f o r  d e t e r m i n i n g  the p i o n  decay  

ampl i tude  F ? It  i s  a d e l i g h t f u l  problem because i t  is a p p a r e n t l y  h o p e l e s s .  

However, t h e r e  appeared a paper  by Goldberger  and  Treiman, who found a formula 

f o r  F,. 

ignored terms of t h e  same o r d e r  a s  t h e  ones that were kept .  S i m i l a r  formulae 

had a l s o  been d iscovered  b e f o r e  by s e v e r a l  o t h e r  people  who had n o t  pursued 

them because they d i d  not  a g r e e  w e l l  w i t h  experiment .  Goldberger  and  Treiman's 

c o n t r i b u t i o n  was t o  p u t  renormalized c o n s t a n t s  i n t o  t h e  formula,  t h u s  obta in-  

i n g  much b e t t e r  agreement w i t h  experiment .  

lr 

The argument g i v e n  by Goldberger  and Tre imm is i n a d e q u a t e  s i n c e  they 

I n  t h i s  l e c t u r e  I should  l i k e  t o  d e s c r i b e  my f i r s t  approach  t o  a 
d e r i v a t i o n  o f  the Coldberger-Treiman r e l a t i o n .  I n  t h e  n e x t  l e c t u r e  I shall 

d i s c u s s  Gell-hlann's ref inement  of  t h i s  approach.  

To understand the i d e a s  involved  i n  t h i s  d e r i v a t i o n ,  l e t  us  r e c a l l  

o u r  a t t e m p t  t o  c o n s t r u c t  t h e  v e c t o r  beta-decay c u r r e n t  i n  such  a way t h a t  i t  
was not  modif ied by renormal iza t ion .  I n  o u r  model u n i v e r s e  of  p i o n s  and 

nucleons one can show that i f  t h e  c o e f f i c i e n t  A of t h e  p i o n  c u r r e n t ,  i n  t h e  

combination (J y 5 ) +  A(n-aano - so 

v e c t o r  beta-decay coupl ing  c o n s t a n t  is the  same a s  t h e  bare v e c t o r - c o u p l i n g  

c o n s t a n t .  An obvious q u e s t i o n  i s  whether  or not  one can wri te  t h e  axial v e c t o r  

c u r r e n t  i n  such  a way t h a t  t h e r e  is  no r e n o r m a l i z a t i o n .  The answer t o  t h a t ,  

g e n e r a l l y  speaking ,  is that we cannot .  Furthermore,  t h e r e  is some renormal iza-  

t i o n  e f f e c t .  Never the less ,  because t h e  r e n o r m a l i z a t i o n  is small, one is 

i s  s u i t a b l y  chosen, t h e  renormal ized  
p a n  
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tempted t o  c o n s t r u c t  t h e  a x i a l  v e c t o r  c u r r e n t  i n  s u c h  a way t h a t  o n l y  a small 

r e n o r m a l i z a t i o n  would r e s u l t .  To s t u d y  t h i s  q u e s t i o n  l e t  us  write a p o s s i b l e  

Lagrangian f o r  our  model u n i v e r s e  

For  t h e  purpose of t h i s  l e c t u r e  we n e g l e c t  compl ica t ions  due t o  i s o t o p i c  s p i n .  

The e s s e n t i a l  p o i n t  i s  t o  g e t  a n  idea ,  wi th  t h e  a i d  of a s i n g l e  model, which 

might be  t r u e  i n  a more r e a l i s t i c  d e s c r i p t i o n  of na ture .  The f i r s t  t h r e e  terms 

i n  t h e  above Lagrangian a r e  t h o s e  c h a r a c t e r i z i n g  f r e e  meson and nucleon f i e l d s .  

The a. term d e s c r i b e s  t h e  c o u p l i n g  of t h e  nuc leon  f i e l d  t o  t h e  pseudosca lar  

mesons. The f i n a l  term d e s c r i b e s  the  coupl ing  o f  t h e  nucleon f i e l d s  t o  i n t e r -  

mediate  v e c t o r  bosons. It  m y  be noted t h a t  i n  the  p s e u d o s c a l a r  meson-nucleon 

coupl ing  I have used a g r a d i e n t  form, which is c a l l e d  pseudovector  coupl ing.  

For s i n g l e  p ion  i n t e r a c t i o n s  a t  low p ion  momenta, t h i s  forin is e q u i v a l e n t  t o  
t h e  convent iona l  pseudosca lar  c o u p l i n g  Jys $9, p r o v i d i n g  t h a t  one i d e n t i f i e s  t h e  

c o e f f i c i e n t  2 a. w i t h  the  convent iona l  coupl ing  c o n s t a n t  go. For two p ion  

i n t e r a c t i o n s  t h e r e  i s  a g r e a t  d i s t i n c t i o n  between pseudovector  and pseudosca lar  

coupl ing.  The absence o f  low-energy s wave s c a t t e r i n g  is  compatible  w i t h  t h e  

p r e d i c t i o n  of  pseudovector  c o u p l i n g  and very d i f f i c u l t  t o  e x p l a i n  wi th  pseudo- 

scalar coupl ing .  For t h i s  and  o t h e r  reasons I p r e f e r  t h e  pseudovector  form, 

and  I do not  c a r e  i n  the l e a s t  t h a t  t h e  pseudovector  f o r m  be longs  t o  the c l a s s  

of i n t e r a c t i o n s  c a l l e d  unrenormalizable .  I t  is very  d i f f i c u l t  t o  check which 

of  t h e s e  c o u p l i n g s  is more c o r r e c t  because c a l c u l a t i o n s  cannot  be made f o r  s t r o n g  

i n t e r a c t i o n s ,  except  p o s s i b l y  by n o t i n g  t h e  f o l l o w i n g  f a c t .  I f ,  i n  any ampli-  

tude,  we can  e x t r a p o l a t e  t h e  p i o n  four-momentum o f f  t h e  mass s h e l l  d o m  t o  t h e  

p o i n t  where i t  is zero  ( z e r o  momentum and z e r o  e n e r g y ) ,  t h e n  t h a t  ampl i tude  

should vanish  i n  t h e  case of  pseudovector  coupl ing .  This  is a n  i n t e r e s t i n g  

p r i n c i p l e  which should  a i d  i n  deve loping  good t r ia l  f o n u l a e  f o r  p i o n  i n t e r -  

a c t i o n s ,  b u t  i t  has  not  been used v e r y  much up to  now. 

% 
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I n  e l e c t r i c i t y  we have the coupl ing  o f  charged p a r t i c l e s  t a  t h e  

e l e c t r o m a g n e t i c  f i e l d  A,  i n  such  a way t h a t  i f  one a d d s  t o  A a pure  g r a d i e n t  

i t  makes no d i f f e r e n c e .  Let u s  pursue  t h e  i d e a  of c o n s t r u c t i n g  t h e  c o u p l i n g  

f o r  t h e  weak i n t e r a c t i o n  such t h a t  i f  w e  add a pure  g r a d i e n t  gh, t o  t h e  v e c t o r  

boson f i e l d  W a ,  then  t h e r e  is a l s o  no e f f e c t .  

coupl ing  t h e r e  is no change i f  we have t h e  W meson coupled t o  a c u r r e n t  which 

i s  conserved,  as we have a l r e a d y  assumed. For t h e  a x i a l  v e c t o r  term t h e  

a d d i t i o n  of t h e  g r a d i e n t  l e a d s  t o  a n  e x t r a  term i n  t h e  Lagrangian of  t h e  form 

For t h e  v e c t o r  p a r t  of t h e  

Can we cance t h i s ?  It t u r n s  o u t  t h a t  we can ,  p a r t i a l l y ,  i f  we u s e  t h e  9seudo- 

v e c t o r  coup1 ng. Suppose t h a t  when we  change t h e  W f i e l d  by a d d i n g  t h e  

g r a d i e n t ,  we a l s o  change t h e  p ion  f i e l d  by 

w e 
9 " 9 - a o h  * 

I n  t h a t  c a s e  t h e  ao[&+y5$'p$] term w i l l  be modified i n  a way t h a t  e x a c t l y  

compensates t h e  change i n  t h e  weak i n t e r a c t i o n  Lagrangian. The compensat ion 

is not  exac t  because  of  t h e  mass term i n  t h e  p ion  f i e l d ,  and  i t  is imposs ib le  

t o  produce a n  e x a c t  compensation. However, having  l i v e d  under  t h e  i n f l u e n c e  

of Cell-Mann, who l i k e s  t o  s u g g e s t  t h a t  i f  a l l  t h e  masses were z e r o  t h e r e  

would be much g r e a t e r  symmetry i n  t h e  Lagrangian,  I s h a l l  d i s r e g a r d  t h e  mass 
term. Thus, n e g l e c t i n g  t h e  mass squared tenn i n  t h e  f r e e - p i o n  f i e l d  Lagrangian,  

t h e  change i s  -eW/aoaa(pa h t o  t h e  f i r s t  o r d e r  and t h i s  is compensated i f  we 
add a term (e,y/ao) aa*Wa t o  t h e  Lagrangian. It is i n  t h i s  way t h a t  we o b t a i n  

a d e f i n i t e  p r e s c r i p t i o n  f o r  t h e  d i r e c t  coupl ing  of t h e  p ion  t o  t h e  weak-vector 

boson, o r  e q u i v a l e n t l y  t o  l e p t o n  c u r r e n t s .  Combining te rms ,  i t  is s e e n  t h a t  

the  a x i a l  v e c t o r  c u r r e n t  which i s  coupled t o  t h e  W f i e l d  is e w ( x  $ yaiy5$+ ]/ao aa@. 

a 
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of t h e s e  c o n s i d e r a t i o n s  is t o  p r e d i c t  t h a t  t h e r e  i s  a 
of p ions  t o  l e p t o n s  w i t h  a s t r e n g t h  

m G  C F ( t h e o r e t i c a l )  = - = a 
6; a. 6 go n 

T h i s  would be  t h e  famous Goldberger-Treiman r e l a t i o n  i f  C and go were renormalized.  

G and g o ,  which a re  c o u p l i n g  c o n s t a n t s  b e f o r e  r e n o r m a l i z a t i o n ,  a r e  unknown. 

Thus t h e  problem is: what can b e  done wi th  t h i s  formula? I f ,  wi thout  j u s t i f i c a -  

t i o n ,  a t  t h i s  p o i n t  one i n s e r t s  f o r  G t h e  a x i a l  v e c t o r  coupl ing  c o n s t a n t  f o r  

n u c l e a r  b e t a  decay and f o r  go t h e  exper imenta l  pion-nucleon c o u p l i n g  c o n s t a n t ,  

then  one f i n d s  f o r  FT ( t h e o r e t i c a l )  t h e  va lue  5 . 5 ~  lo-'. 

very d i f f e r e n t  from t h e  experimental  r e s u l t  ( 5 . 9 5 ~  lo-') .  
have something t o  do w i t h  i n a c c u r a t e  a n a l y s i s  o f  t h e  e f f e c t s  of renormal iza t ion .  

This  v a l u e  i s  not  

The d i f f e r e n c e  may 

We now have t o  d i s c u s s  why i t  is l e g i t i m a t e  t o  r e p l a c e  t h e s e  bare-  

coupling- c o n s t a n t s  i n  t h e  Coldberger-Treiman r e l a t i o n  by t h e i r  r e n o r n a l i z e d  

experimental  v a l u e s .  To d o  t h i s  we s h a l l  have t o  i n q u i r e  as  t o  how higher  

o r d e r  diagrams w i t h  many p ions  l e a d  t o  a r e n o r m a l i z a t i o n  o f  t h e  c o u p l i n g  c o n s t a n t s .  

There is a c l e v e r  way t o  do t h i s ,  by which one can prove t h e  theorem i n  a few 
l i n e s .  However, s i n c e  t h e  i d e a s  of renormal iza t  i o n  a r e  not s e l f - e v i d e n t  t o  

everyone here ,  we shall s tudy  a more d e t a i l e d  t rea tment .  

We begin  by d e f i n i n g  some terms.  F i r s t ,  t h e  unrenormalized a x i a l  

v e c t o r  beta-decay c o u p l i n g  t o  nuc leons ,  which i s  G 6y y s p ,  (where we have 

assumed t h a t  C 
V P  

= -G ), and which i s  r e p r e s e n t e d  by A(bare)  = -%(bare)  V 
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i s  modif ied by p ion  c o r r e c t i o n s ,  f o r  example 

s o  t h a t  tire r e s u l t a n t  e f f e c t i v e  beta-decay c o u p l i n g  is C Gy y 5 p .  

i v e  coupl ing  c o n s t a n t  is CA only  i n  those  c a s e s  where t h e  l e p t o n s  e f f e c t i v e l y  

c a r r y  o f f  ze ro  momentum. When t h e  momentum t r a n s f e r  becomes l a r g e ,  t h e  s t r e n g t h  

of  the  c o u p l i n g  wi.11 be modi f ied .  

G (0) 2 GA. 

experimental  one a r e n o r m a l i z a t i o n  c o n s t a n t  ZA. 

The e f f e c t -  
A P  

We may i n d i c a t e  t h i s  by a f u n c t i o n  GA(q2); 

T h e o r e t i c i a n s  cal l  t h e  r a t i o  o f  t h e  bare-coupl ing c o n s t a n t  t o  t h e  A 
That is CA/CA(bare) = l /ZA.  

I n  o u r  subsequent  c o n s i d p r a t i o n s  w e  s h a l l  encounter  t h e  f o l l o w i n g  

nilcleon loop I 
YpY5 I 

t o g e t h e r  w i t h  a l l  t h e  p ion  c o r r e c t i o n  diagrams,  e.g. 

4- 

I 

+ 

The s u m  o f  a l l  t h e s e  loop  diagrams must be  a v e c t o r .  S ince  t h e  only  v e c t o r  

around is  q t h e  momentum t r a n s f e r  a t  each of t h e  two v e r t i c e s ,  t h e n  t h e  sum 

must he r e p r e s e n t e d  mathemat ica l ly  by q K(q?). 
/.l’ K(d) does not blow up as I$ * 0. 

/.I 
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One would expec t  t h a t  K(q2 ) is s lowly  v a r y i n g  over  momentum t r a n s f e r s  comparable 

t o  t h e  p ion  mass, t h e  main v a r i a t i o n  only o c c u r r i n g  f o r  q of o r d e r  o f  the nucleon 

mass. Although i t  is t r u e  t h a t  t h e r e  a re  i n t e r m e d i a t e  s t a t e s  of mass as l o w  

as 3mv, t h e s e  do n o t  come i n  s t r o n g l y  i n  the pseudovector  coupl ing  model. Fo r ,  

i f  each  of t h e  t h r e e  p ion  momenta a r e  o f  o r d e r  mn, t h e  coupl ing  is weak (as f 2  = 

0.08). S t r u n g  e f f e c t i v e  coupl ings  come only  f o r  h i g h e r  values  o f  q ,  and hence 

n o t  c l o s e  t o  t h e  p o l e  w i t h  t h r e e  i n t e r m e d i a t e  p ions .  F i n a l l y ,  i f  we c o n s i d e r  

t h e  sum of a l l  diagrams of  the  form 

I 

t h e  answer is q2K(qZ).  The b lob  s t a n d s  f o r  t h e  sum of a l l  i n t e r m e d i a t e  s t a t e s  

except  a s i n g l e  pion.  

Let us  now go on t o  c o n s i d e r  t h e  r e n o r m a l i z a t i o n  o f  t h e  pion exchange 

diagram. The s i m p l e s t  diagram g i v i n g  r i se  t o  a n u c l e a r  f o r c e  is  

A t  each v e r t e x  the p ion  c o u p l e s  through aoPfys, where q is t h e  momentum t r a n s f e r .  

There w i l l  be  c o r r e c t i o n s  t o  t h i s  exchange diagram of two types.  F i r s t ,  e a c h  

v e r t e x  w i l l  b e  modif ied by v i r t u a l  p i o n s ,  of which a t y p i c a l  d iagram i s  
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Secondl) ,  t h e  propagat ion  of the pion w i l l  no t  be simply .- - - - - - , 

The r e s u l t  of i n c l u d i n g  a l l  t h e s e  c o r r e c t i o n s  will be the  exper imenta l  pion- 

exchange c o n t r i b u t i o n  t o  t h e  s c a t t e r i n g  aniulitude, which i s  

1 a2 A n  qz - m~ A Y ~  . 
?l exp 

Let  us go through t h i s  more s lowly for the  case of pion-nucleon 

t e r i n g .  The s i n g l e  bare-p ion  exchange diagram g i v e s  r i s e  t o  a n  amp1 

a,' A Y ~  ( l /q2 -mo2)Ays . 

s ca tude  

Suppose w e  c o n s i d e r  s t i l l ,  a s i n g l e  bare-pion exchange b u t  c o r r e c t  t h e  v e r t i c e s  

t o  a l l  o r d e r s ,  

The mathematical c o n t r i b u t i o n  t o  t h e  ampl i tude  is 

s i n c e ,  i n  t h e  d i s c u s s i o n  o f  t h e  a x i a l  v e c t o r  b e t a  decay we d e f i n e d  [Z,($)]-' 
t o  be t h e  sum o f  a l l  v e r t e x  c o r r e c t i o n s  f o r  axial v e c t o r  coupl ing.  Next, 
i f  we c o n s i d e r  t h e  s u m  o f  a l l  diagrams w i t h  a s i n g l e  g e n e r a l i z e d  nuc leon  l o o p  

b r e a k i n g  the p ion  exchange: 
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we g e t  

I f  we add a n o t h e r  g e n e r a l i z e d  nucleon loop  t o  the  p ion  propagator ,  w e  m u l t i p l y  

the  preceding  ampl i tude  by t h e  f a c t o r  

E v i d e n t l y ,  i f  we add up such diagrams with a l l  numbers of nuc leon  l o o p s  i n  t h e  

p i o n  propagator ,  t h e n  we are  j u s t  adding  up a ;:eometrical s e r i e s  a n d  t h e  f i n a l  

answer is 

We must now compare t h i s  r e s u l t  w i t h  t h e  exper imenta l  pion-exchange 

c o n t r i b u t i o n  by n o t i n g  t h a t  t h e  ampli tude m u s t  have a p o l e  a t  q2 = m;, where 

m i s  t h e  experimental  p ion  mass. We s e e  t h a t  
.TI 

A l s o  by expanding t h e  c o r r e c t e d  propagator  n e a r  q' = m' w e  f i n d  t h a t  
TI '  
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so t h a t  t h e  exper imenta l  pion-nucleon c o u p l i n g  c o n s t a n t  is r e l a t e d  t o  t h e  b a r e  

pion-nucl eon c o u p l i n g  by 

The t h e o r e t i c i a n s  l i k e  t o  cal l  t h e  r e n o r m a l i z a t i o n  f a c t o r ,  1/[ 1 ,  f o r  the p ion  

L .  
B 

So much f o r  t h e  d i s c u s s i o n  of t h e  a x i a l  v e c t o r  v e r t e x  and t h e  p i o n  

propagator  r e n o r m a l i z a t i o n  c o n s t a n t s .  We now t u r n  t o  a n  e v a l u a t i o n  o f  t h e  pion 

decay r a t e  i n  terms o f  t h e  n u c l e a r  beta-decay a x i a l  v e c t o r  c o u p l i n g  c o n s t a n t .  

To g e t  a l l  t h e  r e n o r m a l i z a t i o n  c o n s t a n t s  s t r a i g h t ,  we w i l l  c o n s i d e r  t h e  p i o n  

decay under t h e  assumption t h a t  t h e  p i o n  i s  produced o f f  a nucleon.  Thus, we 
s h a l l  cons ider  t h e  m a t r i x  e lement  f o r  a neut ron  t o  go i n t o  a p r o t o n ,  p l u s  a 

l e p t o n  p a i r  a t  a momentum t r a n s f e r  n e a r  t h e  p i o n  pole .  Assuming t h a t  t h e r e  i s  

a d i r e c t  pion-lepton weak c o u p l i n g ,  t h e  s i m p l e s t  diagram c o n t r i b u t i n g  t o  the 
n u c l e a r  b e t a  decay which g i v e s  r ise t o  a p o l e  a t  the p ion  mass is 

The d i r e c t  nucleon-lepton term g i v e s  no p o l e  s o  we l e a v e  i t  o u t .  

Another c o n t r i b u t i o n  of  t h e  same type i s  
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To t h e s e  two diagrams we must add t h o s e  diagrams w i t h  two bare-p ion  propagators  

and t h r e e ,  and f o u r  and s o  on. Again t h e  terns c a n  be summed because they form 

geometr ic  s e r i e s .  The r e s u l t  of a l l  diagrams of t h i s  type  is  

I n  the  s q u a r e  b r a c k e t  t h e  c o e f f i c i e n t  - CA(bare)/ao i s  t h e  b a r e  coupl ing  of t h e  

pion t o  the  l e p t o n  f i e l d ,  which we found e a r l i e r .  The term aogaK($)GA(bare) 

r e p r e s e n t s  t h e  coupl ing  of a b a r e  p ion  t o  the g e n e r a l i z e d  nucleon loop  times 
the  a x i a l  v e c t o r  c o u p l i n g  of t h e  nucleon loop  t o  t h e  l e p t o n  c u r r e n t .  

Now t h i s  sum of diagrams must r e p r e s e n t ,  n e a r  t h e  p i o n  p o l e ,  t h e  

dominant p a r t  of t h e  n u c l e a r  beta-decay ampl i tude ,  which we can  w r i t e  down u s i n g  

t h e  exper imenta l  c o u p l i n g  of pions t o  nucleons,  and t h e  exper imenta l  ampl i tude  

f o r  a p i o n  t o  decay i n t o  lep tons .  That is, 

Equat ing t h e  two e x p r e s s i o n s  near  t h e  p i o n  p o l e ,  one f i n d s  
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R e c a l l i n g  t h a t  t h e  experimental  n u c l e z r  beta-decay c o n s t a n t  is 
c = G  

terms of experimental  coupl ing  s t r e n g t h ,  e x c e ? t  f o r  a f a c t o r  which is a r a t i o  

o f  r e n o r m a l i z a t i o n  f u n c t i o n s  

)/ZA(0) we see t h a t  w e  g e t  t h e  Goldberger -Tre imn r e l a t i o n  i n  A A(bare 

S ince  t h e  f u n c t i o n s  Z (q2)  and K(q2) presumably vary a p p r e c i a b l y  o n l y  f o r  q' 
of o r d e r  6, t h e  above r a t i o  should  b e  q u i t e  c l o s e  t o  one. One e x p e c t s ,  

t h e r e f o r e ,  that t h e  Goldberger-Treiman r e l a t i o n s h i p  should  be q u i t e  good. 

Experimental ly  t h i s  r e l a t i o n s h i p  h o l d s  t o  eight p e r  c e n t .  

A 

I shall now d e s c r i b e  a more s o p h i s t i c a t e d  way t o  g e t  t h e  same r e s u l t .  

Our theory  s t a t e s  that, i n  t h e  l i m i t  that the  p ion  mass goes to  z e r o ,  i f  t h e  

l e p t o n  c u r r e n t  is r e p l a c e d  by a pure  g r a d i e n t ,  the axial v e c t o r  ampli tude 

should t h e n  vanish .  Le t  us  now c o n s i d e r  t h e  b e t a  decay of t h e  nucleon.  We 

would o r d i n a r i l y  write down t h e  ampl i tude  as  t h e  sum of  two terms.  

them i s  t h e  d i r e c t  a x i a l - v e c t o r  coupl ing:  

One o f  

The o t h e r  is t h e  c o u p l i n g  through t h e  pion: 
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I n  t h e  l i m i t  mV -+ 0, t h e  sum of  t h e s e  two must v a n i s h  when t h e  l e p t o n  c u r r e n t  

(;yaav), is r e p l a c e d  by qa, i.e. 

cA+ fi- F, aexp = o . 
This  is t h e  Coldberger-Treiman r e l a t i o n !  The reason  w e  a p p a r e n t l y  do not  

have a small c o r r e c t i o n  is  t h a t  we have skipped o v e r  a small p o i n t .  I f  the  

p ion  mass were z e r o  t h e n  the  a x i a l - v e c t o r  c o u p l i n g  c o n s t a n t  GA, and t h e  pion- 

nucleon coupl ing  c o n s t a n t  a would be d i f f e r e n t  from t h e i r  t r u e  v a l u e s .  

I t  is t h i s  s m a l l  change which i s  r e p r e s e n t e d  by t h e  r a t i o  of t h e  r e n o r m a l i z a t i o n  

c o n s t a n t s  t h a t  we encountered i n  t h e  more d e t a i l e d  argument. 

exp ’ 

We can  a r g u e  t h a t  t h e  coupl ing  s t r e n g t h s  would not change m a t e r i a l l y  

i n  t h e  g r a d i e n t  c o u p l i n g  theory  i f  the  p i o n  mass went t o  zero.  This  is 
because p i o n s  w i t h  small momentum a r e  e f f e c t i v e l y  decoupled. Pions wi th  

momenta of t h e  o r d e r  mx are coupled w i t h  a s t r e n g t h  o f  only 0.08. 
t h e  p ion  momentum g e t s  as l a r g e  as  a nucleon mass does  t h e  c o u p l i n g  tend t o  

15. When t h e  p ions  have a high momentum, t h e  f a c t  t h a t  they have a inass is 

unimportant. Thus, t h e  r e n o r m a l i z a t i o n  f a c t o r s  f o r  t h e  c o u p l i n g  due t o  p ions  

w i l l  b e  t h e  same, t o  a n  e x c e l l e n t  approximat ion ,  h e n  t h e  p i o n s  have zero  mass 

as  when they  have t h e  p h y s i c a l  mass. It is f o r  t h i s  reason that I b e l i e v e  

t h a t  t h e  Coldberger-Treiman r e l a t i o n  should  be  a c c u r a t e .  

Only when 

I n  working w i t h  the f i e l d  theory  model d e s c r i b e d  i n  t h e  prev ious  

l e c t u r e  we may n o t i c e  a c e r t a i n  proper ty  o f  t h e  a x i a l  v e c t o r  c u r r e n t .  The 
divergence o f  t h i s  c u r r e n t  is p r o p o r t i o n a l  t o  t h e  bare-pion f i e l d  o p e r a t o r .  

I n  tak ing  m a t r i x  e lements ,  t h e  a x i a l  v e c t o r  c u r r e n t  has  t o  b e  renormalized i n  

o r d e r  t o  g e t  CA and t h e  p i o n - f i e l d  o p e r a t o r  s u f f e r s  a renormal iza t ion .  These 

r e n o r m a l i z a t i o n  f a c t o r s  a r e  n o t  t o o  d i f f e r e n t  from u n i t y .  When this observa-  

t i o n  is a n a l y s e d  i t  r e s u l t s  i n  t h e  Coldberger-Treiman r e l a t i o n .  

R e c a l l  t h a t  t h e  mat r ix  e lement  of  the a x i a l  c u r r e n t  between two 

nucleons c o n s i s t e d  o f  two terms. One was a y ys type c o u p l i n g  and a n o t h e r  

term, which a r o s e  v i a  a v i r t u a l  p ion ,  was p r o p o r t i o n a l  t o  q y5. I f  we now 

compute the  d ivergence  of  t h e  a x i a l  v e c t o r  c u r r e n t  w i t h  m i  f 0,  we f i n d  that 

P 
c1 
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t h e  c o n t r i b u t i o n  of t h e  second term, t h e  induced pseudosca lar  term, goes t o  
zero  as  q2 + 0. Consider  now t h e  m a t r i x  e lement  o f  t h e  p i o n - f i e l d  o p e r a t o r  

between two nucleons.  S ince  t h e  s o u r c e  of  t h e  p i o n  f i e l d  i s  ig/2M ( n d y s p )  

and t h e  source  is e q u a l  t o  ((3 ' -a')@', w e  see t h a t  the  m a t r i x  e lement  of t h e  

p i o n - f i e l d  o p e r a t o r  is equal  t o  

Equating t h i s  e x p r e s s i o n  w i t h  t h e  m a t r i x  element of  t h e  d i v e r g e n c e  of  t h e  a x i a l  

v e c t o r  c u r r e n t  we g e t  a g a i n  t h e  Coldberger-Treiman r e l a t i o n .  

Cell-hlann a b s t r a c t e d  t h i s  r e s u l t  by assuming only  t h a t  t h e  divergence 

of t h e  a x i a l  v e c t o r  was p r o p o r t i o n a l  t o  t h e  p i o n  f i e l d  V a 4  = K@, without  g e t t i n g  

t h e  c o n s t a n t  o f  p r o p o r t i o n a l i t y ,  K, from my s p e c i f i c  theory.  He t h e n  calcu-  

l a t e d  t h e  d ivergence  of  t h e  n u c l e a r - a x i a l  v e c t o r  m a t r i x  e lement  i n  terms o f  K, 
and t h e  decay rate of  the  p ion  i n  terms o f  K. If one c o n s i d e r s  t h e  r a t i o  of  
t h e s e  two ampl i tudes  t h e  f a c t o r s  o f  K drop  o u t  and one g e t s  t h e  Goldberger-  

Treiman r e l a t i o n .  

More r e c e n t l y  Cell-Mann has  r e f i n e d  t h e  argument by dropping  a l l  
r e f e r e n c e s  t o  f i e l d  o p e r a t o r s ,  b u t  I s h a l l  not g i v e  t h a t  argument. 

I n t r o d u c t i o n  t o  SU, 3 r d  LECTURE 

I t  i s  t ime,  i n  o u r  s tudy  of t h e  weak i n t e r a c t i o n s ,  t o  c o n s i d e r  those  

decays which v i o l a t e  t h e  conserva t ion  of  hypercharge.  Some unders tanding  of 

t h e s e  has  been obta ined  with the  h e l p  of SU3 symmetry c o n s i d e r a t i o n s  and we 
t h e r e f o r e  t u r n  now t o  a s h o r t  d i s c u s s i o n  o f  SU3.  

Let me b e g i n  by rev iewing  i s o t o p i c  s p i n  o r  Sh. Suppose we have 
two p a r t i c l e s  w i t h  i d e n t i c a l  dynamical p r o p e r t i e s  a s  f a r  as  a l a r g e  group of 
i n t e r a c t i o n s  a r e  concerned, e.g. t h e  s t r o n g  i n t e r a c t i o n s ,  b u t  which d i f f e r  when 
a n o t h e r  type o f  i n t e r a c t i o n ,  e.g. e l e c t r o m a g n e t i c ,  i s  cons idered .  Let them 
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be a n e u t r a l  ? a r t i c l e  A = A', and a n e g a t i v e l y  charged p a r t i c l e  B E 6-, and 

l e t  us  a s s i g n  t o  each of  them a n  e i g e n v a l u e  f o r  t h e  z component of i s o t o p i c  

s p i n :  +'A f o r  A ,  and  -'h f o r  B. The p a r t i c l e s  are assumed t o  have correspond-  

i n g  a n t i p a r t i c l e s  x and i, t h e  quantum nutnbers of which a r e  t h e  o p p o s i t e  t o  

t h o s e  of t h e  cor responding  p a r t i c l e .  By c o n s i d e r i n g  the s t a t e s  of two o b j e c t s ,  

one can genera te  s t a t e s  w i t h  i s o t o p i c  s p i n  1 and 0,  from t h e s e  i s o d o u b l e t s .  

For example, i f  we c o n s i d e r  new basis states A and B which a r e  r e l a t e d  t o  A' 

and B' by u n i t a r y  t r a n s f o r m a t i o n s ,  t h e n  t h e  state of a n  a n t i p a r t i c l e  and a 

p a r t i c l e ,  which i s  unchanged by t h e  t r a n s f o r m a t i o n ,  is ( A A +  EB)/&. 
s t a t e  i s  t h e r e f o r e  an i s o s i n g l e t ;  i . e .  i t  has I = 0. Under the u n i t a r y  

t r a n s f o r m a t i o n s ,  t h e  t h r e e  o t h e r  or thonormal  states b, ( A A -  EB)/2 and EA, are 
transformed i n t o  l i n e a r  combinat ions o f  e a c h  o t h e r ,  so t h a t  they form a n  

i s o t o p i c  t r i p l e t ,  i.e. I = 1 .  Let us  call t h e s e  t h r e e  states by a n e w  s e t  of 

names so t h a t  we recall immediately t h a t  they form a t r i p l e t ;  i n  analogy w i t h  

t h e  C hyperons we u s e  t h e  symbol u :  

T h a t  

and i n  analogy w i t h  t h e  A' hyperon we d e s i g n a t e  t h e  i s o t o p i c  s i n g l e t  s t a t e  

by A': 

Two b a s i c  o b j e c t s  a1 ow us t o  c o n s t r u c t  a l l  s t a t e s  which d i f f e r  i n  

t h e i r  i s o t o p i c  s p i n  p r o p e r t i e s  However, i n  o r d e r  to  c o n s t r u c t  s tates which 

d i f f e r  i n  a n o t h e r  quantum number, say  hypercharge,  we have t o  i n t r o d u c e  a t h i r d  

b a s i c  o b j e c t .  Thus, we add t o  o u r  set of A and B a t h i r d  p a r t i c l e  C = C-, 
which h a s  t h e  same dynamical c h a r a c t e r i s t i c s  f o r  a r e s t r i c t e d  se t  of  i n t e r -  

a c t i o n s  and which is n e g a t i v e l y  charged. We d e f i n e  its i s o t o p i c  s p i n  so that 

C forms a n  i s o t o p i c  s i n g l e t .  Under u n i t a r y  t r a n s f o r m a t i o n s  genera ted  by 

i s o t o p i c -  s p i n  o p e r a t o r s ,  C is not  mixed w i t h  A and B. We d e f i n e  a l s o  a 
quantum number, e.g. hypercharge,  which is -1 f o r  C and 0 f o r  A and B. With 

t h r e e  b a s i c  o b j e c t s  i t  is interest ing t o  see w h a t  happens when, i n  ana logy  t o  
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t h e  procedure f o r  i s o t o p i c  t r a n s f o r m a t i o n s ,  we s t u d y  t h e  e f f e c t s  of u n i t a r y  

t r a n s f o r m a t i o n s  on states composed of s e v e r a l  of t h e  t h r e e  p a r t i c l e s  A ,  B,  C,  

and t h e  cor responding  t r a n s f o r m a t i o n s  on t h e i r  a n t i p a r t i c l e s  x, 6 and c. 
I f  we c o n c e n t r a t e  on t h e  s t a t e s  formed from a p a r t i c l e  and a n  a n t i -  

p a r t i c l e ,  of  which t h e r e  are n i n e ,  we f i n d  t h a t  t h e  s t a t e  

i s  unchanged by such t r a n s f o r m a t i o n s  a n d  t h u s  t r a n s f o r m s  as a s ing le t ,  whereas 

t h e  o t h e r  e i g h t  or thonormal  s t a t e s  a r e  t ransformed among themselves  by a genera l  

change of t h e  t h r e e  basis s t a t e s .  The o t h e r  e i g h t ,  t h e r e f o r e ,  form a n  i r r e d u c -  

i b l e  o c t e t ,  which w e  d i s p l a y  below: 

Char t  1 -&Q (Bc) 
t- to  

0 @&) 
n P 

The s i g n  f a c t o r s  a s s i g n e d  t o  t h e s e  s t a t e s  a r e  chosen by a convent ion which is 
a n  e x t e n s i o n  of  t h e  Condon and S h o r t l e y  s p e c i f i c a t i o n .  We have a r r a n g e d  t h e  

s ta tes  so t h a t  a s ta te  g e t s  t ransformed o n l y  i n t o  s t a t e s  i n  t h e  s a m e  row,  when 

t h e  u n i t a r y  t r a n s f o r m a t i o n s  mix only  A and B,  t h a t  is ,  when w e  r e s t r i c t  our-  
s e l v e s  t o  i s o s p i n  t ransformat ions .  The s t a t e s  a r e  l a b l e d  E - ,  n,  o e t c .  i n  
ana logue  t o  t h e  r e a l  p a r t i c l e s  Z-, N, C+ e t c .  as they have t h e  same quantum 

numbers. I f  t h e  SUx theory  were p e r f e c t ,  then  t h e  p a r t i c l e  s t a t e s  (or t h e  

corresponding p a r t i c l e  states of o t h e r  o c t e t s  such a s  K-, KO, n+, e t c . )  could  

be  s u b s t i t u t e d  f o r  t h e s e  small le t ters  E - ,  n,  o 

+ 

+ .  i n  any e x p r e s s i o n  w r i t t e n  
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below wi thout  changing i t s  t r a n s f o r m a t i o n  p r o p e r t i e s .  Likewise a n t i b a r y o n s  

could  be s u b s t i t u t e d  w i t h  t h e  cor responding  quantum numbers, i . e .  -p f o r  E ; 

ii f o r  t o ,  i; f o r  X ,  -G+ f o r  o-, uo f o r  a', -0- f o r  u , 4- f o r  p ,  to f o r  n. 

The above o c t e t  c h a r t  is  w r i t t e n  down imiiiediately j u s t  by r e q u i r i n g  t h a t  the 

s t a t e s  have t h e  r i g h t  quantum numbers. 

i s  determined so t h a t  t h e  X s ta te  is or thogonal  t o  t h e  s i n g l e t .  

- - 
- - - + - 

The c o e f f i c i e n t  -2/& f o r  EC i n  h 

Sum r u l e s  f o r  mass s p l i t t i n g s  

We can g e n e r a l i z e  the scheme s l i g h t l y  a t  t h i s  po in t  and t h u s  o b t a i n  

the  f i r s t  o r d e r  mass s u m  r u l e .  For t h i s  we assign masses t o  t h e  C and 

p a r t i c l e s  which a r e  d i f f e r e n t  from K/2, where we t a k e  K/2 t o  b e  t h e  mass of 

A,  i, B and B. 
w i t h  t h e  a n t i p a r t i c l e s  o f  A ,  B and C, b u t  just r e c p i r i n g  t h a t  i, 
t ransform i n  t h e  same way as t h e  a n t i p a r t i c l e s .  

d i f f e r e n t  from t h a t  of C. 

of  E by K/2+ a +  b. 

The g e n e r a l i z a t i o n  c o n s i s t s  i n  not  i d e n t i f y i n g  1, is and 

and (? 
Thus, the mass of  E can  be 

1Ve d e s i g n a t e  t h e  mass of C by K / 2 +  a -  b ,  and t h a t  

The o t h e r  v i r t u e  of  n o t  n e c e s s a r i l y  i d e n t i f y i n g  A, and E w i t h  t h e  

a n t i p a r t i c l e s  of  A ,  B and C is t h a t  then  t h e  6 -  is not  t h e  a n t i p a r t i c l e  of p 

and s o  on. We w i l l  assume t h a t  t h e  mass of  the composite s t a t e s  is j u s t  e q u a l  

t o  t h e  sum of  t h e  masses of the  component s t a t e s .  Car ry ing  o u t  t h i s  s i m p l e  

c a l c u l a t i o n  w e  f i n d  t h e  f o l l o w i n g  table o f  masses: 

p = K i  b +  a 
= . -  - - K -  b i  ii 
C = K  

A = K +  2/3.  2a . 
E l i m i n a t i n g  a and b l e a d s  t o  a sum r u l e  f o r  t h e  masses: 

Note t h a t  t h e  b term breaks  t h e  mass symmetry f o r  d i f f e r e n t  s t r a n g e n e s s ,  s o  

t h a t  i f  we were c o n s t r u c t i n g  a n  o c t e t  of  mesons u s i n g  t h i s  scheme w e  would 
i d e n t i f y  x, b and E w i t h  t h e  a n t i p a r t i c l e s  of A ,  B and  C ,  and thus  s e t  b = 0. 
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I n c i d e n t a l l y ,  i t  is worth n o t i n g  t h a t  because t h e  m s s e s  a r e  no 

l o n g e r  e q u a l ,  the mass o p e r a t o r  connec ts  t h e  s i n g l e t  s t a t e  w i t h  t h a t  s tate of 

t h e  o c t e t  which has I = 0 and Y = 0. It i s  t h u s  not  d iagonal .  I f  we 
d i a g o n a l i z e  i t  w e  f i n d  new e i g e n v a l u e s  and new e i g e n v e c t o r s  which are u s e f u l  

i n  t h e  i n t e r p r e t a t i o n  of  o and @, two of  t h e  v e c t o r  mesons. 

O c t e t  o p e r a t o r s  

F o r  the a n a l y s i s  of  b e t a  decay I would l i k e  t o  f i n d  t h e  t o t a l  

i s o t o p i c - s p i n  c u r r e n t  i n  terms of my b a s i c  s e t  of o b j e c t s .  I n  f a c t ,  w i t h  

t h r e e  b a s i c  o b j e c t s  I w i l l  g e t  e i g h t  components of a g e n e r a l i z e d  c u r r e n t  

i n s t e a d  of  j u s t  t h e  t h r e e  t h a t  I g e t  by c o n s i d e r i n g  i s o t o p i c - s p i n  t ransforma- 

t i o n s .  

The c h a r t  of t h e  e i g h t  p a r t i c l e s  g iven  on page 143 a l s o  p e r m i t s  us t o  
d i s c o v e r  a s e t  of  e i g h t  o p e r a t o r s  which t ransform l i k e  a n  o c t e t .  It i s  o n l y  

necessary  t o  r e a d  t h e  A,  E etc .  as a n n h i h i l a t i o n  of A ,  c r e a t i o n  of  C ( o r  
c r e a t i o n  of  -A, d e s t r u c t i o n  of E )  etc.  
o p e r a t o r  which t ransforms l i k e  p )  i s  

h i l a t e  E c r e a t e  -A. 
is found by t a k i n g  each tern and  r e w r i t i n g  i t  w i t h  each A r e p l a c e d  by C ,  and 

adding what one g e t s  w i t h  each E r e p l a c e d  by -A ( t e r m s  w i t h  n e i t h e r  A nor  E 
i n  them a r e  t o  be  dropped) .  

conver t s  i t  t o  -k o r  u-. 

o p e r a t o r  on p i t s e l f  (b) c o n v e r t s  i t  t o  ( E C - X A )  which i s  .,& u o + & h ,  
which we w r i t e  a s  +a ( F p ) + &  ( F p ) .  
e f f e c t  of each o p e r a t o r  on each member of  t h e  o c t e t ,  w i t h  r e s u l t s  g i v e n  i n  
the fo l lowing  c h a r t :  

Thus, t h e  p- l ike o p e r a t o r  ( t h e  

o r  a n n i h i l a t e  A ,  c r e a t e  C p l u s  anni- 
That is, t h e  r e s u l t  of t h e  p- l ike  o p e r a t o r  on  any  state 

For example, t h e  p - l i k e  o p e r a t o r  on n = (&) - 
T h i s  we write as  +(o'n). Again t h e  p - l i k e  

Proceeding i n  t h i s  way w e  f i n d  t h e  
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Char t  2 

Note t h e  o p e r a t o r s  u+, uo and u- a r e  t h e  i s o t o p i c  s p i n  o p e r a t o r s :  

and I+, r e s p e c t i v e l y  . 
-I-, IZ 

+ You w i l l  n o t e  from these  t a b l e s  that the  u o p e r a t o r  t ransforms 

l i k e  t h e  l o w e r i n g  o p e r a t o r  f o r  i s o t o p i c  s p i n  and  is t h u s  t h e  o p e r a t o r  we 
would u s e  f o r  t h e  non-strangeness  changing beta-decay c u r r e n t ,  a t  l e a s t  f o r  

t h e  v e c t o r  p a r t .  S i m i l a r l y ,  t o  d e s c r i b e  s t r a n g e n e s s  changing weak d e c a y s ,  

t h e  cor responding  o p e r a t o r  t h a t  we would u s e  would be  t h e  o p e r a t o r  correspond-  

ing  t o  p ,  which, as you w i l l  n o t e ,  a u t o m a t i c a l l y  i m p l i e s  t h a t  AS = AQ. 
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Thus, SU3 determines  t h e  r e l a t i v e  c o e f f i c i e n t s  i n  t h e  b e t a  decay f o r  us. I t  

t u r n s  o u t ,  however, t h a t  t h e r e  is a n o t h e r  o c t e t  o f  o p e r a t o r s ,  which we s h a l l  

d i s p l a y  l a k e r ,  t h a t  may b e  used f o r  t h e  beta-decay c u r r e n t s .  The use  of 

t h e s e  w i l l  i n t r o d u c e  anoLher parameter  i n t o  t h e  a n a l y s i s  of the weak decays ,  

b u t  w i l l  no t  change t h e  i s o t o p i c  and hypercharge s e l e c t i o n  r u l e s  t h a t  a r e  

a p p a r e n t  from t h e  o c t e t  w e  have j u s t  der ived .  

The use  of such c u r r e n t s  to d e s c r i b e  b e t a  decay is j u s t  a guess  

and we s h a l l  t r y  t o  check i t  out  i n  l a t e r  l e c t u r e s .  T h i s ,  i n  f a c t ,  i s  

Cabibbo's theory  of weak decays.  

We have c a l l e d  t h i s  s e t  of  e i g h t  o p e r a t o r s  an o c t e t .  In f a c t ,  

i t  is  a n  o c t e t  i n  t h e  s e n s e  of SUI, because i f  we make t r a n s f o r m a t i o n s  armng 

t h e  t h r e e  b a s i c  e lements  used t o  c o n s t r u c t  our scheme, t h e  s e t  of  e i g h t  

o p e r a t o r s  will t ransform i n t o  each o t h e r  i n  e x a c t l y  the  same way t h a t  t h e  s e t  

of e i g h t  co:nposite p a r t i c l e s  t ransform i n t o  each o t h e r .  
. -. 

Reduct ion o r  t h e  d i r e c t  p roduct  of two o c t e t s  

Combining two p a r t i c l e s  w i t h  o c t e t  t r a n s f o r m a t i o n  p r o p e r t i e s  pro- 

duces 64 p o s s i b l e  s t a t e s  which, under  t h e  v a r i o u s  o p e r a t o r s  l i s t e d  above i n  

C h a r t  2 ,  a r e  t ransformed i n t o  one another .  F rom t h e s e  64, m u l t i p l e t s  may 

be formed whose s t a t e s  t ransform only among themselves .  These m u l t i p l e t s  

c o n t a i n  1 ,  8, S, 10, i6 and 27 members. 

w r i t t e n  as p h ,  s a y ,  meaning the f i r s t  is p, t h e  second is h i n  i t s  t r a n s -  

formation p r o p e r t i e s .  

second,  q".)  

example, t h e  f i r s t  is a n t i  A ,  t h e  second is K+). 

Let  t h e  s t a t e  of t w o  p a r t i c l e s  be  

( F o r  example, t h e  f i r s t  may be a n  a n t i  E-; t h e  

The s t a t e  Xpmeans t h e  f i r s t  is  h ,  t h e  second is p ( i n  o u r  

We s h a l l  w r i t e ,  f o r  s h o r t  

(pn)  = ( p n - n p )  

[pnl  = ( p n + n p )  . 
- _ -  

S i n c e  (& )+  ( p p ) +  ((-t-)+ (("(")+ (o+a+)+ etc.  i s  e v i d e n t l y  i n v a r i a n t ,  

r e p l a c i n g  each a n t i p a r t i c l e  by a p a r t i c l e  of t h e  same t ransformat ion  p r o p e r t i e s ,  

we ge t  t h a t  < ' n - ( - p +  n(" - u u 
s i n g l e t  is  

- +  etc. is i n v a r i a n t .  Hence, our  normalized 
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S INCLET 

The forms for t h e  p- l ike  o p e r a t o r  e t c .  i n  C h a r t  2 permi t  u s ,  i n  the  same way, 

t o  f i n d  a n  o c t e t  c a l l e d  t h e  ant isyi iunetr ic  o c t e t .  

We denote  t h e  s t a t e s  by t h e i r  quantum numbers iY.I.1 ] w i t h i n  t h e  

fami 1 i e s  . 

ANTISYhlLlETRlC OCTET (8*) 

The o t h e r  o c t e t  is composed of s t a t e s  which a r e  symmetric under  t h e  exchange 

of t h e  two p a r t i c l e s .  
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The remaining twenty s t a t e s  which a r e  an t i symmetr ic  under  exchange 

of the two p a r t i c l e s  f a l l  i n t o  two m u l t i p l e t s  o f  t e n  s ta tes .  These deciments  

c o n t a i n  a n  i s o t o p i c  s inglet ,  d o u b l e t ,  t r i p l e t  and q u a r t e t ,  and t h e  hypercharge 

of the  i s o t o p i c  m u l t i p l e t s  d i f f e r s  by one u n i t  i n  a p r o g r e s s i v e  way. The 

two decimets  a r e  r e l a t e d  by a r e f l e c t i o n  t ransformat ion  c a l l e d  R ,  under  which: 

Y - r - Y ,  I + I ,  I Z + - I i a n d p * e - ,  n - r t ' ,  u 
- +  

* u  , h + h .  
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The remaining twenty-seven s t a t e s  form a m u l t i p l e t  which is symmetric 

under t h e  in te rchange  of  t h e  p a r t i c l e s .  I t  is  composed of a t r i p l e t  w i t h  

Y = 2 ,  a d a u b l e t  and a q u a r t e r  with Y = 1 ,  a s i n g l e t ,  a t r i p l e t  and a q u i n t e t  

with Y = 0, a double t  and a q u a r t e r  w i t h  Y = - 1 ,  and a t r i p l e t  wi th  Y = -2. 



46 1 

- 149 - 

1-2,1,1] = toto 

i-2, ,ol = [E"E-I/fi 

1-2, , - l j  = t-t- 

One way t o  deduce t h e s e  m u l t i p l e t s  i s  t o  t a k e  a n  ex t reme c a s e ,  say  

pp, which has i s o t o p i c  s p i n  1 and hypercharge + 2 ,  and o p e r a t e  on i t  w i t h  a l l  t h e  

r a i s i n g  and lower ing  o p e r a t o r s ,  which i n  f a c t  are j u s t  t h e  o c t e t  of o p e r a t o r s  t h a t  

we found a t  f i r s t  (Char t  2 ) .  
Next, we can t a k e  a state w i t h  extreme quantum numbers which i s  or thogonal  t o  

t h e  member of t h e  2 7  w i t h  t h e  same quantum numbers. We t h e n  f o l l o w  the  same 
procedure of  g e n e r a t i n g  t h e  complete m u l t i p l e t  by u s e  of t h e  r a i s i n g  and lower- 

i n g  o p e r a t o r s .  By i t e r a t i o n  of t h i s  procedure  w e  w i l l  g e n e r a t e  a l l  t h e  iiiulti- 

p l e t s .  

Doing t h i s ,  we would g e t  the m u l t i p l e t  w i t h  2 7  o b j e c t s .  



462 

- 150 - 

-lings of t h e  baryons and mesons C,.th LECTURE 

Last time w e  d e s c r i b e d  how one cuuid c o n s t r u c t  s t a t e s  of two 

; ) a r t i c l e s ,  each one of which was a member of  a n  o c t e t ,  s o  that t h e  r e s u l t a n t  

s t a t e s  would be  grouped i n t o  r n u l t i p l e t s .  i'ie f o m d  a s i n g l e t  s t a t e ,  two 

 IS IS, a ' l O t ,  a 'El and a ' 2 7 ' .  The two '8'1s can be d i s t i n g u i s h e d  by 

means of a c e r t a i n  ty;ie of i n v e r s i o n  t r a n s f u r m a t i o n  : sh ich  we d e f i n e  i n  such  

a way t h a t  ;> - <-, n u  to ,  u t* u , uo c+ oo and h e  h. Under t h i s  t r a n s f o r -  

mat ion,  t h e  f i r s t  ' 8 '  we c o n s t r u c t e d  was ant isyni inetr ic  and t h e  second ' 8 '  
was symmetric. 

- 1- 

One of t h e  u s e s  o f  t h e  chart.: of  t h e  prev ious  l e c t u r e  is t o  con- 

s t r u c t  coupl ings  of t h e  baryons and mesons which w i l l  be i n v a r i a n t  under  

u n i t a r y  s p i n  t r a n s f o r m a t i o n s .  Although t h i s  i s  not d i r e c t l y  r e l a t e d  t o  t h e  

weak i n t e r a c t i o n s ,  I would l i k e  t o  pause a moment and d i s c u s s  t h a t  a p p l i c a t i o n  

o f  t h e  c h a r t s .  From t h e  c o n s t r u c t i o n  of a u n i t a r y  s i n g l e t  from two  IS, 

we know t h a t  t h e  combination -71 -u+-n fu -+n0no  - K + < - -  K-p+ K O < ' +  KCn+ qh i s  

an i n v a r i a n t .  We s t a t e d  b e f o r e  t h a t  you can c o n s t r u c t  c e r t a i n  combinat ions 

of  two p a r t i c l e s  that t ransfurm l i k e  a n  o c t e t .  For example, i f  we s u b s t i t u t e  

f o r  o , u , uo t h e  ant isymnletr lc  u , u , ua o p e r a t o r s  d e r i v e d  i n  t h e  l a s t  

l e c t u r e ,  then we get  a l l  t h e  coupl ing c o e f f i c i e n t s  of t h e  p s e u d o s c a l a r  mesons 

t o  the nucleons.  L e t  me w r i t e  o u t  p a r t  of  t h i s .  To keep t h e  n o r m a l i z a t i o n  

t h e  same, t h e  coupl ing  c o n s t a n t  w i l l  have t o  be & a ,  where a = g/2hl. 

- 

+ -  + -  
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However, t h e  c o u p l i n g  i s  n o t  c o i n p l e l e l y  d e l e r m i n e d  b e c a u s e  one  is a l s o  a l l o w e d  

t o  u s e  t h e  symmetri( s e t  of e i g h t  ilairs o f  b a r y o n s .  S i n c e  t h e r e  a r e  o n l y  two 

'8' i s ,  t h e r e  are t h u s  o n l y  two c o n s t d n t s  which  c h a r a c t e r i z e  t h e  meson-bdryon 

c o u p l i n g .  I t  I S  shn t i a rd  t o  c a l l  t h e  c o u p l i n g  c o n s t a n t  o f  t he  n o r m a l i z e d  

a n t i s y n r m e t r i c  o c t e t  o f  ba ryons  t o  t h e  mesons J6a  F ,  and  t o  c a l l  t h e  c o u p l i n g  

c o n s t a n t  o f  t h e  n o r m a l i z e d  symmet r i c  o c t e t  o f  b a r y o n  :,airs .J*aD. The F 
and  D a r e  two p a r a m e t e r s  which  must be  d i s c o v e r e d  by compar i son  w i t h  e x p e r i -  

ment. T h e r e  are rough  i n d i c a t i o n s  f r o m  l l r e  s t u d y  o f  A h y p e r f r a g n e n t s  that 

t h e  r a t i o  D/F i s  p o s i t i v e  a n d  is o f  t h e  o r d e r  two o r  t h r e e .  

S U 3  i n  t h e  wcak i n t e r a c t i o n s  

R e t u r n i n g  t o  t h e  weak i n t e r a c t i o n s  we f i n d  t h a t  we a r e  f a c e d  w i t h  a 

s l i g h t l y  more d i f f i c u l t  Jrobleiii.  We c a n n o t  nuke  u s e  o f  SU3 symmetry t o  con-  

s t r u c t  i n v a r i a n t  weak c o u p l i n g s ,  b e c a u s e  t h e  weak Lagrnng ian  mus t d e s t r o y  

c o n s e r v a t i o n  laws. More i n d e n u i t y  i s  t h e r e f o r e  r e q u i r e d  t o  c o n s t r u c t  t h e  

c o u p l i n g s  g o v e r n i n g  t h e  weak d e c a y s .  As b e f o r e ,  one c a n  o n l y  t r y  t o  g u e s s  

t h e  answer  a n d  s e e  i f  e x p e r i n e n t  a g r e e s  w i t h  t h a t  g u e s s .  The most s a t i s f a c t o r y  

guess  t h a t  has been  made t o  d a t e  i s  t h a t  of Cab ibbo ,  wh ich  I s h a l l  now i n t r o d u c e  

i n  a way t h a t  seeins most r e a s o n a b l e  t o  m e .  

L e t  u s  c o n s i d e r  f i r s t ,  t h e  n o n - s t r a n g e n e s s  c h a r g i n g  p i e c e  o f  t h e  weak 

i n t e r a c t i o n  c u r r e n t ,  b e c a u s e  i t  is t h i s  p i e c e  t h a t  we t h i n k  we know b e s t  o f  a l l .  

*Ye e x p e c t  f rom t h e  c o n s e r v e d  v e c t o r - c u r r e n t  t heo rem t h a t  t h i s  p a r t  of t h e  

c u r r e n t  s h o u l d  be t h e  i s o t o p i c - s p i n  c u r r e n t .  The i s o t o p i c  s p i n  c u r r e n t  is 

j u s t  t h e  IJ' which i s  t h e  a n t i s y m m e t r i c - o c t e t  o p e r a t o r .  C o n s i d e r i n g  s t i l l  

t h e  v e c t o r  c u r r e n t ,  what would a l o g i c a l  e x t e n s i o n  o f  t h i s  i d e a  b e  i n  o r d e r  t o  

c o v e r  s t r a n g e n e s s  c h a n g i n g  d e c a y s ?  T h e r e  is some e v i d e n c e  i n  l e p t o n i c  d e c a y s  

t h a t  t h i s  p a r t  o f  t h e  c u r r e n t  must v i o l a t e  i s o t o p i c  s p i n  c o n s e r v a t i o n  i n  s u c h  

a way t h a t  o n l y  a v i o l a t i o n  o f  a ha l f '  u n i t  IS ! , o s s i h l e ,  A1 = 'A. 
i n  t h e  d e c a y s  K + i i +  l e p t o n s ,  t h e  p r e d i c t i o n  o f  t h e  iiI = 'A r u l e  is 

a n t i '  

F o r  example ,  

K: -+ n +  l e p t o n s  1 1 . 1 2  1 . 2  

6.2 2 0.9 
= ( 2 / 1 )  o r e d i c t i o n  e x p e r i m e n t  , 

k + n + l e p t o n s  
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There is o t h e r  ev idence  f o r  t h i s  r u l e  b u t  i t  is not very  d e f i n i t i v e .  Never- 

t h e l e s s ,  t h e  s e l e c t i o n  rule i s  t h e  s t a n d a r d  guess  i n  t h e  c o n s t r u c t i o n  of t h e  

c u r r e n t .  On rhe o t h e r  hand, t h e r e  is much b e t t e r  ev idence  f o r  t h e  s e l e c t i o n  

r u l e  AS = A Q .  Assuming t h a t  t h e  s t r a n g e n e s s  changing p i e c e  i s  a l s o  a 

member of a n  o c t e t  t h e r e  is only  one c h o i c e  f o r  t h e  c u r r e n t ,  namely, t h e  

o p e r a t o r  t h a t  t r a n s f o r m s  l i k e  t h e  proton.  From o u r  c h a r t s  you w i l l  n o t e  that 

t h e  an t i symmetr ic  p r o t o n  o p e r a t o r  obeys both t h e  A 1  = 'A and t h e  AS = AQ 

s e l e c t i o n  rules.  We a r e  l e d ,  t h u s ,  t o  propose t h a t  t h e  v e c t o r  c u r r e n t  is 
+ 
a n t i +  "ant i  U 

Experimental l y  t h e  l e p t o n i c  decays i n  which s t r a n g e n e s s  is v i o l a t e d  

a re  20 t imes weaker t h a n  the non-strangeness  changing decays.  T h e r e f o r e ,  t h e  

c o e f f i c i e n t  s ,  which measures t h e  p r o p o r t i o n  o f  t h e  s t rangeness-changing  c u r r e n t  

must be d e f i n i t e l y  smaller than  1 .  The K -t n e  v i s  a l s o  somewhat smaller t h a n  

might be expected.  We w i l l  use  t h i s  rate l a t e r  t o  de te rmine  q u i t e  a c c u r a t e l y  

t h e  va lue  of s .  

U n i v e r s a l i t y  and t h e  s t r a n g e n e s s  changing decays 

How do w e  r e c o n c i l e  weakness of t h e  s t rangeness-changing  decays  wi th  

t h e  concept  of  u n i v e r s a l i t y .  I n  o u r  s tudy  of p c a p t u r e ,  n u c l e a r  beta-decay 

and muon decay ,  we found t h a t  np and t h e  l e p t o n s  were all ccupled w i t h  t h e  same 

s t r e n g t h  w i t h i n  a few p e r  c e n t .  This  o b s e r v a t i o n ,  i n  f a c t ,  l e d  to  t h e  i d e a  

t h a t  t h e r e  w a s  a u n i v e r s a l  coupl ing  c h a r a c t e r i z i n g  t h e  weak i n t e r a c t i o n s .  

However, today we know f o r  example, t h a t  p couples  much more weakly. Can w e  

c o n s t r u c t  a t h e o r y  of  t h e  coupl ing  which r e t a i n s  t h e  idea  of u n i v e r s a l i t y ?  

The answer is y e s ,  and the way t o  do i t  w a s  shown by Cabibbo. I t  is s imply 

t h a t  w e  a s sume  t h a t  t h e  weak c u r r e n t  i s  not  t h e  component of nor  t h e  component 

p ,  b u t  r a t h e r  a skew component, b u t  s t i l l  normalized,  i.e. w e  assume t h a t  t h e  

v e c t o r  c u r r e n t  is 

+V V 
C 0 5  Q uant i+  s i n  0 p a n t i  ' 
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I have added the s u p e r s c r i p t  V t o  desibmate t h e  v e c t o r  p i e c e  of  t h e  weak- 

i n t e r a c t i o n  c u r r e n t .  The idea  t h e n ,  is that t h e  skew component is coupled 

t o  t h e  l e p t o n s  w i t h  t h e  u n i v e r s a l - c o u p l i n g  c o n s t a n t  C . 
!J 

We t u r n  now t o  the  a x i a l  c u r r e n t .  I f  t h e r e  were no compl ica t ions  

due t o  t h e  s t r o n g  i n t e r a c t i o n ,  t h e  obvious  choice  f o r  the a x i a l  c u r r e n t  would 

be t o  use  t h e  same i s o t o p i c - c o u p l i n g  c o e f f i c i e n t s ,  and merely i n s e r t  a ' ( 5 .  

I n  o t h e r  words, i f  we could  d e a l  w i t h  b a r e  p a r t i c l e s ,  t h e  a x i a l  v e c t o r  p a r t  

of t h e  c u r r e n t  would b e  

A cos  ,J a+A + s i n  8 panti , a n t i  

where t h e  A s u p e r s c r i p t  is t o  i n d i c a t e  t h e  Dirac mat r ix  y y s .  But,  of  c o u r s e ,  

l i f e  i s  more complicated.  I f  SU3 were p e r f e c t ,  any component of t h e  a n t i -  

syrnmetric o c t e t  of o p e r a t o r s  would be conserved.  Thus, t h e  v e c t o r  c u r r e n t  

would not  be  changed by r e n o r m a l i z a t i o n .  I n  f a c t ,  Gat to  has shown t h a t  even 

t o  t h e  f i r s t  o r d e r  i n  t h e  mass s h i f t s ,  t h e  v e c t o r  c u r r e n t  i s  not renormalized.  

The a x i a l  v e c t o r  c u r r e n t ,  however, i s  n o t  conserved,  even i n  the l i m i t  of  

exact  SU3 symmetry, so one must expect  modi f ica t ions  due t o  renormal iza t ion .  

This means t h a t  the s t r e n g t h  of t h e  a x i a l  v e c t o r  c u r r e n t  w i l l  be changed and 

a l s o  t h a t ,  s t a r t i n g  from t h e  an t i symmetr ic  o c t e t  f o r  t h e  a x i a l  v e c t o r  c u r r e n t ,  

we can g e t  both t h e  an t i symmetr ic  and t h e  s y i m e t r i c  o c t e t s  i n  t h e  renormal ized  

a x i a l  c u r r e n t .  Thus, the  renormalized a x i a l  v e c t o r  c u r r e n t  will take t h e  form: 

I.( 

- 
+A + s i n  o panti A ]+ m3 DBBW j cos d + s 

SY- i 6 FBBW k o s  0 a a n t i  
A 1  
syrnml ' n B  p 

I n  t h e  l i m i t  of SU3 symmetry t h e  angle  d is  independent of t h e  part c l e s  which 

a r e  coupled t o  the weak c u r r e n t ,  because  renormal iza t ion  cannot  change t h e  a x i s  

of t h e  o c t e t  t h a t  is  coupled w i t h  t h e  weak decays. The r e n o r m a l i z a t i o n  

c o e f f i c i e n t s ,  F and D are  s t r o n g l y  dependent o n  t h e  type of o c t e t s ,  i . e .  pseudo- 

s c a l a r  mesons, baryons and v e c t o r  mesons. 
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Comparison of  t h e  Cabibbo t h e o r y  w i t h  experiment  

Let u s  t u r n  now t o  a d i s c u s s i o n  of how w e l l  t h i s  proposa l  of  Cabibbo 

a g r e e s  w i t h  experiment .  The most impor tan t  parameter  of t h e  t h e o r y  is t h e  

a n g l e  0 .  One of t h e  b e s t  ways t o  de te rmine  i t  is  t o  c o n s i d e r  t h e  decay 

K+ -. n o +  e++  v . 
Two p s e u d o s c a l a r  mesons i n  a J = 1 s t a t e  have a p a r i t y  of (-1. and t h e r e f o r e  

only t h e  vector-weak c u r r e n t  i s  involved i n  t h i s  decay. We have two v e c t o r s  

PK and P a ,  t o  make t h e  c u r r e n t .  The most g e n e r a l  form of  t h e  m a t r i x  e lement  

is 

I n  t h e  l i m i t  of  u n i t a r y  symmetry t h e  5 term would be a b s e n t .  Exper imenta l ly ,  

a s tudy  of  t h e  spectrum shows i t  t o  b e  v e r y  small and t h e r e f o r e  we w i l l  d r o p  it. 
P u t t i n g  i n  t h e  c o e f f i c i e n t  l / f i  from t h e  K-n' term i n  t he p- l ike  c u r r e n t  and 

t h e  c o u p l i n g  s t r e n g t h  f i C ,  we g e t  f o r  the m a t r i x  e lement:  

c s i n  8 (pK+ pn) ( h a a e )  . 
a 

Making t h e  c a l c u l a t i o n  of  t h e  rate and comparing w i t h  my d a t a  (which may n o t  

be t h e  l a t e s t ,  most a c c u r a t e )  I f i n d  t h a t  I s i n  01 = 0.232 0.015 (Cabibbo, 

u s i n g  d i f f e r e n t  d a t a  i n  h i s  paper ,  found I s i n  81 = 0.260 ?: 0.015). 

Another way t o  de te rmine  t h e  a n g l e  which Cabibbo a l s o  proposed,  was 
t o  look a t  t h e  r a t i o  of  K and n decays  i n t o  l e p t o n s .  Both of t h e s e  d e c a y s  

proceed only  through t h e  a x i a l  v e c t o r  c u r r e n t  because t h e  K and n a r e  pseudo- 
s c a l a r  mesons. The geometr ic  s t r u c t u r e  of the  m a t r i x  e lement  is, as we have 

a l r e a d y  d i s c u s s e d ,  Fnq:(;yaAv) and a FKc$;yaav). 

There is o n l y  one o c t e t  t h a t  can b e  m d e  from a s i n g l e  se t  of mesons. 

Hence, t h e  Cabibbo theory  would state t h a t  F K / P  = t a n  0 . .  Exper imenta l ly  

.55% lo4 and FK = Fn = f 
. 9 5 %  10-a 

K m m n 
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SO that t a n  3 is very n e a r l y  e q u a l  t o  mv/mK. 
experiments  is 0.262 0.02, Hhich a g r e e s  w i t h  t h e  f i r s t  d e t e r m i n a t i o n .  

provides  t h e  f i r s t  check on t h e  Cabibbo hypothes is .  

l a te r  c a l c u l a t i o n s  I shall use l s i n  01 = 0.245, because  t h e n  s in '  8 

a s imple  number f o r  computat ional  purposes .  ) 

Numerically l s i n  G I  f r o m  thc 

T h i s  
( I n c i d e n t a l l y ,  i n  my 

= 0.06, 

Another consequence o f  t h e  Cabibbo theory  is t h a t  t h e  n u c l e a r  b e t a -  

decay v e c t o r  coupl ing  c o n s t a n t  Gy, should  d i f f e r  f rom t h e  muon beta-decay 

coupl ing  G . In  f a c t ,  C = G cos 8 i n  t h e  Cabibbo theory.  S i n c e  cos 9 

is a b o u t  0.97, we s e e  t h a t  t h i s  theory  v e r y  p o s s i b l y  r e s o l v e s  t h i s  d i f f i c u l t y  

i n  t h e  theory  of  weak i n t e r a c t i o n s !  

cc v c c  

Determina t ion  o f  t h e  a x i a l  v e c t o r  c u r r e n t  F/D r a t i o  

The next  q u e s t i o n  is how well t h e  Cabibbo theory  f i t s  w i t h  t h e  

l e p t o n i c  decays of  t h e  hyperons. To s tudy  t h i s  l e t  us make a table o f  t h e  

l e p t o n i c  decay m a t r i x  e lements ,  and u s e  o u r  c h a r t s  of t h e  F and D o c t e t s  t o  

c o n s t r u c t  t h e  p r o p o r t i o n s  o f  v e c t o r  and a x i a l  v e c t o r  c u r r e n t s  i n  each decay.  

Non-strangeness changing decays .  

React i o n s  

n + p +  e +  Y 

CO + C  + e + u  

C- + CO + e +  5 
C- + A +  e +  5 

C+ + A +  e +  

=.- + E' + e +  5 

+ - 

- 

These are  t o  be. m u l t i p l i e d  by cos 3. 

Vector  Axial  

1 F +  D 
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S t r a n % e n e s s  changing decays.  These a r e  t o  be  m u l t i p l i e d  by s i n  3 

React ions  Vector  Ax ia  1 

C O  + p +  e +  V 1 1 z (F- D l  

The b e s t  r e l a t i o n  we can  use  t o  p a r t i a l l y  determine F and D i s  t h e  

f a c t  t h a t  f o r  t h e  decay of t h e  neut ron  t h e  a x i a l  v e c t o r  c o u p l i n g  is 1.2020.04,  

r e l a t i v e  t o  t h e  v e c t o r  coupl ing .  Thus, 

F + D  = 1.2020.04  . 
Strangeness-changing decay r a t e s  can now be used t o  d e t e r m i n e  o t h e r  

r e l a t i o n s  between F and D. There is a s tandard  r a t e  f o r  these  decays  pre-  

d i c t e d  under  t h e  assum2t ion  t h a t  t h e  weak c u r r e n t  is j u s t  t h e  m a t r i x  e lement  

o f  y,(l + i y s  1. 
r a t e .  Neglec t ing  small r e l a t i v i s t i c  c o r r e c t i o n s ,  f o r  any of t h e s e  decays  

the  r a t e  should be (V' + 3 A 2 / 4 )  t imes t h e  U.F.I .  r a t e .  The exper imenta l  branch-  

i n g  r a t i o s ,  t o g e t h e r  w i t h  t h e  U.F.I. p r e d i c t i o n s ,  are  g iven  i n  t h e  f o l l o w i n g  

t a b l e .  

T h i s  ra te  is c a l l e d  t h e  u n i v e r s a l  Fermi i n t e r a c t i o n  (U.F.I . )  

Decay U.F.I .  Experimental  b r a n c h i n g  rat i 0s 
- 

A -. p +  e +  v 1 . 5 ~  lo-' 0 . 8 1  2 0.10~ lo-' 

C -  + N +  e +  5 . 8 ~  IO-' 1.372 0 . 3 4 ~  lo-' 

C -  -. A +  e +  i I .ox 1 0 - ~  0 . 0 7 2 0 . 0 3 ~  IOe4 

C - . A + ; + v  0.6~ loJ 0.072 0.04~ (4 e v e n t s ) .  
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From t h e  r a t e  of decay of t h e  A ,  we f i n d  

F +  %D = 0.682 0.07 . 
There is ev idence  from t h e  p o l a r i z a t i o n  Gf t h i s  l e p t o n i c  decay t h a t  

F +  D > 0. Using t h i s  r e l a t i o n ,  t o g e t h e r  with t h e  f i r s t ,  we deduce 

F = 0.40~0.10, D = 0.78_+0.12 . 
Cabibbo's o r i g i n a l  v a l u e s  were F = 0.j0, D = 0.95. The small d i f f e r e n c e  

r e s u l t s  from s l i g h t l y  d i f f e r e n t  d a t a  a n d  from t h e  f a c t  t h a t  Cabibbo used 1.26 

i n s t e a d  o f  1.20 f o r  -GA/GV 

With F and D t h u s  de te rmined ,  do t h e  o t h e r  l e p t o n i c  decays a g r e e  

wi th  Cabibbo 's  theory?  I n  many cases o n l y  a few e v e n t s  of a g i v e n  decay 

have been observed so t h a t  t h e  s t a t i s t i c a l  e r r o r s  and ,  even more impor tan t ,  

the  s y s t e m a t i c  e r r o r s  i n  t h e  d e t e r m i n a t i o n  of t h e  r a t e s ,  a r e  v e r y  l a r g e .  

Of the  remain ing  d e c a y s ,  f o r  which experimental  in format ion  is a v a i l a b l e ,  

perhaps t h e  r e a c t i o n  2-  * n +  e +  5 is known t o  t h e  g r e a t e s t  accuracy .  

v e r t i n g  t h e  exper imenta l  ra te  f o r  t h i s  r e a c t i o n ,  one f i n d s  I F -  D /  = 0.402 0.16. 
You w i l l  n o t e  t h a t  t h i s  i s  c e r t a i n l y  c o n s i s t e n t  w i t h  t h e  v a l u e  F - D  = -0 . j82  0.22 

which was p r e d i c t e d  above. Another p r e d i c t i o n  is that the r e a c t i o n  

5- * A +  e +  

the branching  r a t i o  is two or t h r e e  times b u t  t h i s  is  based  on o n l y  a 

handful  of e v e n t s .  The p r e d i c t i o n s  on t h e  2 + A  decays  a r e  a l s o  c o n s i s t e n t  

wi th  the  crude exper imenta l  v a l u e s .  

Con- 

should  have a branching  r a t i o  of  (0.502 0.05)~ Exper imenta l ly ,  

The D t o  F r a t i o  f o r  t h e  a x i a l  v e c t o r  c u r r e n t  is 2.2 2 0.8. This  

i s  t h e  same r a t i o  as is  claimed f o r  t h e  c o u p l i n g  of  t h e  ; i seudosca lar  mesons 

t o  t h e  baryons ,  which is thought to b e  about  2 ,  3 or 4. This  v a l u e  came 

o r i g i n a l l y  from very  crude t h e o r e t i c a l  a n a l y s i s  o f  t h e  s t r o n g  i n t e r a c t i o n s  and 

some s tudy  of t h e  AN i n t e r a c t i o n  i n  hyperfragments .  I may remark h e r e  t h a t  

a n  ex tens ion  o f  t h e  Goldberger-Treiman argument t o  t h e  s t rangeness-changing  

c u r r e n t  w i l l  r e s u l t  i n  t h e  p r e d i c t i o n  t h a t  t h e  D t o  F r a t i o  f o r  t h e  s t r o n g  

i n t e r a c t i o n s  should  b e  t h e  same as i t  i s  f o r  t h e  a x i a l  v e c t o r  weak baryon- 

baryon c u r r e n t .  
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G e n e r a l i z a t i o n  of t h e  Coldberger-Treiman R e l a t i o n  J t h  LECTURE 

One can  e x p l o r e  t h e  ques t ion  o f  a supposed e q u a l i t y  between t h e  

F/D r a t i o s  i n  t h e  s t r o n g  i n t e r a c t i o n s  and i n  t h e  a x i a l  v e c t o r  weak c u r r e n t  by 

s t u d y i n g  a g e n e r a l i z a t i o n  of  t h e  Coldberger-Treiman r e l a t i o n .  There a r e  

s e v e r a l  ways t o  o b t a i n  t h i s  g e n e r a l i z a t i o n .  One o f  them would proceed i n  

ana logy  wi th  w f i r s t  d e r i v a t i o n  of  t h e  G -  T r e l a t i o n  f o r  pions.  To do t h i s  

I would extend my model so t h a t  it had e i g h t  baryons and e i g h t  p s e u d o s c a l a r  

mesons coupled t o  baryon p a i r s  u s i n g  the  yseudovector  Ays coupl ing .  I would 

then  cou2le  b o t h  t h e  baryon p a i r s  t o  t h e  l e p t o n  c u r r e n t  i n  such  a way that i f  

I neglec ted  t h e  meson masses a d ivergence  added t o  the l e p t o n  c u r r e n t  would 

have no e f f e c t .  I n  complete analogy t o  t h e  p i o n i c  c a s e ,  I would have i n  

lowest  o r d e r  t h e  r e l a t i o n  

I Bare 
A(nA) ci 

6 % ( n h k )  
FK(unrenormalized)  - 

Renormal iza t ion  c o r r e c t i o n s  would have t o  be  made o f  course.  I t  
is c l e a r  t h a t  the s t r u c t u r e  of t h e  r e n o r m a l i z a t i o n  i n  t h e  K c a s e  would b e  

t h e  same as i t  is i n  the n case. That i s ,  

nAK) KK(m,Z I -a$( 
= FK(unrenormalized X 

One can  then a t t e m p t  t o  a r g u e  that t h e  r a t i o  of  t h e  r e n o r m a l i z a t i o n  f a c t o r s  

is c l o s e  t o  one. T h i s  w i l l  be  f a r  l e s s  convincing,  however, i n  t h e  case of 

t h e  K because I$ is f a r  g r e a t e r  than m:, and m z  is much n e a r e r  t o  t h e  next  

t h r e s h o l d  f o r  i n t e r m e d i a t e  states t h a n  m; was. 
K 

I n  t h e  case of  t h e  p i o n ,  
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t h e  d i s t a n c e  from q2 = 0 t o  the  pole  i s  m:, whereas t h e  next  s m a l l e s t  energy 

denominator  l i e s  a t  a d i s t a n c e  9 m 2  from $ = 0. 

K ,  q2 = 0 is (500 MeV)' away from t h e  K po le  and o n l y  about  (770 MeV)' 

from t h e  KBB i n t e r m e d i a t e  s t a t e .  Thus, i n  t h e  B case we had a f a c t o r  of  9 
i n  o u r  f a v o u r ,  b u t  i n  t h e  K case t h i s  f a c t o r  is only about  2.  On t h e  o t h e r  

hand, w i t h  pseudovector  coupl ing ,  as we expla ined  b e f o r e ,  low momentum pions  

(and kaons)  are only  weakly coupled s i n c e  f 2  = 0.08 i s  smell, s o  t h e s e  

" n e a r e s t  p o l e  terms" are  n o t  expected t o  be l a r g e .  I s u s p e c t  that t h e  func-  

t i o n s  Z ( q 2 )  and K(q2)  only begin  t h e i r  s e r i o u s  v a r i a t i o n  n e a r  q2 equal  t o  t h e  

nucleon mass squared.  

On t h e  o t h e r  hand, f o r  t h e  
R 

away 

Grant ing  t h e  v a l i d i t y  o f  t h e s e  arguments that l e a d  t o  t h e  Goldberger- 

Treiman r e l a t i o n ,  t h e  fo l lowing  p o i n t  can  b e  made. I n  t h e  l i m i t  of  SU3 

symmetry F But t h e  

r e n o r m a l i z a t i o n  f a c t o r s  of  F e x h i b i t e d  i n  t h e  second form of  t h e  above equat ion  

should a l s o  be n e a r l y  t h e  same. This  e x p l a i n s  why we can g e t  t a n  Q from com- 

p a r i s o n  of a p u  and Kpu decay. This  b e i n g  t h e  case, t h e  f i r s t  form of  t h e  

e q u a t i o n  shows t h a t  t h e  experimental  meson-baryon coupl ings  s h o u l d  be propor- 

t i o n a l  t o  t h e  exper imenta l  a x i a l  v e c t o r  beta-decay coupl ings.  Another way 

of s t a t i n g  t h i s  ( s i n c e  i t  i s  assumed t h a t  b o t h  types  o f  c o u p l i n g s  t ransform as 

a n  o c t e t )  is that both  o c t e t s  must have t h e  same c h a r a c t e r .  

t h e  Coldberger-Treiman r e l a t i o n ,  one f i n d s  t h a t  F/D f o r  t h e  weak a x i a l  v e c t o r  

c u r r e n t  i s  t h e  same a s  F/D f o r  t h e  meson-baryon coupl ing.  

i n d i c a t i o n s  t h a t  t h i s  may be  t r u e ,  t h e r e  is as y e t  no s h a r p  exper imenta l  tes t  
a v a i l a b l e  t o  check t h i s  p r e d i c t i o n .  

t a n  0 should equal  FK, a t  l e a s t  i f  unrenonnal ized.  
R 

Thus, assuming 

Although t h e r e  are 

L e p t i c  Decays 

Let  me suminarize what w e  know a b o u t  t h e  l e p t i c  decays .  I f  t h e r e  

is no s t r a n g e n e s s  change, we have e s s e n t i a l l y  a complete  theory  o f  a l l  t h e  

i n t e r a c t i o n s  with two coupl ing  c o n s t a n t s ,  G and CA. F is suppl ied  v i a  t h e  

Goldbergei--Treiman r e l a t i o n s .  When we come t, the s t rangeness-changing  d e c a y s ,  

we do not  know whether we have a good theory  o r  not  u n t i l  we g a t h e r  more 

V lr 



472 

- 160 - 

experimental  d a t a .  We do have a theory,  t h e  Cabibbo t h e o r y ,  which is con- 

s i s t e n t  w i t h  t!ie d a t a  now a v a i l a b l e ,  b u t  t h e  sharpness  of t h e  tests i s  not  

very g r e a t .  Cabibbo's t h e o r y  involves  two more parameters :  s i n  0 and t h e  

F/D r a t i o .  

r e l a t i o n ,  then  t h e  F/D r a t i o  would come out  of a s t r o n g  i n t e r a c t i o n  theory .  

The Cabibbo theory  would t h e n  i n v o l v e  only t h e  parameter  8. A l l  observed 

1 e ; ) t i c  decays t h e n  have t h e o r e t i c a l l y  p r e d i c t a b l e  p r o p e r t i e s ,  w i t h  t h e  excep- 

t i o n  of K -t v + v +  e +  u .  

I f  some day we can j u s t i f y  more adequate ly  t h e  Goldberger-Treiman 

Non-lept ic  decays 

The n o n - l e p t i c  decays a l s o  a r i s e  from t h e  assumption of a c u r r e n t -  

c u r r e n t  i n t e r a c t i o n .  I f  we t a k e  t h e  t h e o r e t i c a l  view t h a t  t h e  c u r r e n t  is 

t h e  s u m  of p i e c e s  of t h e  form 

J = ( i u  ) +  ( ; u ) +  I ~ ~ + I I  c o s  ~ + l l p "  s i n  , P 

then the  q u a d r a t i c  te rms  i n  t h e  expansion of  5 .  J 

- +  
u u c o d  O + < -  p s in '  8 

give  r ise t o  non-strangeness  changing,  n o n - l e p t i c ,  weak i n t e r a c t i o n s .  I t  
i s  t h e s e  terms which g ive  r i s e  t o  a p a r i t y  non-conserving n u c l e a r  f o r c e ,  f o r  
which evidence has  been a c q u i r e d  a t  C a l  Tech by Boehm. Other  t h a n  by 

experiments  of t h i s  type ,  such  terms a r e  d i f f i c u l t  t o  g e t  a t  exper imenta l ly .  

The c ross -products  i n  t h e  expansion o f  5 .  J a r e  [ u - p + ( - u + ]  s i n  0 

cos 0 .  

term E a+,  the  h e r m i t i a n  conjugate  term,  accounts  f o r  t h o s e  decays  f o r  which 

AS = - . Since  one i s  t h e  a d j o i n t  of t h e  o t h e r ,  w e  need c o n s i d e r  o n l y  one 

of them. 

The term u-p accounts  f o r  t h o s e  decays f o r  which AS = + 1  and t h e  

We have a much more d i f f i c u l t  t a s k  i n  making p r e d i c t i o n s  f o r  t h e  non- 

l e p t i c  decays because t h e  r e n o r m a l i z a t i o n s  a r e  much more e l a b o r a t e .  I n  

o t h e r  words, we have a four-fermion c o u p l i n g  term which is much screwed about  
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by r e n o r m a l i z a t i o n s  of  t h e  s t r o n g  i n t e r a c t i o n s .  I n  the  theory  of t h e  l e p t i c  

decays much w a s  p r e d i c t e d  on t h e  b a s i s  of  t h e  hypothes is  t h a t  the weak c u r r e n t  

had c e r t a i n  t r a n s f o r m a t i o n  p r o p e r t i e s .  For the  non-leptonic  d e c a y s ,  on  t h e  

o t h e r  hand, t h e  form j -  J does not  have wel l -def ined t r a n s f o r m a t i o n  p r o p e r t i e s ,  

w i t h  r e g a r d  t o  u n i t a r y  s p i n  o r  even w i t h  r e g a r d  t o  i s o t o p i c  s p i n .  Because 

t h e  s i t u a t i o n  is not  very c l e a r ,  l e t  us  c o n c e n t r a t e  a t  f i r s t  on t h e  t ransforma- 

t i o n  p r o p e r t i e s  of the  c u r r e n t s .  

The s t r a n g e n e s s  changing decays  r e s u l t  from t h e  c o u p l i n g  of  a n  

i s o t o p i c - s p i n o r  c u r r e n t  w i t h  an i s o t o p i c - v e c t o r  c u r r e n t .  With r e s p e c t  t o  

i s o s p i n ,  t h e r e f o r e ,  t h e  i n t e r a c t i o n  3 * J has  a piece which t ransforms l i k e  

i s o t o p i c  s p i n  x ,  as  wel l  as one of  i s o t o p i c  F i n  %. 
t h e r e f o r e ,  o u r  c u r r e n t - c u r r e n t  i n t e r a c t i o n  l e a d s  to  t h e  s e l e c t i o n  r u l e s  

A 1  = 'A or A 1  = %.  
any ev idence  f o r  A 1  = y2 i n  t h e s e  decays.  

t h i s ,  one i s  s u r p r i s e d  and f i n d s  a t e r r i b l y  i n t e r e s t i n g  f a c t .  Almost a l l  t h e  

d a t a  seem t o  be c o n s i s t e n t  wi th  only  A 1  = 'A terms i n  t h e  ampli tude.  

small A 1  = x ampl i tudes  a r e  r e q u i r e d  t o  f i t  t h e  d a t a ,  and no A 1  = 
r e q u i r e d  a t  all. The f a c t  t h a t  A 1  = was s o  small was t o t a l l y  unexpected 

and h a s  no explana t ion  t h e o r e t i c a l l y  on t h e  b a s i s  of the c u r r e n t - c u r r e n t  

hyp o t  h e s i  s . 

I n  t h e  AS = 1 1  I d e c a y s ,  

The f i r s t  t h i n g  t h a t  w e  must check is whether  t h e r e  is 

I f  one looks a t  t h e  d a t a  t o  check 

Very 

is 

T e s t s  of t h e  A 1  = '/z r u l e  

I n  t h e  absence  of be ing  a b l e  t o  g ive  a s a t i s f a c t o r y  t h e o r e t i c a l  

j u s t i f i c a t i o n  f o r  t h i s  r u l e ,  I w i l l  d i s c u s s  t h e  data which s u b s t a n t i a t e  i t .  
Consider  f i r s t  the  d i s i n t e g r a t i o n  of t h e  A. There a r e  two n o n - l e p t i c  channels  

open 

A -+ p + n - ,  A -+ n + n o  . 
On t h e  b a s i s  of  t h e  A 1  = 'k r u l e ,  s i n c e  the  i s o t o p i c  s p i n  of t h e  A i s  z e r o ,  

the charged pioii decay ampli tude should be f i t imes  t h e  n e u t r a l - p i o n  decay 

ampli tude.  Hence, t h e  mLes should  be i n  t h e  r a t i o  2 t o  1 .  I f  t h e r e  i s  a 

decay ampli tude i n t o  t h e  i s o s p i n  % s ta te  of  t h e  pion-nucleon sys tem,  measured 

by a c o e f i i c i e n t  a. then t h e  r a t i o  of the  two rates should be I ( f i +  a ) / ( l  - 6 a ) I ' .  
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The ex : ) e r imen ta i  h r a n c i i i n g  f r a c t i o n  f o r  t h e  decay i n t o  n + n o  is  0.332 U.02 

of  a l l  non- l e , t i c  d e c a y s .  The d a t a ,  t h e r e l o r z ,  inc!icri te comple t e  ag reemen t  

w i t h  t h e  A 1  = 'A r u l e  and  show t h a t  l a /  < 0.05. T h i s  e x c e l l e n t  e v i d e n c e  f o r  

t h e  01 = 'A r u l e  is s u b s t a n t i a t e d  by t h e  r a c t  t h a t  t h e  p o l a r i z a t i o n  p r o p e r t i e s  

f o r  t h e  n e u l r a l  and c h a r g e d  modes a r e  t h e  same. The r a t i o  o f  t h e  s t o  p-wave 

a m p l i t u d e s  is  iriecrsured by t h e  a n i s o t r o ! > y  of t h e  d i r e c t i o n  of t h e  p i o n  w i t h  

r e s p e c t  t o  t h e  s ? i n  o f  t h e  A .  The c o e f f i c i e n t  of t h i s  a n i s o t r o p y  term i s  

c a l l e d  a ,  a n d  i f  you  check  l h e  measured v a l u e s  of a f o r  t h e  two modes,  you 

w i l l  f i n d  t h a t  they a g r e e  w i t h i n  t h e  e x p e r i m e n t a l  e r r o r s .  

The n e x t  b a r y o n  t o  c o n s i d e r  i s  t h e  2. There  a r e  t h r e e  n o n - l e p t i c  

decays  

I f  we l a b e l  t h e  a i n , ~ l i l u d e s  f o r  each  p r o c e s s  by A t ,  A2 and A3 r e s p e c t i v e l y ,  i t  
t u r n s  o d t  t h a t  t h e  o n l y  p r e d i c t i o n  o f  t h e  A 1  = 'A r u l e  i s  

Now e a c h  arn,) l i tude Al i s  a two-component v e c t o r ,  one  component f o r  t h e  s wave 
and one comuonent f o r  t h e  p wave. The ra tes  a r e  measured by t h e  s q u a r e s  o f  

t h e  l e n g t h s  of  t h e s e  v e c t o r s  a n d  a r e  a l m o s t  a l l  t h e  same. T h i s  means t h a t  

t h e  t h r e e  v e c t o r  a m p l i t u d e s  must form an i s o s c e l e s  r i g h t  t r i a n g l e  w i t h  4 2  A 

b e i n g  t h e  base of t h e  t r i a n g l e .  S i n c e  t h e  a n i s o t r o p y  c o e f f i c i e n t s  f o r  the 

second and t h i r d  d e c a y s  a re  a l m o s t  z e r o ,  b o t h  a m p l i t u d e s  l i e  a l o n g  t h e  

c o o r d i n a t e  a x e s  i n  an  s, p-plane.  T h e r e f o r e ,  t he  f i r s t  a m p l i t u d e  s h o u l d  l i e  

a t  45" t o  t l icse  a x e s .  The a n i s o t r o p y  c o e f f i c i e n t  a ,  s h o u l d  t h e r e f o r e  b e  1 

f o r  t h e  r e a c t i o n .  E x p e r i m e n t a l l y ,  a = 0.73. T h i s  f a c t  i s  s l i g h l l y  a n n o y i n g ,  

b u t  i t  is  n o t  s u f f i c i e n t l y  bad t h a t  we shoi i ld  c o n s i d e r  i t  as  e v i d e n c e  a g a i n s t  

t h e  01 = 'A r u l e .  T h i s  measurement  i s  n o t  a v e r y  good tes t  of t h e  A 1  = 'h 
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r u l e  because t h e  experimcntol  e r r o r s  could be l a r g e .  The exper imenta l  e r r o r s  

w i l l  have t o  be  improved a g r e a t  d e a l  b e f o r e  one can c o n s t d e r  t h e  C decays t o  

be  ev idence  o ; :a ins t  the  A1 = 'A r u l e .  

Ano the r  t e s t  of ihe  A 1  = 'A r u l e  comes from the s t u d y  of K -, T r + . r r .  

The decay r a t e  f o r  K -* n + n o  is suppressed  r e l a t i v e  t o  K P  * T J +  'IT by a f a c t o r  

500. Two rlions i n  a symmetric s p a t i a l  s ta te  must have e i t h e r  I = 0 o r  I = 2 .  

The wave f u n c t i o n  f o r  n + +  n o ,  with t h e  s p i n - p a r i t y  ass ignment  0+, must t h e r e -  

f o r e  be I = 2, whereas a n e u t r a l  O+ s t a t e  o f  two p i o n s  c a n  have both  I = 2 

and I = 0. 

decay K+ * n l + + n o  is s e v e r e l y  su;iiiressed. 

that the branching  r a t i o  

+ +  

Since  t h e  K meson has  I = ' A ,  t h e  A1 = 'h r u l e  p r e d i c t s  that t h e  

A l s o ,  t h e  A 1  = 'A r u l e  p r e d i c t s  

Exper imenta l ly ,  the  branching  f r a c t i o n  f o r  n e u t r a l  K P  decays  is e i t h e r  

0.26 f 0.02 o r  0 .5 J j ?  0.014 deaending on which experiment you choose t o  b e l i e v e .  

From t h e  observed r a t e  o f  K 

K i n t o  t h e  I = 2 s t a t e .  I f  we take i n t o  account  t h e  p o s s i b l e  i n t e r f e r e n c e  of 

the  I = 2 with the  I = 0 ampli tude i n  K decays ,  we f i n d  t h a t  the r a t i o  

K P  * no + no/KP * n +  n need not  be  e x a c t l y  1/3 but  m y  b e  somewhere between 

0.28 and 0.38 (depending on  t h e  phase of t h e  i n t e r f e r e n c e ) .  I n t e r f e r e n c e  

e f f e c t s  a r e  t h u s  q u i t e  l a r g e .  

+ +  
-+ n + n o ,  w e  know t h e  ampl i tude  f o r  decay of t h e  

F i n a l l y ,  c o n s i d e r  t h e  decays of  t h e  K i n t o  t h r e e  pions.  Experiment- 

a l l y  i t  is  known t h a t  the D a l i t z  p l o t  i s  almost  f l a t ,  s o  t h a t  a l l  three p ions  

appear  to  be i n  S s t a t e s .  Thus, t h e  s p a t i a l  wave f u n c t i o n  is t o t a l l y  symmetric. 

By use o f  t h e  g e n e r a l i z e d  P a u l i  p r i n c i p l e ,  t h e  i s o t o p i c  spin-wave f u n c t i o n  

must a l so  be t o t a l l y  symmetric. Therefore  only I = 1 and I = 3 is p o s s i b l e .  

There i s  only one t o t a l l y  symmetric i s o s p i n  wave f u n c t i o n  compat ib le  w i t h  t h e  

A1 = 'A r u l e ,  and t h a t  f u n c t i o n  has I = 1 .  The i s o t o p i c  f a c t o r s  i n  t h e  r a t e s  

a r e  given i n  t h e  fo l lowing  t a b l e :  
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Weight 

3 K: * T O  + T O  + T O  

+ -  K ~ + T  + T I  + T O  2 

K+ + T+ + T O  + T O  

K f + a  + T I  + I 7  

1 

4 
+ - +  

The r a t i o  of t h e  f i r s t  two, % ,  and t h e  las t  two, 'A a r e  c o r r e c t  even i f  

A 1  = 
of t h e  K: rates t o  the K" rates de;)ends e x p l i c i t l y  

S i n c e  t h e  a v a i l a b l e  k i n e t i c  energy i n  t h e s e  t h r e e  p ion  decays  is small, it 
i s  important  t o  i n c l u d e  a l s o  t h e  change i n  phase s p a c e  due t o  t h e  f a c t  t h a t  

t h e  charged p ion  i s  h e a v i e r  than t h e  n e u t r a l  one. The data t h e n ,  a r e  i n  

accord  w i t h  p r e d i c t i o n s ,  b u t  the tests a r e  not  y e t  v e r y  s t r i n g e n t .  For 

example, t h e  r a t i o  of t h e  l a s t  two r a t e s  g i v e n  h e r e  as % i s  changed t o  

0.325 by phase-space f a c t o r s .  Exper imenta l ly ,  t h e  r a t i o  is 0.30t 0.04. 

Phase s p a c e  p r e d i c t s  t h e  r a t i o  o f  t h e  f i r s t  two should  b e  1.89 ( i n s t e a d  o f  

%);  exper imenta l ly  i t  is 1.6 t 0.6. 

is a d m i t t e d  ( f o r  only A 1  = % can r e a c h  I = 3 ) .  But t h e  r e l a t i o n  

on t h e  A 1  = 'A assumption.  

Up t o  t h e  p r e s e n t  p o i n t  t h e r e  could  have been a mixture  of  A 1  = 'A 
and A 1  = %. 
r e l a t i v e  t o  t h e  K+ rates. I f  t h e  A 1  = 'A r u l e  is assumed then  a l l  f o u r  rates 
a r e  r e l a t e d  i n  t h e  p r o p o r t i o n  g iven  by t h e  weights  i n  t h e  above t a b l e .  

Another way of  p u t t i n g  t h i s  is t h a t  from t h e  known r a t e  K+ * T + T + T ,  one can  

p r e d i c t  the  r o t e  f o r  K: * TI + T i n o .  
There a r e  two experiments  g i v i n g  2.9 2 0.1 x iO"/sec and 2 . 3 2  0 . 5 ~  lO"/sec; 

bo th  a r e  t h u s  c o n s i s t e n t  w i t h  t h e  A 1  = 'A h y p o t h e s i s .  

I f  t h e r e  were, t h e n  t h e  K2 r a t e s  would not  be  de te rmined  

+ -  T h i s  t u r n s  o u t  t o  be 3.1 2 0.2~ 106/sec. 

I n  summary, t h e  evidence f o r  t h e  A 1  = 'A r u l e  is q u i t e  good. The 

A 1  = ampl i tudes  a r e  s i r a l l ,  b u t  not n e c e s s a r i l y  zero.  There is no e v i d e n c e  

f o r  the A 1  = 3 ampli tude.  The i n t r i g u i n g  q u e s t i o n s  a r e :  
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a )  whether  t h e  A 1  = r u l e  could  be a n  e x a c t  symmetry of t h e  weak 

c u u p l i n g s ,  and 

i f  t h i s  is not s o ,  how t h i s  r u l e  c a n  become s o  prominent dynamical ly .  b )  

Attempts t o  deduce t h e  A 1  = y2 r u l e  6 t h  LECTURE 

I n  t h i s  l e c t u r e  we s h a l l  p r e s e n t  some of  t h e  a t t e m p t s  t h a t  have been 

made t o  deduce t h e  A 1  = 'h r u l e  f o r  t h e  s t r a n g e n e s s  changing non- lep t ic  decays.  

Let me emphasize that t h i s  mystery comes j u s t  from the i s o t o p i c  s p i n  p r o p e r t i e s  

of  t h e  3 - J form assumed f o r  t h e  weak i n t e r a c t i o n s ,  and is n e i t h e r  g e n e r a t e d  

nor so lved  by Cabibbo 's  c h o i c e  f o r  t h e  weak i n t e r a c t i o n  c u r r e n t .  No answer 

is  known f o r  t h i s  mystery.  Therefore ,  we c a n  only l i s t  some of t h e  specula-  

t i o n s  t h a t  have been r a i s e d  and c r i t i c i z e  them. 

The f i r s t  i n t e r e s t i n g  q u e s t i o n  i s ,  i f  we assume that the s t r a n g e n e s s  

changing non- lep t ic  i n t e r a c t i o n  i s  of  t h e  form 

- 
( a + p )  cos  o s i n  Q 

and c a l c u l a t e  t h e  a m p l i t u d e s ,  t h e n ,  a r e  t h e  A 1  = ampl i tudes  dynamical ly  

suppressed o r  are t h e  A 1  = 'A ampl i tudes  dynamical ly  enhanced, o r  bo th?  

There is no doubt  t h a t  i n  t h e  o + p  form both  t h e  A 1  = 'A and A 1  = 
a r e  p r e s e n t  w i t h  roughly equal  weights .  However, t h e  s t r o n g  i n t e r a c t i o n s  

through r e n o r m a l i z a t i o n  e f f e c t s  w i l l  modify t h e  r e l a t i v e  weights  of t h e  A 1  = 'A 
and A 1  = 'A c o n t r i b u t i o n s .  

such a form t h a t  t h e  e f f e c t i v e  s t r e n g t h  f o r  t h e  A 1  = m a t r i x  e lements  is 

enhanced r e l a t i v e  t o  t h o s e  f o r  which A 1  = %. I n  a d d i t i o n ,  w e  would a l s o  

l i k e  t o  d i s t i n g u i s h  between t h e  two c a s e s  A 1  = 'A enhanced, o r  A 1  = 'A 
suppressed.  The h,robleni would be  very e a s i l y  answered i f  we could c a l c u l a t e  

t h e s e  r e n o r m a l i z a t i o n s ,  b u t  no r e l i a b l e  computation can b e  made. Therefore ,  

we cannot answer t h e  q u e s t i o n  i n  a unique and d i r e c t  fash ion .  

- 
ampl i tudes  

I t  could  be t h a t  t h e  mesonic c o r r e c t i o n s  a r e  of 
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Never the less ,  I would l i k e  t o  r e p o r t  on two l i t t l e  c a l c u l a t i o n s  

which may o r  may n o t  b e  s i g n i f i c a n t  f o r  t h e  q u e s t i o n .  The c a l c u l a t i o n s  d o  

r e p r e s e n t  an a t tempt  t o  f i n d  t h e  o r d e r  o f  magnitude of t h e  e f f e c t s .  You 

may n o t  wish  t o  c o n s i d e r  t h i s  l i n e  o f  f l i m s y  reasoning;  we a re  becoming ve;y 

u n c e r t a i n  a b o u t  t h i s  matter, n e v e r t h e l e s s ,  I shall p r e s e n t  i t .  Let u s  
c a l c u l a t e  t h e  decay A * p + n  , presuming t h a t  the graph 

- 

dominates t h e  ampli tude.  Both v e r t i c e s  can be o b t a i n e d  from experiment. 

The Apw v e r t e x  comes from the  experimental  d e t e r m i n a t i o n  of parameters i n  

the Cabibbo theory  of  t h e  l e p t i c  d e c a y s ,  whereas t h e  Wn v e r t e x  comes from 

the  known decay r a t e  of 8'. 

A 1  = 'A and A 1  = % terms of equal  mabmitude and one g e t s  a n  e s t i m a t e  f o r  
the  rate of 8 x  107/sec. 

terms is t h a t  t h e r e  is no cor responding  diagram f o r  the decay  A + n + n o .  

We now make t h e  assumpt ion  t h a t  t h i s  r a t e  g l v e s  a good e s t i m a t e  of the  

s t r e n g t h  o f  the A 1  = terms i n  the  ampli tudes.  Now, i f  we compare t h i s  

e s t i m a t e  w i t h  the a c t u a l  rate o f  2.4~ 109/sec,  w e  see on t h e  basis o f  t h i s  

argument t h a t  t h e  A 1  = % ampl i tude  must be  cons iderably  enhanced. 

t h i s  c a n n o t  be  t h e  whole s t o r y .  The r a t i o  of  t h e  two r a t e s  is one t o  

t h i r t y .  

a l r e a d y  know from t h e  d i s c u s s i o n  of t h e  e x p e r i m e n t a l  v a l i d i t y  of  the A 1  = 'h 
r u l e  t h a t  the  A 1  = % ampl i tude  is  l e s s  than 0.W5 i n  magnitude. (There is 
a way o u t ,  perhaps ,  if  t h e  A 1  = ampl i tude  v i o l a t e s  CP.  Then t h e r e  would 

be no i n t e r r e r e n c e  term,  s o  that a A 1  = % ampl i tude  t h i s  large would not  

c o n t r a d i c t  t h e  exper imenta l  b ranching  r a t i o . )  The r e s u l t  of t h i s  argument 
is  t h a t  the A 1  = 'A term is enhanced and t h e  A 1  = 

I f  one d o e s  t h i s  c a l c u l a t i o n ,  one f i n d s  b o t h  

The reason t h a t  one g e t s  b o t h  A 1  = % and A 1  = % 

However, 

That means t h e  ampl i tude  f o r  t h e  A 1  = % is  1 / 6 0  = 0.18, b u t  we 

term i s  c u t  down. 
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However, s i n c e  the ampl i tudes  from t h i s  c a l c u l a t i o n  a r e  o f f  by a f a c t o r  o f  

f i v e ,  one way o r  t h e  o t h e r ,  i t  is  d i f f i c u l t  t o  pre tend  t h a t  t h i s  c a l c u l a t i o n  

means very  much. 

Another c a s e  i n  which we can make a similar c a l c u l a t i o n  is t h e  

decay K -* 7 i i  a. Consider  the f o l l o w i n g  diagram 

\ 
\ / 

’+ 
7l 

The K+no\V v e r t e x  can be c a l c u l a t e d  from t h e  K + 8 +  lepton-decay r a t e  and ,  

i n  a manner similar t o  the prev ious  case, w e  f i n d  a n  e s t i m a t e  o f  9 x  107/sec, 

whereas t h e  experimental  r a t e  is 1 . 5 5 ~  107/sec. 

e s t i m a t e  must be  c u t  down i n  r e a l i t y .  

ampl i tude  comes only  from t h e  A 1  = terms,  s o  t h a t  w e  have a n o t h e r  h i n t  

t h a t  t h e  A 1  = ampl i tudes  are  suppressed.  Furthermore,  t h e  experimental  

r a t e  f o r  K P  + TI + TI i s  cons iderably  g r e a t e r  t h a n  what one c o u l d  g e t  from such 

an e s t i m a t e .  

s i d e r a b l y  f a s t e r  than one estimates from such  c a l c u l a t i o n s .  Thus. i t  looks 
l i k e  t h e r e  is some o t h e r  t y p e  of diagram that must dynamica l ly  enhance t h e  

A 1  = ’A ampl i tudes .  

Thus, t h e  t h e o r e t i c a l  

A s  expla ined  p r e v i o u s l y ,  t h e  K” 

That seems t o  i n d i c a t e  t h a t  t h e  A 1  = ‘A ampl i tude  is con- 

There a r e  two fundamental ly  d i f f e r e n t  ways i n  which people  have 

t r i e d  t o  approach the  A 1  = ‘A r u l e .  The f i r s t  p roposa l  is t h a t  A 1  = ‘A 
i s  a n e x a c t  r u l e .  To make a n  e x a c t  A 1  = ‘A r u l e  w e  have to  augment t h e  

charged c u r r e n t - c u r r e n t  i n t e r a c t i o n  by adding  n e u t r a l  c u r r e n t  terms f o r  t h e  

s t r o n g l y  i n t e r a c t i n g  p a r t i c l e s .  

t h e  r i g h t  amlilitude t o  the 5 .  J form, w e  then  g e t  a p e r f e c t  A 1  = ‘A coupl ing.  

(we do not want, t o  add n e u t r a l  c u r r e n t s  f o r  t h e  l e p t o n s  because  decays l i k e  

K * p +  e ,  K + v +  G, and so on a r e  not  observed.)  

I f  we add a term of t h e  form ( g n )  wi th  

- 
This  t h e o r y  r e s u l t s  i n  
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two p r e d i c t i o n s .  F i r s t ,  t h a t  the  A 1  = 'L r u l e  i s  e x a c t  and secondly ,  t h a t  

some day a n e u t r a l  weak-vector boson might be d iscovered .  Thus, t h i s  theory  

p r e d i c t s  no more than the  A 1  = 'A r u l e  as  f a r  as t h e  weak i n t e r a c t i o n s  a r e  

concerned. 

Can the  A 1  = r u l e  b e  p e r f e c t ?  S i n c e  t h e  K+ does i n  f a c t  d i s -  

i n t e g r a t e  i n t o  two p ions ,  t h e  A 1  = 'A r u l e  seems t o  be v i o l a t e d .  

have long s p e c u l a t e d  t h a t  the  KC decay ampli tude r e s u l t s  from e1ectroma:qnetic 

c o r r e c t i o n s .  I f  t h e  process  is e l e c t r o m a g n e t i c ,  the  r a t e  should  be down by 

a f a c t o r  (e')' - 1/20000, b u t  t h e  observed rate is  suppressed  r e l a t i v e  t o  t h e  

K P  r a t e  by a f a c t o r  of  only 1/500. 

e l e c t r o m a a n e t i c  c o r r e c t i o n  has occupied t h e  minds of many t h e o r i s t s  b u t  no 
one h a s  y e t  publ i shed  a n  e x p l a n a t i o n  t h a t  is s a t i s f a c t o r y .  Thus, no c l a r i t y  

has  r e s u l t e d  from the  hypothes is  t h a t  the  weak i n t e r a c t i o n  t ransforms e x a c t l y  

l i k e  A 1  = 'A .  

People  

The q u e s t i o n  o f  how t o  jack  up  t h e  

The second p o i n t  o f  view commonly adopted is t h a t  r e n o r m a l i z a t i o n  

e f f e c t s  a r e  d e c i d e d l y  d i f f e r e n t  f o r  the  A 1  = 'A and t h e  A 1  = 'A ampl i tudes .  

Many people  have t r i e d  t o  a r g u e  t h a t  t h e r e  a r e  c e r t a i n  diaxrams which a r e  

enhanced c o n s i d e r a b l y  and which t ransform o n l y  l i k e  A 1  = 'A. 
c o n s i d e r  t h e  u p cross- term ( F A )  (np) .  

of t h e  form 

F o r  example, 
-T 

From such a term t h e r e  i s  a diagram 

t "  
This  type of dia;:ram is not  d e f i n e d  i n  p e r t u r b a t i o n  t h e o r y ,  b u t  i t  c e r t a i n l y  

may well be  t h a t  such a term should be inc luded  in t h e  c o r r e c t  expansion of t h e  

ampl i tude  and i t  might be t h a t  i t  has  a l a r g e  c o e f f i c i e n t .  You will n o t e  t h a t  

because t h e  A goes d i r e c t l y  i n t o  t h e  n e u t r o n ,  t h i s  diagram g i v e s  only a 
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A 1  = 'A chanfie. T h i s  e x p l a i n s  why A 1  = 'A i s  SO b i g .  A t  the  %me t ime,  

t h i s  argument d o e s  not  say  A 1  = decays are  imposs ib le ,  bu t  a l l o w s  such 

decays t o  i)roceed a t  a small r a t e  w i t h  pevhaps some r e n o r m a l i z a t i o n s .  How- 

e v e r ,  s i n c e  we r e a l l y  cannot  compute anyth ing ,  a l l  t h a t  such  a theory  does i s  

r e s t a t e  t h e  exper imenta l  d a t a  i n  a d i f f e r e n t  language.  T h i s  t h e o r y  t h u s  pre- 

d i c t s  no th ing  new. 

I t  seems t h a t  the same A 1  = 'A loop  diagrams would r e s u l t  from 

Cabibbo's complete c u r r e n t .  A s  a n  e x e r c i s e  you may w r i t e  out  a l l  t h e  terms 
i n  t h e  u p form t h a t  lead  t o  c a n n i b a l i s t i c  loop  diagrams and check t o  s e e  t h a t  

they a l l  g i v e  A 1  = 'A .  
-r 

I n  t h e  o c t e t  framework t h e  p r o p o s i t i o n  t h a t  A 1  = 'A terms dominate  

f o r  s t r a n g e n e s s  changing non-leptonic  i n t e r a c t i o n s  h a s  been  g e n e r a l i z e d  by 

many people  t o  t h e  h y p o t h e s i s  t h a t  part o f  t h e  weak Lagrangian t ransforms l i k e  

a n  o c t e t  i n  t h e  e i g h t f o l d  way. I n  p a r t i c u l a r  t h e  s t r a n g e n e s s  changing p i e c e  

t ransforms l i k e  t h e  "n" member of t h e  o c t e t .  S i n c e  t h e  5 .  J form is t h e  

symmetric product  of  two o c t e t s  and t h e  only symmetric m u l t i p l e t s  c o n t a i n e d  i n  

the d i r e c t  product  a r e  ' l ' ,  ' 8 '  and ' 27 ' ,  t h e  h y p o t h e s i s  c o n s i s t s  of  comple te ly  

s u p p r e s s i n g  '27 ' .  (Terms which t ransform as  ' 1 '  do not  l e a d  t o  s t r a n g e n e s s  

changing decays ,  o f  c o u r s e . )  Are t h e r e  any new ru l e s  from t h e  assumption of  

a n  o c t e t  o t h e r  than t h o s e  a s s o c i a t e d  wi th  A 1  = 'A?  Most u n f o r t u n a t e l y  t h e r e  

a r e  no r e l a t i o n s  p r e d i c t e d  among t h e  r e a c t i o n  a in? l i tudes  that can b e  observed 

exper imenta l ly .  Some p r e d i c t i o n s  have been made, b u t  these  were b a s e d ,  i n  

a d d i t i o n ,  on s p e c i f i c  assumpt ions ,  e.g. t h e r e  a r e  no g r a d i e n t s  i n  t h e  coupl ing .  

This ,  however, is not  i n  t h e  same s p i r i t  as a p r e d i c t i o n  based only  on 

symmetry p r i n c i p  1 e s  . 
Benjamin Lee d e r i v e d  t h e  r e l a t i o n  

To d e r i v e  t h i s  r e l a t i o n ,  however, he assumed R i n v a r i a n c e  i n  a d d i t i o n  t o  SUs. 

(R i n v a r i a n c e  i s  the  symmetry based on t h e  t r a n s f o r m a t i o n  p + z- , n + E', 
E+ + C-, and so on. 

- - 
This  is s imoly r e f l e c t i o n  through the c e n t r e  of t h e  o c t e t . )  
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However, because t h e  a ' s  and nucleons have such  d i f f e r e n t  masses, R i n v a r i a n c e  

is not  i n  agreement w i t h  t h e  f a c t s  of  n a t u r e .  

Cabibbo a l s o  concluded a t  one time t h a t  t h e  KP + n + n  was forb idden  

by t h e  o c t e t  scheme, b u t  t h i s  c o n c l u s i o n  r e s t e d  on t h e  a d d i t i o n a l  assumpt ion  

t h a t  t h e r e  were no g r a d i e n t s  i n  t h e  coupl ing .  S ince  t h e r e  is no reason  why 

t h e  m a t r i x  e lement  should  not  involve  g r a d i e n t s ,  t h e  KP is n o t  f o r b i d d e n  t o  

decay i n t o  two p ions .  

I t  is r a t h e r  i n t e r e s t i n g  and d i s a p p o i n t i n g  t h a t  the assumption of 

d e f i n i t e  SU, t r a n s f o r m a t i o n  p r o p e r t i e s  f o r  t h e  n o n - l e p t i c  weak i n t e r a c t i o n s  

h a s  g iven  us  nothing.  I t  seems t h a t  a q u a l i t a t i v e l y  d i f f e r e n t  i d e a  is needed 

t o  c l e a r  up t h e  puzz le  of  the  non- lep t ic  decays.  I shall c l o s e  t h e s e  l e c t u r e s  

wi th  t h e  hopeful  s p e c u l a t i o n  t h a t  some c l e v e r  t h e o r i s t  m y  be a b l e  t o  t i e  
t o g e t h e r  t h e  f a c t  t h a t  CP seems to  b e  v i o l a t e d  i n  weak i n t e r a c t i o n s ,  a n d  t h e  

f a c t  t h a t  t h e r e  a r e  c e r t a i n  unexpected i s o t o p i c  s e l e c t i o n  r u l e s  i n  t h e  weak 

i n t e r a c t i o n s .  

Weak decay d a t a  summary 

- Muon Mass, 105.6552 0.01 MeV, and l i f e t i m e ,  2 .2122  0.001 x 

t h e  weak decay  c o n s t a n t  t o  be 

s e c ,  de te rmine  

G = (1.0233?0.O(J04) x (PIC)% t11-~ 
P 

(M = proton  mass). 
P 
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Nuclear p decay  
t h a t  t h e  v a l u e  of G f o r  t h e  v e c t o r  part of t h e  c u r r e n t  is 0.9802 0.005 t imes  G. 

Other  P-decay e x p e r i n e n t s ,  i n c l u d i n g  neut ron  decay asymmetry and  l i f e t i m e  

of  10132 29 seconds ,  s u g g e s t  that t h e  a x i a l  c o u p l i n g  is -1.26 times t h e  

v e c t o r  coup1 ing. 

0'' + N ' 4  ( c o r r e c t e d  f o r  e l e c t r o m a g n e t i c  e f f e c t s )  i m p l i e s  

n+ 
IT+ + e++ V/IT 
Goldberger-Treiman formula f o r  ampli tude IT + p + v is t o o  small by 8%. 

[Mass 139.59 -+ 0.05; l i f e t i m e  (2.555 0.03) x lo-'] . The branching  r a t i o  
+ +  

+ p + v a g r e e s  wi th  p r e d i c t i o n s  of theory  t o  2 2 ) ; .  The 
+ +  

K+ [hlass 493.9 2 0.2; l i f e t i m e  (1.2242 0.013) x lo-' sec]. The branching  

is 64$?4$ i n t o  p +  v ;  
(1.720.2H t o  n + + n o + n o ;  
i n t o  n +  l e p t o n s ,  K+ + no + ,u++ v and K' * no+ e + +  Y ,  t o t a l  r a t e  is 
6.22 0.9 x 10' sec. K n  
then the spectrum of p i n d i c a t e s  t h a t  is not  l a r g e .  R a t i o  of muon t o  

e l e c t r o n  decay is: t h e o r e t i c a l ,  0 . 6 5 +  0.lX + 0.02<'; e x p e r i m e n t a l ,  

0.702 0.06. 

+ + -  
( t y +  I)$ t o  * + + n o ;  5.72 0.3; t o  s + n  +IT ; 

and 7.62 1.1% t o  l e p t o n s  and no. For decay 

I f  the  ampl i tude  is w r i t t e n  ( p K +  pn)  + E(p -p 1, 

-5 
K+ + IT'+ IT-+  e++  v is  2.32 0.7 x 10 of t o t a l  d i s i n t e g r a t i o n .  

[Mass 497.82 0.6, l i f e t i m e  (1.002 0.04)~13-'~ sec] goes  i n t o  IT' + n o  o r  
+ -  n + n  . Branching r a t i o  t o  no + n o  by two experiments  is 2 6 2  PA or 

3 3 . 5 2  1 .&. 
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(Mass more than K: by about  0.8 h / r ( K +  1; r a t e  of decay 182 2 x  lo6 
- +  - 

d i s i n t e g r a t i o n  p e r  s e c . )  

r a t e  i s  1 1 . 1 t  1 . 2 ~ 1 0 ~  sec- I .  

t h e  r a t e  i n t o  charged p ions  i s ,  by one exper iment ,  2.92 0 . 7 ~  10' s e c  and 

by a n o t h e r  i s  g iven  as  0.171 2 0.023 times t h e  t o t a l  r ' i t e  i n t o  any charged 

p r o d u c t s  ( t h e r e f o r e  p i o n s +  l e p t o n s ) .  

two p i o n s  n + T I  , thereby  v i o l a t i n g  CP i n v a r i a n c e  a t  a b r a n c h i n g  r a t i o  n e a r  

For decay i n t o  l e p t o n s  n*+ p-+ v and n++ e ' +  v 
+ -  

For decay i n t o  3 ' s  ( T I ~ + D ~ + T I ~  and D + n  + n o )  
-1 

There i s  some evidence  f o r  decay  i n t o  
+ -  

2 x  lo-'. 
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UFI Theory 

A -t p +  e +  v 1 - 5  x 

- 174 - 

- 
Exeer iment 

0.81 2 o . l o x  

Hyperon l e p t i c  decays branching fract ion 

P + j l + V  

Z + A + e + v  

c--+ N +  e - +  v 

N +  jl-+ V 

c-+ A +  e - +  v 

Z++ A +  e + +  v 

c . 2 x  lo-2 - 1 lo4 
2 

2.0x 10 ( 2  or j ) x  

5.8x 1.372 0 . 3 4 ~  lo-’ 

2 . 6 ~  0.662 0 . 1 4 ~  lo-’ 
-4 0.07-f 0.03% 

1.ox 10 

0 . 6 ~  lo4 0.072 0.04~ 

UFI means rate according to universal coupling constant 
C times V - A .  If actual coupling i n  C times s ( V -  tA) 
then the rate is  approximately s 2 / 4  ( 1  + 3 t 2 )  times a s  
much 
Asymmetry and spectrum of A decay indicate that t i s  
approximately 1 f o r  t h i s  decay. 
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V.B Partons - Quarks and Gluons 

After the parity revolution, the great achievement in the field of elementary particle interac- 
tions was the discovery of the composite nature of hadrons. Perhaps the earliest suggestion 
was the Fermi-Yang model of a pion composed of a nucleon-antinucleon pair, later elabo- 
rated and extended to strange particles by Sakata and his school by inclusion of the lambda 
hyperon.’ A sophisticated approach to compositeness, which for a time was dominant in 
theoretical physics, was the S-matrix bootstrap hypothesis, or “nuclear democracy,” i.e. the 
doctrine that all hadrons (baryons and mesons) are made of each other. Feynman was fol- 
lowing the development of S-matrix theory through dispersion relations, Regge poles, etc., 
and he learned the lessons they taught about compositeness, but he did not himself partici- 
pate in this approach. On the other hand, he played an important role in the growth of the 
strong interaction sector of the Standard Model, according to which hadrons are composed 
of fermionic quarks interacting through the exchange of bosonic gluons, the quanta of the 
color gauge field.2 

Some of the theoretical methods pioneered by Feynman in his studies of QED, cieson 
theory, and quantum gravity, were important, if not essential, for proving the consistency 
of the gauge theories which are central to both the strong and electroweak sectors of the 
Standard Model - methods such as Feynman graphs, path integrals, ghost propagators, 
regularization, and ren~rmalization.~ While Feynman was not otherwise involved in devel- 
oping the theory itself, his intuition and wisdom were very valuable to those who were, as 
were his original insights into gauge theory. We have included a pedagogical account which 
illustrates this point in the form of lectures that he delivered at a summer school - paper 

Feynman’s other major contribution to the development and the acceptance of the Stan- 
dard Model was to analyze the relevant experiments, together with his students and asso- 
ciates at Caltech, and to compare them to theoretical predictions, which were extraordinarily 
difficult to calculate with accuracy. 

Being interested in particle physics at Caltech, Feynman could hardly fail to interact 
strongly with Murray Gell-Mann and George Zweig, who proposed the existence of the frac- 
tionally charged hadronic constituents which they, respectively, called quarks or aces. In 
terms of these hypothetical spin 1/2 objects they formulated the hadronic currents, intro- 
duced by Gell-Mann, through which the weak and electromagnetic interactions of hadrons 
are expressed. In paper [61], Feynman joined his colleagues in extending Gell-Mann’s al- 
gebra of quark currents to the group U(6) @ U(6). It should be noted that the study of 
these symmetry groups was the major alternative approach to that of the bootstrap school; 
Gell-Mann himself was the leading figure in the symmetry school, although he had also been 
a pioneer in the study of dispersion relations and bootstrapping. 

[102]. 

‘E. Fermi and C.N. Yang, “Are mesons elementary particles?”, Phys. Rev. 76 (1949): 1739-1743; S. Sakata, 
“On a composite model for the new particles,” Prog. Theor. Phys. 16 (1956): 686-688. Other composite 
models were proposed by M.A. Markov and by M. Goldhaber. 
’See, e.g., The Rise of the Standard Model, edited by L. Hoddeson, L.M. Brown, M. Riordan, and M. Dresden 
(Cambridge: 1997). Referred to later as RSM. 
3See the theoretical articles in RSM, especially those of M. Veltman and G. ’t Hooft. 
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By 1968 a number of physicists had become believers in quarks and were making quark 
models4 Yoichiro Nambu had proposed the color gluon gauge field.5 Experimentalists work- 
ing at the Stanford Linear Accelerator Center (SLAC) were on the threshold of discover- 
ing quarks.6 Nevertheless, the theory of quarks was sufficiently new and problematic (for 
example, the nonobservation of fractionally charged particles and the “paradox” of quark 
statistics, in the absence of color) that many physicists (including Gell-Mann, but not Zweig) 
doubted their real it^.^ 

A SLAC experimentalist, Michael Riordan, author of a popular history of the quark 
discovery, wrote that in June of 1968 Feynman “began thinking of each hadron as a collection 
of smaller parts or entities, which, for lack of any better name, he dubbed simply ‘partons’. . . 
In this picture the chance of two hadrons colliding was just the sum of the chances of any two 
of their partons colliding.”8 Riordan reported that when Feynman visited SLAC in August 
of that year and saw the experimental results on deep inelastic scattering, “Feynman had an 
epiphany” when he realized that the observations measured “in some way the momentum 
distribution of his part on^!"^ James Bjorken, a theorist at Stanford who advised the SLAC 
experimenters, had deduced that the unexpectedly large deep inelastic electron cross sections 
(more like the collision with pointlike charges in the proton than the expected diffuse cloud 
of mesons) were related to a phenomenon called “scaling,” which meant that the results 
depended on a particular combination of two scattering parameters (energy and momentum 
transfer), rather than on each independently. However, the theoretical reasoning to arrive at 
this conclusion was difficult for experimentalists to grasp. Thus the explanation of scaling 
in terms of Feynman’s partons soon became the accepted one.” 

Papers [75] and [76] deal with very high energy collisions of baryons - say, two protons - 
analyzed in their center-of-momentum system, with [75] being a much condensed version of 
[76]. In these papers, Feynman defined two types of measurements which can be made on the 
results of these collisions: “exclusive,” in which all the outgoing momenta are observed, and 
“inclusive,” in which one or a few measurements are made. Because of the high multiplicities 
which generally occur in these collisions, most of the observations are inclusive and Feynman 
discussed what can be learned on the basis of such partial observations. His analysis was 
based on his parton picture, which is a kind of abstraction from quantum field theory. He 
described his approach as follows:’’ 

It is not that I believe that the observed high-energy phenomena are necessarily a 
consequence of field theory. Even less do I know what specific field theory could yield 

4Harry Lipkin, “Quark models and quark phenomenology,” in RSM, pp. 542-560. 
5Y. Nambu, “A systematics of hadrons in subnuclear physics,” in Preludes in Theoretical Physics, edited by 
A. de Shalit, H. Feshbach, and L. van Hove (Amsterdam: 1966). 
‘For the discovery of quarks, see the 1990 Nobel Lectures of Richard E. Taylor, Henry W. Kendall, and 
Jerome I. Friedman (general title: Deep Inelastic Scattering), Rev. Mod. Phys. 63 (1991): 573-595, 596-614, 
615-627, respectively. 
‘For the rejection by many theorists of the real existence of quarks, see especially pp. 598-600 of Kendall’s 
lecture (note 6). 
‘Michael Riordan, The Hunting of the Quark (New York: 1987), p. 149. 
’Riordan (note 8), p. 150. 
“However, Feynman did not publish this explanation until 1972, in item [89]. Bjorken has discussed scaling 
in “Deep-inelastic scattering: from current algebra to partons,” RSM, pp. 589-599. This article has two 
sections headed respectively “Before Feynman” and “After Feynman,” referring to the effect of the visit to 
SLAC mentioned above. 
‘lPaper [76], p. 240. 
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them. But, rather, I believe that they share some of the properties of field theory, 
so they might share others.. . What field theory shall I choose? What shall be the 
fundamental bare particles that the theory begins with? I do not know and perhaps I 
do not care. I shall try at first to get results which are more general and characteristic 
of a wide class of theories and which can be stated in a way independent of the field 
theory which served as a logical crutch for their discovery. 

Papers 1831, [go], and [95] are explicitly about the parton theory and its applications 
to deep probes of hadronic matter and to hadronic collisions. The same is true of most 
of Feynman’s 1972 book Photon-Hadron Collisions ([89], not included in the present vol- 
ume). In paper [go] he extends his analysis of deep inelastic scattering using neutrinos to 
probe the nucleon, rather than electrons. (Of course, in the former case the probes are 
virtual massive vector bosons, and in the latter they are virtual photons.) Each time that 
Feynman lectured he was questioned about whether “parton” was just another name for the 
quark. Feynman always answered that it was for experiment to decide whether the funda- 
mental constituents carried fractional charge or not. Actually, he liked to  point out, the 
number of fermionic partons was infinite because of the “sea” of virtual pairs which were 
effective at high excitation energies. In addition, the experiments showed that about half 
of the longitudinal momentum (in the center-of-momentum system) carried by the proton 
was in the form of neutral partons, which could be the postulated gluons. The possible 
relation of quarks and gluons to partons is discussed in some detail in the closing chapters of 

When we come to papers [lo31 and [104], the language of partons has been replaced by 
that of quarks and gluons. The theory that is used is quantum chromodynamics (QCD), 
and the fundamental collision processes include not only quark-quark, but also quark-gluon, 
and even gluon-gluon, scattering. Paper [104], with Rick D. Field and (the later-submitted) 
paper [103], with Field and Geoffrey C. Fox, are theoretical studies of the production of 
quark and gluon jets, the latter made before the accumulation of relevant data.” These jets 
arise from cascade processes in which each quark and gluon produced in a collision turns into 
a rapid stream (i.e. a jet) of hadrons. The analyses of Feynman and his associates exploit the 
important property of QCD called asymptotic freedom (the vanishing of interaction between 
quarks having high relative momentum). 

1891. 

Selected Papers 
[61] With M. Gell-Mann and G. Zweig. Group U(6) x U(6) generated by current components. 
Phys. Rev. Lett. 13 (1964): 678-680. 
[75] Very high-energy collisions of hadrons. Phys. Rev. Lett. 23 (1969): 1415-1417. 
[76] The behavior of hadron collisions at extreme energies. In High Energy Collisions. 
London, Gordon and Breach (1969), pp. 237-256. 
[83] Partons. In The Past Decade in Particle Theory. London, Gordon and Breach (1971), 

[95] Partons. In Proc. of the 5th Hawaii Topical Conference in Particle Physics. Honolulu, 
Univ. Press of Hawaii (1974), pp. 1-97. 
[lo21 Gauge theories. In Weak and Electromagnetic Interactions at High Energy. 
Amsterdam, North-Holland (1977), pp. 121-204. 

pp. 773-813. 

I2For gluon jets, see San Lan Wu, “Hadron jets and the discovery of the gluon,” in RSM, pp. 60G621 
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[lo31 With R.D. Field and Geoffrey Fox. A quantum-chromodynamic approach for the large- 
transverse-momentum production of particles and jets. Phys. Rev. D18 (1978): 3320-3343. 
[lo41 With R.D. Field. A parameterization of the properties of quark jets. Nucl. Phys. 
B136 (1978): 1-76. 
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GROUP U(S)@U(S) GENERATED BY CURRENT COMPONENTS* 

R. P. Feynman, M .  Gell-Mann, and G. Zweigt 

(Received 2 Novcmbcr 1964) 
California Institute of Technology, Pasadena, Caiifornia 

It nas been that the equal-time 
commutation rules of the time components of 
the vector and axial-vector current octets 
(@iO and 3ia5, respectively) are the same as 
if these currents  had the simple form siO! and 
S i a 5 ,  defined a s  follows: 

where q is an SU(3) triplet with spin +-for exam- 
ple, the quarks’ or aces.4 Here the matrices 
~i (i = 1, .--, 8) a r e  the SU(3) analogs of the Pauli 
matrices, as defined in reference 1. The opera- 
tor s 

then generate a t  equal times the algebra of 
SU(3)@SU(3), which may be a very approximate 
symmetry of the strong interactions, ‘9’ while 
the F i  generate a subalgebra corresponding 
to SU(3), which i s  a fairly good symmetry of 
the strong interactions. 

We now propose to extend these considera- 
tions to the space components of the currents 
as well. Firs t  we define’-’ a ninth A matrix 
A O =  (3)‘”l and a corresponding ninth pair of 
currents So0! and 500!5 (where Foe would be 
v% times the baryon current in a true quark 
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or  ace theory). We then assume that the equal- 
time commutation relations of a l l  the 72 com- 
ponents of the 5i0! and 3ia5 (i = 0, e.., 8) a r e  the 
same a s  those of the sia and sia5, at least as 
far a s  terms proportional to the spatial 6 func- 
tion a r e  concerned. (There a r e  also, in gen- 
eral, terms5 involving gradients of the 6 func- 
tion, which vanish on space integration and 
which we ignore here.) The system of sicr 
and sia5 i s  closed under equal-time commu- 
tation, and the space integrals J9icrd3x and 
J9 iO5d3x  generate the algebra of U(S)@U(S). 
Our assumption thus implies that J 5i0!d3x and 
J51,5d3x also generate the algebra of U(6) 
mU(6). We assume further that this algebra 
is a very approximate symmetry of the strong 
interactions. 

W e  now exhibit some of the s t ructure  of the 
algebra by looking at  the siO and sia5. We 
note that the space integrals of the densities 

9h.y q = q f A . q  (i=O,**.,8) 2 4  

and 

ir/h.y y q=q tX .o  q ( n = l , 2 , 3 )  r n 5  a n  

generate the subalgebra corresponding to U(6); 
the same is then true of the corresponding 
components of the 5’s .  We may refer  to  the 
algebra of the space integrals of these 5 com- 
ponents as  the A spin, with generators A ,  
(Y = 0,1, - * - , 3  5). Now the space integrals of 
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the densities q t h i d ( l  + y 5 ) q  and qthioni( l  + y 5 ) q  
also generate a group U(6), and so do the cor -  
responding te rms  with $(l-y5).  The cor re-  
sponding integrals of 5 components thus give 
a left-handed A spin A,+ and a right-handed 
A spin A y - ,  respectively, with 

A = A  + + A  - ( ~ = 0 , 1 ; - - , 3 5 ) .  (3) 
Y Y  Y 

Those 36 components of sia and T i a 5  (out of 
a total of 72) that a r e  the densities of the A ,  
do not go just into themselves under Lorentz 
transformations, but yield instead the com- 
plete system of 72 components of the S i a  and 
Zia5, which form the densities of A,' and A,- 

We have assumed above that the A +  and A -  
spins a r e  separately very approximate symme- 
t r ies  of the strong interactions. We may now 
add the further assumption that the total A 
spin i s  a good symmetry, nearly as good as 
the subset that constitutes the P spin. This 
approximate conservation of A spin is  then 
our way of describing the success achieved 
by the SlJ(6) symmetry of Giirsey and Radi- 
cati,6 Sakita,' and Zweig,' treated further in 
a se r ies  of recent L e t t e r ~ P - ' ~  In reference 
10, our interpretation of the symmetry i s  
hinted at, but otherwise it i s  described in dif- 
ferent language, which does not make clear  
the physical identification of the symmetry 
operators with integrals of components of the 
vector and axial-vector currents  occurring 
in the weak and electromagnetic interactions. 
Also, the Lorentz-complete system, obeying 
the commutation rules of U ( 6 ) a  U(6) ,  is not 
given. 

p exists par t  of the time as Z i i ,  part of the time 
a s  N +8, part of the time as A + a.  etc., with 
a different set of channel spins in each case,  
it i s  evidently not sufficiently specific to talk 
of "spin independence" of strong interactions. 
In contrast, our statement in terms of the a),- 
proximate conservation of the Ganiow-Teller 
operator 1Zin5d9x (n  = 1 , 2 , 3 )  does have a def- 
inite meaning. 

One set  of consequences of our approach is  
that the Gamow-Teller matrix elements with- 
in an SU(6) supermultiplet can be 5xactly com- 
puted in the limit of SU(6) symmetry. We 
adopt the assignments of the ./ 
octet and J "  = $+ baryon decimet to the SU(6) 
representation 56, and the assignment of the 
vector-meson octet and singlet and the pseudo- 
scalar  octet to the representation 35; these 

In a relativistic situation, where a state like 

= 1' baryon 

assignments have explained a t  least s ix  well- 
known facts.15 The axial-vector strength, with- 
in the baryon octet, comes out to be 1(D) + %@); 
for the nucleon, this gives ( -GA/Gv)  = 5/3, 
as indicated in reference 10, to be compared 
with an observed value more like 1.2. The 
agreement is fair, as is the agreement of the 
D / F  ratio with the resul ts  on leptonic hyperon 
decays. The matrix elements of the Gamow- 
Teller operator between octet and decimet a r e  
also exactly specified in the limit of SU(6) sym- 
metry and can be checked by neutrino experi- 
ments. 

symmetry U(6)@ U(6)$ which bears  about the 
same relation to U(6) symmetry as the U(3) 
@ U(3) symmetry generated by the t ime compo- 
nents of vector and axial-vector  current^'^^ 
bears  to the eightfold way. On the way from 
the full U(6)@ U(6) down to U(3), we could pass  
through U(6) o r  through U(3)@U(3) symmetry 
as an intermediate stage; these a r e  alterna- 
tives in somewhat the same way as are 1,-S 
and j - j  coupling in atomic physics. It seems 
that the operators of U(6), all of which have 
nonrelativistic limits, form a much better 
symmetry system than those of U(3)R U(3); 
hence, the useful procedure i s  to go f r o m  U(6) 
6t U(6) to U(6), and then to U(3) and U(2). [Actu- 
ally U(6) is not much worse than U(3). I 

The baryons a r e  presumed to have zero mass 
in the limit of U(6)@ U(6) symmetry, as in the 
limit of U(3)@ U(3) ~ y m r n e t r y . ' ' ~  The per tur-  
bation that reduces the symmetry of U(6) i s  
assumed to transform like (5,s') and (s*, 5) 
under ( A + , A - ) ,  and like 1 under A .  Thus it 
transforms like a common quark mass term 
q y ,  which takes a left-handed q going like (5, - 1) 
into a right-handed q going like (1, _ _  6) ,  and vice 
versa.16 The J" = ;+ octet and J' = 2' decimet 
belonging to can be placed either in (1, 56) 
and (z,l), or in (S,?) and (21,6), _ -  if we re- 
s t r ic t  ourselves to representations that t rans-  
form like 3q. The latter is  very attractive, 
because it splits into a 56 and a 70, where the 
masses  to f i r s t  order  i i z h e  perturbation a r e  
in the ratio 1:-2; as in reference 3,  we must 
interpret negative mass as positive mass with 
negative parity, and s o  we a r e  led to a 56 with 
unit mass  and a 70 with opposite parity and 
roughly twice t h e m a s s .  The - 70 contains a 
$-  octet, a 4- singlet, a 1- octet, and a $ -  
decimet. Thus the prediction of reference 3 
that the ;+ octet i s  accompanied by a b -  sing- 

Let us  now go on to discuss the badly broken 

- 
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let of roughly  twice  the  m a s s  is contained in 
o u r  p r e s e n t  r e s u l t .  The  4- octe t  h a s  probably  
been seen [ including N(1512)], but  t h e  4- oc-  
tet and  d e c i m e t  h a v e  not s o  far been ident i f ied.  

In t h e  l i m i t  of U(6)@ U(6) s y m m e t r y ,  the 
vector and p s e u d o s c a l a r  mesons of t h e  35 c a n  
be  put  into e i t h e r  of two p a i r s  of r e p r e s e n t a -  
tions that  t r a n s f o r m  l i k e  r/ + ;. T h e  mesons 
could g o  l i k e  (35,l-l and (I, 35) ,  o r  e l s e  l ike  
( 6 , 6 * )  and (6*,  6) .  If they belong to t h e  adjoint  
r e p r e s e n t a t i o n  pair (I, 35) and (35, i), as t h e  
c u r r e n t  components  do ,  then the  usua l  35 i s  
a c c o m p a n i e d  by a n o t h e r  2, consisting of a 
normal ax ia l -vec tor  octet and  singlet and an 
a b n o r m a l  scalar octet. [Here, “normal” means 
that t h e  Y = 0 ,  1=0 m e m b e r  of a n  axial vector,  
scalar, or  p s e u d o s c a l a r  SU(3) multiplet is 
even u n d e r  c h a r g e  conjugat ion;  “abnormal”  
means it is odd.]  If t h e  mesons belong to (S,S*) 
and (6*, 6), then  t h e  usual - 35 i s  accompanied  
by a 1 (a n o r m a l  p s e u d o s c a l a r  s ing le t ) ,  anoth-  
er I (a normal scalar s ingle t ) ,  and  a 35 con- 
s i s t i n g  of a n  a b n o r m a l  axial-vector octet and  
singlet and a normal scalar octet. In e i t h e r  
case, t h e  p e r t u r b a t i o n  t h a t  r e d u c e s  U(6)@ U(6) 
to U(6) d o e s  not s p l i t  the mesons into U(6) mul- 
tiplets in  first o r d e r ;  in  s e c o n d  o r d e r ,  they 
are s p l i t .  T h e  assignment to (S ,S*)  and (6*, 6) 
is appealing b e c a u s e  the p s e u d o s c a l a r  singlet 
could be  icen t i f ied  with q(960), t h e  scalar oc- 
tet may include ~ ( 7 2 5 ) ,  a n d  t h e  a b n o r m a l  axial 
octet may include t h e  meson at about  1220 MeV 
with I = 1 that  d e c a y s  into ii + w .  

- -  
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tion of octet and decimet spacing, the initial degen- 
eracy of cp and w ,  the amount of mixing of cp and w, 
the equality mKZ-rn;= mK*2-mt ,  and the absence 
of appreciable mixing between q and q(960). 

16At the end of reference 3, it i s  suggested that 
perhaps the perturbation in the energy density that 
reduces U(3)@ U(3) symmetry to U(3) symmetry 
generates, together with the algebra of U(3)@ U(3), 
a small  algebra, which could be that of U(6). Such 
a use of U(6) is not the same as the use  we a r e  dis- 
cussing in this Letter. However, we might consid- 
e r  the analogous possibility that the perturhation 
in the energy density that reduces U(6)@ U(6) to  
U(6) generates, together with the algebra of U(6) 
@ U(6), the algebra of U(12), corresponding to all 
unitary transformations on the four Dirac compo- 
nents and the three unitary-spin components of a 
quark field. Even if this i s  t rue,  of course,  U(12) 
need not be a useful symmetry of strong interactions. 
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VERY HIGH-ENERGY COLLISIONS O F  HADRONS 

Richard P. Feynman 

(Received 20 October 1969) 
California Institute of Technology, Pasadena, California 

proposals are made predicting the character of longitudinal-momentum distributions 
in hadron collisions of eldreme energies. 

Of the total c ross  section for very high-energy 
hadron collisions, perhaps 4 i s  elastic and 10% 
of this is easily interpreted as diffraction disso- 
ciation. The r e s t  i s  inelastic. Collisions involv- 
ing only a few outgoing particles have been care- 
fully studied, but except for the aforementioned 
elastic and diffractive phenomena they all fall off 
(probably a s  a power of the energy at  high ener- 
gy). The constant par t  of the total inelastic c ross  
section cannot come from them. And we know 
that a t  such energies, the majority of collisions 
lead to a relatively large number of secondaries 
(perhaps the multiplicity increases logarithmi- 
cally with energy). These collisions have not 
been studied extensively because, with the large 
number of particles, so many quantities or  com- 
binations of quantities can be evaluated that one 
does not know how to organize the material for 
analysis and presentation. 

It i s  the purpose of this paper to make sugges- 
tions a s  to how these c ross  sections might be- 
have so that significant quantities can be extract- 
ed from data taken at different energies. These 
suggestions arose in theoretical studies from 
several directions and do not represent the re-  
s u l t  of consideration of any one model. They a r e  

an extraction of those features which relativity 
and quantum mechanics and some empirical facts' 
imply almost independently of a model. I have 
difficulty in writing this note because it i s  not in 
the nature of a deductive paper, but is  the result 
of an induction. I am more sure  of the conclu- 
sions than of any single argument which suggest- 
ed them to me for they have an internal consis- 
tency which surpr i ses  me and exceeds the con- 
sistency of my deductive arguments which hinted 
at  their existence. 

Only the barest  indications of the logical bases  
of these suggestions will be indicated here. Per -  
haps in a future publication I can be more de- 
tailed.* 

Supposing that t ransverse momenta a r e  limited 
in a way independent of the large z-component 
momentum of each of the two oncoming particles 
in the center-of-mass system ( so  s = 2W2) ,  an 
analysis of field theory in the limit of very large 
W suggests the appropriate variables to use for 
the various outgoing particles in comparing ex- 
periments a t  various values of W in the c.m. s y s -  
tem. They a r e  the longitudinal momentum P ,  in 
ratio to the total available W ,  i.e., x = P J , / W ,  and 
the t ransverse momenta 6! in absolute units. 

1415 
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Differential c ross  sections for dx d2Q of the var- 
ious outgoing particles will then have simple 
properties as a function of W .  Negative x means 
particles with P ,  negative. 

F i r s t  we must distinguish exclusive and inclu- 
sive e.xperiments. In exclusive experiments, we 
ask that certain particles, with given x and Q ,  be 
formed, and no others. An example is a two- 
body charge-exchange reaction. A typical exclu- 
sive reaction i s  

__ 
- 

n n‘ 
A + B - Ci +c D, , 

1 1 

where A i s  to the right, B to the left, and C,, C,, - - - ,  C, a r e  definite particles with definite Q’s 
and x ’ s  all moving to the right ( x  > 0), whereas 
the D,, D,, - * - , D, a r e  moving to the left ( x  < 0). 
The cross  section should then vary, for suffi- 
ciently high W, as s 2 0 L ( ‘ ) - 2  or  ( W 2 ) 2 a ( f ) - 2 ,  where 
a( t )  i s  the a of the highest Regge trajectory ca- 
pable of converting the quantum numbers of A in- 
to those of the sum of the C’s ,  and t i s  the t rans-  
verse  momentum difference of A and the sum of 
the C’s. 

This i s  an evident expectation from Regge the- 
ory and should be as approximately valid as that 
theory is for two-body reactions. The additional 
point here i s  the clarification of using the vari- 
able x to compare experiments a t  various ener- 
gies. If no unitary quantum number is required 
to be exchanged, s o  the C group has the same 
quantum numbers as A ,  this C group can r i s e  
f rom A via diffraction dissociation and the c ross  
section should approach a constant ratio to the 
elastic c ross  section at this value of t (i.e., it 
should be constant i f  the elastic c r o s s  section 
is). 

Next, an inclusive experiment i s  one in which 
we look for special par t ic les  with x ,  Q in the f i -  
nal state but we allow anything else to be pro- 
duced also. An example i s  a measurement of the 
mean number of K ” s  produced with given Q, x in 
a p p  reaction. Such cross  sections should ap- 
proach a constant as W -m. 

How can these be reconciled? Why does the 
cross  section fall if, for example, in a two-body 
reaction we must exchange 3-component of isoto- 
pic spin? Because under such circumstances, 
the current of 3-component isospin must suddenly 
reverse from right moving to left moving. Thus 
if any fields a r e  connected to such currents  as 
sources, they would be  expected to radiate (in a 
manner analogous to bremsstrahlung). To be an 
exclusive experiment (say, pure two-body), we 
require that no such radiation occur, a condition 

becoming more and more difficult to satisfy a s  
the energy r i ses  and the current reversal  i s  
sharper. 

lisions, many particles over a wide range of x ,  
but their characteristics for the smaller  values 
of Y a r e  easy to envision. By Lorentz transfor- 
mation, the fields to be radiated a r e  becoming 
narrower and narrower in the z direction as W 
r ises .  The energy in this field i s  therefore dis- 
tributed in a 6 function in z .  Fourier analyzed, 
this means that the field energy i s  uniform in 
momentum, dP,. Since each particle of mass  p 
car r ies  e n e r g y E = ( ~ 2 + ~ ) 2 2 + ~ z ) 1 ’ 2 ,  if we suppose 
that the field energy i s  distributed among the 
various kinds of particles in fixed ratios (inde- 
pendent of energy W ) ,  we conclude that the mean 
number of particles of any kind and of fixed Q 
is distributed a s  dP,/E for not too large x .  That 
is ,  the probability of finding, among al l  the emit- 
ted particles, a particle of kind i, t ransverse 
momentum (3, and mass p i  is of the formf;-(Q, 
P,/W)dP,d2Q/(p~ + 8’ +Pzz)l’z ,  wheref j (Q,x)  is  
ultimately independent of W and has a limit E j ( Q )  
for small x .  A s  W - m ,  for any finite x ,  dP,/E 
becomes dx /x ,  of course. 

Because of this dx /x  behavior, the mean total 
number (or “multiplicity”) of any kind of particle 
r i ses  logarithmically with W .  We need not de- 
cide what a r e  “primarily emitted units” and what 
a r e  secondaries arising from their decay, for 
the results s o  far stated a r e  in a form that does 
not depend on that. If we imagine some pr imary 
independently emitted units, however, their num- 
ber  E would also r i s e  logarithmically with ener- 
gy, and the probability that  none of them would 
be emitted might be e -n (as suggested by a Pois- 
son distribution) which would then fall as a power 
of the energy, accounting for the Regge expres- 
sions which we a r e  supposing a r e  valid for such 
exclusive collisions. 

W e  can extend this idea to other amplitudes 
which involve a s imilar  E. In particular, we find 
that the probability that A + B  -C + anything 
should vary as (1-xc)1-2a(r)dxc, where C i s  mov- 
ing to the right with almost all the momentum Of 

A (that is ,  for 1 - x c  small). Here a(t)  is the high- 
es t  trajectory (excluding the Pomeran chukon) 
which could car ry  off the quantum numbers (and 
squared momentum transfer t )  needed to change 
A to C. 

Thus the Regge trajectory function a( t )  appears 
not only in an interaction (as sZa- ’ )  but a lso in a* 
emission process, reminiscent of the close re-  

This leads u s  to expect, in the majority of col- 

~ 

1416 



496 

VOLUME 23, NUMBER 24 P H Y S I C A L  R E V I E W  L E T T E R S  I 5  DECEMEER 1969 

lationship of virtual interaction and real  emis- 
sion that Yukawa emphasized. 

Finally, for those special reactions which a r e  
partially exclusive, in which anything can be 
emitted except that a hadron must be transferred 
from the right-moving to the left-moving sys t lm 
(carrying i ts  fermionic and half -integral spin 
character) the c ross  section should vary a s  l/s. 
Of this las t  conclusion, I am less sure  than of 

the others. 

'I have taken the approximate existence of Regge poles, 

transverse-momentum distributions as empir ical  facts. 
'For a somewhat more  detailed description, see 

R. P. Feynman, in Proceedings of the Third Topical 
Conference on High Energy Collisions of Hadrons, Sto- 
ny Brook, N. Y., 1969 (to be published). 

the constant total c r o s s  sect iohs,  and the constant 
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high energy hadron scattering. Firs t ly ,  most theore t ica l  inventions 

a re  based on analysis of simple col l is ions,  i n  which only a s m a l l  number 

of par t ic les  come out. kt it is  a t  once realized that questions of 

uni tar i ty ,  the asymptotic behavior for  high energy in  dispersion integrals,  

etc., require some ansatz be made for  the higher energy coll isions,  in 

order t o  close the  i n f i n i t e  hierarchy of equations which resu l t .  

experiments a t  high energies usually yield many part ic les ,  and only by 

selecting the rare  col l is ion can we find those about which the theor i s t  

has been speaking. 

which the major par t  of the ine las t ic  cross section is  due) so many 

variables are  involved t h a t  it is  not hown how t o  organize or  present 

t h i s  data. 

r i g h t )  suggests a way that t h i s  vast  amount of data ma;y be analyzed. 

this reason I shall present here some preliminary speculations on how 

these col l is ions might behave even though I have not yet analy-zed them 

as f u l l y  as I would l ike.  

Secondly, 

For the highly multiple ine las t ic  col l is ions ( t o  

Any theoret ical  suggestion (even if it p r w e s  t o  be not qu i te  

For 

Hadron phenomena possess a number of remarkably simple properties. 

Besides the well-known agreements with re la t iv i ty ,  analyticity,  uni tar i ty ,  

etc., there are  of course the conservation ru les  of isospin and strange- 

ness and an approximate agreement with SU 

however, we have some special  regular i t ies  which appear t o  be t rue  

empirically which apply t o  very high-energy behavior and which may point 

the way t o  an ultimate dynamical theory. 

regular i t ies  a t  very high energy are:  

symmetry. In  addition t o  these, 3 

A partial l i s t  of these 
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a constant f ract ion of th i s .  

(2) Exchange reaction cross sections f a l l  with a parer of the energy 
2a-2 

9 .  

2 (3) This power, a, seems t o  be t-dependent, and f o r  those t = m 

where a ( t )  

nant par t ic les  of mass m ( t  i s  the square of the four-vector momentum 

transfer  i n  the col l is ion) .  

(4 )  a ( t )  varies with t as a s t ra ight  l i n e  a ( t )  = a. + y t .  Although 

cto varies with the quantum numbers which must be exchanged, the value of 

y is  the same (0.95 per (GeV) ) for  a l l .  

(5)  

The average transverse momenta of the par t ic les  i n  ine las t ic  col l is ions 

are  limited ( t o  about 0.35 GeV). 

i s  an appropriate integer (or  half-integer) there are reso- 

2 

Cross sections f a l l  very rapidly with transverse momentum transfer.  

There are, of course, very many rough approximations i n  t h i s  br ie f  

summary. 

vary very slowly ( for  example, l i k e  

t ra jec tor ies  are  not exactly equal; whether the  pion nonet i s  on a 

t ra jectory of such a slope i s  unknown; there are  corrections t o  t h e  

simple “Regge expectations” (2), (3), presumably for absorption; some of 

the ine las t ic  cross sections can be associated with diffract ion disso- 

c ia t ion o f  the e l a s t i c  par t ;  etc.  Nevertheless, the l i s t  abwe contains 

a number of main phenomena whose general behavior must ult imately be 

understood. It w i l l  be noticed that i n  discussing the  power l a w s  asso- 

ciated with Regge behavior, I have expl ic i t ly  separated the behavior of 

the t o t a l  x-section which is  often described as the  Fomeranchuk trajectory,  

For example, we do not know i f  the t o t a l  x-section might not 

In s ) ;  a l l  the slopes o f  Regge 



for it is  not cer ta in  t h a t  t h i s  i s  a typical  t ra jectory.  

understand the meaning of these regular i t ies  of high energy behavior, 

I have been led t o  suggest cer ta in  further r e g u h r i t i e s  accompanying 

them. I should l i k e  t o  present these guesses here t o  see i f  they a re  

possibly true, or, i f  some of them are  obviously i n  disagreement with 

experiment, t o  learn where I may have already gone off the t rack i n  my 

thinking. 

I n  trying t o  

I shall, for  completeness, first explain how I am t rying t o  go about 

analyzing these things; second, describe some specTa1 considerations 

dealing with Regge exchange; and finally,  present my suggestions for  the 

l imiting behavior of cross sections a t  high energies. 

I. FIELD THEORY AT HIGH ENERGY 

In  order t o  think about these questions I wish t o  use concepts which 

w i l l  immediately insure t h a t  the most fundamental properties of r e l a t i -  

v i s t i c  invariance, quantum superposition, unitari ty,  e tc  ., w i l l  automati- 

ca l ly  be sat isf ied.  

chance of doing t h i s  i s  a quantum f i e l d  theory (I say, a chance, because 

we are not sure i f  unrenormalized Held  theories can give f i n i t e  answers, 

or i f  renormalized theories are  s t i l l  unitary).  It is  not that I believe 

that the  observed high-energy phenomena are  necessarily a consequence of 

f i e l d  theory. 

them. But, rather,  I believe that they share some of the properties of f i e l d  

theory, so they might share others. Therefore, I wish t o  study the behavior 

expected from f ie ld  theory for  col l is ions of very high energy. 

theory shall I choose? What shall be the fundamental bare par t ic les  that 

The only theoret ical  structure I know which has a 

Even less do I know what specific f i e l d  theory could yield 

What f i e l d  
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the  theory begins with? I do not know and perhaps I do not care. I shall 

t r y  a t  f i r s t  t o  get r e s u l t s  which are  more general and character is t ic  of a 

wide class  of theories and which can be stated i n  a way independent of the  

f ie ld  theory which served as a log ica l  crutch for  t h e i r  discovery. 

l a te r ,  possibly, might it be worth t rying t o  see i f  cer ta in  special  experi- 

mental de ta i l s  imply something about a special  theory which underlies a l l  

these phenomena. 

Only 

I n  the  meantime I c a l l  tbe fundamental bare par t ic les  of q y  under- 

lying f i e l d  theory "partons" (which may be of several  kinds, of course). 

For example, i n  quantum electrodynamics the partons a re  bare electrons 

and bare photons. 

be separated in to  two pieces 

partons and the  other the interact ion between them. 

expressed i n  terms of creation and annihilation operators (a , a )  of these 

partons (or, if you prefer, loca l  f i e l d  operators of t h e  parton f i e l d s  i n  

space). Next, for  special  application t o  col l is ions of extremely high 

energy, W, incoming i n  the z-direction i n  the center-of-mass system, only 

the  operators of f i n i t e  transverse momenta (i.e., x, y components) are  

kept as W - 03. 
(i.e., P, = x W, where x is a f i n i t e  quantity as we take a l i m i t  as 

W - m) are separated f'rom those of negative z-component. 

called r ight  movers (a,) and the second lef't movers (a,). 

done, and the Hamiltonian reexpressed, we get 

i s  the Hamiltonian involving r igh t  movers (aR , 8 ~ )  only (containing, of 

course, interact ion terms among these r igh t  movers coming from H 

H involves l e r t  movers (a, , aL) and 

Imagine this theory t o  have a Hamiltonian Hwhich may 

H = Hfree i- Hint, one t o  represent f ree  

This H is, a t  first, 
* 

"he ones with posit ive z-component of momentum of order W 

The first are  

If th i s  is 

H = €$+I$,  -t. % where % 
* 

i n t  ' 9  * 
contains both aR and aL, and L 
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represents an interaction between the  objects moving t h e  l e f t  and those 

mwing t o  the r ight .  But 3, as  W - w , becomes a very simple expres- 

sion (depending on the theory of course). 

r igh t  moving proton with a l e f t  moving neutron yielding r igh t  and l e f t  

moving par t ic les  can then be analyzed in  a simple way. 

eigenfunction of %, the  neutron of HL. 

s ta tes  before and a f t e r  col l is ion are complete eigenfunctions (not simple 

psrtons) of % + %. 
(not necessarily i n  f irst  order, of course). 

For example, a col l is ion of a 

The proton i s  an 

Neglecting 3, the  system of 

The operator HI makes the  t rans i t ion  between t h e m  

I leave t o  a l a t e r  publication a more detailed description of haw 

t h i s  might be carried out, but here I need only make some remarks about 

the variables on which things appear t o  depend i n  the  l i m i t  as W - OD. 
To describe a proton of momentumzo, energy Eo, ordinary f i e l d  theory 

gives a s t a t e  function or  wave function giving the  amplitude that a number 

of partons of 3-momentazl, &, . . . etc., a re  t o  be found i n  it. 

total  momentum of these partons 

proton, but t h e i r  t o t a l  energy (where each energy Ei i s  calculated 

f’romthe mass pi of the parton v i a  Ei = /- P ) is not equal t o  

that of the  f i n a l  proton Eo. I n  fact, t h e  amplitude t o  f ind t h i s  state 

contains, among many other factors, one which is  inversely proportional 

t o  t h i s  energy difference 

The 

2 P 
i 

2 Ei i 

equalszo  the momentum of t h e  

A .. (Eo - C Ei)-’ 
i 

Knowing this wave function completely for  sane Po, say a t  res t ,  haw 

can we find it a t  some other momentum? It is  very d i f f i c u l t  t o  do, and 

i n  f a c t  it requires knowledge of the en t i re  Hamiltonian o p r a t o r  H, fo r  

the wave function is not a r e l a t i v i s t i c  invariant. This is emphasized 
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by the point that the momentum i s  the sum of the momenta of the parts but 

the energy is not. 

those i n  which zo is  very large i n  the z-direction and f in i t e  i n  the 

directions perpendicular t o  that. If we take Poz = xo W and measure 

the parton's momentum in  the z-direction in  the same scale 

then the wave function has a def ini te  limiting form as W -. OD 

xi f in i te .  

for example.) We have 

The wave functions that should be useful for  us are 

Piz = xi W, 

for xo, 

(xo, of course, is arbitrary; it may be taken t o  be unity, 

xo = z xi (2) 

let the components of momentum perpendicular t o  z be called 9, a two- 

dimensional vector; then 

-0 Q = 2 2 i  (3) 

Finally we can see how A varies (insofar as its denominator behaves) 

by writing it as 

which equals 

However, for 

A * ((Eo - Po,> 

(1) since the t o t a l  

large z-momentum, 

z-momentum is the sum of i t 6  parts. 

2 2 2 
E - P z =  (m + P  + P , )  - p z =  

m2 + Q 4 m x 2 )  

where m i s  the mass of the particle.  

A -  2w [i.' :oQq 

l /2  
( m 2 + Q 2 + x 2 $ )  - x W  

7 

Therefore, the amplitude becomes 
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When the numerator as  wel l  as t h e  denominator a re  expressed in  these 

variables x, Q only a simple power of W appears in  A which can be removed 

by a renormalization of the scale of P in phase space integrals .  The 

conclusion t h a t  I wish t o  remark for  our present purposes is: 

expressed i n  terms of Qy the  transverse momentum in absolute scale, and 

xy the longitudinal momentum i n  re la t ive  scale, the wave functions have 

def ini te  limits as W, the  energy scale of the longitudinal momentum of 

the s t a t e  goes t o  OD. 

They represent the fractions of the momentum xo which each parton has 

(thus, i f  xo = 1, a l l  xi run from 0 t o  1). 

t i v e  is  t h a t  i f  a parton has a negative momentum 

or Pz = -1.1 w the energy Ei i s  approximately +I.\ W s o  E - P, is  

2 1x1 W which i s  of order 3 larger  than the E - Pz of posit ively 

moving partons. Appearing in  the denominator of amplitudes, such ampli- 

tudes are of order 

z 

w h e n  

* 
I n  t h i s  l i m i t  the values of x are  posit ive only. 

The reason x. must be posi- 

P = h?r with x negative 
1 

z 

Y 

1/W2 smaller and vanish i n  the l i m i t  W in f in i te .  

It i s  seen that t h i s  rule  ( that  x be purely posit ive and a l so  t h a t  

the amplitude depends only on x) i s  not valid i n  an asymptotic way ( for  

W - OD) when 1x1 is  as s m a l l  as order c/W. The masses and transverse 

momenta seem t o  be of the order of 1 GeV so we s h a l l  c a l l  an 

(1 GeV)/W a "wee" x. 

of-mass system (taking xo = l ) ,  

a wee x would be x = 0.005 say. 

is not without interest ,  as  we shall see, but for  the present we shall 

discuss only x which i s  not wee. Then the amplitude as W - a, appears 

1x1 of order 

For example, for  Po = W = 100 GeV 

i s  a small x, but it i s  not wee; 

i n  the center- 

x = 1/10 

The behavior of the amplitude f o r  wee x 

* 
The statement i s  not precisely correct.  
matrix has def ini te  limits. 

What i s  meant i s  the density 
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t o  be a f'unction of the Q's and x ' s  of the par ts .  

In a high-energy coll ision, the i n i t i a l  s t a t e  consists of one of 

these groups of partons moving t o  the  r igh t  interact ing with another 

similar group moving t o  the  l e f t .  

be enough t o  j u s t  naively say that one peston has a cross section for  

coll iding with another, for, i n  f i e l d  theory, interaction i s  represented 

by mediation of a f i e l d ;  i n  fact ,  by the  exchange of j u s t  another parton 

coupled by the piece HI of the Hamiltonian. But this HI i n  i t s  form, is  

not en t i re ly  independent of the  form of % for  they both come from 

operations on the original  Hamiltonian H. 

a c t  via the  exchange a parton is  closely related to the  amplitude that 

there i s  some parton i n  the r igh t  moving system i n  the i n i t i a l  s t a t e  that 

can be "mistakenly" considered as  r e d l y  being a parton belonging t o  the 

l e f t  moving system. (Just  as  two electrons in te rac t  i n  first order by 

exchange of a photon, so it i s  a l so  t rue  that a r igh t  moving physical 

electron of xo = 1 

of longitudinal momentum 1 -x 

Interaction resu l t s  if we consider t h a t  the l e f t  moving electron (insofar 

as it i s  bare) has some amplitude t o  be a l e f t  moving outgoing physical 

electron if we make it up of a l e f t  bare electron and the aforementioned 

photon.) However, a parton of momentum xW t o  the  r igh t  would be moving 

backwards i n  the l e f t  system and would have pract ical ly  no amplitude 

(as W -. a) t o  be "mistakenly" considered as  belonging t o  t h i s  l e f t  

system. This i s  true,  of course, only i f  x i s  not wee (of order 

If x i s  wee, a r igh t  moving parton and a l e f t  moving parton a re  very simi- 

l a r  i n  appearance. 

or systems of partons of wee longitudinal momentum. 

What i s  the  interaction? It w i l l  not 

Thus the amplitude t o  inter-  

has a first order amplitude t o  be an idea l  electron 

(times W )  and a photon of momentum X. 

1 GeV/W). 

Thus interaction occurs only through exchange of partons 
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The energy dependence of reactions thus depends upon the probabili ty 

of finding wee partons of a cer ta in  nature. 

on wee partons can be gotten from a knowledge of the partons where x is  

not wee, but only s m a l l .  For the small x and wee x behavior must join i n  

a continuous fashion. For example, suppose, for  small  x the  amplitude t o  

find a parton system with x small varies as x dx where x i s  some con- 

s tan t  (a! < 1 ) .  

- l / W  i n  dx would, t o  f i t  on, have t o  vary as 

x tha t  such wee partons occupy is  of order 

find a wee parton must vary as Ffl", i f  W is t h e  momentum of the r igh t  

moving object. 

A great deal  of information 

-a 

Then the amplitude t o  find a wee parton of momentum 

(l/W)', but the range of 

so  t h a t  the  amplitude t o  1 / W  

If El i s  the energy of the  r ight  mover, t h i s  amplitude i s  

If t h i s  i s  t o  exchange w i t h  a similar system moving t o  the l e f t  

with energy E2 the amplitude t h a t  t h i s  parton system is  acceptable t o  the 

other system is  (E,)*-'. The amplitude f o r  exchange therefore i s  

or varies as sa-l since S = E1E2. The cross section 

(there i s  always a problem of convention of the  normalization of empli- 

tudes) varies as the square of this ,  o r  

means 

dx/x.  The amplitude t o  find a wee parton is  not dx/x because t h i s  

dx/x l a w  fails below l / W .  The amplitude t o  find a wee parton is  j u s t  

constant, independent of energy since the curve 

l / W  at a value of order W and the integral  below x = 1 / W  

this event. 

stant,  we see tha t  t h i s  must actually happen. It is, therefore, not 

s t r i c t l y  t rue  that as  

a defini te  l imiting wave function (as we said e a r l i e r )  for  there i s  a l w a y s  

s*"-*. A constant cross section 

(r = 1 or the  amplitude t o  find partons of s m a l l  x must vary as 
1/w 

01 

l/x cuts off for  x below 

is f i n i t e  i n  

Since cross sections (such a s  the  t o t a l  x section) are  con- 

W -CD i f  we keep a l l  x and Q constant there i s  
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a f in i te  amplitude for  wee partons. 

probability distribution of partons has a def ini te  l i m i t ,  in t h i s  l imit  

there are probabili t ies of finding partons varying as dx/x. The 

apparently diverging character of t h i s  distribution for s m a l l  x is  cut 

off a t  wee x / (A complete theory would have t o  describe t h i s  cutoff 

region in  detai l .  

However, the f in i t e  x part  of the 

(that i s  a t  x of order l/W) . 
We shall say more about it later . )  

The equations for x not wee simplify i f  one concentrates on the 

small  x part. 

for small x (the approximation improving as x decreases) so that solutions 

with special distributions of partons with a power law s c d e  dependence 

(x”) are eigenfunctions natural t o  f ie ld  theory. 

It is then seen that there i s  an approximate scaling l a w  

It may help t o  give a few, nearly t r i v i a l  examples. Firs t ,  accord- 

iw t o  first order perturbation theory in  the expression (4) for the 

amplitude, the numerator does not depend on x, Q for  scalar partons 

(couplings involve no momenta). 
2 2  low x, the term 

amplitude proportional t o  x (times the scale 

v i s t i c  phase space). This corresponds t o  a! = 0 for  the scalax meson. 

Likewise, it can be Shawn that  the amplitude for  (longitudinally polarized) 

vector partons varies as constant (times 

1/x comes f’rom the numerator couplings. 

i n  the simplest ways, the amplitude varies as xl/* (times dx/x). In 

general, a equals the spin of the particle.  In perturbation theory, these 

agree with well-known resul ts  for  the energy depndence of x sections, i n  

particular that  vector meson exchange as in  electrodynamics lead t o  con- 

stant cross sections in  perturbation theory. 

If one of the partons has an especially 

(p + Q )/x belonging t o  it dominates and we get an 

dP/E, or dx/x, of relati- 

dx/x). 

For spin 1/2 part ic les  coupled 

In t h i s  case a factor 
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The deep ine las t ic  behavior of the electron-proton scat ter ing has 

been looked a t  from the point of v iew described here. 

that the curve of 

i s  the dis t r ibut ion i n  x of charged partons (each weighed by the square 

of i ts  charge). A behavior l ike  dx/x f o r  the low momentum partons is  

indicated by experiment. 

It can be argued 
2 * k!? W vs. Q /2MV ( i n  t h e  variables of Bjorken ) 

Q2 

11. REGGE BEHAVIOR 

Ey'kegge behavior"is meant the second item of our l i s t  of regulari-  

t i es ,  tha t  the cross section f o r  exchange reactions vary as an (inverse) 

parer of the energy, which power depends on the momentum transfer .  

The or iginal  expectation of Regge behavior were the r e s u l t s  of a 

b r i l l i a n t  induction from Regge ' s non-relativist ic studies by e l l - k m  

and F'rautschi. Now, however, I should l i k e  t o  consider it as an 

established empirical fac t  and t o  t r y  ( i n  t h i s  section) t o  understand 

physically why it should be so. 

Let us consider a typ ica l  exchange reaction, for  example, a charge 
0 exchange reaction l i k e  

moving, and the p, n l e f t  moving. The easiest  view of t h i s  i s  tha t  a 

negative charge has been exchanged f'rom the I[ system t o  the nucleon 

p + x- - n + fl , i n  which the a-, zo are r igh t  

-1 system. The cross section falls  about as  s or according t o  the best  

estimates as s with a. = 0.43 or s -'*I4. It might a t  f i r s t  be 
z 0 - 2  

thought tha t  an exchange via a vector meson such as a p- would lead 

* 
SIAC publication No. 571. 
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(as  it does in  perturbation theory) t o  a constant cross section. 

it i s  t o  be noted that an important current density (the 3 component of 

isotopic spin) has been suddenly reversed. 

moving components of -1 t o  the right,  +1/2 t o  the  l e f t .  

it has 0 t o  the  r ight ,  -1/2 t o  the l e f t .  

isospin i s  not changed, a motion of a par t  of it (-1 u n i t )  i s  suddenly 

changed from r ight  t o  l e f t  motion. 

sudden reversal  of e lec t r ic  current density induces a copious Rremsstrahlung 

-- a sudden reversal  of the  direction of an electron carrying a photon f ie ld  

t o  the right,  leaves the f i e l d  coasting on t o  the r i g h t  i n  the form of 

photons (and, of course, the new motion of the  charge t o  the  l e f t  generates 

l e f t  moving photon Eb-emsstrahlung). 

The hadrons may ac t  similarly.  

However, 

t h i s  current density 
I n i t i a l l y  (II-, p )  / had fast 

Afterward (so, n) 

Although the t o t a l  3 component of 

In  electrodynamics we are  aware t h a t  a 

These currents are  of considerable 

importance i n  our present theories and i n  fac t  we believe there  are  

par t ic les  ( p  mesons i n  f a c t )  strongly coupled t o  them. 

current reversal  i n  a charge exchange w i l l  tend t o  shed p mesons. 

we can guess some of the behavior of the high-energy ine las t ic  coUisions 

by working by analogy t o  Bremsstrahlung. 

In studying the pure reaction 

Thus the strong 

Perhaps 

0 p + II- - n + II at  high energy, we 

insis t ,  first tha t  a current be suddenly reversed and, second, t h a t  no 

Bremsstrahlung actual ly  OCCUT. 

reaction have only the two par t ic les  n, no i n  the fixed s ta te .  

interpret  the fac t  that i n  such an exchange the cross section falls 

(relat ive t o  the main behavior of the  majority of inelast ic  scatterings 

-- for  which a constant cross section I s  empiricaUy more appropriate) 

as the energy rises,by the observation that as the energy r i s e s  it 

T h i s  latter i s  because we i n s i s t  tha t  the 

We can 
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becomes increasingly l e s s  l i k e l y  that the current reversal  can be accom- 

plished without Bremsstrahlung. 

The theory of Bremsstrahlung with strong coupling and with the  

"photons" of the f i e l d  carrying the very type of currents which a re  

sources of fur ther  Bremsstrahlung has not been worked out i n  de ta i l .  

Nevertheless, we may boldly t r y  t o  guess that cer ta in  analogies t o  elec- 

tromagnetic weak interaction Bremsstrahlung exis t .  

here comes from noting tha t  many features can be seen from a c lass ica l  

view which takes h -+ 0 so  e'fic i s  large.  Therefore some properties 

are understandable both for e /'he large, and fox e /kc small, may 

have more general val idi ty .  

the  reasons for  t h e m  clearly.  

Some hope for  sense 

2 2 

This i s  especial-ly. l i k e l y  i f  we understand 

Firs t ,  the  spectrum of the  par t ic les  i n  longitudinal momentum i s  

dPZ/E (or dx/x for x ' s  which are  not wee). This i s  because the  Lorentz 

contracted f ie ld  i s  so  sharp in  z that the energy i n  it is  dis t r ibuted 

uniformly i n  Pz (the Fourier transform of a pulse being a constant). 

energy dis t r ibut ion of the  radiated par t ic le  i s  therefore 

individual par t ic les  have energies E t h e i r  longitudinal momenta a re  dis-  

tr ibuted as dPZ/E. 

disintegration of the particles,  or of interaction between the par t ic les .  

If we write 

the r e l a t i v i s t i c  rule  for  the addition of veloci t ies  becomes, as i s  wel l  

known, simply the addition of rapidi t ies .  Suppose a par t ic le  i n  i t s  r e s t  

system can disintegrate or yield a new par t ic le  with rapidi ty  u. 

i f  the old par t ic le  has rapidityw, instead, the new par t ic le  appears with 

rapidi ty  w '  = w + u. Therefore, if the  old par t ic les  are  distributed 

The 

dPZ, o r  i f  the  

Also, such a dis t r ibut ion is  s table  under fur ther  

tanh w = Pz/E f o r  z component of the velocity of a par t ic le ,  

Then 
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uniformly i n  w (as  dw) the  new par t ic les  appear with a dis t r ibut ion a l so  

uniform i n  rapidi ty  because 

dw = dPz/E) i s  t o  be expected independently of whether we are  seeing w h a t  

was or iginal ly  radiated (say, p mesons) or a re  observing some other secon- 

dary par t ic les  that these may have changed in to  (e.g., i f  p's go in to  

kions). 

t ion  of par t ic les  of small (and wee) x i n  our strongly interacting systems 

also. also, 

because i f  t h a t  much energy is  taken from the  primary par t ic le  by radiat ion 

of one emitted par t ic le ,  subsequent emissions are severely affected. The 

dPZ/E 

smaller values of x.) 

dw' = dw. Thus t h i s  feature (a spectrum 

Hence I believe we should expect it f o r  our inelast ic  dis t r ibu-  

(We cannot expect t h i s  t o  be valid for  large x, s a y  x = 112 

spectrum for  photons i n  electrodynemics i s  precisely valid only for  

Next, the  energy i n  the  f i e l d  thus radiated i s  some fraction of the 

energy of the par t ic le  which radiates.  Thus the  par t ic le  may be found 

a f t e r  the radiation t o  have l o s t  on the average some fixed fract ion of 

i t s  energy. This i s  found experimentally, i n  some cases. For example, 

i n  pp col l is ions which yield a forward proton, i t s  average momentum is 

about 0.60 o f  the  incident momentum ( i n  individual coll isions,  i ts value 

fluctuates widely). 

* 

For weak coupling electrodynamics, the vector f ie ld  par t ic les  are 

emitted independently in to  a Poisson dis t r ibut ion with mean number 

emitted. The probabili ty that none are  emitted i s  e-n. The sum of the 

chance of emitting none, one, two, etc., ( tha t  is, the t o t a l  cross section) 

i s  much l ike  it would be without coupling t o  the  photons. Here we lmav the  

- 

* 
Report on the Topical Conference on High Energy Collisions, CERN 68-7, 
February 1968, W k o t ,  p. 316. 
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t o t a l  x section is constant, and so can t r y  t o  interpret  the energy f a l l -  

off s 

e 

This mult ipl ic i ty  n must r i s e  logarithmically with energy then as  

n = (2-2ct0) Ln s. 

f ie ld  par t ic les  emitted, but ra ther  the observed par t ic les  are  secondary 

disintegration products of these unknown primaries. But i f  each primary 

produces on the average a fixed number of secondaries, we see that the  

expectation is  that the mult ipl ic i ty  grows logarithmically w i t h  E. 

2ct0-2 
of the pure two-body charge exchange reaction as the  factor  

-; the  probabili ty of - expected mean 
for/no emission, where n i s  the/number of primary par t ic les  emitted. 

The par t ic les  we observe are  not, of course, the primary 

This i s  necessary if our various ideas are t o  f i t  together. 

we have already suggested t h a t  the mean number of any kind of par t ic le  

emitted is  t o  vary/as 

othemise with the energy W o f  the col l is ion (so that c i s  a constant). 

The t o t a l  mean number emitted, then,is c dx/x. T h e  upper l imi t  of x 

is of f i n i t e  order ( for  the formula f a i l s  as x + 1 

but the lower l i m i t  i s  of order of wee x, ( i .e. ,  order 
t o  the r igh t  

dx/x fails. Thus the  mean number emitted/mst vary as c ( h  W + const) .  

Because 

with x 
c dx/x for  small x and, for  a given x, not t o  vary 

and x cannot exceed 1) 

1 / W )  where the 

(Actually we can do the integral  a l l  the way t o  zero, for we expect the  

integrand t o  be c d P z / { m T  where p is  the mass and Q i s  the 

transverse momentum of a typical  par t ic le .  Putting P, = xW, t h i s  i s  

1 dx 2w x1 
X 

0 l c  dx2 + (w2 + Q2)/WF = In ((Z + Q2)1,*) 

for  f i n i t e  xl. 

momentum distribution. ) 

To go fhrther, we should have t o  know the  transverse 
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The one respect i n  which the  electrodynamic analogy leads us as t ray 

i s  i n  the transverse momentum dis t r ibut ion of the  photons. 

transverse momenta f a l l  off  slowly ( l ike  > $ for  sudden current 

reversals)  but i n  the strong col l is ions t h i s  i s  empiricaUy not true.  

Some character is t ics  of the dis t r ibut ion of charge across the face of 

the interacting par t ic le  i s  involved here. 

These large 

Q 

I have not yet studied the regular i t ies  involving the  transverse 

momenta (items ( 4 )  and (5) in  our Introduction) &om the viewpoint being 

developed here. 

be included in  any expectations. 

research strangeness and isospin character of these effects .  We should 

notice, however, that, although we discussed a chmge exchange ar is ing 

from an exchange of a par t ic le  of the quantum numbers of the  p ,  the  

exchange of any current of the usual octet  would have analogous effects  

on the possible Bremsstrahlung of par t ic les  coupled t o  other (non-commuting) 

currents. 

In the meantime, we can take these as empirical fac ts  t o  

In the same way we leave for  further 

a pure two-body exchange reaction, since the probabili ty of not 

Bremsstrahlung depends on exactly w h a t  currents are  reversed, the  value 

of a w i l l ,  morn t h i s  point of view, depend on the quantum numbers of the 

par t ic le  exchanged (which, of course, it does). 

is  evidently only the largest  for  a given s e t  of quantum numbers exchanged. 

The quantum numbers exchsnged may involve not only currents of uni tary 

The clo here referred t o  

symmetry, for  baryon number (and possibly spin) may be exchanged, and we 

do not know i f  there a re  special  couplings t o  baryon currents (or spin 

currents) which are  a l so  involved i n  determining ao. However, I should 

l ike  t o  hazard the guess t h a t  baryon number cannot be exchanged without 
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the transfer of a fundamental part of spin 1/2. 

has 01 = 112 which would imply a 116 behavior of amplitudes before 

corrections t o  Bremsstrahlung. Therefore, i f  we do an experiment which 

freely allows the emission of wee mesons, except t h a t  t h e  quantum numbers 

are  controlled so t h a t  a baryon must be exchanged between r i g h t  and lef't 

systems this cross section probably approaches a l/s behavior, instead 

of the constant expected for  similar experiments i n  which no baryons need 

be exchanged. 

Such an idea l  par t  already 

A f i n a l  question i s  that o f t h e  dis t r ibut ion of correlations among 

the  various emitted par t ic les  i n  the  average inclusive col l is ion.  

the perturbation theory these a re  emitted independently and a t  random in  

a Poisson dis t r ibut ion so the probabili ty that there w i l l  be k of them of 

momenta xl, x2, . . . xk is  jus t  

where  n is  the mem number emitted. 

whether t h i s  would be t rue  i n  our non-perturbative case or not, but if one 

i n s i s t s  on comparing the  experimental dis t r ibut ions and correlations t o  

some theory, perhaps t h i s  i s  the  f irst  thing t o  try: 

bution resu l t s  f r o m  an original  Faisson dis t r ibut ion of p's, each dis t r ibuted 

for small and wee x as c dPz/Ez with c near 1.1 or 1.2 (c i s  2-201, 

the p t ra jectory) .  In  fact, i f  we suppose two pions for every p? the 

multiplicity of p's  would be 

twice this, o r  about 2.3 In EuB(GeV). 

very w e l l  (see Table 1) .  

one gets fkom perturbation theory i f  one uses the coupling constant deter- 

mined for  p nucleon coupling. 

we have gone much further than we should -- f o r  OUT precise numerical resu l t  

In 

- 
(cdxl/xl), (cdxdx2), . . . (c%/%) e'n/k: 

I have not yet found a good reason 

that the  pion d is t r i -  

for 

c In sI and the  mult ipl ic i ty  of the pions 

Surprisingly, t h i s  f i t s  o b s e m t i o n s  

As an additional coincidence, t h i s  value c i s  w h a t  

It must be admitted t h a t  i n  this paragraph 
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depends upon a choice of which par t ic les  are  fundamental and which they 

dis integrate  into.  

which were independent of such specif ic  choices. 

A l l  our other predictions were of those features 

The probabili ty that the t o t a l  momentum of all the  emitted r igh t  

moving p's is l e s s  than y i s  proportional t o  yc so that (aside from d i f -  

fraction dissociation) the momentum dis t r ibut ion of the  ongoing par t ic le ,  

when it takes a fract ion of momentum x close t o  1 should vary as 

where 1-x is  small. 
In Section I 
/ we discussed the longitudinal momentum dis t r ibut ion of partons 

(1-x)' 

expected i n  a hadron wave f'unction, but we have not seen how t h i s  might 

lead us t o  expectations for  the dis t r ibut ions of momenta of r e a l  hadrons 

i n  a coll ision, for  partons are  not r e a l  hadrons. Nevertheless, we shall 

suppose that when a hadron is disturbed v ia  interaction, so that i t s  

dis t r ibut ion of partons is  no longer exactly that of a single r e a l  hadron 

state,  it must be compounded of a ser ies  of r e a l  hadron s ta tes ,  but the 

dis t r ibut ion of longitudinal momentum of these r e a l  hadrons is  quali ta- 

t ive ly  l i k e  those of the  partons which we described before ( i n  Section I). 

I have no way t o  see why t h i s  must be true, but the features of the  dis-  

t r ibut ions discussed i n  t h a t  section seen, firstly, t o  r e l y  mainly only on 

qua l i t i es  of r e l a t i v i s t i c  transformation; secondly, the principle i s  r igh t  

i n  perturbation theory; and thirdly,  the  resu l t s  of assuming t h i s  f i t  

very wel l  with the qual i ta t ive predictions o f  the Bremsstrahlung analogy. 

Finally, for one reason or  another -- empirical or theoretical ,  good or  

bad -- I suspect t h a t  the high energy col l is ions t o  have a number of 

features which we summarize i n  the  next section. 



516 

111. EXPECTED BEHAVIOR AT HIGH ENERGY COLLISIONS 
between two hadrons each of momentum W, 

In a col l is ion of  very high energy / i n  the  center-of-mass system, 

the outgoing par t ic les  of the col l is ion should be described by two 

variables Q, the transverse momenta in  absolute uni ts  and x the longi- 

tudinal  momentum as a proportion of W (so that 

describe cross sections for  various processes as W increases without l i m i t ,  

keeping the x, Q ' s  of the par t ic les  constant. 

order / 
or l e s s )  we say the par t ic le  has a wee momentum. 

value of x much below one, but higher than order 

large W. 

classes -- exclusive and inclusive. 

P, = xW). We intend t o  

If f o r  large W an x i s  of 

(so t h a t  i t s  momentum in the C.M. system is  i n  the  BeV range 

Small x simply means a 

1 Gev/w 

1 Gev/w 
/ f o r  extremely 

Finally we should l i k e  t o  characterize experiments as being of two 

An exclusive experiment i s  one i n  which it is  asked that only 

cer ta in  par t icular  par t ic les  of fixed Q, x, and character be found i n  the 

f i n a l  state,  and no others. In particular,  it excludes the  emission of 

par t ic les  with wee momenta i n  the l i m i t .  

AB - CD; an experiment which uses missing mass t o  t r y  t o  se lec t  events 

which are v i r tua l ly  two-body reactions, etc.  For such c o l l  sions, the 

cross sections should f a l l  off  inverse* as a parer of / the  power being 

2a( t )  - 2 where a ( t )  i s  the 0 appropriate t o  the highest Regge t ra jec-  

tory capable of carrying the necessary exchange of quantum numbers between 

the r igh t  moving and lef't moving system, and where t i s  the negative square 

of the transverse momentum which must be exchanged. 

the longitudinal momentum transfer  and the  energy t ransfer  go 

W - o .) 
the cross section i s  constant (empirically, a t  least ,  i f  t = 0); it does 

not f a l l  as W - (D. This phenomena i s  called diffract ion dissociation, 

Ekamples are:  two-body reactions 

s =  2& , 

With these x, Q 
( / these variables fixed, 

inversely as W 
t o  zero/as 

In the special  case tha t  no quantum numbers need be exchanged, 
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and i s  sometimes expressed as the exchange of the "Fomeranchuk trajectory".  

An inclusive experiment i s  one i n  which cer ta in  par t ic les  are  looked 

for  a t  given Q, x, but one a l s o  permits any number of additional par t ic les .  

More precisely, it does not i n  any way exclude the emission of a rb i t ra ry  

numbers and kinds of par t ic les  with wee momenta. Ekcamples a re  the t o t a l  

ine las t ic  cross section, the  mean number of Amesons emitted with momentum 

x i n  range dx, the  probabili ty t h a t  no single par t ic le  i s  moving r igh t  nor 

l e f t  i n  the  (center-of-mass system) with more than 112 the or iginal  momen- 

tum W, etc.  Such cross sections should approach constant f i n i t e  values as 

w - + a , .  
with small x 

The mean number of mesons of a given kind formed/in a high-energy 

inclusive experiment should vary as dx/x. This should extrapolate r igh t  

through the wee x region in  the form dPZ/E where E i s  the energy 

d,'+a'+p,2 of the  meson of momentum P 

that more appropriate variables for the  small x region, would be w, Q 

where w i s  the  z-component rapidi ty  w = tanh 

should be uniform in dw ( for  each Q) and ult imately independent of W.) 

As a consequence, the mult ipl ic i ty  of a given kind of hadron should r i s e  

logarithmically with W. 

a t  fixed Q. (This suggests 
2' 

-1 (Pz/E). The dis t r ibut ion 

It is  t h i s  &/x dist r ibut ion with i t s  logarithmically divergent 

character for  s m a l l  x which makes it possible t h a t  the probabili ty of 

finding any specific s e t  of par t ic les  with given x, Q values (except the 

e l a s t i c  or diffract ion dissociation ones) falls with energy as a power, 

and yet the t o t a l  cross section can be constant. 

In an inclusive experiment of A colliding from the right,  with B 

from the l e f t ,  the probabili ty that some par t ic le  C comes out moving t o  

the r igh t  with an x close t o  unity should vary as ( l - ~ ) ~ - ~ ( ~ ) ,  
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E u B  (BV) 

30 

4 70 

1500 

12m 

as long as 

t o  the t ra jectory of highest a (excluding the  Bmeranchon) which could, 

upon emission, carry away the  quantum numbers and transverse momentum 

needed t o  turn A t o  C. 

(1 - x)1/2 is not wee. Here a ( t )  i s  the value appropriate 

I n  a special  kind of par t ia l ly  exclusive process i n  which a baryon 

must be exchanged t o  get the reactants of f i n i t e  x, but no wee baryons 

appears among the  paxticles of wee momentum, then I believe t h e  cross 

section w i l l  vary as 

other suggestions. 

l/!4 but t h i s  i s  not on a8 firm a basis  as the 

M l l l t .  2.3 In EIAB 

7 7.8 

13 * 1 14.1 

18 +, 2 16.8 

24 +- 4 21.6 
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Richard P .  Feynman 

Department o f  Phys ics  

Pasadena, C a l i f o r n i a  91109  
C a l i f o r n i a  I n s t i t u t e  of Technology 

Many of us a r e  working on t h e  same problem, which i s  t o  

unders tand  t h e  behavior  of hadrons ,  t h e  s t r o n g l y  i n t e r a c t i n g  

p a r t i c l e s .  Among t h e  va r ious  a t t empt s  t o  unders tand  i t  i n  

t h e  p a s t  decade, t h e r e  i s  a r e c e n t  one t h a t  goes under t h e  

name of "pa r tons" .  I t  sounds very  mys te r ious ,  b u t  I w i l l  t r y  

t o  show you t h a t  you knew it a l l  t h e  t i m e ,  you j u s t  c a l l e d  i t  

something else. Work on p a r t o n s  has  been done by myse l f ,  

Paschos,  D r e l l ,  Bjorken, and o t h e r s .  

Almost everybody supposes t h a t  t h e  s t r o n g l y  i n t e r a c t i n g  

p a r t i c l e s  obey a number of p r i n c i p l e s  l i k e  t h e  quantum-mechan- 

i c a l  s u p e r p o s i t i o n  of ampl i tudes ,  r e l a t i v i s t i c  i n v a r i a n c e ,  uni-  

t a r i t y ,  and a n a l y t i c i t y  i n  some form or o t h e r .  The problem i s  t o  

*An i n v i t e d  t a l k  p re sen ted  a t  t h e  Symposium "The P a s t  Decade 
i n  Par t ic le  Theoryl'at t h e  Un ive r s i ty  of Texas i n  Aus t in  on 
A p r i l  14 -17 ,  1970 .  

7 7 3  
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make a theo ry  which i s  c o n s i s t e n t  w i th  a l l  o f  t h e s e  p r i n c i -  

p l e s  a t  t h e  same t i m e .  I t  would be  very  convenient  if w e  

could w r i t e  ou r  equa t ions  i n  a mathematical  form such t h a t  

w e  do n o t  have t o  keep checking them f o r  u n i t a r i t y ,  r e l a t i v -  

i s t i c  i n v a r i a n c e ,  quantum mechanics,  o r  something else. W e  

would then  n o t  g e t  new equa t ions  i f  w e  add some of t h e s e  

f e a t u r e s ,  f o r  t h e  s p e c i a l  mathematical  form would automati-  

c a l l y  have a l l  t h e  equa t ions  i n  it. The t h i n g  t o  do i s  t o  

f i n d  a model which s a t i s f i e s  a l l  of t h e s e  cond i t ions  simul- 

t aneous ly .  The only  model t h a t  w e  have i s  quantum f i e l d  

theo ry .  The i d e a  is  t o  t a k e  quantum f i e l d  theo ry ,  d e s p i t e  

i t s  d ivergences  and d i f f i c u l t i e s ,  and t r y  t o  see what k inds  

o f  mathematical  fo rmula t ions  it would have i n  it. W e  w i l l  

s t a r t  wi th  something which s a t i s f i e s  a l l  t h e  cond i t ions  and 

l a t e r  on perhaps we can modify some p a r t s .  

What i s  impl ied  by quantum f i e l d  theo ry?  Of course  you 

would have t o  make f o r  f i e l d  theo ry  a s p e c i f i c  model, y e t  i n  

every quantum f i e l d  theo ry  t h e r e  a r e  fundamental  f i e l d s  and 

o p e r a t o r s  which create and a n n i h i l a t e  some k i n d  o f  p a r t i c l e s  

t h a t  u n d e r l i e  t h e  theo ry .  W e  need a name f o r  t h e  o b j e c t s  

which t h e  fundamental o p e r a t o r s  a*  and a c r e a t e  and ann ih i -  

l a t e ,  o b j e c t s  t h a t  a r e  n o t  t h e  f i n a l  s tates o f  t h e  system, 
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such as a complete p ro ton ,  which may have p a r t s  i n s i d e .  We 

need a name f o r  what one would c a l l  t h e  "elementary p a r t i c l e s "  

of t h e  theo ry .  W e  do n o t  know i f  t h e r e  are any such p a r t i c l e s  

i n  t h e  end, b u t  w e  w i l l  s t a r t  by suppos ing  t h a t  t h e r e  a r e  be- 

cause  o the rwise  w e  would have no f i e l d  theo ry  a t  a l l .  I w i l l  

c a l l  t h e s e  t h i n g s  "pa r tons" .  I n  t h e  case of e lec t rodynamics ,  

f o r  example, t h e  pa r tons  a r e  t h e  i d e a l ,  what one sometimes 

c a l l s  "ba re" ,  e l e c t r o n  and t h e  i d e a l  p ro ton .  The c r e a t i o n  

and a n n i h i l a t i o n  o p e r a t o r s  c r e a t e  and a n n i h i l a t e  t h e s e .  But,  

a p h y s i c a l  e l e c t r o n  i s  an i d e a l  e l e c t r o n  wi th  some photon 

f i e l d  around i t ,  and i s  t h e r e f o r e  a combination of v a r i o u s  

pa r tons .  

What does a f i e l d  theo ry  look l i k e ?  I n  quantum f i e l d  

theo ry ,  i n s t e a d  o f  r e p r e s e n t i n g  t h i n g s  by s c a t t e r i n g  ampli- 

t udes  and Regge p o l e s ,  w e  use  a wave f u n c t i o n ,  and i t  g ives  

t h e  amplitude f o r  f i n d i n g  a p a r t o n  moving t h i s  way o r  t h a t ,  

o r  two p a r t o n s  going i n  a c e r t a i n  d i r e c t i o n ,  e tc .  So we 

s h a l l  see i f  w e  can g e t  anywhere by d i s c u s s i n g  what t h e  char -  

a c t e r  of t h e  wave func t ions  of t h e  p r o t o n s ,  t h e  neu t rons ,  

t h e  p ions  might be ,  and s h a l l  t r y  t o  r e p r e s e n t  t h e  experimen- 

t a l  r e s u l t s  i n  terms of p r o p e r t i e s  o f  t h e  wave f u n c t i o n s .  U1- 

t i m a t e l y ,  maybe w e  w i l l  s e e  some s p e c i a l  p r o p e r t i e s  o f  t h e  
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wave f u n c t i o n s  and perhaps  g e t  some i d e a  of what t h e  p a r t o n s  

a r e ,  whether t hey  have s p i n  one-ha l f ,  or they  a r e  qua rks ,  if 

i n  f a c t  t hey  are anyth ing .  A l s o ,  maybe by us ing  t h e  wave 

f u n c t i o n ,  one might be  l e d ,  p s y c h o l o g i c a l l y ,  t o  sugges t  a 

c e r t a i n  p r i n c i p l e  o r  f i n d  a g e n e r a l  p r o p o s i t i o n  t h a t  can be  

deduced o u t s i d e  t h e  realm o f  a b s t r a c t  f i e l d  theo ry ,  w i thou t  

t a l k i n g  about  t h e  o b j e c t s  i n s i d e .  For example, one might be 

able t o  deduce it by look ing  a t  t h e  commutation l a w  o f  cur -  

r e n t s ,  o r  something l i k e  t h a t ,  which does n o t  s ay  anyth ing  

about  t h e  under ly ing  machinery. I n  such  a case one would 

e s t a b l i s h  something t h a t  i s  more s a t i s f a c t o r y  than  i f  i t  

were model dependent. But,  it does n o t  b o t h e r  m e  t o o  much 

i f ,  a t  f i r s t ,  i t  i s  model dependent.  

The c h a r a c t e r i s t i c  o f  a wave func t ion  i s  t h a t  i f  you 

have an ampl i tude  f o r  f i n d i n g  a l o t  of p a r t i c l e s  o r  p i e c e s  

around, t h e  ampl i tude  i s  g iven  by 

N Amp = , 
Eo- z E l  

i 

where E 

t h e  c o n s t i t u e n t  e n e r g i e s  o f  t h e  p a r t o n s  i n s i d e .  The numer- 

a t o r  i s  some k i n d  of m a t r i x  element.  Now an i n t e r e s t i n g  

i s  t h e  s ta te  energy ,  s ay  of a p ro ton ,  and Ei are 
0 
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t h i n g  about a wave func t ion  i s  t h a t  it does depend on t h e  co- 

o r d i n a t e  system i n  which one looks  a t  it. I t  i s  an unrela- 

t i v i s t i c  i d e a ,  r e a l l y ,  because it c u t s  space-time a t  a g iven  

moment and a sks ,  "What p a r t o n s  do you see?"  I f ,  say  from a 

Lorentz t r ans fo rma t ion ,  it c u t s  space-time a t  a d i f f e r e n t  

ang le ,  one would see o t h e r  combinations.  I f  one has never  

t r i e d  t h e s e  t h i n g s ,  t h e  f a c t  that  t h e  wave f u n c t i o n  i s  n o t  

a r e l a t i v i s t i c  i n v a r i a n t  may be  bothersome f o r  a moment. But 

you know t h a t  t h e  sum of t h e  momenta of t h e  p a r t o n s  i n s i d e  

t h e  wave f u n c t i o n  i s  always t h e  same a s  t h e  t o t a l  momentum o f  

t h e  s ta te ,  and t h a t  t h e  momentum i s  conserved, b u t  t h a t  t h i s  

i s  n o t  s o  f o r  t h e  energy. I t  i s  t h e  l a c k  o f  energy conserva- 

t i o n  which g ives  t h e  s t r e n g t h  o f  a c e r t a i n  ampl i tude ,  so it 

i s  n o t  r e l a t i v i s t i c a l l y  i n v a r i a n t .  

I t  i s  n o t  easy  t o  t r ans fo rm a wave f u n c t i o n ,  because one 

has  t o  know t h e  Hamiltonian. Therefore ,  t h e r e  may be one 

system o r  ano the r  i n  which it i s  most convenient  t o  look a t  

t h e  wave f u n c t i o n  and t h e  usua l  sugges t ion  i s  t o  look a t  t h e  

wave func t ion  i n  t h e  rest  system o f  t h e  e n t i r e  s ta te .  I 

p r e f e r ,  i n s t e a d ,  t o  look a t  t h e  wave f u n c t i o n  i n  a system i n  

which t h e  p a r t i c l e s  a r e  moving very f a s t ,  a l l  ex t remely  rela- 

t i v i s t i c ,  i n  f a c t ,  i n  t h e  l i m i t .  Thus, I would l i k e  t o  look 
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a t  t h e  wave f u n c t i o n  of a p ro ton  when it is moving ex t remely  

f a s t  i n  t h e  z - d i r e c t i o n .  

Now i f  such an o b j e c t  moves very f a s t ,  t hen  i n  o r d e r  t o  

unders tand  what happens it i s  convenient  to r e w r i t e  t h e  same 

expres s ion  as 

N Amp = 
(E-Poz) - l ( E i - P i z )  ' 

s i n c e  I P .  

t h e  z d i r e c t i o n .  When t h e  t h i n g  i s  moving a t  extreme ve loc i -  

t i e s  i n  t h e  z - d i r e c t i o n ,  l e t  m e  suppose t h a t  

= Poz where P i s  t h e  center-of-mass momentum i n  
1Z O Z  

P. = XiW . 1 z  

For example, W may be t h e  energy i n  t h e  center-of-mass o f  t h e  

o r i g i n a l  s t a t e ,  i n  which case  x would be  one. O r  W could  

j u s t  be  a scale, and we could  l eave  x open. Then t h e  energy 

of a p a r t i c l e  (denot ing  t h e  t r a n s v e r s e  component o f  a p a r t i c u -  

l a r  p a r t i c l e  by Q.) i s  

0 

0 

E .  = iz2 + Qi2 + Mi2 = xi2W2 + Qi2 + Mi2 

I t  has  appeared exper imenta l ly  i n  c o l l i s i o n  a f t e r  c o l l i s i o n  

of hadrons wi th  each o t h e r ,  t h a t  t h e  side-ways momenta are 
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a l l  l i m i t e d  -- they  seem t o  be o f  t h e  o r d e r  o f  3 4 0  MeV. As 

t h e  energy of t h e  c o l l i s i o n  rises t o  t h e  h i g h e r  and h i g h e r  

G e V ' s ,  t h e r e  i s  no i n c r e a s e  i n  t h e  t r a n s v e r s e  momenta o f  t h e  

outgoing  p a r t i c l e s  i n  t h e  c o l l i s i o n  and they  are f i n i t e .  I 

am t h e r e f o r e  going t o  guess  t h a t  i n s i d e  t h e  wave f u n c t i o n ,  

it i s  also t r u e  o f  t h e  p a r t o n s .  The re fo re ,  as W goes t o  i n -  

f i n i t y ,  Q s t a y s  t h e  same. L e t  us t r y  it. Using 
2 

E - P Z = -  M + Q~ , w e  g e t  2wx 

2wN 
2 2  Amp = 

Mo -Qo - y 

i X L X  
0 

wi th  l x .  = x . Now i t  t u r n s  o u t  t h a t  as you t a k e  t h e  l i m i t  

f o r  c e r t a i n  m a t r i x  e l emen t s ,  2WN f a l l s  and t h e  ampl i tude  of 

t hose  s ta tes  i s  very  low. But  f o r  v a r i o u s  s ta tes  2WN ap- 

proaches a c o n s t a n t ,  a t  most,  and t h e r e f o r e ,  i n t e r e s t i n g l y  

enough, t h e  wave func t ion  has  a d e f i n i t e  l i m i t  as long  a s  

one s t a y s  away from x ' s  n e a r  zero .  That  i s ,  i f  you go t o  i n -  

f i n i t y  wi th  W ,  eve ry th ing  w i l l  be a l l  r i g h t  i f  t h e  x's remain 

f i n i t e .  There i s  a s m a l l  t e c h n i c a l  p o i n t  t o  s t r a i g h t e n  o u t  

a s  t o  what happens as x approaches zero .  

1 0  

However, w e  have a l r e a d y  d i scove red  something i n t e r e s t -  
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i n g .  I t  i s  t h a t  i f  w e  r e p r e s e n t  t r a n s v e r s e  momenta i n  abso-  

l u t e  u n i t s ,  and  l o n g i t u d i n a l  momenta i n  t h e  sca le  o f  t h e  

e n e r g y  o f  t h e  c o l l i s i o n ,  t h e  wave f u n c t i o n s  t h a t  come i n  a r e  

i n v a r i a n t  a s  W goes  t o  i n f i n i t y .  T h i s  l e a d s  t o  a s u g g e s t i o n  

a b o u t  t h e  e n e r g y  b e h a v i o r  of h i g h l y  i n e l a s t i c  c o l l i s i o n s  i n  

g e n e r a l ,  namely,  t h a t  e x p r e s s e d  i n  t e r m s  o f  t h e  v a r i a b l e s  

Q ' s  and x ' s ,  t h e  l a b o r a t o r y  e x p e r i m e n t s  migh t  approach  i n v a r -  

i a n c e  a t  e x t r e m e l y  h i g h  e n e r g i e s .  

A l i t t l e  more c a n  be  s a i d  a b o u t  t h e  wave f u n c t i o n .  I 

want  t o  r e p r e s e n t  t h i s  f a s t  moving pho ton  by a number of p a r -  

t i c l e s  moving a t  d i f f e r e n t  s p e e d s ,  s h a r i n g  t h e  t o t a l  x t h e  

t o t a l  l o n g i t u d i n a l  momentum i n  s c a l e ,  and l e t  u s  s a y  x = 1. 

A l l  t h e s e  p a r t i c l e s  s h a r e  t h e  t o t a l  momentum of t h e  s y s t e m .  

How a b o u t  some o f  them becoming n e g a t i v e ?  N o ,  t h e y  c a n n o t !  

I f  x w e r e  n e g a t i v e ,  when I t a k e  t h e  s q u a r e  r o o t  o f  E ,  which 

h a s  t o  b e  p o s i t i v e ,  i t  would b e  -xW, and s o  for p a r t i c l e s  

g o i n g  backwards ,  E-P i s  v e r y  l a r g e ,  n o t  v e r y  s m a l l .  I t  i s  

t h e  E-P i n  t h e  denomina to r  t h a t  makes t h e  a m p l i t u d e  o f  t h a t  

term n e g l i g i b l e .  So t h e  wave f u n c t i o n  of a f a s t  moving had- 

r o n  c o n s i s t s  of a l o t  o f  l i t t l e  p a r t i c l e s  moving f o r w a r d ,  

s h a r i n g  t h e  l o n g i t u d i n a l  momentum and  h a v i n g  a f i n i t e ,  con- 

f us i ng , t r a n s v e r s e  momentum . 

0' 

0 

2 

2 
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I have t r i e d  t o  u s e  t h i s  c o n c e p t  of t h e  wave f u n c t i o n  to 

u n d e r s t a n d  a number o f  phenomena. I would u l t i m a t e l y  l i k e  t o  

be able t o  u n d e r s t a n d ,  as much as p o s s i b l e ,  a l l  t h e  c h a r a c -  

t e r i s t i c s  of  t h e  t h i n g s  t h a t  w e  o b s e r v e  from s u c h  a p o i n t  o f  

view,  such  a s  where t h e  Regge e x p r e s s i o n s  come from, etc. So 

f a r ,  I have had b u t  a l i m i t e d  s u c c e s s .  However, even  t h e  

c r u d e s t  s i t u a t i o n  l e a d s  you t d  c e r t a i n  i d e a s .  C o n s i d e r  t h e  

e l a s t i c  form f a c t o r  o f  a p r o t o n .  T h a t  means t h a t  w e  h i t  t h e  

hunch of forward-moving p a r t o n s  t r a n s v e r s e l y  w i t h  a tremen- 

d o u s  m o m e n t u m  b y  a p h o t o n ,  and a s k  w i t h  what  a m p l i t u d e  do w e  

g e t  a p r o t o n  back a g a i n .  I t  would be r e p r e s e n t e d  by a num- 

b e r  of  p a r t o n s  moving i n  t h e  d i r e c t i o n  o f  t h e  f i n a l  p r o t o n .  

Now t h e  e l e c t r o m a g n e t i c  f i e l d ,  I am g o i n g  t o  s u p p o s e ,  i n t e r -  

a c t s  w i t h  o n l y  one  p a r t o n  a t  a t i m e ,  b e c a u s e  most f i e l d  

t h e o r i e s  have a p r o p a g a t o r  f o r  t h e  p a r t o n  o b t a i n e d  by t h e  

s u b s t i t u t i o n  p+p-eA. So what w e  a r e  r e a l l y  a s k i n g  is t h i s :  

Suppose w e  have  a number o f  t h e s e  p a r t o n s  and w e  k i c k  one  o f  

them s i d e w a y s ,  wha t  is  t h e  p r o b a b i l i t y  t h a t  t h e  res t  of them 

look l i k e  t h e y  w e r e  moving i n  t h e  f i n a l  d i r e c t i o n ?  Now, for 

e a c h  o f  t h e s e  i n i t i a l  p a r t o n s  t h e r e  i s  a c e r t a i n  a m p l i t u d e  

t h a t  i t  w a s  n o t  moving e x a c t l y  i n  t h e  f o r w a r d  d i r e c t i o n ,  t h a t  

i t  had a l i t t l e  t r a n s v e r s e  momentum, and t h e r e  i s  some ampli- 
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tude f o r  t h e  f i n a l  proton s t a t e  t h a t  i t s  corresponding partons 

look t h e  same way, s o  t h e r e  i s  an overlap i n t e g r a l  between the 

two. But t h e  higher  t h e  momentum t r a n s f e r  i s ,  t h e  harder  it 

i s  t o  g e t  t h e  ove r l ap ,  and, t h e r e f o r e ,  t h e  form f a c t o r  should 

f a l l  o f f  with Q depending on how l i k e l y  it i s  t h a t  t h e  non- 

kicked par tons can be seen t o  be going i n  t h e  f i n a l  d i r e c t i o n .  

I would guess t h a t  t h e r e  i s  a kind of un ive r sa l  funct ion f o r  

such problems of high momentum t r a n s f e r .  There i s ,  of course,  

a matr ix  element f o r  t h e  photon on one par ton t h a t  happens 

n o t  t o  be Q dependent, bu t  t h e  main Q-dependence, t h e  r a p i d  

f a l l - o f f ,  must come from t r y i n g  t o  g e t  t h e  f a s t  moving par- 

t i c l e  going i n  one d i r e c t i o n  t o  look l i k e  a very q u i e t  simple 

t h i n g ,  a proton.  

Since w e  know experimental ly  t h a t  t h i s  form f a c t o r  f a l l s  

- 3  o f f  toward zero a s  Q goes toward i n f i n i t y ,  perhaps a s  Q , 
w e  l e a r n  immediately t h a t  t h e r e  i s  no amplitude t o  f i n d  only 

one p ro ton - l ike  pa r ton  i n s i d e  of a proton. Because i f  t h e r e  

w e r e ,  t h e r e  would be a c e r t a i n  f i n i t e  amplitude,  A l e t  us 

say,  t o  f i n d  a proton c o n s i s t i n g  of a proton-l ike par ton a l l  

alone.  Then when you k i ck  it, it would be a d e f l e c t e d  proton- 

l i k e  pa r ton ,  and t h e  amplitude of  t h a t  f o r  t h e  proton i s  

a l s o  A, s o  A2 would be t h e  u l t ima te  l i m i t  of t h e  form f a c t o r  
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as Q goes t o  i n f i n i t y .  So w e  have t o  look f o r  more compli- 

c a t e d  wave func t ions .  This  ampl i tude  could  be ze ro  f o r  

s e v e r a l  r easons ,  one of which would be  t h a t  t h e r e  i s  no pa r -  

t o n  i n  t h e  fundamental f i e l d  theory  which has  t h e  sane quan- 

t u m  numbers of charge and s p i n  as t h e  pro ton .  O r  it may be 

f o r  reasons  somewhat l i k e  t h e  f a c t  t h a t  t h e  e l e c t r o n  i s  never  

found wi th  a b s o l u t e l y  no photons around it. There is always 

a f i e l d  around it. But I do n o t  t h i n k  t h a t  t h i s  c a s e  i s  

r e a l i s t i c  h e r e  because i n  QED it depends on t h e  ze ro  mass of 

t h e  photon. 

The nex t  a p p l i c a t i o n  which I want t o  d e s c r i b e  i s  c a l l e d  

" i n e l a s t i c  e l ec t ron -p ro ton  s c a t t e r i n g . "  I n  t h i s  exper iment ,  

w e  t a k e  a p ro ton  and h i t  it wi th  an e l e c t r o n ,  and t h e r e  i s  

an exchange of a photon. There is a l s o  a sma l l  c o r r e c t i o n  

f o r  t h e  exchange of two photons,  b u t  t h a t  i s  removed by t h e  

t h e o r e t i c a l  people  who ana lyze  t h e s e  experiments i n  o r d e r  t o  

have an i n t e r a c t i o n  of f i r s t  o r d e r  i n  eL between t h e  e l e c t r o n  

and pro ton .  W e  can c o n t r o l  t h e  v a r i a b l e  q2 = -Q 

v a r i a b l e  Po - q = Mu. 

l i k e ,  and v i s  t h e  energy l o s s  of t h e  e l e c t r o n  i n  t h e  p ro ton  

rest system. M i s  t h e  mass of t h e  pro ton .  I n  p r i n c i p l e ,  w e  

can measure t h e  p r o b a b i l i t y  amplitude t o  have d i f f e r e n t  f i n a l  

2 and t h e  

The momentum t r a n s f e r ,  q ,  i s  space- 
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Figure 1 

I n e l a s t i c  Electron-Pro ton S c a t t e r i n g  

s t a t e s  as  a funct ion of t hese  two va r i ab le s .  I n  f a c t ,  how- 

eve r ,  a t  t h e  p re sen t  t i m e ,  wi thout  looking a t  t h e  f i n a l  

s t a t e s  of t h e  proton w e  observe t h e  t o t a l  c ros s  s e c t i o n  by 

looking only a t  t h e  f i n a l  e l e c t r o n .  So w e  have t o  d i scuss  

the  t o t a l  p r o b a b i l i t y  t h a t  a proton,  being h i t  by a photon, 

absorbs a c e r t a i n  energy and a c e r t a i n  momentum. 

F i r s t ,  w e  w i l l  d e sc r ibe  t h e  experiment. I t  t u r n s  o u t  

t h a t  t h e  d i f f e r e n t i a l  cross-sect ion f o r  i n e l a s t i c  e l ec t ron -  

proton s c a t t e r i n g  can be expressed i n  t e r m s  of t h e  angles  i n  

t h e  l abora to ry  and two func t ions ,  W2 and W1, which a r e  func- 

t i o n s  of Q2 and v .  
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4 b2 cos2  2 + 2w,+ s i n 2  i] 
2 d o  -- 

2 . 4  2 2 m 'dR 4E'  s i n  e l 2  

Here E '  i s  t h e  f i n a l  e l e c t r o n ' s  energy .  The ampl i tude  f o r  

t h e  s c a t t e r i n g  i s  

With t h e  known f a c t o r s  a l l  f a c t o r e d  o u t ,  w e  can  expres s  

e v e r y t h i n g  i n  te rms  of  t h e  q u a n t i t y  

K =  
UV 

From r e l a t i v i s t i c  

(q 

where bo th  W and W are p o s i t i v e ,  and 2 1 

(1 + 5) w2 2 w1 . 

Fur thermore ,  s i n c e  they  are bo th  p o s i t i v e ,  t h e r e  i s  ano the r  

r e l a t i o n s h i p .  

Because t h e  ang le s  used were s m a l l ,  t h e  r e s u l t s  a r e  

s e n s i t i v e  only  t o  W2, and w e  w i l l  p l o t  t h e  complete r e s u l t  

as though w e  w e r e  p l o t t i n g  W 2 ,  a l t hough  t h i s  i s  a l i t t l e  b i t  

e r roneous .  L e t  us look  a t  t h e  complete s c a t t e r i n g ,  f i r s t  a t  
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low values  of momentum t r a n s f e r  and energy. 

The missing mass i s  simply another  way of expres s ing  t h e  

v a r i a b l e  v .  

2 - 
= M  i - 2 M v - Q  . 

But it measures t h e  t o t a l  four-momentum squared of all t h e  

products  added t o g e t h e r ,  such t h a t  i f  t h e  o b j e c t  which i s  

made i n  t h e  c o l l i s i o n  i s  not  a l o t  o f  p i e c e s ,  bu t  happens by 

acc iden t  t o  be one l i t t l e  b a l l  of s l i g h t l y  e x c i t e d  "goop", 

t h e r e  w i l l  be  a resonance i f  t h a t  "goop" has a d e f i n i t e  m a s s .  

I n  Figure 2 t h e r e  are t h e  famous resonances l i k e  t h e  1238 

and t h e r e  i s  a 1535 and something higher .  The resonance a t  

1 4 1 0  does no t  appear b u t  it is  very i n t e r e s t i n g  t h a t  t hese  

resonances appear so b e a u t i f u l l y .  

Now i f  w e  h i t  t h e  proton a l i t t l e  ha rde r ,  it w i l l  be a 

l i t t l e  b i t  ha rde r  t o  g e t  a l l  t hose  p i e c e s  t o  come back t o -  

ge the r  again t o  form a resonance. W e  should s t i l l  s e e  t h e  

resonances b u t  without  so much glory.  

I n  Figure 3 ,  as expected,  t h e  resonances are much weaker 

and t h e r e  i s  a r a t h e r  l a r g e  smear i n  t h e  back which i s  some- 

t i m e s  c a l l e d  t h e  "deep i n e l a s t i c  scattering. " I t  i s  obvious 
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what t h a t  is: t h a t  i s  when you h i t  the p ro ton  and t h e  p i e c e s  

do n o t  s t a y  t o g e t h e r ,  t hey  j u s t  f l y  i n t o  a l o t  o f  p i e c e s ,  b u t  

t h e  chance t h a t  they  are resonances  becomes less and less. 

I n c i d e n t a l l y ,  it i s  very i n t e r e s t i n g  t h a t  t h e  way t h e s e  

resonances f a l l  a s  QL i n c r e a s e s  i s  a lmost  e x a c t l y  t h e  same as 

t h e  way t h e  e l a s t i c  s c a t t e r i n g  form f a c t o r  goes o u t .  There 

i s  a c e r t a i n  ampl i tude ,  t h a t  i s  n o t  on t h e s e  c u r v e s ,  which 

should  be r ep resen ted  by a 6- func t ion  a t  e x a c t l y  t h e  mass 

squared  of t h e  p ro ton ,  b u t  t h a t  has  been taken  o f f  so a s  t o  

make t h i s  curve  look good, o the rwise  t h i s  c u r v e ' s  e las t ic  

term i s  very b i g ,  and t h e  s i z e  o f  it i s  t h e  e las t ic  scatter-  

i n g ,  which i s  t h e  o rd ina ry  form f a c t o r .  The funny t h i n g  i s  

t h a t  a l l  t h e s e  f a l l  o f f  i n  p r o p o r t i o n  t o  t h e  e l a s t i c  form 

f a c t o r .  I n  o t h e r  words, t h e  p r o b a b i l i t y  t h a t  t h e  t h i n g  ho lds  

t o g e t h e r  t o  form a p ro ton  and t h e  p r o b a b i l i t y  t h a t  it holds  

t o g e t h e r ,  a s  you g ive  i t  a h i g h e r  momentum t r a n s f e r ,  t o  form 

some e x c i t e d  s t a t e  i s  a r a t i o  roughly independent of Q L .  

Q g e t s  ha rde r  and h a r d e r ,  it i s  d i f f i c u l t  t o  l i n e  t h i n g s  up, 

b u t  i f  they  a r e  more o r  l e s s  l i n e d  up, they  might as  w e l l  be  

an N* as a pro ton .  

As 

2 

Now l e t  us cons ide r  deep i n e l a s t i c  s c a t t e r i n g .  P l o t t e d  

t o g e t h e r  on F igure  4 are t h e  d a t a  f o r  s e v e r a l  d i f f e r e n t  
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2 momenta and ene rg ie s  a s  a func t ion  of v/Q . What i s  p l o t t e d  

v e r t i c a l l y  i s  no t  W 2 ,  b u t  vW2, and s t r i c t l y  speaking i t  i s  a 

l i t t l e  b i t  mixed up with Wl. 

pends upon how much you assume W1 i s .  

upper curve,  i n  which t h e  do t s  do n o t  f i t  on top  of each 

o t h e r ,  while  i f  W1 i s  a t  i t s  maximum va lue ,  t hen  you g e t  t h e  

curve marked R = 0 which i s  more o r  less a cons t an t .  What 

i s  i n t e r e s t i n g  i s  t h a t  vW 

approaching a un ive r sa l  curve so  w e  should l i k e  t o  exp la in  

why t h a t  i s  a n a t u r a l  t h i n g  t o  expect .  

The way t h a t  you p l o t  it de- 

I f  Wl = 0 ,  you g e t  t h e  

p l o t t e d  a g a i n s t  v/Q2 seems t o  be 2 

Figure 5 

Par ton S c a t t e r i n g  Out of Incoming Proton 

As befo re ,  i n  Figure 5 w e  r ep resen t  t h e  proton coming i n  
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by a l o t  o f  pa r tons .  Now one o f  t h e  p a r t o n s  i s  h i t  by an 

enormous momentum. The p ro ton  i s  moving a long  f a s t ,  b u t  t h e  

sideways momentum from t h e  photon i s  a l s o  very  g r e a t  and i t  

knocks t h e  p a r t o n  o f f  i n  a c razy  d i r e c t i o n ,  and l e a v e s  t h e  

o t h e r  p a r t o n s  undis turbed .  I t  might appear  t h a t  the p a r t o n s  

a r e  a l l  i n t e r a c t i n g  wi th  each  o t h e r  b u t  t hey  are no t .  When 

a t h i n g  i s  moving s lowly ,  t h e r e  i s  a l o t  o f  i n t e r a c t i o n  be- 

tween t h e  p a r t s .  When t h e  t h i n g  i s  moving very  f a s t ,  t h e  

Lorentz t i m e  s h i f t  makes a l l  t h e  i n t e r a c t i o n  go l i k e  a slow 

c lock ,  and t h e r e f o r e  t h e  momentum i n c r e a s e s  so  f a s t  t h a t  i t  

does n o t  have much t i m e  t o  f i n d  o u t  what happened. That i s  

t o  s a y ,  w e  do n o t  have t o  worry about  t h e  i n t e r a c t i o n s  ahead 

of t i m e ,  nor  do w e  have t o  worry about them very  much a f t e r -  

wards,  because  when you sum over  a l l  t h e  f i n a l  s ta tes  of t h e  

system t h e r e  i s  a p r i n c i p l e  of completeness which says  t h a t  

t h e  sum over  a l l  t h e  f i n a l  s t a t e s  i s  t h e  same, whether t hey  

i n t e r a c t  o r  no t .  (This  i s  n o t  a b s o l u t e l y  t r u e  because t h e r e  

may be  a s h i f t  i n  t h e  energy. And when w e  i n s i s t  experimen- 

t a l l y  t h a t  t h e r e  be a g iven  loss v ,  it may n o t  be e x a c t l y  t h e  

s a m e  as t h e  loss  of a s i n g l e  p a r t o n  because i t s  energy may be 

somewhat changed by t h e  i n t e r a c t i o n .  A t  any r a t e ,  w e  can 

d e a l  w i th  t h e s e  o b j e c t s  as f r e e  p a r t i c l e s . )  
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The p r o b a b i l i t y  f o r  t h i s  p rocess  invo lv ing  t h e  p a r t o n  i s  

f (x )  dx 2 2 
Prob = Jr 2p,,2pw & ( ( p + q )  - ? ,  say  p ) 

where f ( x )  i s  t h e  momentun d i s t r i b u t i o n  o f  t h e  p a r t o n s  i n s i d e ,  

each weighted by t h e  squa re  of t h e  charge  t h a t  i t  c a r r i e s  

( i n  u n i t s  of t h e  e l e c t r o n  c h a r g e ) ,  and x i s  t h e  f r a c t i o n  of 

t h e  z-momentum of t h e  incoming p ro ton  t h a t  t h e  p a r t o n  has .  

The s c a t t e r i n g  p r o b a b i l i t y  f o r  a photon on a p a r t o n  is t h e  

"square"  of t h e  c u r r e n t ,  2pp2pw , i f  t h e  p a r t o n s  had s p i n  

ze ro ;  and f o r  t h e  o t h e r  c a s e s ,  you g e t  more compl ica ted  

t h i n g s .  

f a c t o r .  The d e l t a  func t ion  i s  ove r  t h e  squa re  of t h e  f o u r  

momentum b e f o r e  and a f t e rwards .  L e t  us suppose t h a t  a f t e r -  

wards it i s  equa l  t o  approximately p . So expanding, 

But i f  you j u s t  look f o r  W 2 ,  you only  need t h i s  

2 

Prob = 

2 2  2 f ( x ) d x  p p x 6 (q + ~ x ~ * q  + t r a n s v e r s e  momenta, e t c . )  , 
U V  

where w e  a r e  t a k i n g  p = XP f o r  t h e  whole fou r -vec to r ,  so  

ou r  n o t a t i o n  f o r  t h e  p ' s  i s  a l i t t l e  i n c o n s i s t e n t .  I n s i d e  

t h e  d e l t a  func t ion  w e  have a t e r m  q2  + 2xP - q ,  where P i s  i n  

t h e  z d i r e c t i o n ,  p l u s  some t r a n s v e r s e  momenta squared .  

There i s  an u n c e r t a i n t y  a s  t o  t h e  e x a c t  form f o r  t h e s e  e x t r a  

,, 



540 

7 9 4  R. P .  FEYNMAN 

terms and t h e r e  may be l i t t l e  e n e r g i e s  of i n t e r a c t i o n  o f  t h e  

f i n a l  o b j e c t  w i th  t h e  o r i g i n a l  o b j e c t ,  so  t h e r e  a r e  f i n i t e  

e r r o r s  h e r e .  

goes t o  i n f i n i t y  and as 2Mv goes t o  i n f i n i t y .  As t h e  e n e r g i e s  

However, w e  a r e  going  t o  t a k e  t h e  l i m i t  as Q 2 

and Q"s g e t  h i g h e r ,  we g e t  deeper  i n e l a s t i c  s c a t t e r i n g ,  and 

t h e  c o n t r i b u t i o n  of t h e s e  f i n i t e  terms t o  t h e  d e l t a  f u n c t i o n  

becomes less ,  and w e  have 

2P P 

E 
Prob = - ' I, /;5(-Q2 + 2Mvx) f ( x )  dx 

p p  1 = ALL. - x f ( x )  , EM V 

t he reby  g e t t i n g ,  

Q2 vw2 = x f ( x ) ,  x = - 2 M v  

which shows t h a t  u l t i m a t e l y ,  as Q2 and 2 M v  go t o  i n f i n i t y ,  

vW2 i s  an i n v a r i a n t  f u n c t i o n  independent  of  any v a r i a b l e  

excep t  Q /2Mv. 2 

I can  d i s c u s s  t h e  deg ree  t o  which t h i s  shou ld  be co r -  

rect. I t  t u r n s  o u t  t h a t  i t  shou ld  be  much more c o r r e c t  t han  

w e  would guess .  The e r r o r s  a r e  t h e  o r d e r  of  something ove r  

w, and t h e n  a r e  on ly  impor t an t  i f  x f ( x )  v a r i e s  r a p i d l y  n e a r  

t h e  o r i g i n .  But x f ( x )  i s  c o n s t a n t  a t  the o r i g i n ,  so i f  you 

misp lace  t h e  va lue  o f  x t h a t  you are look ing  a t ,  it does  n o t  
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make much d i f f e r e n c e  t o  vW2, so  I can  say  t h a t  t h i s  i s  a 

p r e t t y  good approximation. A c t u a l l y ,  t h e  energy t h a t  t h e  

t h i n g s  a r e  measured a t  i s  n o t  so t e r r i b l y  h i g h ,  s o  it i s  r a -  

t h e r  n i c e  t h a t  t h e  u n i v e r s a l i t y  of vW2 i s  a l r e a d y  showing up. 

Now t h a t  I have exp la ined  t h e  p r o p e r t i e s  of  t h e  e x p e r i -  

ment i n  terms o f  t h e  p a r t o n  model, I would l i k e  t o  d i s c u s s  

t h e  r e s u l t s  of t h e  exper iment  t o  f i n d  o u t  what w e  know about 

t h e  wave f u n c t i o n  f o r  t h e  p ro ton .  I n  t h e  f i r s t  p l a c e ,  w e  

f i n d  t h a t  vW2 i s  u n i v e r s a l .  

We can conclude t h a t  t h e  charged p a r t o n s  a r e  e i t h e r  s p i n  0 o r  

s p i n  1/2 .  The coupl ing  t o  a s p i n  1 p a r t i c l e  i n c r e a s e s  w i t h  

energy so  r a p i d l y  t h a t  i f  t h e r e  w e r e  s p i n  1 p a r t o n s  i n  t h e r e ,  

t h e  u n i v e r s a l i t y  would be  l o s t .  W e  can even go a l i t t l e  b i t  

f u r t h e r .  If t h e  s p i n  w e r e  0 f o r  t h e  p a r t o n s ,  W i s  zero .  I f  

t h e  s p i n  i s  1 / 2 ,  t h e n  W1 r eaches  i t s  maximum a s  expres sed  by 

t h e  i n e q u a l i t y  w e  gave ear l ier .  The q u e s t i o n  i s ,  "What is 

W ? ' I  N o w ,  h e r e  we go i n t o  a circle depending on how e n e r g e t i c  

a t h e o r i s t  we a r e .  

we a r e  a l s o  s u r e  t h a t  t h e  c a s e  cor responds  t o  s p i n  1 / 2 ,  be- 

cause t h a t  i s  t h e  case  i n  which t h e  curve  i s  more u n i v e r s a l  

when you p l o t  it. But i f ,  f o r  some o t h e r  r eason ,  t h e  curve  

is n o t  u n i v e r s a l ,  you would be h a r d  p r e s s e d  t o  a rgue  which 

What can  w e  conclude  from t h a t ?  

1 

1 

If w e  a r e  s u r e  t h a t  W 2  i s  u n i v e r s a l ,  t h e n  
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one i s  t h e  r i g h t  curve .  There a r e  going t o  be some more ex- 

periments a t  o t h e r  ang le s  and h i g h e r  e n e r g i e s ,  t h a t  w i l l  make 

t h i s  a l i t t l e  b i t  c l e a r e r .  A t  t h e  p r e s e n t  t i m e ,  I would say  

t h a t  t h e  experiment does f a v o r  t h e  s p i n  1 /2  and t h a t ,  i n  

p r i n c i p l e ,  it could  dec ide  t h e  q u e s t i o n  a s  t o  whether t h e  

charged o b j e c t s  which c o n t r i b u t e  t o  t h e  c u r r e n t ,  t h e  p a r t o n s ,  

a r e  s p i n  1 / 2  o r  s p i n  0 .  I w i l l  conclude myself from what I 

have seen ,  t h a t  they  a r e  s p i n  1 / 2 ,  and n o t  s p i n  0 .  

Now i t  i s  i n t e r e s t i n g  t o  t u r n  t h e s e  s t a t e m e n t s  i n t o  a 

u n i v e r s a l  language t h a t  does n o t  depend on o u r  model. This  

i s  always a good t h i n g  t o  t r y  t o  do . The model i s  j u s t  a 

s c a f f o l d i n g  t o  d i scove r  something, b u t  it i s  n o t  t h e  house. 

The f i r s t  ques t ion  i s :  What does it mean t h a t  vW2 i s  univer -  

s a l ?  The K which we a r e  measuring can be expressed  d i r e c t -  

l y  i n  terms of t h i n g s  t h a t  do n o t  i nvo lve  t h e  f i e l d  theo ry  
I-lV 

Therefore ,  i n  measuring K w e  are measuring t h e  p rope r ty  of  

t h e  commutator o f  two c u r r e n t s '  e x p e c t a t i o n  f o r  a p ro ton  

(minus e x p e c t a t i o n  f o r  a vacuum). Everybody knows t h a t  when 

two p o i n t s  i n  space-time are s e p a r a t e d  space - l ike  t h e  commu- 

t a t o r  s h a l l  be ze ro ,  and w e  a l s o  know t h a t  when t h e  two 

uv 
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p o i n t s  are t i m e - l i k e  r e l a t e d ,  t h e n  t h e  commutator i s  n o t  ze ro ,  

excep t  i n  a t r i v i a l  case. So what t ype  of s i n g u l a r i t y  i s  it 

a s  w e  sweep a c r o s s  from one r eg ion  t o  ano the r?  What happens 

a s  w e  c r o s s  t h e  l i g h t  cone? According t o  t h e  s i m p l e s t  t h e o r -  

i e s ,  t h e r e  i s  a d e l t a  f u n c t i o n  t y p e  s i n g u l a r i t y  on t h e  l i g h t  

cone f o r  t h e  above expres s ion .  I t  t u r n s  o u t  t h a t  f o r  a s i n g l e  

p a r t i c l e  i n  p e r t u r b a t i o n  t h e o r y ,  p a r t i c l e s  o f  s p i n  0 and 1 / 2  

have an o rd ina ry  d e l t a  f u n c t i o n  a c r o s s  t h e  l i g h t  cone, where- 

a s  p a r t i c l e s  of s p i n  1 have a g r a d i e n t  of a d e l t a  f u n c t i o n .  

The p r o p o s i t i o n  t h a t  vW2 i s  a u n i v e r s a l  f u n c t i o n  i s  equi -  

v a l e n t  t o  t h e  s t a t emen t  t h a t  t h e  s i n g u l a r i t y  on t h e  l i g h t  

cone f o r  t h e  e x p e c t a t i o n  va lue  of t h e  commutator i s  a s imple  

d e l t a  func t ion  ac ross  t h e  l i g h t  cone and invo lves  no g r a d i e n t  

of t h e  d e l t a  func t ion .  

v a r i e s  as 

That i s ,  if <PI [ J u ( x ) ,  J v ( 0 ) ] I P >  

on t h e  l i g h t  cone, t h e n  

-iMxt vW2+G(x) = l g ( t )  e d t  . 
We can t h e r e f o r e  f o r g e t  about  p a r t o n s  i f  w e  want t o ,  and 

s t a t e  eve ry th ing  e n t i r e l y  i n  t e r m s  o f  commutators. 

What does it mean t h a t  t h e  p a r t o n  has s p i n  1 / 2 ?  G e l l -  
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Mann, i n  w r i t i n g  h i s  c u r r e n t  cormnutation r e l a t i o n s h i p s  as- 

sumed a k i n d  of minimal e l ec t romagne t i c  coupl ing  which i s  

e q u i v a l e n t  t o  t h e  s t a t emen t  t h a t  t h e  s i n g u l a r i t y  a c r o s s  t h e  

l i g h t  cone i s  t h e  l e a s t  p o s s i b l e .  H e  a l s o  proposed t h a t  t h e  

commutation r u l e s  of t h e  c u r r e n t s  i nvo lve  axial  c u r r e n t s  

and t h a t  t h e  ax ia l  c u r r e n t s  and t h e  r e g u l a r  c u r r e n t s  commute, 

j u s t  as they  would i f  t hey  w e r e  coupled t o  a s p i n  1 /2  o b j e c t .  

So I t h i n k  t h a t  w i th  a l i t t l e  b i t  of l uck  and a l i t t l e  b i t  of 

f i d d l i n g  around, I could conclude t h a t  t h e  i d e a  t h a t  t h e  W 

and W2 a r e  r e l a t e d  i n  t h i s  l i m i t i n g  case for t h e  s p i n  1/2,  

is r e l a t e d  t o  t h e  s t a t emen t  t h a t  t h e  c u r r e n t s  are p a r t  of a 

" th ing"  x " th ing" ;  i t  does have t o  be  SU(3) , b u t  could  a l s o  

be  say  SU(3) x SU(3). That means a coupl ing  wi th  y e x i s t s  

and t h a t  t h e  o p p o s i t e  p a r i t y  coup l ing ,  o r  t h e  a x i a l  c u r r e n t ,  

e x i s t s  and has  a coupl ing  very  s i m i l a r  t o  t h e  normal coupl ing .  

1 

IJ 

L e t  us go on t o  some o t h e r  p r o p e r t i e s  of t h i s  d i s t r i b u -  

t i o n  F ( x ) .  W e  have seen  it p l o t t e d  i n  t h e  r e c i p r o c a l  v a r i -  

able, b u t  I would l i k e  t o  p l o t  x F ( x )  i n  t h e  r e g u l a r  v a r i a b l e  

Q L  x = - .  2Mv 

F igure  6 ,  when s u i t a b l y  normal ized ,  y i e l d s  

dx y 0 .16  . /;t f ( x ) d x  = 0 .16  o r  f ( x )  
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The f i r s t  t h i n g  i t  shows i s  t h a t  t h e r e  i s  an i n f i n i t e  

number o f  p a r t o n s  because t h e  mean number o f  charged p a r t o n s  

goes a s  dx/x, and so t h e  t o t a l  number o f  them i n  an i n f i n i t e -  

l y  fast-moving p ro ton  would be  l o g a r i t h m i c a l l y  i n f i n i t e  a t  

t h e  low end. That i s  p e r f e c t l y  a l l  r i g h t .  However, i t  i s  

very i n t e r e s t i n g  t o  t a k e  a s imple  p e r t u r b a t i o n  theo ry  and 

make a model, s ay  of p ro ton  going a long  t h a t  d i s i n t e g r a t e s  

i n t o  a p a r t o n  of s p i n  1 / 2  and ano the r  p a r t o n  of s p i n  0 .  I f  

w e  t hen  ask what i s  the  d i s t r i b u t i o n  of t h i s  p a r t o n  of s p i n  

0 ,  w e  w i l l  f i n d  t h a t  f o r  s p i n  0 ,  t h e  d i s t r i b u t i o n  must always 

be  xdx; f o r  s p i n  1 / 2 ,  dx; and f o r  s p i n  1, -. This  i s  an- 

o t h e r  r e p r e s e n t a t i o n  o f  t h e  angu la r  momentum group and t h e  

angu la r  momentum p r o p e r t i e s .  For a s i n g l e  p a r t i c l e  w i t h  

no th ing  e lse  around, p e r t u r b a t i o n  theo ry  g ives  t h e  d i s t r i b u -  

t i o n  xdx/x , f o r  sma l l  x where a i s  t h e  p a r t i c l e ' s  s p i n ,  

and a h i g h e r  angular  momentum would be  more s i n g u l a r .  Now, 

h e r e  w e  have a l i t t l e  p e c u l i a r i t y  because dx/x i s  what you 

g e t  f r o m  a v e c t o r  p a r t i c l e ,  and dx/x i s  what w e  found; b u t  

a v e c t o r  p a r t i c l e  i s  t h e  very  one t h a t  w e  could  n o t  a l low t o  

couple.  However, ou r  arguments w e r e  based on t h e  e r roneous  

i d e a  tha t  a s i n g l e  p a r t i c l e  could  b e  i n  t h e  s m a l l  x r eg ion  

and t h a t  i t  i s  a l l  r i g h t  t o  do p e r t u r b a t i o n  theory .  There 

dx 
X 

2a 
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i s  an i n f i n i t e  number of p a r t i c l e s  f o r  s m a l l  x ,  and one can- 

n o t  proceed by assuming a s i n g l e  p a r t i c l e  and p e r t u r b a t i o n  

theo ry  f o r  t h e  s t r o n g  i n t e r a c t i o n s .  

However, very much l i k e  t h e  p a r t i c l e s  i n  e l ec t rodynamics ,  

when an e l e c t r o n  i s  moving f a s t  t h e  f i e l d  i s  condensed i n t o  

a narrow s p l a t  by t h e  Lorentz  t r ans fo rma t ion ,  and i f  w e  ana- 

l y z e  t h a t  i n  momentum space  w e  g e t  a uniform d i s t r i b u t i o n  i n  

momentum space  of t h e  energy: t h e  energy o f  each photon t i m e s  

t h e  number of photons goes as dk/w. So t h e  reason  f o r  t h e  

dx/x i s  t h i s  d k / w  -- t h e  f i e l d  i s  squashed. ( I n c i d e n t a l l y ,  

dx - looks  l i k e  &/LO, and i f  t h e  photon had a f i n i t e  mass a s  k 

goes t o  0 ,  it would have a f i n i t e  l i m i t .  So does dx/x. I t  

d o e s n ’ t  look l i k e  a f i n i t e  l i m i t ,  because t h e  x i s  on a momen- 

tum scale which has been i n c r e a s e d  by t h e  f a c t o r  W t o  an  enor- 

mous amount.) 

X 

Now t h e  n e x t  t h i n g  of i n t e r e s t  i s  t h e  i n t e g r a l ,  

/x f (x)dx  = 0.16. What i s  t h e  no rma l i za t ion  and what does 

0 .16  mean? I can expres s  it t h i s  way: Suppose f o r  a moment 

t h a t  a l l  t h e  pa r tons  w e r e  charged. I f  they  a l l  had u n i t  

charge,  t h e  squa re  of t h e i r  charges  i s  a l s o  1 . 0 ,  and t h e n  

t h i s  i n t e g r a l  would be  simply t h e  sum of t h e  momenta of a l l  

t h e  p a r t i c l e s .  I t  i s  so normalized t h a t  it would be  t h e  t o t a l  
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momentum o f  t h e  o r i g i n a l  sys tem and would b e  1 . 0 .  I t  i s  re- 

markable t h a t  t h i s  comes o u t  t o  be  on ly  0.16, which i s  very  

s m a l l .  For example, it seems t o  say  t h a t  t h e  number o f  neu- 

t r a l s  i n  t h e  sys tem i s  f i v e  t i m e s  t h e  number w i t h  charges  

which i s  a l i t t l e  h a r d  t o  accep t .  I t  could  mean t h a t  t h e  par -  

t o n s  have a n o n - i n t e g r a l  charge .  There has  been a l o t  of  

t a l k  about qua rks ,  and t h e  p ro ton  may be  made of  two qua rks  

of charge  2/3 and one of  charge  1 /3 ,  i n  which case t h a t  num- 

b e r  would come o u t  0 .33 ,  if a l l  t h e r e  w a s  i n  t h e  p ro ton  w e r e  

t h r e e  qua rks .  But ,  w e  j u s t  d i scove red  t h a t  t h e r e  must be  an 

i n f i n i t e  number of p a r t o n s  i n  t h e r e .  A s  Paschos h a s  s a i d ,  

“ Y e s !  Those a r e  m i l l i o n s  o f  p a i r s  o f  qua rks  and a n t i q u a r k s . ”  

So what w e  shou ld  do i s  t a k e  t h e  s t a t i s t i c a l  average  of t h e  

2/3 squa red ,  t h e  2/3 squa red ,  and t h e  1/3 squa red ,  every  k i n d  

o f  quark  be ing  e q u a l l y  l i k e l y .  That comes o u t  0.22. But 

Paschos has  d i s r e g a r d e d  t h e  fact  t h a t  t h e  qua rks  w i l l  pro- 

bably  i n t e r a c t  i f  t h e r e  is  going  t o  b e  an  i n f i n i t e  number of 

them. They are n o t  go ing  t o  be  f ree ,  and t h e r e  must be  some- 

t h i n g  which carries momentum back and f o r t h  between t h e  qua rks  

through i n t e r a c t i o n s .  This  would be e q u i v a l e n t ,  I b e l i e v e ,  

t o  having  a n e u t r a l  quark  around. So t h e  i n t e r a c t o r s  would 

lower it s t i l l  f u r t h e r ,  and maybe it is  qua rks  t h a t  are i n -  
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t e r a c t i n g .  On t h e  o t h e r  hand, as long  a s  t h e  i n t e r a c t i o n s  

a r e  lower ing  i t  you can say  t h a t  t h e r e  i s  o rd ina ry  charge  

and an awful l o t  o f  i n t e r a c t i o n ,  such  t h a t  t h e r e  a r e  indeed  

f i v e  n e u t r a l s  f o r  a s i n g l e  charged one. However, it i s  very  

i n t e r e s t i n g  t h a t  t h e s e  p o i n t s  o f  view are l e a d i n g  us i n t o  

" s e m i - d i f f i c u l t i e s " ,  or  i f  you l i k e ,  i n d i c a t i o n s  t h a t  t h e  

quarks  and t h e  p a r t o n s  are r 2 l a t e d .  

One might ask :  What i s  meant by t h e  s t a t emen t  t h a t  t h e  

charge  i s  an i n t e g e r ?  I t  t u r n s  o u t  t h a t  it can only  be ex- 

p re s sed  as a p r o p e r t y  o f  f o u r  c u r r e n t s .  Two c u r r e n t  opera-  

t o r s  can make a commutator, b u t  f o u r  c u r r e n t s  can make com- 

muta tors  o f  commutators and t h i n g s  l i k e  t h a t .  The s t a t e m e n t  

t h a t  t h e  charge  must be an i n t e g e r  on a l l  t h e  p a r t o n s  i s  a 

s t a t emen t  about a commutator w i th  f o u r  c u r r e n t s  i n  it. Ex- 

pe r imen ta l ly ,  one can g e t  a f o u r  c u r r e n t  commutator by mea- 

s u r i n g  t h e  i n e l a s t i c  Compton e f f e c t  from a p ro ton  a t  very 

h igh  energy i f  t h e  p a r t o n  view i s  r i g h t .  This  i s  because  i n  

t h e  Compton e f f e c t  t h e  amplitude goes a s  t h e  charge squared;  

and when one works t h i s  model, one w i l l  be  weighing charge  t o  

t h e  f o u r t h  power. So by having ano the r  number on t h e  cha rge ,  

w e  can compare t h e  charges .  For  example, i f  a l l  are u n i t  

cha rges ,  t hen  t h e  same i n t e g r a l ,  where t h e  weight i s  t h e  
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charge  t o  t h e  f o u r t h  power, would g i v e  t h e  same number. But,  

i f  t h e  charges  w e r e  less t h a n  a u n i t ,  then  t h e  i n t e g r a l  f o r  

t h e  Compton e f f e c t  would g ive  a smaller number. Of cour se ,  

it i s  t e c h n i c a l l y  n o t  q u i t e  f e a s i b l e  t o  do t h e  Compton s c a t -  

t e r i n g .  So I know o f  no d i r e c t  way o f  t e s t i n g  it. 

A n  a t t empt  has  been made t o  apply t h e s e  i d e a s  t o  had- 

r o n i c  s c a t t e r i n g s ,  and I have made a number o f  s p e c u l a t i o n s  

i n  p r i n t .  For  example, I can t a l k  about  t h e  d i s t r i b u t i o n  of 

pa r tons  i n s i d e  t h e  hadrons and a l s o  about t h e  d i s t r i b u t i o n  of 

hadrons which come o u t  o f  a c o l l i s i o n ,  and they  a r e  l i k e l y  t o  

be r e l a t e d  b u t  it i s  n o t  obvious e x a c t l y  how. One i n t e r e s t i n g  

f e a t u r e ,  though, i s  t h i s :  Suppose f o r  a moment t h a t  a p ro ton  

moving t o  t h e  r i g h t  has  a wave f u n c t i o n  t o  be p a r t o n s  and 

suppose t h a t  t h e  e x a c t  wave f u n c t i o n  has  v i r t u a l l y  ze ro ,  o r  

very low, amplitude t o  f i n d  any p a r t o n s  o f  very  s m a l l  x. That 

is, suppose a l l  t h e  p a r t o n s  are moving t o  t h e  r i g h t  and t h e r e  

i s  none s t a n d i n g  s t i l l .  Suppose a l s o  t h a t  ano the r  guy i s  

moving t h e  o t h e r  way wi th  e x a c t l y  t h e  same prope r ty .  H i s  pa r -  

t ons  a r e  a l l  moving t o  t h e  l e f t  and nobody i s  n e a r l y  s t a n d i n g  

s t i l l .  I a m  now t a l k i n g  about  

i n f i n i t e l y  h igh  speed ,  b u t  f o r  

l i m i t  has n o t  q u i t e  been taken  

t h e  wave f u n c t i o n ,  n o t  f o r  t h e  

a very  h igh  speed  where t h e  

Then each  wave f u n c t i o n  i s  a 
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s o l u t i o n  f o r  t h e  whole Hamiltonian. The r i g h t  moving solu-  

t i o n  invo lves  on ly  t h e  r i g h t  moving p i e c e  of t h e  Hamiltonian, 

b u t  it i s  a s o l u t i o n  of t h e  complete Hamiltonian. However, 

a l l  t h e  s ta tes  i n  t h e  r i g h t  moving o b j e c t  are d i f f e r e n t  from 

t h o s e  i n  t h e  l e f t  moving o b j e c t ,  t h a t  i s  a l l  t h e  p a r t o n  ex- 

c i t a t i o n s  a r e  d i f f e r e n t .  So i f  you w i l l  m u l t i p l y  t h e s e  two 

wave f u n c t i o n s  t o g e t h e r ,  it w i l l  s t i l l  be  a s o l u t i o n  o f  t h e  

Hamiltonian equa t ion .  I n  s h o r t ,  t h e r e  i s  no i n t e r a c t i o n !  

There w i l l  be  an i n t e r a c t i o n  i f  one p a r t i c l e  i n  t h e  

r i g h t  moving p ro ton  can be  thought  of as be ing  i n  t h e  l e f t  

moving pro ton .  When w e  say  t h a t  t h e  d i s t r i b u t i o n  i s  dx/x, 

where XW i s  e q u a l  t o  t h e  momentum of t h e  p a r t o n  i n  t h e  z 

d i r e c t i o n  and W i s  t h e  t o t a l  momentum, it i s  t h e  same a s  say- 

i n g  dpz/pz a s  long a s  p i s  l a r g e .  

1 / W ,  t hen  p i s  no longe r  l a r g e ,  and I could  n o t  have taken  

o u t  t h e  squa re  roo t .  I t  i s  t r u e  t h a t  it i s  dx/x a s  long  as  

x i s  b i g g e r  than  a sma l l  q u a n t i t y  l / W ;  however, i f  x i s  of 

t h e  o r d e r  of 1 / W ,  t hen  t h e  argument t h a t  t h e  p a r t o n s  cannot  

go backwards and t h a t  f o r  dx/x d i s t r i b u t i o n  begin  t o  f a i l .  

So i n  t h i s  coord ina te  system, t h e r e  i s  a c e r t a i n  ampl i tude  

f o r  f i n d i n g  p a r t o n s  a t  rest and t h a t  ampl i tude  i s  approxima- 

t e l y  t h e  i n t e g r a l  of dx/x from 0 t o  1 / W .  The i n t e g r a l  ex- 

But i f  x i s  of t h e  o r d e r  
X 
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a c t l y  i s  n o t  of dx/x, b u t  r a t h e r  i s  of something l i k e  dk/w. 

I t  is  a c u t o f f ,  it i s  a f u n c t i o n  t h a t  looks  l i k e  dx/x f o r  

l a r g e  x ,  and then  it c u t s  o f f  somewhere of t h e  o r d e r  l / w .  so 

t h e  area under t h i s  c u t o f f  i s  approximately t h e  c u t o f f  h e i g h t  

W t i m e s  t h e  wid th  1 / W .  I n  o t h e r  words, t h e  i n t e g r a l  below 

l / W  is f i n i t e  and independent  of W. SO a dx/x d i s t r i b u t i o n  

of p a r t o n s  pe rmi t s  an i n t e r a c t i o n  which l e a d s  t o  a c r o s s  sec- 

t i o n  independent of t h e  energy i n  t h e  h i g h e r  had ron ic  c o l l i -  

s i o n s .  This  may n o t  be  e x a c t l y  r i g h t ,  t h e r e  may be s o m e  er- 

r o r s ,  maybe a s l i g h t  v a r i a t i o n  l o g a r i t h m i c a l l y  o r  something. 

I f  I suppose t h a t  t h e  dx/x d i s t r i b u t i o n  ex tends  a l s o  t o  

t h e  r e a l  p a r t i c l e s  which a r e  produced i n  t h e  c o l l i s i o n ,  t h e n  

t h e  p r o b a b i l i t y  t o  have an exchange c o l l i s i o n  i s  t h e  proba- 

b i l i t y  t h a t  t h e r e  a r e  no emi t t ed  p a r t i c l e s .  I f  a p ro ton  

comes i n ,  s a y ,  and exchanges a charge  t o  become a neu t ron ,  it 

i s  t h e  p r o b a b i l i t y  t h a t  t h e  neu t ron  i s  q u i e t .  I f  I suppose 

t h a t  t h e  p r o b a b i l i t y  t h a t  t h e r e  i s  an emi t t ed  p a r t i c l e  i s  

a l s o  d i s t r i b u t e d  a s  dx/x up t o  o r d e r  1 / E ,  then  

c LnE,  c = c o n s t a n t  , Prob =I x = 

1 / E  

dx 

and t h e  mean number of e m i t t e d  p a r t i c l e s  i s  n % c LnE,  t h a t  

i s  t h e  mean number o f  p ions  and junk t o  be  expec ted  i n  an i n -  
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e l a s t i c  c o l l i s i o n .  But f o r  charge  exchange where no p ions  

come o u t ,  t h e  p r o b a b i l i t y  t h a t  none o f  them does come o u t  i s  

e 2, E . This i s  t h e  r eason  why when you have n i c e  ex- 

change r e a c t i o n s ,  where you a sk  f o r  a s p e c i f i c  exchange, 

t h i n g s  f a l l  o f f  w i th  a power of t h e  energy. They f a l l  be- 

cause t h e  p r o b a b i l i t y  t h a t  they  do n o t  s h a t t e r  t h e  product  

i n t o  a l o t  of t i n y  p a r t o n s ,  each wi th  a mean number loga r -  

i t h m i c  w i l l  f a l l .  I a l s o  expec t  t h e  m u l t i p l i c i t y  i n  h igh  

energy c o l l i s i o n s  t o  go l o g a r i t h m i c a l l y ,  which appa ren t ly  it 

does,  as t h e  number s lowly  i n c r e a s e s  i n  cosmic r a y  e x p e r i -  

ments. 

- 
-n -c 

I n  c l o s i n g ,  t h e  t h e o r e t i c a l  concept t h a t  I would l i k e  t o  

emphasize i s  n o t  s o  much t h e  "pa r tons" ,  b u t  t h a t  it i s  t h e  

wave func t ions  of f a s t  moving p a r t i c l e s  which might be  u s e f u l  

f o r  ana lyz ing  s t r o n g  i n t e r a c t i o n s ,  e s p e c i a l l y  a t  h igh  e n e r -  

g i e s .  By t h e  way, t h e r e  i s  no approximation made h e r e  and 

t h a t  i s  t h e  complete wave f u n c t i o n ,  so you could  d e a l  wi th  

any energy. For a d i f f e r e n t  reason  I would l i k e ,  on t h e  

o t h e r  hand, t o  emphasize f o r  f u r t h e r  s tudy  t h e  i n t e r e s t i n g  

r e s u l t s  of  t h e  experiments on t h e  deep i n e l a s t i c  c r G s s -  

s e c t i o n s .  There a r e  q u i t e  a few numbers a s s o c i a t e d  w i t h  them, 

a s  w e l l  as s imple  r e l a t i o n s ,  from which w e  ought t o  be  a b l e  
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t o  l e a r n  something more, whether w e  do it by par tons  o r  by 

any o t h e r  method. 
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DISCUSSION O F  P R O F E S S O R  FEYNMAN'S TALK 

JULIAN R O S E N W  (Un ive r s i ty  of Texas) : 

Can i n d i v i d u a l ,  f r e e  p a r t o n s  ever be  seen?  

FEYNMAN: N o ,  I d o n ' t  b e l i e v e  so and, a t  any rate,  I ' m  sup- 

pos ing  n o t .  J u s t  l i k e  t h e  p ro ton  cannot  have any amplitude 

t o  be  a pure  p a r t o n ,  t h e  pu re  p a r t o n  would i t s e l f  d i s i n t e -  

g r a t e  i n t o  r e a l  p a r t i c l e s .  This  would be  t r u e ,  f o r  example, 

f o r  t h e  pa r ton  k icked  o u t  by t h e  photon i n  t h e  deep i n e l a s t i c  

s c a t t e r i n g .  There a l s o  might be some i n t e r a c t i o n  wi th  t h e  

remaining p a r t o n s  on t h e  way o u t  b u t  I d o n ' t  t h i n k  t h a t ' s  a s  

impor tan t  as i t s  d i s i n t e g r a t i o n .  I t  cou ld  be t h a t  t h e  pa r -  

t o n ' s  energy i s  h i g h e r  t han  any o f  t h e  f r a c t i o n s  i n t o  which 

it can go. 

ROSENMAN: Doesn ' t  t h i s  mean t h a t  p a r t o n s  must have an i n t e -  

g r a l  charge? 

FEYNMAN: Y e s .  So one w o r r i e s  i f  p a r t o n s  are qua rk -an t i -  

quark p a i r s ,  as Paschos sugges t s .  What can w e  do, because 

c e r t a i n l y  such a pa r ton  cannot  be coming ou t?  One of t h e  

ways t h a t  w e  can f i x  it i s  t o  assume t h a t  t h e  i n t e r a c t i o n  be- 

tween them, say ,  a harmonic f o r c e  t o  produce t h e  l i n e a r  

masses, so when you p u l l  a quark  away, it snaps  back by t h e  

harmonic f o r c e .  Likewise,  t h e  k icked  p a r t o n  would be  p u l l e d  
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back and a l l  mixed up wi th  t h e  o t h e r  ones ,  and t h e  n e t  r e s u l t  

would s t i l l  be p ions  and p ro tons ,  n o t  quarks .  But i t  seemed 

t o  me  a t  f i r s t  t h a t  t h i s  l a r g e  f o r c e  would o b v i a t e  t h e  argu- 

ment about  t h e  sma l l  e n e r g i e s .  I t  d o e s n ' t .  What m a t t e r s  i s  

n o t  t h e  s t r e n g t h  of  t h e  f o r c e s ,  b u t  r a t h e r  t h e  spac ing  be- 

tween t h e  energy  l e v e l s .  The l a r g e  f o r c e  on ly  means i t  t a k e s  

longe r  t o  come around, and I ' v e  a l r eady  summed o v e r  a l l  t h e  

states and t h a t ' s  independent  o f  t h i n g s  because  o f  complete- 

nes s .  I n  f a c t ,  u s ing  t h e  harmonic o s c i l l a t o r  p o t e n t i a l ,  I 

ana lyzed  t h i s  and found t h a t  t h i s  t heo ry  shou ld  be  r i g h t  as 

f (Q''ii:o)L) f o r  a spac ing  between t h e  l e v e l s  o f  300 MeV, a s  

f o r  t h e  pro ton  e x c i t a t i o n  spectrum. 

EDWARD M. MACKHOUSE (Un ive r s i ty  Of Texas) : 

If  the  p a r t o n s  a r e  a t t r a c t e d  wi th  a q u a d r a t i c  f o r c e ,  do you 

p o s t u l a t e  some o t h e r  f o r c e  t o  keep t h e  s e l f - e n e r g i e s  f r o m  

blowing up, t o  avoid  t h e  d ivergences?  

FEYNMAN: What I p o s t u l a t e  i s  t h a t  I can go as long  a s  pos- 

s i b l e  so long  as I evade t h e  q u e s t i o n !  I t ' s  t r u e  t h a t  any 

f i e l d  theo ry  has  i t s  d ivergences  and it i s  a l s o  t r u e  t h a t  t h e  

p r o p o s i t i o n  t h a t  t h e  t r a n s v e r s e  momenta are l i m i t e d  i s  n o t  

q u i t e  r i g h t  f o r  a f i e l d  theo ry .  If  you do it r i g h t  f i e l d -  

t h e o r e t i c a l l y ,  when you i n t e g r a t e  ove r  t h e  t r a n s v e r s e  momen- 
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t a ,  you g e t  d ivergences ,  and SO I t h i n k  t h a t  t h e r e  i s  some- 

t h i n g  l i m i t i n g  t h e  t r a n s v e r s e  momenta i n  a way t h a t  I do n o t  

unders tand ,  which makes convergence a l o t  e a s i e r .  I n  o t h e r  

words, you l eave  your formulas wi th  i n t e g r a t i o n s  over  t r a n s -  

ve r se  momenta and j u s t  i n t e r p r e t  them as numbers wi thout  

a c t u a l l y  ca r ry ing  ou t  t h e  i n t e g r a t i o n .  

So I d o n ' t  know how t o  cu re  t h e  f i e l d  theo ry  and, t he re -  

f o r e ,  I do n o t  r e a l l y  propose t h a t  a t  t h e  p r e s e n t  t i m e  w e  

should  s t a r t  w i th  some s p e c i f i c  f i e l d  theory .  I ' m  t r y i n g  t o  

meet both ways ac ross  t h e  middle i n  o r d e r  t o  have u n i t a r i t y ,  

and on t h e  o t h e r  hand t o  avoid d ivergences .  

ROBERT J. YAES (Un ive r s i ty  of Texas) : 

Can p a r t i c l e s  i n t e r a c t  by t h e  exchange o f  a s i n g l e  p a r t o n  

which would g i v e  an a p p r o p r i a t e  peaking i n  t h e  c ros sed  chan- 

n e l ?  

FEYNMAN: N o !  The two t h i n g s  i n t e r a c t  due t o  t h e  o v e r l a p  be- 

tween t h e  pa r tons  t h a t  have zero  momentum, b u t  t h a t ' s  n o t  

one par ton;  i t ' s  a c h a r a c t e r i s t i c  of t h e  system t h a t  t h e  

mean number of pa r tons  i n  t h e r e  i s  i n f i n i t e ,  n o t  one. P e r -  

t u r b a t i o n  theo ry  i s  wrong. Here, diagrams o f  one,  t w o ,  ... 
i n t e r a c t i n g  p a r t o n s ,  a l l  going ac ross ,  a r e  t o  be added t o g e t -  

h e r  t o  produce a resonance "gluck-glock" a l s o  known a s  a 
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Regge p a r t i c l e .  

ROSENMAN: Doesn't  t h e  f a c t  t h a t  p a r t o n s  decay imply t h a t  

they  have s t r u c t u r e ?  

FEYNMAN: N o !  Such a decay only  has t o  do wi th  t h e  ene rg ie s .  

I t  i s  p o s s i b l e  t h e o r e t i c a l l y  t o  have ,  s ay ,  a s t r u c t u r e  o f  

t h r e e  much l i g h t e r  than  j u s t  one,  s o  you c a n ' t  produce only  

one, f o r  i t  would d i s i n t e g r a t e  i n t o  two t h r e e ' s  o r  i n t o  some 

o t h e r  combination o f  complicated o b j e c t s .  But t h e s e  under- 

l y i n g  o b j e c t s  must n o t  be l i k e  quarks wi th  a c a r r i e r  quantum 

number o f  one - th i rd ,  because then  noth ing  can d i s i n t e g r a t e .  

The quark p i c t u r e  i s  d i f f e r e n t ,  t h e r e  you have t o  i n v e n t  some- 

t h i n g  t o  ho ld  them t o g e t h e r  i f  you d o n ' t  see them. 

E.  c. G .  SUDARSHAN (Un ive r s i ty  o f  Texas):  

Could it be t h a t  t h e  pa r tons  are l i k e  t h e  e t h e r  f o r  l i g h t  

waves -- t h a t  t h e  v i b r a t i o n s  i n  t h e  pa r tons  a r e  l i k e  v ib ra -  

t i o n s  i n  t h e  e t h e r  and may never be found? 

FEYNMAN: Yes, and i n  t h e  case  of " t h e  e t h e r  never  be ing  

found': it was u l t i m a t e l y  r e a l i z e d  t h a t  t h e r e  wasn ' t  any 

e t h e r  a t  a l l ,  t h e  e t h e r  w a s  one o f  t h e s e  s c a f f o l d i n g s  t o  

create a theory .  I t  was l a t e r  r e a l i z e d  t h a t  t h e  e t h e r  was an 

i r r e l e v a n t  complication and it may be t h a t  t h e  pa r tons  are 

a l s o  nonex i s t en t .  The pa r tons  w e r e  on ly  p u t  i n  t h e r e  t o  have 



559 

PARTONS 813 

a f i e l d  theory  bu t  t h e  world,  i n  f a c t ,  i s  n o t  f i e l d  theo ry ,  

r a t h e r  i t ' s  something e l s e .  However, t h e  world has  u n i t a r i t y ,  

a n a l y t i c i t y  and r e l a t i v i s t i c  i n v a r i a n c e ,  . . . , and s o  we use 

t h e  f i e l d  theory  wi th  pa r tons .  Thus, " t h i s "  and " t h a t "  i s  

r i g h t  bu t  t h e  real  view i s  wrong, j u s t  l i k e  wi th  t h e  case  of 

t h e  e t h e r .  
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* N o t e s  e d i t e d  s y  P e t e r  '4. Z o b s o n ,  J r . ,  d i t h  t h e  

h e l p  o f  Leo P i l a c h o w s k i .  
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P A R T O N S ,  SCALING, A N D  R E G G E  BEHAVIOR 

The g e n e r a l  o u t l i n e  o f  t h e s e  l e c t u r e s  w i l l  be some- 

t h i n g  l i k e  t h i s :  f i r s t ,  I w i l l  d e s c r i b e  t h e  g e n e r a l  

i d e a s  o f  t h e  p a r t o n  c o n c e p t .  Then I w i l l  p o i n t  o u t  

how t h e  e x p e r i m e n t s  on d e e p - i n e l  a s t i  c s c a t t e r i n g  o f  

e l e c t r o n s  and  n e u t r i n o s  by n u c l e o n s  g i v e  us i n f o r -  

m a t i o n  a b o u t  t h e  n a t u r e  and  d i s t r i b u t i o n  o f  t h e  

p a r t o n s .  T h i s  w i l l  be f o l l o w e d  by a d i s c u s s i o n  o f  

t h e  a p p l i c a t i o n s  o f  p a r t o n  i d e a s  t o  h a d r o n i c  c o l l i -  

s i o n s .  I s h a l l  u n f o r t u n a t e l y  n o t  h a v e  t i m e  t o  

d i s c u s s  p r e d i c t i o n s  o f  t h e  p r o d u c t s  ( t h e  p a r t i c l e s  

t h a t  come o u t )  i n  d e e p - i n e l a s t i c  s c a t t e r i n g .  I w i l l  

a l s o  d i s c u s s  a number o f  t h e o r e t i c a l  i d e a s  t h a t  h a v e  

n e v e r  been  worked  t h r o u g h  t o  t h e  e n d .  

I t  s h o u l d  be  p o i n t e d  o u t  t h a t  t h e  p a r t o n  t h e o r y  

i s  a c o n g l o m e r a t i o n  o f  r a t h e r  i m p r e c i s e  i d e a s .  I n  

p a r t i c u l a r ,  I wan t  t o  e m p h a s i z e  t h a t  i n  h a d r o n i c  

c o l l i s i o n s  p a r t o n  i d e a s  h a v e  n o t  been  v e r y  e f f e c t i v e .  

They d i d  s t r o n g l y  s u g g e s t  t h a t  t h e r e  wou ld  be s c a l i n g  

and  a p l a t e a u  i n  t h e  r a p i d i t y  p l o t ,  and  t h e s e  s u g -  

g e s t i o n s  a p p e a r  t o  be c o r r e c t ,  b u t  we h a v e n ' t  g o t t e n  

anywhere  w i t h  t h e  d e t a i l e d  q u e s t i o n s - - p r o p o r t i o n s  o f  

T I ' S  and  K 's  t o  be e x p e c t e d ,  and  t h a t  s o r t  o f  t h i n g - -  

and  t h a t  h a s  been  a d i s a p p o i n t m e n t  t o  me. The i d e a  

o f  p a r t o n s  was o r i g i n a l l y  c o n c e i v e d  i n  an  a t t e m p t  t o  
3 
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u n d e r s t a n d  h i q h - e n e r g y  h a d r o n i c  c o l l i s i o n s ,  a n d  I 

w o r k e d  i n t e n s i v e l y  o n  t h i s  i n  t h e  s u m m e r  o f  1 9 6 8 .  A t  

t h a t  t i m e  I inade a v i s i t  t o  S L A C  a n d  l e a r n e d  a b o u t  

t h e  r e s u l t s  o n  d e e p  i n e l a s t i c  s c a t t e r i n g  o f  e l e c t r o n s .  

I saw t h J t  t h e  e x p e r i m e n t s  w e r e  t a i l o r - m a d e  f o r  

i n v e s t i g a t i n g  p a r t o n s ,  a n d  w e r e  e a s y  t o  i n t e r p r e t  i n  

t e r m s  o f  t l i c  p i c t u r e s  I h a d  a l r e a d y  d e v e l o p e d  f o r  t h e  

s t r o n g  i n t e r a c t i o n s .  T h e  d e e p - i n e l a s t i c  s c a t t e r i n g  

e x p e r i m e n t s  c a n  i d e n t i f y  t h e  k i n d s  o f  p a r t o n s  a n d  how 

t h e y  a r e  d i s t r i b u t e d ,  w h e r e a s ,  a s  y e t ,  I s e e  n o  c l e a r  

way  t o  do  t h i s  f r o m  a s t u d y  o f  h a d r o n i c  c o l l i s i o n s .  

T h e  i d e a  o f  p a r t o n s  i s  a n  o l d  o n e - - i t  i s  a f i e l d  

t h e o r y  i d e a .  I n  a f i e l d  t h e o r y  t h e  p h y s i c a l  s t a t e  o f  

a p a r t i c l e ,  s a y  a p r o t o n ,  i s  d e s c r i b e d  b y  a w a v e -  

f u n c t i o n  w h i c h  g i v e s  t h e  a m p l i t u d e s  f o r  f i n d i n g  

v a r i o u s  c o n f i g u r a t i o n s  i n s i d e  t h e  p r o t o n .  C o n f i  g u -  

r a t i o n s  o f  w h a t ?  I f  we c o n s i d e r  q u a n t u m  e l e c t r o d y -  

n a m i c s ,  t h e  w a v e f u n c t i o n  f o r  p o s i  t r o n i u m  c o n t a i n s  

some a m p l i t u d e  f o r  f i n d i n g  a n  i d e a l  D i r a c  e l e c t r o n -  

p o s i t r o n  p a i r ,  a n  a m p l i t u d e  f o r  f i n d i n g  t h o s e  p l u s  a 

v i r t u a l  p h o t o n ,  e t c .  T h e r e  i s  a c e r t a i n  a m p l i t u d e - -  

s m a l l  b e c a u s e  t h e  c o u p l i n g  i s  s m a l l - - f o r  f i n d i n g  t w o  

e l e c t r o n s  a n d  t w o  p o s i t r o n s .  Now t h e  c o n s t i t u e n t s  

w h o s e  d i s t r i b u t i o n s  a r e  g i v e n  b y  t h e s e  amp1 i t u d e s  a r e  

t h e  o b j e c t s  c r e a t e d  b y  t h e  f i e l d  o p e r a t o r  $ ,  w h i c h  

a r e  n o t  p h y s i c a l  e l e c t r o n s .  T h e y  a r e  w h a t  we s o m e -  

t i m e s  c a l l  " b a r e "  e l e c t r o n s .  T h e  p h y s i c a l  e l e c t r o n  
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we f i n d  i n  t h e  l a b o r a t o r y  h a s  soirie a i i i t ! l i t . i i d rc  t o  b e  il 

b a r e  e l e c t r o r i ,  b u t  a l s o  some s m a l l  amp l i t . udc5  t o  b e  a 

b a r e  e l e c t r o n  p l u s  v i r t u a l  p h o t o n s ,  a d d i t i o n a l  p a i r s ,  

e t c .  I t  i s  u n f o r t u n a t e  f o r  o u r  l a n q u a q e  o f  d c s c r i [ i -  

t i o r i  ( a 1  t t i o u q l i  v e r y  f o r t u n a t e  f o i -  i i i ~ t t i ( ~ i i i ~ i ~ . i ( : , i l  c , i t i i -  

p l i c i  t y )  t l i a t  t h e  b a r ( !  a n d  p I i y 5 i i ; a l  p l r i : t , r o i i L ;  i3 t . i '  

c ~ ~ ~ p r o x i ~ n a L e l v  Lt ie s a m e .  I t i a t  i r : .  t l i i '  l l t i y ~ . i i ~ , i l  i % l c c : -  

t r o n  h a s  a r o u n d  997; p r o b a b i  1 i t y  ( ,  .9? i l l  th r .  iiI11IJ1 i - 

t u d e )  f o r  h e i t i i j  a b a r e  e l e c t r o n  a n d  o n l y  3 - i l i a 1  I 

p r o b a b i l i t y  f o r  b e i n g  i i i o r e  c o m p l i c a t e d .  111 5 t r o n q  

i n t e r a c t i o n s .  t h e  l a t t e r  p r o b a b i l i t y  w i l l  n o t  b e  

s m a l l ,  a n d  t h e  p h y s i c a l  p a r t i c l e s  a n d  b a r e  o b j e c t s  o f  

t h e  U n d e r l y i n g  f i e l d  t h e o r y  n e e d  n o t  h e  s o  c l o s e l y  

c o n n e c t e d .  7 0  we i n t r o d u c e  ttir w o r d  " p a r t o i i "  t o  

r e f e r  t o  t h e s e  b a r e  c o n s t i t u e n t s .  T h e  P r s u i i i p t i o n  i s  

t h a t  we h a v e  a n  u n d e r l y i n g  f i e l d  t h e o r y  w h i c h  c o n t a i n 5  

o p e r a t o r s  o f  v a r i o u s  t y p e s ,  w h i c h  c a r r y  s p i n ,  i s o s p i n ,  

s t r a n g e n e s s ,  a n d  s o  o n .  T h e  p a r t o n s  a r e  t h e  o b j e c t s  

c r e a t e d  b y  t h e s e  b a s i c  f i e l d  o p e r a t o r s .  T h e y  a r e  t h e  

q u a n t a  o f  t h e  f i e l d s  o f  t h e  u n d e r l y i n g  f i e l d  t h e o r y .  

~- 

I n  t h i s  p i c t u r e ,  t h e  w a v e f u n c t i o n  o f  a p r o t o n  

c o n t a i n s  t h e  a m p l i t u d e s  t o  f i n d  c o n f i g u r a t i o n s  o f  

p a r t o n s  w i t h  v a r i o u s  m o m e n t a .  I n  p r i n c i p l e ,  t h e  

w a v e f u n c t i o n  c o n t a i n s  a n  a m p l i t u d e  C o  t o  f i n d  n o t h i n g  

a t  a l l  ( f o r  a p r o t o n ,  C o  = 0 s i n c e  t h e  vacuu tn  d o e s  

n o t  h a v e  t h e  q u a n t u m  n u m b e r s  o f  a p r o t o n ) ,  a n  amp1 i -  

t u d e  C l i ( c )  t o  f i n d  o n e  p a r t o n  o f  t y p e  i ( w h i c h  i n d e x  
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s p e c i f i e s  s u c h  t h i n g s  a s  s p i n ,  i s o s p i n ,  e t c . )  w i t h  

momentum $, an a m p l i t u d e  C z i j ( F l  ,;,) t o  f i n d  two 

p a r t o n s  o f  t y p e s  i and j w i t h  momenta F1 and  p 2 ,  and  

s o  on .  M a t h e m a t i c a l l y ,  we c o u l d  w r i t e  

+ 

where  10> r e p r e s e n t s  t h e  vacuum, and  a*(;) i s  t he  

c r e a t i o n  o p e r a t o r  f o r  a p a r t o n  o f  t y p e  i and momen- 

t u m  6. We w i l l  i g n o r e  a l l  c o m p l i c a t i o n s  o f  f i e l d  

t h e o r y  which may make the  r i g o r o u s  b a s i s  o f  s u c h  an 

e x p r e s s i o n  s u s p e c t .  

I f  s u c h  an e x p r e s s i o n  does  make some s o r t  o f  

s e n s e ,  t h e r e  w i l l  be a w a v e f u n c t i o n  o f  t h i s  s o r t  f o r  

a p r o t o n  i n  any c i r c u m s t a n c e :  a t  r e s t ,  moving a l o n g  

t h e  z - a x i s  w i t h  a c e r t a i n  momentum, and so  on .  F o r  

c o l l i s i o n s  a t  h i g h  e n e r g y ,  we need  t h e  w a v e f u n c t i o n  

f o r  a p a r t i c l e  w i t h  a l a r g e  momentum. This  i s  n o t  

e a s i l y  o b t a i n e d  from t h e  w a v e f u n c t i o n  f o r  t h e  p a r -  

t i c l e  a t  r e s t ,  however .  The w a v e f u n c t i o n  i s  n o t  

r e 1  a t i  vi  s t i  c a l  l y  i n v a r i a n t ,  and  t h e  t r a n s f o r m a t i o n  

which c o n n e c t s  one  L o r e n t z  f r a m e  w i t h  a n o t h e r  i n v o l v e s  

t h e  H a m i l t o n i a n ,  which we d o  n o t  k n o w - - i t  i s  o u r  hope  

t h a t  we can u n d e r s t a n d  many f e a t u r e s  o f  h i g h - e n e r g y  

c o l l i s i o n s  w i t h o u t  a d e t a i l e d  knowledge  o f  t h e  Hamil -  

t o n i a n .  T h u s  we a r e  l e d  t o  t r y  d i r e c t l y  t o  g u e s s  o r  

6 
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u n d e r s t a n d  t h e  w a v e f u n c t i o n  o f  a r a p i d l y  m o v i n g  

p a r t i c l e .  

One o f  t h e  f i r s t  f e a t u r e s  we come a c r o s s  i s  t h e  

s c a l i n g  b e h a v i o r  o f  t h e  w a v e f u n c t i o n .  L e t  us c o n s i -  

d e r  a p r o t o n ,  s a y ,  o f  l a r g e  t o t a l  momentum P ,  a n d  

c o n s i d e r  t h e  a m p l i t u d e  t h a t  t h i s  p r o t o n  c o n s i s t s  o f  

j u s t  t w o  p a r t o n s  w i t h  momenta  ;l a n d  p,. 

t h e  l o n g i t u d i n a l  momentum o f  o n e  p a r t o n  as xlP a n d  o f  

t h e  o t h e r  as x,P. T h e n  we h a v e ,  o f  c o u r s e ,  x1 + x, = 

1 .  

6,. 
Q, a r e  f i n i t e  ( a n d  r e m a i n  f i n i t e  as  P + a), t h e  

a m p l i t u d e  f o r  f i n d i n g  xl,  x,, Q,, a n d  Q, i s  i n d e p e n -  

d e n t  o f  P i n  t h e  h i g h  P l i m i t .  I f ,  i n  f a c t ,  t h e r e  i s  

n o  s u b s  t a n t i  a1 amp1 i t u d e  f o r  f i n d i n g  p a r t o n s  w i  t h  

l a r g e  t r a n s v e r s e  momenta, t h e n  t h e  w a v e f u n c t i o n  i t s e l f  

may b e  r e g a r d e d  as s c a l i n g  i n  t h i s  way .  T h a t  t h i s  

may b e  t r u e  was s u g g e s t e d  t o  me b y  t h e  o b s e r v e d  

b e h a v i o r  i n  h i g h - e n e r g y  c o l l i s i o n s ,  w h e r e  we f i n d  t h e  

p r o d u c t s  l i m i t e d  t o  a b o u t  300 MeV/c i n  t r a n s v e r s e  

momentum. T h i s  makes i t  r e a s o n a b l e  t o  s u p p o s e  t h a t  

t h e  w a v e f u n c t i o n  does  n o t  c o n t a i n  p a r t o n s  w i t h  l a r g e  

t r a n s  v e r s e  momen t u m .  

+ 
We w r i t e  

The p a r t o n s  w i l l  h a v e  t r a n s v e r s e  m - a e n t a  a, a n d  
+ 

I n  t h a t  p a r t  o f  t h e  w a v e f u n c t i o n  w h e r e  Q, a n d  
-+ 

-+ + 

The s i m p l e s t  e l e m e n t a r y  a r g u m e n t  t o  s u p p o r t  t h e  

g e n e r a l  n o t i o n  o f  s c a l i n g  o f  t h e  w a v e f u n c t i o n  i f  t h e  

t r a n s v e r s e  momenta a r e  l i m i t e d  i s  t h e  f o l l o w i n g .  

S u p p o s e  t h e  w a v e f u n c t i o n  r e f e r s  t o  a p a r t i c l e  w i t h  
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t o t a l  e n e r g y  E .  I n  p e r t u r b a t i o n  t h e o r y ,  t h e  a m p l i -  

t u d e  f o r  f i n d i n g  t h i s  as t w o  s u b s y s t e m s  o f  e n e r g i e s  

E l  a n d  E 2  w i l l  b e  p r o p o r t i o n a l  t o  an  e n e r g y  d e n o m i -  

n a t o r  f a c t o r  

A / ( E - E ~ - E ~ )  . 

L e t  P b e  t h e  l o n g i t u d i n a l  momentum o f  t h e  p a r t i c l e ,  
-L 

a n d  Q o  i t s  t r a n s v e r s e  momentum. 

a s s i g n e d  l o n g i t u d i n a l  momenta  xlP 

v e r s e  momenta  Q 1  a n d  Q,. We a r e  

l i m i t  o f  v e r y  l a r g e  P ,  w i t h  t h e  Q 

c o n s e r v a t i o n  o f  momentum r e q u i  r e s  

r e w r i t e  t h e  e n e r g y  d e n o m i n a t o r  i n  

-L + 

h e  p a r t o n s  a r e  

a n d  x2P  a n d  t r a n s -  

n t e r e s  t e d  i n  t h e  

s f i x e d .  S i n c e  

x 1  t x 2  = 1 ,  we c a n  

t h e  f o r m  

( E - P )  - ( E 1 - x 1 P )  - (E2 , -x2P)  . 
L e t t i n g  m b e  t h e  p a r t i c l e  mass ,  a n d  m, a n d  m2 t h e  

p a r t o n  m a s s e s ,  we h a v e  

E = G t P  2 2 2  + Q o  

a n d  
Ei  = R + x : P 2 + Q i  2 . 

When P i s  v e r y  l a r g e ,  we c a n  a p p r o x i m a t e  t h e s e  

e x p r e s s i o n s  b y  

a n d  
,? 2 2  Ei - xiP + (m i+Q i /2x iP )  . 

I n s e r t i n g  t h e s e  e x p r e s s i o n s  i n  t h e  e n e r g y  

d e n o m i n a t o r ,  t h e  amp1 i t u d e  becomes  

8 
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A P  

2 2  2 2- m +Qo m 2 + Q 2  
2-2x,-- 2 X ,  

I L 

There  w i l l  a l s o  be n o r m a l i z a t i o n  f a c t o r s  l i k e  l/J%, 

e t c .  In  g e n e r a l ,  a s  P + 00, t h e s e  f a c t o r s  m u l t i p l i e d  

by t h e  P i n  t h e  n u m e r a t o r  w i l l  e i t h e r  g o  t o  z e r o  o r  

approach  a n o n - z e r o  c o n s t a n t .  The l i m i t i n g  a m p l i t u d e  

t h u s  depends  o n l y  on t h e  x ' s  and t h e  t r a n s v e r s e  

momenta. Note  t h a t  i n  t h e  a p p r o x i m a t i o n s  used  f o r  

t h e  e n e r g y  we have  assumed t h e  x ' s  a r e  n o t  t o o  s m a l l ;  

c l e a r l y ,  t h e  a rgumen t  b r e a k s  down f o r  x ' s  l e s s  t h a n  

o r d e r  1 / P .  T h i s  i s  w h a t  we w i l l  c a l l  t h e  "wee"  

r e g i o n ,  and we w i l l  f i n d  t h a t  i n  t h e  wee r e g i o n  o f  x 

t h e r e  a r e  a l a r g e  number o f  p a r t o n s ,  which c o m p l i -  

c a t e  t h e  i n t e r p r e t a t i o n  o f  t h e  w a v e f u n c t i o n .  We 

a l s o  n o t e  t h a t  t h e r e  i s  n e g l i g i b l e  a m p l i t u d e  t o  f i n d  

p a r t o n s  w i t h  n e g a t i v e  ( a n d  non-wee)  v a l u e s  o f  x .  For  

i f  x 1  i s  n e g a t i v e ,  El  i s  l x l l P  a n d  E, - x l P  i s  

2 ] x 1 1 P ,  n o t  o f  o r d e r  1 / P  a s  b e f o r e  b u t  o f  o r d e r  P .  

S o  t h e  l a r g e  d e n o m i n a t o r  a s  P -+ makes t h e  a m p l i t u d e  

n e g l i g i b l e  f o r  f i n i t e  n e g a t i v e  x .  

I am g o i n g  t o  i n t e r r u p t  t h i s  d i s c u s s i o n  a t  t h i s  

p o i n t  t o  d i s c u s s  one  of  t h e  i d e a s  I men t ioned  e a r l i e r  

t h a t  o n l y  p a r t i a l l y  worked .  T h i s  c o n c e r n s  t h e  i d e a s  

a b o u t  h i g h - e n e r g y  c o l l i s i o n s  t h a t  come from t h e  Regge 

p o l e  a p p r o a c h .  We f i n d  t h a t  v a r i o u s  c r o s s  s e c t i o n s  

f a l l  a s  i n v e r s e  powers o f  s ,  the  s q u a r e  o f  t h e  t o t a l  
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c e n t e r - o f - m a s s  e n e r g y ,  i n  s u c h  a m a n n e r  t h a t  t h e  

p o w e r s  d e p e n d  o n  t h e  q u a n t u m  n u m b e r s  e x c h a n g e d  b u t  

n o t  o n  t h e  p r e c i s e  p r o c e s s  i n v o l v e d .  F o r  e x a m p l e ,  i n  

a c o l l i s i o n  t h a t  i n v o l v e s  a p e x c h a n g e ,  t h e  c r o s s  

s e c t i o n  as a f u n c t i o n  o f  s a t  f i x e d  momentum t r a n s f e r  

t d e t e r m i n e s  a p o w e r  o f  s ,  cc(t). T h i s  p o w e r  a ( t )  i s  

( s u p p o s e d l y )  t h e  same as f o u n d  i n  a n y  o t h e r  c o l l i s i o n  

i n v o l v i n g  p e x c h a n g e .  T h i s  i s  a n a l o g o u s  t o  t h e  c a s e  

o f  r e s o n a n c e s :  t h e  p o s i t i o n  o f  t h e  r e s o n a n c e  i s  

i n d e p e n d e n t  o f  t h e  p r o c e s s  i n  w h i c h  i t  i s  f o r m e d .  

Now s u p p o s e  I g a v e  y o u  t h e  s t r o n g  i n t e r a c t i o n  H a m i l -  

t o n i a n  a n d  a s k e d  y o u  t o  c o m p u t e  t h e  v a r i o u s  p o w e r s  

t h a t  we f i n d  i n  Regge t h e o r y .  You  c o u l d  s i m p l y  u s e  

t h e  H a m i l t o n i a n  t o  w o r k  o u t  t h e  d e t a i l s  o f  a p a r t i -  

c u l a r  p r o c e s s ,  s a y  IT + p -+ IT' + A , a n d  e x t r a c t  t h e  

p o w e r s  f r o m  t h e  h i g h - e n e r g y  b e h a v i o r  o f  t h e  c r o s s  

s e c t i o n .  B u t  t h a t  w o u l d  b e  s o m e t h i n g  l i k e  g e t t i n g  

t h e  mass o f  t h e  A + +  f r o m  t h e  same p r o c e s s  by com- 

p u t i n g  a l l  t h e  d e t a i l s  o f  IT' + p -+ p + T+ + IT' a n d  

l o o k i n g  f o r  t h e  p e a k  i n  t h e  PIT mass d i s t r i b u t i o n .  

T h a t  i s n ' t  t h e  way we c a l c u l a t e  e n e r g y  l e v e l s .  We 

e x p e c t ,  i n s t e a d ,  t o  b e  a b l e  t o  s o l v e  an  e i g e n v a l u e  

e q u a t i o n ,  HJ, = EJ,. I n  o t h e r  w o r d s ,  we u s e  t h e  

Hami 1 t o n i  an  d i r e c t l y  t o  f i n d  a n  e i g e n v a l  ue w h i c h  d o e s  

n o t  d e p e n d  on  a s p e c i f i c  p r o c e s s .  The q u e s t i o n  i s  

w h e t h e r  o r  n o t  t h e  Regge p a r a m e t e r s  c a n  a l s o  b e  f o u n d  

in some s u c h  d e e p e r  way .  

+ ++ 

t 
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Suppose  we h a v e  a s c a t t e r i n g  p r o c e s s  A + B + C + 
D ,  which we r e p r e s e n t  s c h e m a t i c a l l y  by a d i a g r a m :  

This i s  s u p p o s e d  t o  i n d i c a t e  t h a t  s o m e t h i n g  ( a  "Reg- 

g e o n ? " )  i s  e x c h a n g e d  i n  t he  p r o c e s s .  From o u r  p o i n t  

of  v i ew,  some " p i e c e s "  o f  t he  f a s t  moving p a r t i c l e  A 

f a l l  o f f  and  a r e  a b s o r b e d  by B .  Now i n  t h e  c e n t e r -  

o f -mass  s y s t e m ,  a s  t h e  momentum P o f  A and B goes  t o  

i n f i n i t y ,  b o t h  t h e  l o n g i t u d i n a l  momentum and t h e  

e n e r g y  t h a t  a r e  t r a n s f e r r e d  by t h e  e x c h a n g e  w i l l  be 

o f  o r d e r  1 / P ,  and so  we n e g l e c t  them i n  h i g h - e n e r g y  

c o l l i s i o n s .  The p i e c e s  o f  A t h a t  a r e  e m i t t e d  a r e  

t h o s e  w i t h  momentum n o t  t o o  f a r  f rom z e r o .  L e t  us 

t a k e  F ( E )  a s  t he  a m p l i t u d e  f o r  A e m i t t i n g  t h i s  

" s t u f f "  when A has  e n e r g y  E i n  t h e  c e n t e r - o f - m a s s .  

We l e t  B be t h e  a m p l i t u d e  f o r  p r o p a g a t i n g  i t  t o  t h e  

o t h e r  p a r t i c l e ,  and  G ( E )  b e  t h e  a m p l i t u d e  f o r  B ' s  

a b s o r b i n g  i t .  The o v e r a l l  a m p l i t u d e  i s  

F(E)BG(E) . ( 1 )  

Now we s u p p o s e  t h a t  t he  a m p l i t u d e  F ( E )  t h a t  A e m i t s  

t h i s  s t u f f  does  n o t  depend on w h a t  p a r t i c l e  B a b s o r b s  

i t  and how i t  i s  done .  T h a t  i s ,  t h e  a m p l i t u d e  above  

f a c t o r s :  F ( E )  does  n o t  depend  on B. 

11 
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Now t h i s  t i m e  s u p p o s e  p a r t i c l e  A h a s  e n e r g y  E l  

and  i t  e m i t s  t h e  " t h i n g "  w i t h  a m p l i t u d e  F ( E 1 ) ,  b u t  

now p a r t i c l e  B has  a d i f f e r e n t  e n e r g y ,  s a y  E 2 ,  

(mov ing ,  o f  c o u r s e ,  i n  t h e  o p p o s i t e  d i r e c t i o n  t o  A )  

s o  the  p r o p e r  a b s o r p t i o n  a m p l i t u d e  i s  G ( E 2 ) ,  and  o u r  

a m p l i t u d e  i s  

F ( E 1  )8G(E2)  - ( 2 )  

B u t  r e l a t i v i t y  t e l l s  us t h a t  t h i s  must n o t  depend  on 

t h e  c o o r d i n a t e  s y s t e m ,  and h e n c e  can  o n l y  depend  on 

t h e  i n v a r i a n t  E 1 E 2  ( s  = 4 E 1 E 2 ) .  

have  t r a n s f o r m e d  by v e l o c i t y  v f rom t h e  c e n t e r - o f -  

mass s y s t e m ,  s o  A ' s  e n e r g y  i s  i n c r e a s e d  by a f a c t o r  

f = d ( l + v ) / ( l - v ) ,  and  6 ' s  d e c r e a s e d  by t h e  same 

f a c t o r :  

on t h e  f a c t o r  f. I f  ( 2 )  i s  t o  depend o n l y  on t h e  

p r o d u c t  E 1 E 2 ,  t h e n  F ( E 1 )  and  G ( E 2 )  e a c h  must be 

p r o p o r t i o n a l  t o  a power o f  E ,  t he  same f o r  e a c h :  

Fo r  e x a m p l e ,  we may 

1 E l  = f E ,  E 2  = f -  E ,  and ( 2 )  must n o t  depend 

F ( E )  % E', G ( E )  'L E' 

a n d  the  o v e r a l l  a m p l i t u d e  goes  a s  s'. (One m i g h t  

o b j e c t  t h a t  the  " s t u f f "  b e i n g  exchanged  i n  t he  s y s t e m  

a t  v e l o c i t y  v i s  n o t  t he  same a s  t h a t  i n  t h e  c e n t e r -  

o f - m a s s ,  s o  8 depends  on f .  B u t  t h e  s t u f f  has  z e r o  

e n e r g y  and  l o n g i t u d i n a l  momentum, s o  when t r a n s f o r m e d  

i t  i s  t h e  s a m e . )  We a r e  l e d  i n  t h i s  way t o  a s s o c i a t e  

Regge b e h a v i o r  w i t h  t he  e x c h a n g e  o f  s o m e t h i n g  w i t h  

ve ry  low momentum. This  i n v o l v e s  t he  p r o b a b i l i t y  f o r  

f i n d i n g  s l o w  p a r t o n s  i n  a w a v e f u n c t i o n  f o r  a p a r t i c l e  

1 2  
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w i t h  l a r g e  momentum, w h i c h  i n  p r i n c i p l e  c a n  b e  c a l -  

c u l a t e d  d i r e c t l y  g i v e n  t h e  H a m i l t o n i a n .  

I n  o r d e r  t o  s e e  how t h i s  m i g h t  b e  d o n e ,  I 

a n a l y z e d  t h e  s i t u a t i o n  as f o l l o w s .  L e t  F b e  some 

l a r g e  e n e r g y  s c a l e ,  a n d  c o n s i d e r  a w a v e f u n c t i o n  f o r  

a p a r t i c l e  w i t h  l o n g i t u d i n a l  momentum P ,  = x o F .  

a r e  g o i n g  t o  k e e p  x o  f i x e d  a n d  l e t  F -f m .  

a r b i t r a r y ,  o f  c o u r s e ;  y o u  may c h o o s e  i t  t o  b e  1 . )  

T h i s  w a v e f u n c t i o n  i s  a s o l u t i o n  o f  HJ, = E J , ,  w h e r e  H 

i s  t h e  ( u n k n o w n )  H a m i l t o n i a n  o f  t h e  s y s t e m .  $ i s  

a l s o  a n  e i g e n f u n c t i o n  o f  t h e  o p e r a t o r  f o r  l o n g i t u d i -  

n a l  momentum, P z ;  t h a t  i s ,  PzJ ,  = xoF$ .  We w i l l  

assume t h a t  xoF  i s  v e r y  l a r g e ;  t h e n  t h e  e n e r g y  E i s  

n e a r l y  e q u a l  t o  xoF ,  a n d  u s i n g  t h e  same a p p r o x i m a t i o n  

(We 

x i s  
0 

as e a r l i e r  we h a v e  
2 2  E = x F + ( m  + Q 0 / 2 x 0 F )  , 

0 

w i t h  8,, b e i n g  t h e  t r a n s v e r s e  momentum. 

w r i  t e  

Now we c a n  

2 2  2F(H-P,)$ = ( m  + Q o / 2 x o ) ~  . 
If we d e f i n e  an o p e r a t o r  

W = a im 2 F ( H - P z )  

F + m ,  

t h e n  I$ a t  i n f i n i t e  momentum i s  a s o l u t i o n  o f  W J ,  = w $ ,  

w h e r e  t h e  e i  g e n v a l  ue i s  
w = ( m  2 2  + Q o ) / 2 x o  . 

A p p l y i n g  t h i s  i d e a  w i  t h  v a r i o u s  m o d e l  Hami 1 t o n i  ans 

s u g g e s t  W o p e r a t o r s , w h i c h  d e p e n d  o n l y  o n  x ' s  a n d  Q ' s ,  

1 3  
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which i s  how I a r r i v e d  a t  t h e  s c a l i n g  i d e a  f o r  t h e  

w a v e f u n c t i o n  J I .  
3 L e t ' s  t a k e  a v e r y  e a s y  e x a m p l e - - t h e  s c a l a r  I+ 

t h e o r y ,  d e s c r i b e d  by t h e  L a g r a n g i a n  
2 2  3 2 = ( V d  - )J I+ -I- gI+ * 

T h e  H a m i l t o n i a n  f o r  t h i s  t h e o r y  h a s  t h e  fo rm 

H = C w ( C ) a * ( C ) a ( < )  
k 

+ 
where  a * ( k )  i s  t h e  c r e a t i o n  o p e r a t o r  f o r  a s c a l a r  

p a r t i c l e  o f  momentum c ,  w ( 2 )  = (m, and 

w i  = w ( k i ) .  
+. 

The o p e r a t o r  f o r  l o n g i t u d i n a l  momentum 

i s  
P z  =: k,a*(;)a(;) . 

Now we wan t  t o  t a k e  k Z  = X F  and  s t u d y  t h e  l i m i t  

F +. m. 

l i m i t  and  s o  we can  u s e  t h e  u s u a l  a p p r o x i m a t i o n  

I f  x i s  p o s i t i v e ,  we have  w -+ k Z  i n  t h i s  

2 2  w - k Z  ( U  +Q ) / 2 x F  . 
For  x n e g a t i v e ,  however ,  w a p p r o a c h e s  - k Z  and  s o  

'L 
w - k Z  = 21kZI  = 2 1 ~ 1 F  . 

Now we s e e  t h a t  i f  we w r i t e  2 F ( H - P z )  i n  terms o f  t h e  

x ' s  and t r a n s v e r s e  momenta, we g e t  

1 4  
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f o r  the  k i n e t i c  e n e r g y  c o n t r i b u t i o n  t o  t he  o p e r a t o r .  

The s e c o n d  t e r m  h e r e  l o o k s  l i k e  t h e  l a r g e s t  p a r t ,  b u t  

i t  i s  r e a l l y  u n i m p o r t a n t  e x c e p t  i n  t h e  f o l l o w i n g  

s e n s e .  I f  we s t a r t  w i t h  a w a v e f u n c t i o n  c o n t a i n i n g  

p o s i t i v e  X I S ,  and i n  a p e r t u r b a t i o n  t r e a t m e n t  some 

o p e r a t o r  g e n e r a t e s  s o m e t h i n g  w i t h  a n e g a t i v e  x ,  t h i s  

t e r m  w i l l  g i v e  an enormous c o n t r i b u t i o n  t o  t h e  deno-  

m i n a t o r  i n  t h e  l / ( H - E )  f a c t o r  i n  t h e  p e r t u r b a t i o n  

e x p a n s i o n .  S o  t h e  o v e r a l l  e f f e c t  o f  t h i s  t e r m  i s  

s i m p l y  t o  k i l l  a l l  n e g a t i v e  x ' s - - t o  g e t  r i d  o f  t h i n g s  

moving backward .  
+ 

The o p e r a t o r s  a * ( x , Q )  i n t r o d u c e d  i n  t h i s  

e x p r e s s i o n  a r e  n o t  t h e  same a s  t h e  o r i g i n a l  c r e a t i o n  

o p e r a t o r s  a*(:). 

t i o n s  

The l a t t e r  obey commuta t ion  r e l a -  

[ a ( ; , )  , a*(;,)] = 6 ( 3 ) ( i 1 - ; 2 ) ,  

whereas  we w a n t  t he  f o r m e r  t o  obey 

S i n c e  6 ( k z 1 - k z 2 )  = F - 1 6 ( x 1 - x 2 ) ,  t h i s  i m p l i e s  we must 

i n t r o d u c e  a f a c t o r  fi i n  t h e  d e f i n i t i o n  of  t h e  new 

o p e r a t o r s ;  t h a t  i s ,  

a*(;) -+ F-'a*(x,$) . 
O n  t h e  o t h e r  hand ,  t h e  sum o v e r  l o n g i t u d i n a l  momenta 

w i l l  be F t i m e s  a sum o v e r  x ,  so  t h a t  we a l s o  have  

t h e  r e p l a c e m e n t  

1 5  
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We s e e  t h a t  t h e  s c a l e  f a c t o r s  c a n c e l  i n  t h e  t e r m s  

i n v o l v i n g  Ca*a.  When we c o n s i d e r  t h e  i n t e r a c t i o n  

t e r m ,  c o n v e r t i n g  t h e  sums o v e r  k l ,  k 2 ,  a n d  k 3  t o  sums 

o v e r  t h e  x ' s  a n d  t r a n s v e r s e  momenta  i n t r o d u c e s  a 

f a c t o r  F 3 ,  w h i l e  t r a n s f o r m i n g  t h e  a ' s  g i v e s  F 

The  f a c t o r s  1 / &  = l / d f l v  g i v e  a n o t h e r  F - 3 / 2 ,  a n d  

c o n v e r t i n g  t h e  & - f u n c t i o n  o f  l o n g i t u d i n a l  momentum t o  

a & - f u n c t i o n  o f  t h e  x ' s  b r i n g s  i n  1 / F .  O v e r a l l ,  we 

h a v e  j u s t  t h e  f a c t o r  1 / F  l e f t ,  w h i c h  i s  c a n c e l e d  b y  

t h e  F i n  2 F ( H - P Z ) .  

i n t e r a c t i o n  c o n t r i b u t i o n  i s  

+ +  + 

- 312  . 

P u t t i n g  t h i s  a l l  t o g e t h e r ,  t h e  

-+ -+ + 
x [ a ( x l  , Q l ) + a * ( - x l  , - Q , ) l [ a ( x 2 ~ ~ , ) + a * ( - x 2 . - a , ) l  

x [ a ( x 3 , Q 3 ) + a * ( - x 3 , - Q 3 ) 1  . + -+ 

When we c o m p u t e  t h e  l i m i t  F -+ m t o  o b t a i n  t h e  

o p e r a t o r  W ,  we c a n  make u s e  o f  t h e  f a c t  t h a t  n e g a t i v e  

x ' s  i n  t h e  w a v e f u n c t i o n  a r e  k i l l e d  b y  t h e  4 F 2  t e r m  

d i s c u s s e d  e a r l i e r .  T h e r e f o r e ,  t h e  i n t e r a c t i o n  t e r m s  

w i t h  t h r e e  c r e a t i o n  o r  t h r e e  a n n i h i l a t i o n  o p e r a t o r s  

c a n  b e  d i s c a r d e d ,  s i n c e  t h e  6 - f u n c t i o n  r e q u i r e s  t h e  

sum o f  t h e  x ' s  t o  b e  z e r o .  Thus  we a r e  f i n a l l y  l e d  

t o  t h e  e f f e c t i v e  W o p e r a t o r :  

1 6  
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+ A  c 
~'7 x 1 x 2 Q 1 Q 2  

Pm-F-? 
We c a n  s e e  how s c a l i n g  i s  i m p l i e d  b y  t h i s  l i m i t ,  

s i n c e  t h e  w a v e f u n c t i o n  i s  an  e i g e n f u n c t i o n  o f  W ,  

w h i c h  h a s  no  F d e p e n d e n c e ,  w i t h  e i g e n v a l u e  w ,  w h i c h  

i s  a l s o  i n d e p e n d e n t  o f  F .  ( S t r i c t l y  s p e a k i n g ,  W i s  

s i n g u l a r  n e a r  x = 0 a n d  i n  g e n e r a l  c a s e s  h a s  no 

s t r i c t l y  s c a l i n g  J, s o l u t i o n s - - t h e  c o m p l i c a t i o n s  t h i s  

p r o d u c e s  i n  t h e  wee r e g i o n  w i l l  b e  d i s c u s s e d  l a t e r . )  

Now we n o t i c e  t h a t  t h i s  e q u a t i o n  i s  homogeneous  

o f  d e g r e e  - 1  i n  x .  I t  i s  n o t  o b v i o u s  t h a t  W h a s  t h i s  

p r o p e r t y ,  b e c a u s e  o f  t h e  s q u a r e  r o o t s ,  b u t  i t  f o l l o w s  

f r o m  t h e  d e f i n i t i o n  o f  t h e  a ' s .  T h i s  i m p l i e s  t h a t  

u n d e r  x + A x ,  

s i n c e  t h i s  i s  e q u i v a l e n t  t o  c h a n g i n g  t h e  e n e r g y  s c a l e  

v i a  F + F / X .  I t  i s  t h e n  e a s y  t o  v e r i f y  t h a t  i f  we 

r e p l a c e  x b y  Ax, W + ( l / A ) W .  ( T h a t  t h i s  m u s t  b e  t r u e  

i n  g e n e r a l  c a n  b e  s e e n  s i n c e  t h e  e i g e n v a l u e s  f o r  

d i f f e r e n t  x o  v a r y  as l / x o . )  

c h a n g e  t h e  s c a l e  o f  t h e  x ' s  a r e  j u s t  t h e  b o o s t s  a l o n g  

t h e  l o n g i t u d i n a l  d i r e c t i o n .  The  i n f i n i t e s i m a l  g e n -  

e r a t o r  o f  t h e s e  b o o s t s  may b e  w r i t t e n  

T h e  o p e r a t o r s  t h a t  

B = C 1 x i ( a / a x i )  , 

1 7  
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and t h e  f a c t  t h a t  W i s  homogeneous i n  x-1 i m p l i e s  

t h e  commuta t ion  r e l a t i o n  

[ W , B ]  = W B  - BW = W . 
We would  l i k e  t o  e x t r a c t  f rom o u r  knowledge  o f  

W s o m e t h i n g  a b o u t  the  s m a l l  ( b u t  f i n i t e )  x r e g i o n .  

Suppose  we s t a r t e d  w i t h  an a p p r o x i m a t e  w a v e f u n c t i o n  

c o n t a i n i n g  one  f a s t  moving p a r t o n .  I n  t h e  n e x t  

a p p r o x i m a t i o n ,  t h e  i n t e r a c t i o n  would  p r o d u c e  some 

p a r t o n s  moving s l o w e r .  T h e s e ,  i n  t u r n ,  would  g i v e  

r i s e  t o  some more moving s l o w e r  s t i l l ,  and so  on .  

The s l o w  p a r t o n s  would r e s u l t  i n  t h i s  way f rom a l o n g  

c a s c a d e .  Now we come a c r o s s  c a s c a d e s  l i k e  t h i s  i n  

t h e  t h e o r y  o f  c o s m i c  r a y  s h o w e r s ,  and  t h e  g e n e r a l  

q u a l i t a t i v e  f e a t u r e  o f  s u c h  s h o w e r s  i s  t h a t  w h e n  

t h e r e  a r e  a l a r g e  number o f  s t e p s  i n  t he  c a s c a d e ,  we 

u l t i m a t e l y  p r o d u c e  a d i s t r i b u t i o n  w i t h  power law 

b e h a v i o r  i n  the  f r a c t i o n  x o f  t h e  o r i g i n a l  e n e r g y  o r  

momentum, which i s  i n d e p e n d e n t  o f  how the  shower  

s t a r t e d .  In  s h o w e r  t h e o r y ,  t h e r e  a r e  many d i f f e r e n t  

e i g e n v a l u e s  f o r  t h e  power ,  which  do n o t  depend  on the  

s t a r t i n g  p o i n t ,  a l t h o u g h  the  amount o f  e a c h  power 

p r e s e n t  d o e s .  I f  we c o n c e n t r a t e  on t h e  l o w e s t  power ,  

the  one  t h a t  i s  most  e f f e c t i v e  a s  t h e  s h o w e r  becomes 

d e e p e r ,  t h e  s h a p e  o f  t he  d i s t r i b u t i o n  becomes i n d e -  

p e n d e n t  o f  how t h e  s h o w e r  s t a r t e d .  

How can we make t h i s  q u a l i t a t i v e  i d e a  more 

e x p l i c i t ?  Looking  a t  s m a l l  x ' s  i s  e q u i v a l e n t  t o  
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k e e p i n g  x f i x e d  and  l e t t i n g  xo become l a r g e .  

l e t  xo  go t o  i n f i n i t y ,  t h e  e i g e n v a l u e  w goes  t o  z e r o ,  

and  t h e  w a v e f u n c t i o n  becomes a s o l u t i o n  o f  W $  = 0 .  

I n  t h i s  c a s e  i t  i s  p o s s i b l e  t o  c h o o s e  $ t o  be s i m u l -  

t a n e o u s l y  an e i g e n f u n c t i o n  o f  B (wh ich  i s  n o t  p o s s i -  

b l e  f o r  w # 0 s i n c e  B and  W do n o t  commute) ;  t h a t  i s ,  

we t a k e  B $  = b $ ,  where  b i s  some number.  B u t  t h i s  

means the  w a v e f u n c t i o n  must have  t h e  p r o p e r t y  

I f  we 

b $ ( x l  , x 2 , . .  . . )  = h $ ( A X l  , A x 2 , .  . . . )  . 
I f  we a sk  f o r  t h e  p r o b a b i l i t y  f o r  f i n d i n g  p a r t i c l e s  

a t  x i n  r a n g e  d x ,  we c o u l d  c a l c u l a t e  t h i s  by s c a l i n g  

down the w a v e f u n c t i o n  used  i n  a c a l c u l a t i o n  o f  t he  

p r o b a b i l i t y  f o r  some o t h e r  v a l u e  o f  x .  Thus t h e  

p r o b a b i l i t y  w i l l  h a v e  t o  depend on some power o f  x 

r e l a t e d  t o  t h i s  e i g e n v a l u e  b ( t h e  r e l a t i o n s h i p  i s  

d e t e r m i n e d  by how t h e  w a v e f u n c t i o n  i s  used  t o  compute  

t h e  p r o b a b i l i t y ) .  In  any c a s e ,  we w i l l  g e t  a d i s -  

t r i b u t i o n  o f  t h e  g e n e r a l  fo rm x d x / x .  T h i s  w i l l  be 

v a l i d  f o r  s m a l l  x down t o  t he  wee r e g i o n ;  i . e . ,  down 

t o  x o f  o r d e r  1 / E .  The smooth  j o i n i n g  o f  t h e  wee 

r e g i o n  o n t o  t h i s  d i s t r i b u t i o n  i m p l i e s  t h a t  t h i s  

r e g i o n  c o n t r i b u t e s  a t o t a l  p r o b a b i l i t y  o f  o r d e r  

( l / E ) B ,  which  i s  t h e  s o r t  o f  t h i n g  we were  l o o k i n g  

f o r  t o  s o l v e  the  p r o b l e m  o r i  g i  na l  l y  p r o p o s e d .  

Namely, t o  f i n d  t h e  powers t h a t  show u p  i n  t h e  Regge 

t h e o r y  f rom a knowledge  o f  t he  H a m i l t o n i a n ,  we 

c o u l d  c o n s t r u c t  t he  l i m i t i n g  o p e r a t o r  W and f i n d  

B 
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s i m u l t a n e o u s  e i g e n f u n c t i o n s  o f  W w i t h  e i  g e n v a l  ue 0 

and o f  B .  The e i g e n v a l u e s  o f  B would  t h e n  d e t e r m i n e  

t h e  powers i n  q u e s t i o n .  I n  f a c t ,  t h e r e  a r e  some 

t e c h n i c a l  d i f f i c u l t i e s  w i t h  t h i s  i d e a .  I n  p a r t i c u l a r ,  

t o  g e t  s i m u l t a n e o u s  e i g e n f u n c t i o n s  o f  W and  B we 

must l e t  x o  become i n f i n i t e .  B u t  t h i s  i s  n o t  com- 

p a t i b l e  w i t h  t h e  u s u a l  boundary  c o n d i t i o n s  f o r  t h e  

w a v e f u n c t i o n  whereby  we must s t a r t  somewhere w i t h  a 

f i n i t e  number o f  p a r t i c l e s .  A t  b e s t ,  we have  h e r e  an 

o u t l i n e  o f  a t h e o r y  t h a t  m i g h t  l e a d  us f rom the  

H a m i l t o n i a n  t o  a t h e o r y  o f  Regge p o l e s .  

The main p o i n t  we w a n t  t o  remember f rom t h i s  

d i s c u s s i o n  i s  t h a t  i t  i s  r e a s o n a b l e  t o  e x p e c t  a 

d i s t r i b u t i o n  a t  low x t h a t  goes  l i k e  a power o f  x.  

The v a l u e  o f  t h e  power may depend  on t h e  quantum 

numbers b e i  n g  c o n s i d e r e d ,  s o  t h a t  e x c h a n g e s  i n v o l v i n g  

d i f f e r e n t  quantum numbers can  have  d i f f e r e n t  power 

law dependence  on 1 / E .  I f  t o t a l  c r o s s  s e c t i o n s  go 

t o  c o n s t a n t s  a s  E + m ,  t h e n  t h e  l o w e s t  a l l o w e d  v a l u e  

o f  8 i s  z e r o .  U n f o r t u n a t e l y ,  i t  i s  n o t  a t  a l l  c l e a r  

how t h i s  p a r t i c u l a r  v a l u e  f o l l o w s  i n  any s i m p l e  way 

from t h e  t h e o r y .  

20 
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L E C T U R E  2 

P A R T O N  DISTRIBUTIONS A N D  DEEP-INELASTIC SCATTERING 

In t h e  f i r s t  l e c t u r e ,  we t r i e d  t o  d e s c r i b e  t h e  c h a r -  

a c t e r  o f  t h e  w a v e f u n c t i o n  f o r  a p r o t o n  moving w i t h  a 

very  h i g h  momentum, and  came t o  t h e  c o n c l u s i o n  t h a t  

t h e  a m p l i t u d e  t o  f i n d  a p a r t o n  w i t h  a c e r t a i n  momen- 

t u m  i n s i d e  s h o u l d  depend o n l y  on t h e  f r a c t i o n ,  x ,  o f  

t h e  p r o t o n ' s  l o n g i t u d i n a l  momentum c a r r i e d  by t h e  

p a r t o n ,  and on i t s  t r a n s v e r s e  momentum. We a l s o  d i s -  

c u s s e d  how t h e  d i s t r i b u t i o n  o f  p a r t o n s  m i g h t  be 

e x p e c t e d  t o  behave  i n  t h e  r e g i o n  o f  s m a l l  x ,  and  

d e c i d e d  by a n a l o g y  w i t h  shower  t h e o r y  t h a t  i t  was 

r e a s o n a b l e  t o  e x p e c t  power law b e h a v i o r ;  t h a t  i s ,  a 

d i s t r i b u t i o n  c o n s i s t i n g  o f  a s u p e r p o s i t i o n  o f  t e r m s  

l i k e  x d x / x .  In  t h e  e a r l y  d e v e l o p m e n t  o f  t h e s e  

i d e a s ,  I came t o  t h e  c o n c l u s i o n  t h a t  i t  was most  

l i k e l y  t h a t  t h e  l o w e s t  e i g e n v a l u e  f o r  B would be 

z e r o .  T h e r e  were  two s o r t s  o f  a r g u m e n t s  which i n d i -  

c a t e d  t h i s .  One was b a s e d  on an a n a l o g y  w i t h  brems- 

s t r a h l u n g :  i f  you  compute t h e  d i s t r i b u t i o n  o f  

pho tons  i n  t h e  f i e l d  o f  a f a s t  moving e l e c t r o n ,  you 

g e t  t h i s  s o r t  o f  d i s t r i b u t i o n .  The o t h e r  a rgumen t  

comes f rom t h e  n o t i o n  o u t l i n e d  l a s t  t i m e  t h a t  i t  i s  

t h e  wee p a r t o n s  t h a t  a r e  i n v o l v e d  i n  h i g h - e n e r g y  

h a d r o n i c  c o l l i s i o n s ,  and  B = O  i s  r e q u i r e d  t o  g i v e  

B 
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t o t a l  c r o s s  s e c t i o n s  t h a t  a r e  c o n s t a n t  a t  h i g h  

energy .  To g e t  a c o n s t a n t  c r o s s  s e c t i o n  t h e  mean 

number o f  wee p a r t o n s  must then  be c o n s t a n t ,  i nde -  

pendent  o f  P .  This  i s  because t h e  wee r eg ion  has a 

width of o r d e r  1 /P  ( t h e  d i s t r i b u t i o n  must f a l l  r a p i d -  

l y  t o  z e r o  f o r  x < 0 ) ,  and i t  must match o n t o  t h e  

small  x d i s t r i b u t i o n  i n  t h e  neighborhood of x = 1 / P .  

F o r  a d x / x  d i s t r i b u t i o n ,  t h i s  i m p l i e s  a h e i g h t  o f  

o r d e r  P ,  a n d  a t o t a l  number o f  p a r t o n s  i n  t h e  wee 

r eg ion  t h a t  i s  c o n s t a n t ,  independent  of P .  I f  we go 

t o  h i g h e r  momentum P ,  t h e  x d i s t r i b u t i o n  remains t h e  

same, acco rd ing  t o  s c a l i n g ,  excep t  t h a t  n o w  we can 

use  i t  d o w n  t o  s m a l l e r  v a l u e s  o f  x ,  s o  i t  c l imbs  t o  

a h i g h e r  va lue  b e f o r e  t u r n i n g  o v e r .  I f  we had a 

small  x d i s t r i b u t i o n  l i k e  x 8 d x / x ,  t h e  va lue  a t  t h e  

peak would be o f  o r d e r  ( l / P ) 8 - 1 ,  g i v i n g  a n  a r e a  i n  

t h e  wee r eg ion  of o r d e r  ( l / P ) B .  

The o p e r a t o r  W we d i s c u s s e d  i n  t h e  l a s t  l e c t u r e  

s u g g e s t s  t h e  power law,  which we t a k e  i n  t h e  p r e s e n t  

c a s e  t o  be d x / x ,  b u t  i t  does  n o t  t e l l  us h o w  t h i n g s  

vary i n  t h e  wee r eg ion  (where t h e  approximat ion  

w = k, t ( p  tQ ) / 2 k z  i s  i n a d e q u a t e ) .  

r o u g h  i d e a  of h o w  a wavefunct ion  could d e s c r i b e  such 

a reg ion ,we look a t  a s imple  example o f  a model 

which i s  s o  s imple  t h a t  we can s e e  t h e  e f f e c t  o f  our  

approximat ion  o f  W .  I t  i s  a model wi th  s c a l a r  p a r -  

t i c l e s  coupled t o  a c-number s o u r c e ,  d e s c r i b e d  by 

2 2  To g e t  some 

2 2  
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t h e  H e r m i  t i a n  o p e r a t o r  

H = c f ( t ) a * ( < ) a ( C )  t c [ s ( < ) a * ( < )  t s * ( < ) a ( C ) ] ,  
k k 
-+ 

w h e r e  s ( k )  i s  j u s t  a n u m e r i c a l  v a l u e d  f u n c t i o n ,  a n d  

a*(;) i s  t h e  c r e a t i o n  o p e r a t o r  f o r  a s c a l a r  f i e l d .  

I t  i s  e a s y  t o  v e r i f y  t h a t  

I TJ> = e x p { C c ( Z ) a * ( Z )  I I O >  
k 

+ -+ -+ 
i s  an  e i g e n v e c t o r  o f  H i f  we c h o o s e  c ( k )  = - s ( k ) / f ( k ) .  

I f ,  as  i n  t h e  e x a m p l e  c o n s i d e r e d  l a s t  t i m e ,  we w a n t  

t o  l o o k  a t  t h e  d i f f e r e n c e  b e t w e e n  t h e  H a m i l t o n i a n  a n d  

t h e  l o n g i t u d i n a l  momentum o p e r a t o r ,  we m u s t  t a k e  

f ( k )  = W  - k,. A l s o ,  t o  g e t  s c a l i n g  b e h a v i o r ,  t h e  

f u n c t i o n  s ( 2 )  m u s t  s c a l e  as  F - 3 / 2 ,  w h e r e  F i s  t h e  

e n e r g y  s c a l e .  To  g e t  t h e  d e s i r e d  d x / x  b e h a v i o r ,  we 

c h o o s e  i t  t o  b e  p r o p o r t i o n a l  t o  w - ~ ’ ~ ,  y i v i n g  

-+ 

3 /  2 -b 

c ( k )  = a / ( W - k z ) W  

-+ 
The mean n u m b e r  o f  p a r t i c l e s  w i t h  momentum k i s  

+ - +  
f o u n d  by c o m p u t i n g  t h e  e x p e c t a t i o n  v a l u e  o f  a * ( k ) a ( k ) ,  

w h i c h  i s  j u s t  I c ( k ) l  . T h u s  t h e  d i s t r i b u t i o n  

f u n c t i o n  f o r  p a r t i c l e s  w i t h  t r a n s v e r s e  momentum Q 

a n d  l o n g i t u d i n a l  momentum k, i n  r a n g e  dk,d Q i s  

- + 2  
+ 

2’ 

2 2’ 2 3  a d k z d  Q/(.-k,) w , 

Now s u p p o s e  we h a v e  k, = X P  a n d  c o n s i d e r  P v e r y  

l a r g e .  F o r  x > 0, 

2 3  
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a n d  

W - + X P ,  

s o  t h e  d i s t r i b u t i o n  becomes  

2 2 2 2 '  2 2 2  P d x ( 2 x P / Q  + m  ) d Q / x 2 P 3  = [4a2/(Q + m  ) 1 d 2 5 ( d X / X ) .  

T h i s  h a s  j u s t  t h e  d x / x  b e h a v i o r  we h a v e  b e e n  t a l k i n g  

a b o u t .  ( W i t h  a Q d e p e n d e n t  c o e f f i c i e n t ,  b u t  s i n c e  

CL c o u l d  d e p e n d  o n  0,we k n o w  n o t h i n g  a b o u t  i t . )  F o r  

+ 

+ 

x < 0. [,I - k -+ 2 1 x I P ,  s o  t h e  d i s t r i b u t i o n  becomes  z 

( a 2 / 4 P 4 )  ( d x / x 5 )  , 

w h i c h  f a l l s  r a p i d l y  t o  z e r o  as P -+ a. O f  c o u r s e ,  a 

mode l  l i k e  t h i s  d o e s n ' t  p r o v e  a n y t h i n g ,  b u t  i t  d o e s  

g i v e  us some m a t h e m a t i c a l  e x p r e s s i o n s  t o  m a n i p u l a t e .  

One o f  t h e  g r e a t  t r o u b l e s  o f  t h e  p a r t o n  m o d e l  i s  

t h a t  t h e r e  i s n ' t  a n y  m a t h e m a t i c a l  e x p r e s s i o n ,  e v e n  

t o  p l a y  w i t h  , t h a t  i s  o f  a n y  r i g o r .  

The wee r e g i o n  c o m p l i c a t e s  t h e  w a v e f u n c t i o n  v e r y  

much.  I t  i s  a p u r e l y  t e c h n i c a l  p o i n t ,  b u t  i t  i s  

i n c o r r e c t  t o  s p e a k  o f  t h e  w a v e f u n c t i o n  s c a l i n g .  T h e  

w a v e f u n c t i o n  c o n t a i n s  t h e  a m p l i t u d e s  f o r  a l l  k i n d s  

o f  c o n f i g u r a t i o n s ,  i n c l u d i n g  p a r t o n s  i n  t h e  wee 

r e g i o n ,  a n d  t h e s e  p i e c e s  o f  t h e  w a v e f u n c t i o n  do n o t  

s c a l e .  I t  i s  t h e  d e n s i t y  m a t r i x  t h a t  e x h i b i t s  

2 4  
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s c a l i n g - - t h e  p r o b a b i l i t y  f o r  f i n d i n g  a p a r t i c u l a r  

v a l u e  o f  l o n g i t u d i n a l  momentum n o t  i n  t h e  wee r e g i o n  

s c a l e s ,  f o r  i n s t a n c e .  The p r o b a b i  1 i t y  f o r  f i n d i n g  

f o u r  p a r t o n s  w i t h  v a r i o u s  x ' s  a n d  4 ' s  w i l l  a p p r o a c h  

a l i m i t  as P + a, i f  y o u  i g n o r e  w h e r e  t h e  o t h e r  p a r -  

t o n s  a r e .  B u t ,  o f  c o u r s e ,  y o u  c a n n o t  i g n o r e  w h e r e  

t h e  " o t h e r "  p a r t o n s  a r e  when  t a l k i n g  a b o u t  a w a v e -  

f u n c t i o n ,  f o r  a w a v e f u n c t i o n  i s  n e c e s s a r i l y  a 

f u n c t i o n  o f  a l l  t h e  p a r t i c l e s  p r e s e n t ,  a n d  n o t  j u s t  

a f e w  s e l e c t e d  o n e s ,  as a d e n s i t y  f u n c t i o n  may b e .  

T h i s  i s  a n a l o g o u s  t o  a n o t h e r  s i t u a t i o n  i n  p h y s i c s  

w h i c h  h a s  t e c h n i c a l l y  t h e  same s o r t  o f  d i f f i c u l t y .  

C o n s i d e r  a o n e - d i m e n s i o n a l  l i q u i d  w h i c h  h a s  a 

" s u r f a c e "  a t  o n e  e n d  t h a t  i s  a f f e c t e d  b y  some k i n d  o f  

s u r f a c e  t e n s i o n  f o r c e s ,  a n d  a s u r f a c e  a t  t h e  o t h e r  

e n d  w i t h  some ( p e r h a p s  d i f f e r e n t )  f o r c e s  a c t i n g .  I f  

t h e  l i q u i d  i s  t h i c k  e n o u g h - - t h e  d i s t a n c e  b e t w e e n  t h e  

t w o  s u r f a c e s  l a r g e  e n o u g h - - w h a t  h a p p e n s  a t  one  e n d  

w i l l  n o t  a f f e c t  w h a t  h a p p e n s  a t  t h e  o t h e r .  B u t  t h i s  

i n d e p e n d e n c e  i s  n o t  a p p a r e n t  i n  t h e  w a v e f u n c t i o n ,  

w h i c h  m u s t  g i v e  t h e  a m p l i  t u d e  f o r  e v e r y  c o n f i g u r a t i o n  

o f  a l l  t h e  p a r t i c l e s  i n  t h e  l i q u i d .  H o w e v e r ,  i f  we 

c o m p u t e  a d e n s i t y  m a t r i x  f o r  t h e  p r o b a b i l i t y ,  s a y ,  

o f  f i n d i n g  t w o  p a r t i c l e s  a t  t w o  s p e c i f i c  l o c a t i o n s  

i n  t h e  l i q u i d ,  t h e  i n d e p e n d e n c e  w i l l  show up  i n  a 

s i m p l e  w a y - - t h e  p r o b a b i l i t y  w i l l  become a p r o d u c t  o f  

i n d e p e n d e n t  s i n g l e  p a r t i c l e  p r o b a b i l i t y  d i s t r i b u t i o n s  

2 5  
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when t h e  s e p a r a t i o n  i s  l a r g e  enough .  

A v a r i a b l e  l i k e  t h e  l o g a r i t h m  o f  x i s  usefu l  t o  

make a c l o s e r  c o r r e s p o n d e n c e  w i t h  t h e  t h e o r y  o f  a 

l i q u i d .  I t  i s  t h e  q u a n t i t y  c a l l e d  r a p i d i t y ,  d e f i n e d  

by 

In  t h e  l a r g e  P l i m i t ,  

( w + k , ) / ( w - k z )  2 4 P  2 2  x /(Q 2 +m 2 ) ,  

so t h a t  

,-b l o g  x + l o g  P .  Y =  

T h i s  w i l l  be  v a l i d  even  f o r  s m a l l  x ,  so l o n g  a s  x i s  

l a r g e r  t h a n  o r d e r  1 / P  ( n o t  w e e ) .  S i n c e  dy = d k z / w  + 

dx /x ,we  s e e  t h a t  f o r  y i n  t h e  r e g i o n  c o r r e s p o n d i n g  t o  

s m a l l  x ,  t h e  assumed d x / x  d i s t r i b u t i o n  i m p l i e s  a 

f l a t  " p l a t e a u "  i n  t h e  r a p i d i t y  p l o t .  The r a p i d i t y  

i s  r e l a t e d  t o  v e l o c i t y  v i a  

v / c  = t a n h  y .  

T h i s  has  t h e  u s e f u l  p r o p e r t y  t h a t  a L o r e n t z  t r a n s -  

f o r m a t i o n  a l o n g  t h e  l o n g i t u d i n a l  d i r e c t i o n  s i m p l y  

c h a n g e s  y by an a d d i t i v e  c o n s t a n t .  The d i s t r i b u t i o n  

a t  t h e  e n d s  of  t h e  p l o t  ( x  n e a r  1 and  x wee )  may be 

c o m p l i c a t e d ,  b u t  o u r  a n a l o g y  w i t h  shower  t h e o r y  

s u g g e s t s  t h e  two e n d s  a r e  i n d e p e n d e n t ,  l i k e  t h e  two 

s u r f a c e s  of  t h e  o n e - d i m e n s i o n a l  l i q u i d  ( s e e  f i g u r e ) .  

2 6  
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p l a t e a u  r e g i o n  f i n i t e  x I y n e a r  l o g  P 
wee x 

f i n i t e  y 

D e n s i t y  t o  f i n d  a p a r t o n  v s .  r a p i d i t y  

We c a n  a s k  w h a t  t h e  p r o b a b i l i t y  i s  o f  f i n d i n g  

n o  p a r t o n s  i n  t h e  s m a l l  x r e g i o n - - t h a t  i s ,  we l o o k  

f o r  c o n f i g u r a t i o n s  t h a t  h a v e  many wee p a r t o n s ,  a n d  

p a r t o n s  w i t h  x g r e a t e r  t h a n  some x ( w h e r e  xo  s t a y s  

f i n i t e  as P goes  t o  i n f i n i t y ) ,  b u t  n o n e  i n - b e t w e e n .  

O u r  p i c t u r e  o f  how t h e  s m a l l  x r e g i o n  i s  b u i l t  u p  b y  

a l o n g  c a s c a d e  p r o c e s s  l e a d s  us t o  c o n j e c t u r e  t h a t  

t h e  p r o b a b i l i t y  o f  f i n d i n g  n o  p a r t i c l e s  i n  some 

r e g i o n  s h o u l d  b e  p r o p o r t i o n a l  t o  e x p ( - c n ) ,  w h e r e  fi i s  

t h e  mean n u m b e r  o f  p a r t i c l e s  i n  t h a t  r e g i o n .  The  

c o n s t a n t  c w o u l d  b e  1 f o r  a P o i s s o n  d i s t r i b u t i o n ,  b u t  

f o r c e s  b e t w e e n  p a r t o n s  may make i t  e a s i e r  t o  make 

o n e  p a r t o n  when a n o t h e r  i s  p r e s e n t ,  e t c . ,  s o  t h a t  

s u c c e s s i v e  c r e a t i o n s  a r e  n o t  s t a t i s t i c a l l y  i n d e p e n -  

d e n t .  We c o u l d  h a v e  some s o r t  o f  M a r k o v i a n  c h a i n  i n  

t h e  p l a t e a u  r e g i o n  i n  w h i c h  some n u m b e r  o f  p a r t o n s  

0 
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makes  u p  t h e  s t a t i s t i c a l l y  i n d e p e n d e n t  u n i t - - a n d  s o  

we i n t r o d u c e  t h e  c o n s t a n t  c t o  r e p r e s e n t  t h e s e  d e v i a -  

t i o n s  f r o m  P o i s s o n  d i s t r i b u t i o n  b e h a v i o r .  I n  t h e  

s m a l l  x r e g i o n ,  t h e  d i s t r i b u t i o n  a s  a f u n c t i o n  o f  

r a p i d i t y  i s  f l a t ,  s o  t h e  mean n u m b e r  i n  a g a p  o f  

w i d t h  Ay w i l l  b e  p r o p o r t i o n a l  t o  Ay. F o r  l a r g e  P we 

s e e  t h a t  Ay = l o g  x o  + l o g  P ,  a n d  s o  i t  i n c r e a s e s  a s  

t h e  l o g a r i t h m  o f  t h e  momentum. T h i s  means t h e  

p r o b a b i l i t y  o f  f i n d i n g  n o  p a r t o n s  i n  t h e  g a p  w i l l  

v a r y  w i t h  momentum as  e x p ( - c  l o g P )  = P- ' .  

c o n s i d e r  a n u m b e r  o f  a p p l i c a t i o n s  o f  t h i s  b a s i c  

p r i n c i p l e  l a t e r .  T h e  v a l u e  o f  c p r o b a b l y  d e p e n d s  o n  

t h e  q u a n t u m  n u m b e r s  " c a r r i e d  a c r o s s  t h e  g a p " ;  t h a t  

i s ,  o n  t h e  way i n  w h i c h  w e  a p p o r t i o n  t h e  q u a n t u m  

n u m b e r s  o f  t h e  w a v e f u n c t i o n  among t h e  p a r t o n s  o n  t h e  

t w o  s i d e s  o f  t h e  g a p .  

% 

We w i l l  

We h a v e  a p i c t u r e  a t  t h i s  p o i n t  i n  w h i c h  we h a v e  

a r e a s o n a b l e  g u e s s  a s  t o  t h e  a v e r a g e  d i s t r i b u t i o n  o f  

p a r t o n s ,  a n d  we h a v e  a n  i d e a  t h a t  t h e  p r o b a b i l i t y  o f  

f i n d i n g  n o  p a r t o n s  i n  some l a r g e  r a n g e  Ay o f  y w i l l  

b e h a v e  e x p o n e n t i a l l y  w i t h  Ay a s  e x p ( - c a y ) .  I t  i s  a 

n a i v e  o n e - d i m e n s i o n a l  p i c t u r e - - w e  a r e  m i s s i n g  i n f o r -  

m a t i o n  a b o u t  t r a n s v e r s e  momentum d i s t r i b u t i o n s .  

I n s t e a d , w e  s i m p l y  g u e s s  f r o m  e x p e r i m e n t a l  c o n s i d e r -  

a t i o n s  t h a t  t h e  p r o b a b i l i t y  o f  f i n d i n g  p a r t o n s  o f  

h i g h - t r a n s v e r s e  momentum i s  s m a l l  a n d  f a 1  1 s r a p i d l y  

w i t h  i n c r e a s i n g  t r a n s v e r s e  momentum. T h i s  d o e s  
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i n d i c a t e  t h a t  p a r t o n - p a r t o n  i n t e r a c t i o n s  a r e  s i g n i f i -  

c a n t  o n l y  among p a r t o n s  of  l o w - r e l a t i v e  momentum. I n  

o t h e r  w o r d s ,  t h e r e  c a n ' t  be a b i g  a m p l i t u d e  t h a t  two 

p a r t o n s  i n t e r a c t  t o  p r o d u c e  a l a r g e  c h a n g e  i n  t h e i r  

r e l a t i v e  momentum, s i n c e  t h i s  would l e a d  t o  l a r g e  

t r a n s v e r s e  momentum p a r t o n s .  Then i t  i s  j u s t  a s  t r u e  

t h a t  t h e r e  w i l l  n o t  be an exchange  o f  a l a r g e  amount 

o f  l o n g i t u d i n a l  momentum. B a s i c a l l y ,  t h e  a rgumen t  

i m p l i e s  t h a t  i n t e r a c t i o n s  o c c u r  o n l y  be tween p a r t o n s  

s e p a r a t e d  by a f i n i t e  a m o u n t  o f  r a p i d i t y .  

S o  f a r ,  we have  n o t  even s a i d  what t h e  p a r t o n s  

m i g h t  be l i k e - - s p i n  1 / 2 ,  s p i n  0 ,  c h a r g e d ,  n e u t r a l  . . .  ? 

U n f o r t u n a t e l y ,  we a r e  a s  y e t  u n a b l e  t o  deduce  any-  

t h i n g  from h i g h - e n e r g y  hadron  c o l l i s i o n s  ( e x c e p t  t h a t  

t h e  o r i g i n a l  i d e a  of  s c a l i n g  i n  l o n g i t u d i n a l  momentum 

w o r k s ) .  O n  t h e  o t h e r  hand ,  I d i s c o v e r e d  t o  my g r e a t  

g l e e  t h a t  t h e  S L A C  e x p e r i m e n t s  o n  d e e p - i n e l a s t i c  

s c a t t e r i n g  were  l o o k i n g  d i r e c t l y  a t  t h e  p a r t o n  p r o -  

b a b i l i t y  d i s t r i b u t i o n s ,  a n d  t h a t  B jo rken  s c a l i n g  was 

e x a c t l y  t h e  same a s  my c o n c l u s i o n  t h a t  t h e  wave- 

f u n c t i o n  s c a l e d .  F u r t h e r m o r e ,  t h e  p a r t o n  i n t e r p r e -  

t a t i o n  o f  t h e s e  e x p e r i m e n t s  gave  a d x / x  d i s t r i b u t i o n ,  

which c o n f i r m e d  my o p i n i o n  which I was ;hen f o r m i n g  

on t h i s  p o i n t  ( i t  w a s n ' t  r e a l l y  c e r t a i n  enough i n  my 

mind t o  c a l l  i t  a p r e d i c t i o n ) .  

L e t  us s e e  how t h e  d e e p - i n e l a s t i c  s c a t t e r i n g  

e x p e r i m e n t s  l o o k  i n  t h e  p a r t o n - m o d e l  i n t e r p r e t a t i o n .  
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We have a proton with a large momentum P ,  which we 

regard as made up o f  a large number of partons carry- 

ing various fractions, 5, of the total longitudinal 

momentum. (We temporarily use 5 instead o f  x f o r  

this quantity.) The electron produces a virtual 

photon which interacts with one of the partons: 

This interaction proton F+ involves photon a simple local electron coupling, 

---- 

virtual 9 
consistent with the whole approach of expanding 

proton's wavefunction in terms of the fundamenta 

pointlike bare objects, each having the usual 

"minimal" coupling to electrodynamics (putting v 
A 

he 

-+ 

V-eA). The virtual photon carries energy and momen- 

tum; we can arrange to use a coordinate system in 

which its energy is zero, and write its 4-momentum: 

q = (0, 0, 0, - 2 P x ) .  

In this system, the proton's 4-momentum is 

assuming that P i s  large enough that we can neglect 

the proton mass. Thus w e  have 
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2 2  - q 2  = 4 P  x 

and  
2 p * q  = 2 P  x .  

The l a s t  o f  t h e s e  i s  u s u a l l y  c a l l e d  Mv, and t h e  i d e a  

o f  B j o r k e n  s c a l i n g  i s  t h a t  t h e  h i g h - e n e r g y  c r o s s  

s e c t i o n  s h o u l d  depend o n l y  o n  t h e  d i m e n s i o n l e s s  r a t i o  
z - q  / 2 M v  = X .  

In  t h e  p a r t o n  p i c t u r e  t h e  s c a t t e r i n g  p r o c e s s  

l o o k s  l i k e  

B e f o r e :  r- 

The e n e r g y  o f  t h e  had ron  s y s t e m  b e f o r e  and a f t e r  t h e  

c o l l i s i o n  i s  t h e  same i n  t h i s  f r a m e ,  s i n c e  t h e  pho ton  

b r i n g s  i n  no e n e r g y .  Now, t h e  i d e a  d i s c u s s e d  e a r l i e r  

t h a t  t h e  p a r t o n - p a r t o n  i n t e r a c t i o n s  a r e  l i m i t e d  t o  

a f i n i t e  r a n g e  o f  r a p i d i t y  means t h a t  t h e s e  i n t e r -  

a c t i o n s  c o n t r i b u t e  o n l y  a f i n i t e  amount t o  t h e  e n e r g y  

o f  t h e  s t a t e .  (The  b e s t  m a t h e m a t i c a l  way t o  s t a t e  

t h e  p r i n c i p l e  i s  t o  s a y  t h e  unknown i n t e r a c t i o n s  have  

t h e  same e f f e c t s  i n  a problem a s  f i n i t e  u n c e r t a i n t i e s  

i n  p a r t o n  masses  would h a v e . )  The p a r t o n  k i n e t i c  
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e n e r g i e s ,  h o w e v e r ,  a r e  o f  o r d e r  P ,  as i s  t h e  t o t a l  

e n e r g y  o f  t h e  p r o t o n .  T o  o r d e r  P ,  t h e n ,  t h e  e n e r g y  

o f  t h e  h a d r o n s  i n  t h e  f i n a l  s t a t e  ( a s  w e l l  as i n  t h e  

i n i t i a l  p r o t o n  s t a t e )  i s  j u s t  t h e  sum o f  t h e  p a r t o n  

k i n e t i c  e n e r g i e s .  I n  t h e  e x a m p l e  we a r e  c o n s i d e r i n g ,  

c o n s e r v a t i o n  o f  e n e r g y  ( t o  t h i s  o r d e r )  r e q u i r e s  

2x-F, = 6, o r  5 = x .  So t h e  e x p e r i m e n t  d i r e c t l y  

s a m p l e s  p a r t o n s  w i t h  v a r i o u s  v a l u e s  o f  x .  

I n  t h e s e  s c a t t e r i n g  p r o c e s s e s ,  t h e  p h o t o n  i s  

v i r t u a l  a n d  t h e r e  a r e  l o n g i t u d i n a l  as w e l l  as t r a n s -  

v e r s e  c o m p o n e n t s  t o  t h e  p h o t o n ' s  p o l a r i z a t i o n .  The 

p r o p o r t i o n  o f  t h e s e  v a r i e s  w i t h  t h e  e l e c t r o n ' s  

a n g l e ,  8, a n d  s o  t h e  c r o s s  s e c t i o n s  f o r  s c a t t e r i n g  

o f  t r a n s v e r s e  p h o t o n s ,  u t ,  a n d  l o n g i t u d i n a l  p h o t o n s ,  

u c a n  e a c h ,  i n  p r i n c i p l e ,  b e  s e p a r a t e l y  m e a s u r e d .  

I f  t h e  p a r t o n s  h a d  s p i n  1 / 2 ,  t h e n  a t  s u f f i c i e n t l y  

l a r g e  P ( s u c h  t h a t  p a r t o n  masses  c a n  b e  n e g l e c t e d ) ,  

h e l i c i t y  w i l l  b e  c o n s e r v e d  i n  t h e  s c a t t e r i n g ,  as 

we know f r o m  t h e  t h e o r y  o f  p h o t o n  c o u p l i n g .  A 

p a r t o n  whose  d i r e c t i o n  was r e v e r s e d  as i n  t h e  f i g u r e  

w o u l d  h a v e  t o  a b s o r b  a u n i t  o f  a n g u l a r  momentum i n  

o r d e r  t o  m a i n t a i n  t h e  same h e l i c i t y ,  a n d  h e n c e  w o u l d  

c o n t r i b u t e  o n l y  t o  a t .  

w o u l d  c o n t r i b u t e  o n l y  t o  u s .  

w i t h  t h e  a s s u m p t i o n  t h a t  a l l  t h e  c h a r g e d  p a r t o n s  

h a v e  s p i n  1 / 2 .  T h a t  i s ,  us /u t  i s  s m a l l .  The 

e a r l y  d a t a  i n d i c a t e d  t h a t  u s / u t  c o u l d  b e  o f  t h e  

S '  

S i m i l a r l y ,  a s p i n  0 p a r t o n  

The  d a t a  a r e  c o n s i s t e n t  
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o r d e r  o f  1 8 t 1 0 % ,  s o  t h i s  f r a c t i o n  c o u l d  b e  s p i n  z e r o .  

A r e c e n t  t h e s i s  b y  R i o r d a n  c o n t a i n s  a m o r e  c a r e f u l  

a n a l y s i s  o f  t h e  p o s s i b i l i t y  t h a t  a l l  t h e  c h a r g e d  

p a r t o n s  h a v e  s p i n  1 / 2 .  T h i s  means t h a t  r e s i d u a l  

a i s  d u e  t o  t h e  f i n i t e n e s s  o f  P ,  a n d  c o n s e q u e n t l y  

t h a t  h e l i c i t y  i s  n o t  e x a c t l y  c o n s e r v e d .  I n  t h i s  case ,  

a s  m u s t  v a r y  as  l / w ;  i n  p a r t i c u l a r ,  

S 

T h e  d a t a  f i t  t h i s  h y p o t h e s i s  q u i t e  w e l l ,  i f ,  f o r  

e x a m p l e ,  g (  x )  i s  r o u g h l y  c o n s t a n t .  

I n  t h e s e  e x p e r i m e n t s  we a r e  m e a s u r i n g  f ( x ) - - t h e  1 
mean n u m b e r  o f  p a r t o n s  w i t h  a g i v e n  v a l u e  o f  x ,  

w e i g h t e d  b y  t h e  s q u a r e  o f  t h e  c h a r g e .  The  s q u a r e  o f  

t h e  c h a r g e  comes i n ,  o f  c o u r s e ,  f o r  t h i s  i s  t h e  

p r o b a b i l i t y  a g i v e n  p a r t o n  i n t e r a c t s  w i t h  t h e  p h o t o n .  

N e u t r a l  p a r t o n s  w o u l d  n o t  c o n t r i b u t e  t o  t h e  s c a t t e r -  

i n g  f l .  

much momentum i s  b e i n g  c a r r i e d  b y  t h e  p a r t o n s  a t  

x ( w i t h  t h e  same w e i g h t i n g ) .  T h i s  i s  t h e  f u n c t i o n  

u s u a l l y  c a l l e d  vW2, a n d  t h e  e x p e r i m e n t s  i n d i c a t e  

t h a t  i t  becomes  c o n s t a n t  a t  s m a l l  x ,  c o n s i s t e n t  w i t h  

a l / x  b e h a v i o r  o f  t h e  b a s i c  d i s t r i b u t i o n  f l ( x ) .  

The  f u n c t i o n  f 2 ( x )  = x f l ( x )  t e l l s  u s  how 

A n o t h e r  i n t e r e s t i n g  r e g i o n  i s  n e a r  x = 1 ,  as  

p o i n t e d  o u t  b y  D r e l l  a n d  Yan.  L e t  u s  a s k  f o r  t h e  

p r o b a b i l i t y  o f  f i n d i n g  a p a r t o n  w i t h  x n e a r  1 ;  o r  

e q u i v a l e n t l y ,  w i t h  x '  = 1 - x  s m a l l .  T h i s  means  t h a t  
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o n e  p a r t o n  w i l l  c a r r y  n e a r l y  a l l  t h e  p r o t o n ' s  momen- 

t u m ,  w i t h  t h e  r e s t  s h a r i n g  a t o t a l  o f  x ' P .  We w i l l  

t h e r e f o r e  h a v e  a g a p  i n  t h e  r a p i d i t y  p l o t  f r o m  y 

a b o u t  l o g  P t l o g  x '  u p  t o  y n e a r  l o g  P .  The  s i z e  o f  

t h e  g a p  i s  t h u s  - l o g  x ' ,  i n d e p e n d e n t  o f  P ,  s o  we 

s t i l l  h a v e  s c a l i n g .  U s i n g  t h e  b a s i c  p r i n c i p l e  o u t -  

l i n e d  e a r l i e r ,  we e x p e c t  t h i s  c o n f i g u r a t i o n  t o  o c c u r  

w i t h  p r o b a b i  1 i t y  

e x p ( - c A y )  = e x p ( c  l o g  x ' )  = ( 1 - x ) ' .  

T h e  d i s t r i b u t i o n  n e a r  x = 1 s h o u l d  b e h a v e  a s  t h e  

d i f f e r e n t i a l  o f  t h i s ;  i . e . ,  l i k e  ( l - x ) ' - l d x .  

c a n  c o n n e c t  t h i s  e x p o n e n t  t o  a n o t h e r  e x p e r i m e n t a l  

q u a n t i t y .  C o n s i d e r  e l a s t i c  s c a t t e r i n g  w i t h  l a r g e  q . 
We c a n n o t  h a v e  a p i c t u r e  l i k e  

Now we 

2 

B e f o r e :  

-L A f t e r :  

s i n c e  i n  a n  e l a s t i c  e v e n t ,  t h e  f i n a l  p a r t i c l e  w i l l  

s t i l l  b e  a p r o t o n ,  a n d  w i l l  n o t  h a v e  t h e  b a c k w a r d  

m o v i n g  p a r t o n s  shown i n  t h e  " a f t e r "  p i c t u r e .  T h a t  

i s ,  t h e  " a f t e r "  p i c t u r e  h a s  z e r o  a m p l i t u d e  t o  b e  

f o u n d  i n  a p r o t o n  m o v i n g  t o  t h e  l e f t .  So t o  g e t  

e l a s t i c  s c a t t e r i n g ,  we m u s t  r e q u i r e  t h e  p h o t o n  t o  
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i n t e r a c t  w i t h  a c o n f i g u r a t i o n  c o n t a i n i n g  j u s t  o n e  

f a s t - m o v i n g  p a r t o n ,  w i t h  a l l  t h e  r e s t  i n  t h e  wee 

r e g i o n :  

B e f o r e :  

A f t e r  : 

O n l y  i n  t h i s  c a s e  w i l l  t h e r e  b e  a r e a s o n a b l e  a m p l i -  

t u d e  t o  f i n d  e a c h  c o n f i g u r a t i o n  i n  a p r o t o n .  T h u s  

t h e  p r o b a b i l i t y  o f  a n  e l a s t i c  s c a t t e r i n g  e v e n t  w i l l  

b e  p r o p o r t i o n a l  t o  t h e  p r o b a b i l i t y  o f  f i n d i n g  s u c h  a 

c o n f i g u r a t i o n ,  a n d  t h i s  c o n f i g u r a t i o n  h a s  a g a p  i n  

r a p i d i t y  Ay o f  o r d e r  l o g  P .  T h i s  s h o u l d  go  l i k e  

e x p ( - c  l o g p )  = P-', 

w i t h  c t h e  same n u m b e r  a s  f o u n d  f r o m  t h e  p a r t o n  

d i s t r i b u t i o n  f u n c t i o n  n e a r  x = 1 .  I f  t h e  e l a s t i c  
2 2  f o r m  f a c t o r  r e a l l y  h a s  t h e  famous d i p o l e  f o r m  ( 1 / q  ) , 

t h i s  w o u l d  p r e d i c t  t h e  d i s t r i b u t i o n  f u n c t i o n  n e a r  
3 x = 1 t o  v a r y  a s  ( l - x )  . U n f o r t u n a t e l y ,  n e i t h e r  t h e  

e l a s t i c  n o r  d e e p - i n e l a s t i c  d a t a  i s  s u f f i c i e n t l y  

a c c u r a t e  t o  c o n f i r m  t h i s  c o n n e c t i o n ;  b u t  t h e r e  i s  

n o  i n c o n s i s t e n c y .  
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L E C T U R E  3 

PARTONS A S  QUARKS 

Up u n t i l  now we have  been t a l k i n g  a b o u t  t h e  p o s s i -  

b i l i t y  t h a t  t h e  w a v e f u n c t i o n  f o r  a r a p i d l y - m o v i n g  

p a r t i c l e  c o n s i s t s  o f  a m p l i t u d e s  f o r  f u n d a m e n t a l  

c o n s t i t u e n t s ,  which we c a l l  p a r t o n s ,  h a v i n g  l i m i t e d  

t r a n s v e r s e  momentum a n d  which s c a l e  i n  l o n g i t u d i n a l  

momentum. I f  t h i s  p i c t u r e  i s  c o r r e c t ,  t h e n  t h e  

d e t e r m i n a t i o n  o f  t h e  c h a r a c t e r i s t i c s  o f  t h e  p a r t o n s  

becomes a r e a l l y  fundamen ta l  q u e s t i o n  i n  t h e  t h e o r y  

of  h a d r o n s .  In  t h e  l a s t  l e c t u r e  we d i s c o v e r e d  t h a t  

t h e  e x p e r i m e n t s  on d e e p - i n e l a s t i c  s c a t t e r i n g  of  

e l e c t r o n s  by n u c l e o n s  i n d i c a t e  t h a t  i t  i s  p o s s i b l e  

a l l  t h e  c h a r g e d  p a r t o n s  have s p i n  1 1 2 .  I n  t h i s  

l e c t u r e  we w i l l  i n v e s t i g a t e  a s p e c i f i c  h y p o t h e s i s - -  

t h a t  t h e  c h a r g e d  p a r t o n s  have  t h e  quantum numbers 

of  q u a r k s - - a n d  s e e  what  t h e  d a t a  have  t o  s a y  a b o u t  

t h i s  p o s s i b i l i t y .  I d e n t i f y i n g  p a r t o n s  w i t h  q u a r k s  

t e l l s  us t h a t  we have  t h r e e  k i n d s  o f  f u n d a m e n t a l  

c o n s t i t u e n t s  w i t h  quantum numbers summar ized  by 

t h e  t a b l e :  

Symbol Charge  L3 S t r a n g e n e s s  Name 
U 2 1  3 1 1 2  0 I' u P I' 

d -113  - 1 1 2  0 " d o w n  'I 

S -113  0 - 1  'Is t r ang  e "  
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I n  t h e  s i m p l e  n o n - r e l a t i v i s t i c  q u a r k  m o d e l ,  

t h e  p r o t o n  i s  s u p p o s e d  t o  b e  made up  o f  t h r e e  q u a r k s - -  

t w o  u ' s  a n d  a d .  The p a r t o n  p i c t u r e ,  w h i c h  i s  

r e l a t i v i s t i c ,  d o e s n ' t  a l l o w  a f i x e d  n u m b e r  o f  c o n -  

s t i t u e n t s  ( w h i c h  a r e  b a r e  o b j e c t s ,  a n d  n o t  p h y s i c a l  

p a r t i c l e s  o r  q u a s i - p a r t i c l e s  a n y w a y ) .  So t h e  " p a r t o n s  

as q u a r k s "  a r e  n o t  q u i t e  t h e  same t h i n g  as t h e  q u a r k s  

i n t h e  n o n  - r e  1 a t  i v i  s t i  c mode 1 . 
W i t h  t h r e e  b a s i c  t y p e s  o f  p a r t o n s  ( a n d  t h e i r  

a n t i - p a r t i c l e  c o u n t e r p a r t s ) ,  t h e  d i s t r i b u t i o n  f u n c -  

t i o n s  f o r  t h e  p a r t o n s  i n  p r o t o n s  a n d  n e u t r o n s  w i l l  

b e  c o n s t r u c t e d  f r o m  s i x  f u n c t i o n s  d e s c r i b i n g  t h e  

d i s t r i b u t i o n s  o f  t h e  s p e c i f i c  t y p e s .  I n  p a r t i c u l a r ,  

t h e  f u n c t i o n  f ; p (x ) ,  m e a s u r e d  i n  d e e p - i n e l a s t i c  s c a t -  

t e r i n g  o f  e l e c t r o n s  b y  p r o t o n s ,  w i l l  h a v e  t h e  f o r m  

I n  t h i s  e x p r e s s i o n ,  t h e  f u n c t i o n  u ( x )  i s  t h e  p r o b a -  

b i l i t y  d i s t r i b u t i o n  o f  f i n d i n g  an  up q u a r k  i n  t h e  

p r o t o n  w i t h  f r a c t i o n  o f  l o n g i t u d i n a l  momentum x ,  

w h i l e  i ( x )  i s  t h e  d i s t r i b u t i o n  f u n c t i o n  f o r  t h e  

u - t y p e  a n t i - q u a r k .  The f a c t o r s  4 / 9  a n d  1 / 9  a r e  

t h e  s q u a r e s  o f  t h e  c h a r g e s  o f  t h e  a p p r o p r i a t e  

q u a r k s .  We c a n  w r i t e  a s i m i l a r  e x p r e s s i o n  f o r  

t h e  n e u t r o n ;  b u t  b y  i s o s p i n  s y m m e t r y ,  t h e  n u m b e r  

o f  up  q u a r k s  i n  t h e  n e u t r o n  i s  t h e  same as t h e  

3 7  
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number o f  d o w n  quarks  i n  t h e  p r o t o n ,  s o  we c a n  w r i t e  

f Z " x )  = (1/9)X[U(X) + U ( X ) ]  

+ ( 4 / 9 ) x [ d ( x )  + a x ) ]  + ( 1 / 9 ) x [ s ( x )  + i ( x ) ] .  
The d i s t r i b u t i o n  f u n c t i o n s  u ( x ) ,  e t c . ,  c o n t i n u e  

t o  be d e f i n e d  a s  above; i . e . ,  they  r e f e r  t o  t h e  

d i s t r i b u t i o n s  i n  t h e  p r o t o n .  

S o  f a r  we have two e x p e r i m e n t a l l y  measurable  

f u n c t i o n s  expressed  i n  terms of s i x  u n k n o w n  d i s -  

t r i b u t i o n s ;  b u t  t h e r e  a r e  some t h e o r e t i c a l  a r g u -  

ments which we can make from o u r  t h e o r y  o f  t h e  

wavefunct ions .  For  example,  t h e  t o t a l  s t r a n g e n e s s  

due t o  s t r a n g e  quarks  w i l l  be 

a n d  t h a t  due t o  t h e  a n t i - p a r t i c l e s  w i l l  be 

t&' i  ( x ) d x .  

Adding t h e s e  g i v e s  t h e  t o t a l  p ro ton  s t r a n g e n e s s ,  

which i s  z e r o ,  of c o u r s e ,  and we g e t  t h e  sum r u l e :  

& ' [ s ( x )  - s ( x ) ] d x  = 0 .  

This  a l s o  means t h a t  t h e  s a n d  5 quarks  w i l l  con- 

t r i b u t e  n e t  z e r o  charge  t o  t h e  p r o t o n ,  so we can 

w r i t e  a sum r u l e  f o r  t h e  charge  i n  terms of u ( x ) ,  

i i ( x ) ,  d ( x ) ,  and a x ) ,  a s  f o l l o w s :  

( 2 / 3 ) j  [ u ( x ) - ~ ( x ) l d x  - ( 1 / 3 ) L  [ d ( x ) - d ( x ) ] d x  = 1 .  

38 
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S i m i l a r l y ,  f o r  t he  t o t a l  1 3 ,  we g e t :  

We can combine t h e  l a s t  two sum r u l e s  t o  o b t a i n  t h e  

s impler  e x p r e s s i o n s  

and 

Note  t h e  c o n n e c t i o n  w i t h  t h e  u s u a l  n o n - r e l a t i v i s t i c  

q u a r k  model :  t h e  n e t  number o f  u p  q u a r k s  i s  2 ,  t h e  

n e t  number o f  down q u a r k s  i s  1 ,  and t h e  n e t  number 

o f  s t r a n g e  q u a r k s  i s  0 .  

We a l s o  b e l i e v e  f rom o u r  t h e o r y  t h a t  t h e  wee 

q u a r k  r e g i o n  s h o u l d  be i n d e p e n d e n t  o f  w h e t h e r  t h e  

w a v e f u n c t i o n  d e s c r i b e s  a p r o t o n ,  a n e u t r o n ,  an 

a n t i - p r o t o n ,  o r  an a n t i - n e u t r o n .  Our p i c t u r e  i s  

t h a t  t h i s  r e g i o n  i s  b u i l t  u p  f rom a l o n g  c a s c a d e  

and  d o e s n ' t  depend on w h e t h e r  we s t a r t e d  w i t h  an 

u p  o r  down q u a r k  o r  a n t i - q u a r k .  So we b e l i e v e  

t h a t  f o r  x s m a l l  e n o u g h ,  we s h o u l d  have  

U ( X )  = U ( X )  = d ( x )  = a ( x )  2 C / X  ( s m a l l  X )  . 
S i n c e  S U 3  i s  n o t  an e x a c t  symmetry ,  i t  i s  p o s s i b l e  

t h a t  t h e  wee r e g i o n  d i s t r i b u t i o n  o f  s t r a n g e  q u a r k s  

i s  somewhat d i f f e r e n t ,  and  we o n l y  r e q u i r e  t h a t  



I f  we l o o k  a t  t h e  r a t i o  f;'/fgp, a n d  n o t e  t h a t  

t h e  d i s t r i b u t i o n s  a r e  a l l  p o s i t i v e  f u n c t i o n s ,  we 

s e e  t h a t  i t  m u s t  l i e  b e t w e e n  1 / 4  a n d  4 .  N e a r  x = 0 ,  

t h e  t h e o r e t i c a l  a r g u m e n t  a b o u t  t h e  wee r e g i o n  i m p l i e s  

t h e  r a t i o  g o e s  t o  1 ,  i n  a g r e e m e n t  w i t h  e x p e r i m e n t .  

A s  x a p p r o a c h e s  1 ,  t h e  e x p e r i m e n t a l  v a l u e  o f  t h e  

r a t i o  seems t o  b e  a p p r o a c h i n g  t h e  l o w e r  l i m i t  o f  1 / 4  

( i t  h a s  f a l l e n  t o  a b o u t  0 . 4  b y  x = 0 . 8 ) .  T h i s  c a n  

b e  e x p l a i n e d  i f  t h e  p r o t o n  becomes  a l m o s t  p u r e  u p  

q u a r k  i n  t h e  r e g i o n  n e a r  x = 1 .  I h a v e  a n  a r g u m e n t  

t h a t  s u g g e s t s  why t h i s  r a t i o  m i g h t  m o s t  l i k e l y  b e  

e i t h e r  1 / 4  o r  3 / 2 ,  b u t  I c o n f e s s  I t h o u g h t  i t  u p  

a f t e r  I saw t h e  r e s u l t s .  The i d e a  i s  t h e  f o l l o w i n g :  

n e a r  x = 1 ,  we h a v e  o n e  f a s t  q u a r k  w i t h  t h e  r e s t  

s q u e e z e d  i n t o  t h e  wee r e g i o n .  A s  we d i s c u s s e d  i n  

t h e  l a s t  l e c t u r e ,  t h e  p r o b a b i l i t y  o f  t h i s  g o e s  a s  

( l - ~ ) ~ ,  w h e r e  t h e  e x p o n e n t  y d e p e n d s  o n  t h e  q u a n t u m  

n u m b e r s  s q u e e z e d  i n t o  t h e  wee r e g i o n .  Now t h e  n e t  

q u a r k  n u m b e r  i s  a g o o d  q u a n t u m  n u m b e r ,  a n d  f o r  t h e  

wee r e g i o n  i t  w i l l  e i t h e r  b e  2 ( i f  t h e  f a s t  p a r t o n  

i s  a q u a r k )  o r  4 ( i f  i t  i s  a n  a n t i - q u a r k ) .  We g u e s s  

t h a t  i t  i s  h a r d e r  t o  s q u e e z e  f o u r  q u a r k s  i n t o  t h e  

wee r e g i o n  t h a n  t w o ,  s o  t h a t  t h e  f o u r - q u a r k  c a s e  

g i v e s  a l a r g e r  e x p o n e n t  y .  T h e n  t h e  l e a d i n g  

b e h a v i o r  w i l l  c o r r e s p o n d  t o  t h e  wee r e g i o n  h a v i n g  

t h e  q u a n t u m  n u m b e r s  o f  a t w o - q u a r k  s y s t e m .  T h i s  c a n  

c a r r y  i s o s p i n  0 o r  1 ,  f o r  s t r a n g e n e s s  z e r o .  ( I f  

4 0  
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you wish  t o  g u e s s  t h a t  t h e  l o w e s t  y is f o r  t h e  wee 

r e g i o n  t o  c a r r y  s t r a n g e n e s s ,  t h e  a rgumen t  g e n e r a t e s  

t h e  a d d i t i o n a l  p o s s i b i l i t y  t h a t  t h e  r a t i o  be 1 . )  I f  

i t  i s  i s o s p i n  1 ,  t h e n  t h e  f a s t  p a r t o n  has  t o  b e  a 

m i x t u r e  of  u p  and down q u a r k s  ( s o  t h a t  t h e  q u a r k  

i s o d o u b l e t  is combined w i t h  t h e  wee p a r t o n  i s o t r i p l e t  

t o  g i v e  an I = 1 / 2 ,  I z  = 1 / 2  s t a t e ) .  

p r o b a b i l i t y  2 / 3  f o r  t h e  f a s t  p a r t o n  t o  be a d o w n  

q u a r k ,  and 1 / 3  f o r  i t  t o  be an u p  q u a r k ,  s o  t h a t  

d ( x )  = 2 u ( x )  f o r  x n e a r  1 .  With s ,  s ,  u ,  and a 
z e r o  i n  t h i s  r e g i o n  we g e t  f ;n / f ;p  = 3 / 2 ,  which i s  

r u l e d  o u t  by t h e  d a t a .  The c a s e  where  t h e  wee q u a r k s  

have  I = 0 i m p l i e s  t h e  f a s t  p a r t o n  i s  p u r e  u p  q u a r k ,  

and  g i v e s  t h e  r a t i o  1 / 4 .  

T h i s  g i v e s  a 

- -  

I t  i s  a l s o  i n t e r e s t i n g  t o  c o n s i d e r  t h e  sun1 of 

t h e  e-p and  e-n d i s t r i b u t i o n s - - 1 ' 1 1  c a l l  t h i s  t h e  

" e - d 'I d i s t r i b u t i on 

I f  we d e f i n e  

q ( x )  = x C u ( x )  + d ( x ) l  
t o  b e  t h e  momentum c a r r i e d  by n o n - s t r a n g e  q u a r k s ,  

a n d  

c ( x )  = x s ( x ) ,  

t h a t  c a r r i e d  by s t r a n g e  q u a r k s  ( w i t h  s i m i l a r  d e f i n i -  

t i o n s  f o r  t h e  a n t i - q u a r k s ) ,  t h e n  

4 1  
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Now common s e n s e  l e a d s  us  t o  b e l i e v e  t h a t  t h e  

s t r a n g e  q u a r k s  do  n o t  c a r r y  as much o f  t h e  momentum 

a s ,  s a y ,  t h e  down q u a r k s .  The n e t  e x c e s s e s  a r e  t w o  

up q u a r k s  a n d  o n e  down q u a r k ,  w i t h  n o  e x c e s s  o f  

s t r a n g e  q u a r k s .  I t  d o e s n ' t  seem r e a s o n a b l e  t h a t  

t h e r e  s h o u l d  b e  a l a r g e  n u m b e r  o f  p a i r s  o f  s a n d  

i n  t h e  s e a  o f  q u a r k s  a n d  a n t i - q u a r k s  w i t h o u t  a c o r -  

r e s p o n d i n g l y  l a r g e  n u m b e r  o f  p a i r s  o f  d a n d  d .  

Anyway,  i t  seems a f a i r  g u e s s  t h a t  C ( x ) $ ( l / Z ) q ( x ) ,  

p a r t i c u l a r l y  when we a r e  n o t  i n  t h e  s e a  r e g i o n - - s a y ,  

f o r  x g r e a t e r  t h a n  a b o u t  0 . 2 .  So we c o n j e c t u r e  t h a t  

t h e  s t r a n g e  q u a r k  c o n t r i b u t i o n  t o  f;d i s  a t  m o s t  o f  

o r d e r  1 0 - 2 0 %  a n d  l i k e l y  s m a l l e r .  E x p e r i m e n t a l l y ,  

Now i f  a l l  t h e  p r o t o n ' s  momentum w e r e  c a r r i e d  b y  t h e  

c h a r g e d  p a r t o n s - - i n  t h i s  m o d e l ,  t h e  q u a r k s - - t h e n  we 

s h o u l d  h a v e  

P l  

S o l v i n g  t h e s e  t w o  e q u a t i o n s  f o r  t h e  a m o u n t  o f  momen- 

t u m  c a r r i e d  b y  s t r a n g e  a n d  n o n - s t r a n g e  q u a r k s ,  we 

f i n d  t h a t  t h e  s t r a n g e  q u a r k s  c a r r y  7 4 %  o f  i t .  T h i s  

i s  i n  v i o l e n t  d i s a g r e e m e n t  w i t h  o u r  common s e n s e  

i d e a s .  The  a l t e r n a t i v e  i s  t o  s u p p o s e  t h a t  t h e r e  

a r e  n e u t r a l  p a r t o n s ,  c a r r y i n g  r o u g h l y  h a l f  t h e  p r o -  

t o n ' s  momentum. V a r i o u s  m o d e l s  h a v e  b e e n  p r o p o s e d  

4 2  
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in which these neutral constituents are the particles 

that intermediate the quark-quark interactions, and 

are usually called gluons. 

This brings up another question that deserves 

a short comment--namely, the question of understand- 

ing how the quark-quark interactions can account 

for the absence of free particles with quark quantum 

numbers. The idea that partons are quarks was ori- 

ginally suggested by Paschos and Bjorken--it was not 

my idea. When they suggested it, I was worried how 

it could fit into my picture. When an interaction 

knocks a parton backwards, it interacts only weakly 

with the other partons, and appears to be carrying 

quark quantum numbers off into the distance. One 

way out is to have long-distance harmonic potentials; 

then the interaction is weak at short distances and 

our picture of a collision is valid, while after the 

collision the force grows with distance and can 

keep the quark from getting out. (It is only neces- 

sary to have qL or 2Mv large compared to the spacing 

of levels and not to the ultimate size of the poten- 

tial itself.) I d o  not favor this picture. Another 

possibility is that, as the Hamiltonian acts to 

generate the evolution of the system to the asymp- 

totic final state, it creates large numbers o f  quark- 

anti-quark pairs a t  intermediate rapidity, and these 

somehow associate to produce the usual quantum 
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numbers o f  h a d r o n s .  I t  i s  c l e a r  t h a t  n e i t h e r  o f  

t h e s e  p r o p o s a l s  i s  l i k e  an o r d i n a r y  f i e l d  t h e o r y .  

I f  t h e  q u a r k  t h e o r y  p r o v e s  t o  be r i g h t ,  we w i l l  have  

t o  l e a r n  a l o t  o f  e x c i t i n g ,  i n t e r e s t i n g ,  and s e m i -  

p a r a d o x i  c a l  t h i n g s .  

Now l e t ' s  turn t o  t h e  s c a t t e r i n g  o f  n e u t r i n o s  

by n u c l e o n s .  In  t h e  c a s e  o f  e l e c t r o n  s c a t t e r i n g ,  we 

knew t h e r e  was a pho ton  p r o p a g a t o r  g o i n g  a s  l / q 2 ;  i n  

t h e  n e u t r i n o  c a s e ,  we d o n ' t  know w h e t h e r  o r  n o t  t h e r e  

i s  an i n t e r m e d i a t e  p r o p a g a t o r  o r  a d i r e c t  c o u p l i n g .  

T h a t ' s  an e x p e r i m e n t a l  q u e s t i o n .  Fo r  t h e  s a k e  o f  

a n a l y s i s ,  l e t ' s  assume a d i r e c t  4 - f e r m i o n  c o u p l i n g  

o f  t h e  q u a r k s  t o  l e p t o n s .  We w i l l  a l s o  i g n o r e  

s t r a n g e n e s s - c h a n g i n g  i n t e r a c t i o n s  ( t h a t  i s ,  we s e t  

t h e  Cabibbo a n g l e  t o  z e r o ) ,  and n e g l e c t  t h e  muon 

mass .  With t h e s e  a s s u m p t i o n s ,  we can c a l c u l a t e  t h e  

d i f f e r e n t i a l  c r o s s  s e c t i o n  f o r  t h e  s c a t t e r i n g  o f  a 

n e u t r i n o  o f  e n e r g y  E ,  p r o d u c i n g  a muon o f  e n e r g y  

E-v = E ( l - y )  coming o u t .  In  u n i t s  o f  G s / Z . r r ,  t h e  

r e s u l t  i s  

da /dy  = 2 

f o r  a n e u t r i n o  on a p a r t i c l e ,  and  
2 d a / d y  = 2 ( 1 - y )  

f o r  a n e u t r i n o  on a n  a n t i - p a r t i c l e .  When a n e u t r i n o  

s c a t t e r s  from a n u c l e o n  t o  p r o d u c e  a u - ,  i t  must 

change  a d i n t o  a u o r  a i n t o  a a. T h u s ,  f o r  

n e u t r i n o s  on p r o t o n s  , 
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d 2 a v p / d x d y  = 2 x d ( x )  + Z ( 1 - y ) '  x u ( x ) .  

(The  f a c t o r  x comes from t h e  f a c t  t h a t  t h e  s a g a i n s t  

t h e  p a r t o n  i s  x t i m e s  t h e  s a g a i n s t  t h e  p r o t o n  a s  a 

w h o l e . )  F o r  n e u t r i n o s  on n e u t r o n s ,  r e c a l l  t h a t  t h e  

d i s t r i b u t i o n  f o r  down q u a r k s  i s  u ( x ) ,  e t c . ,  so 

d 2 0 v n / d x d y  = 2 x u ( x )  + Z ( 1 - y ) '  x d ( x ) .  

I f  we knew t h e s e  two c r o s s  s e c t i o n s  s u f f i c i e n t l y  w e l l  

a s  f u n c t i o n s  o f  x and y ,  we c o u l d  d e t e r m i n e  t h e  f o u r  

f u n c t i o n s  u ,  G ,  d and a .  Then we would be a b l e  t o  

p r e d i c t  t h e  a n t i - n e u t r i n o  c r o s s  s e c t i o n s ,  which a r e  

s i m i l a r l y  g i v e n  a s  

d2u'p/dxdy = Z x d ( x )  + 2 ( 1 - ~ ) ~  x u ( x ) ,  

and  
d Z u ;n / dxdy  = Z x u ( x )  + Z ( 1 - y ) '  x d ( x ) .  

These  f o r m u l a s  imply  many r e l a t i o n s  we can 

p r e d i c t  and c h e c k ,  b u t  we d i s c u s s  h e r e  o n l y  t h o s e  

t e s t s  which can  be made i n  t h e  most  immedia t e  f u t u r e  

The t a r g e t s  would t h e n  be h e a v i e r  n u c l e i  which we 

c a n  say  c o n t a i n  r o u g h l y  e q u a l  numbers of  p r o t o n s  

and n e u t r o n s .  T h e r e f o r e  we d e f i n e  t h e  c r o s s  s e c t i o n  

f o r  s c a t t e r i n g  on an " a v e r a g e  n u c l e o n "  by t a k i n g  

h a l f  t h e  sum o f  t h e  c r o s s  s e c t i o n s  on p r o t o n  and 

n e u t r o n .  T h i s  g i v e s  

d 2 c v / d x d y  = q ( x )  + ( I - Y ) ~ ~ ( X ) ,  

and  

2 ;  2 d 0 / dxdy  = G ( x )  + ( 1 - y )  q ( x ) ,  
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where q ( x )  = x [ u ( x ) + d ( x ) J  i s  t h e  momentum c a r r i e d  

by non- s t r ange  q u a r k s ,  a s  d e f i n e d  e a r l i e r .  What 

d o  we k n o w  about  t h e s e  f u n c t i o n s ?  F i r s t ,  we have a 

sum r u l e  

which s imply s t a t e s  t h a t  t h e  n e t  number o f  quarks  

i n  t h e  nucleon i s  t h r e e  ( c a l l e d  t h e  Gross-Llewel lyn-  

Smith sum r u l e ) .  Fur thermore ,  we have 

q ( x )  t q ( x )  = ( 9 / 5 ) f ; d ( x )  - ( 2 / 5 )  C C ( x )  + f ( x ) l .  
We expec t  t h e  s t r a n g e  q u a r k  c o n t r i b u t i o n  t o  be s m a l l ,  

s a y ,  l e s s  than  1 /6  o f  t he  t o t a l ,  except  f o r  x near  

z e r o .  In  any e v e n t ,  (9 /5 ) f :d (x )  i s  a s t r i c t  upper 

bound f o r  q ( x ) + G ( x )  ( an  o b s e r v a t i o n  due t o  L lewel lyn-  

S m i t h ) .  

The s u m  r u l e  f o r  n e t  quark number i s  d i f f i c u l t  

t o  t e s t  s i n c e  t h e  low x va lues  a r e  r a t h e r  u n c e r t a i n  

and a r e  weighted by l / x ;  i n  any c a s e ,  t h e  p r e s e n t  

exper iments  d e s c r i b e d  a t  t h i s  confe rence  by Pe rk ins  

a r e  a t  any energy which I could  have though t  t o o  

low. 

( 1 / 3 ) 4 ( x ) ,  and d20v/dxdy t o  g e t  q ( x ) + ( l / 3 ) q ( x ) ,  

then  1 . 5  t imes  t h e  d i f f e r e n c e  of t h e  i n t e g r a t e d  

c r o s s  s e c t i o n s  I s  j u s t  q ( x ) - q ( x ) .  Pe rk ins  r e p o r t s  

t h a t  i t  l o o k s  l i k e  t h e  c u r r e n t  d a t a  g i v e  a va lue  

of 3 . 5  ? 0 . 5  f o r  t h e  sum r u l e - - s o  maybe w e ' r e  

I f  we i n t e g r a t e  d20v/dxdy ove r  y t o  g e t  q ( x ) t  
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b e g i n n i n g  t o  l e a r n  s o m e t h i n g  a b o u t  t h e  r e a l  w o r l d .  

L e t ' s  a l s o  l o o k  a t  t o t a l  c r o s s  s e c t i o n s .  I f  we 

d e f i n e  

1 1 
9 -1 q ( x ) d x ,  and 0 =d i ( x ) d x ,  

0 

t h e n  

= Q + ( 1 / 3 ) 0  'TOT 
and 

V V This  means t h a t  t h e  r a t i o  uTOT/uTOT can  n e v e r  be 

l e s s  t h a n  1 / 3 ,  and i t  w i l l  o n l y  be 1 / 3  i f  0 = 0 ;  

t h a t  i s ,  o n l y  i f  t h e  w a v e f u n c t i o n  h a s  no a n t i - q u a r k  - 
c o n t r i b u t i o n .  The p r e l i m i n a r y  d a t a  g i v e  aTOT/aTOT V v -  - 
0 . 3 8  f 0 . 0 2 ,  which means 0/Q = 0 . 0 5  f 0 . 0 2 .  Now i n  

o u r  mode l ,  q ( x )  and i ( x )  a r e  e q u a l  n e a r  x = 0 .  E x -  

p e r i m e n t a l l y ,  t h e i r  sum i s  a r o u n d  1 ,  so t h e y  b o t h  

s t a r t  a t  a b o u t  0 . 5  a t  x = 0 .  The s m a l l  q/Q r a t i o  

i n d i c a t e s  t h a t  i ( x )  must f a l l  o f f  rap id : ;  a s  x 

i n c r e a s e s ,  g i v i n g  a p i c t u r e  l i k e :  

1 .  1 .  

.5 

0.  
0.1 

0 0.2 0 .5  1.0 0 0 .2  0 .5  1.0 

, o  1 .o 

0 1.0 0 1 . o  
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T h i s  means,  t h a t  e x c e p t  f o r  s m a l l  x ,  we h a v e  

2 ;  2 2  d u / d X d y  = ( 1 - y )  d a v / d x d y  , 
2 w i t h  d a " / d x d y  b e i n g  i n d e p e n d e n t  o f  y .  C l o s e  t o  

x = 0, on  t h e  o t h e r  h a n d ,  t h e  t w o  c r o s s  s e c t i o n s  

become e q u a l  t o  a b o u t  

0 . 5 [ 1  + ( l - y ) [ ]  . 
The sum o f  t h e  t w o  t o t a l  c r o s s  s e c t i o n s  i s  (4/3)(Q+q), 

a n d  we c a n  g e t  a p r e d i c t i o n  f o r  t h i s  f r o m  t h e  e l e c -  

t r o n  s c a t t e r i n g  d a t a .  F o r  we h a v e  

Q + 0 = ( 9 / 5 )  l f ;d(x)dx - ( 2 / 5 )  
1 

[ C ( x )  + f ( x ) ] d x  . 
0 0 

U s i n g  t h e  e x p e r i m e n t a l  r e s u l t  o f  a b o u t  0 . 3 1  f o r  t h e  

i n t e g r a l  o f  f;d, t h e n  (4/3)(Q + 6) i s  a b o u t  0.74 i f  

we n e g l e c t  t h e  s t r a n g e  q u a r k  c o n t r i b u t i o n .  The 

l a t t e r  s h o u l d  n o t  l o w e r  t h i s  b y  m o r e  t h a n  1 0 % .  The 

d a t a  a t  t h e  p r e s e n t  t i m e  f i t  t h i s  n u m b e r  v e r y  w e l l .  

O f  c o u r s e ,  when m o r e  d e t a i l e d  d a t a  a r e  a v a i l a b l e ,  

we w i l l  b e  a b l e  t o  e x t r a c t  t h e  u ( x ) ,  e t c . ,  a n d  make 

m o r e  d e t a i l e d  p r e d i c t i o n s .  I h a v e  d i s c u s s e d  h e r e  

m o s t l y  r e s u l t s  f o r  w h i c h  d a t a  a r e  now b e i n g  t a k e n ,  

i n  p a r t i c u l a r  b y  B a r i s h  e t  a l . ,  a t  N A L .  T h e r e f o r e  

we e x p e c t  s o o n  t o  g e t  m o r e  a c c u r a t e  d a t a  a t  h i g h e r  

e n e r g y ,  s o  t h a t  t h e  s p e c i f i c  f o r m s  f o r  d2u"  o r  ' / d x d y  

e x p e c t e d  b y  t h e  m o d e l  t h a t  p a r t o n s  a r e  q u a r k s  may 

b e  t e s t e d .  T h e r e  i s  e n o u g h  r e d u n d a n c y  t o  i n d e p e n -  

d e n t l y  c h e c k  s c a l i n g  a n d  a s s u m p t i o n s  a b o u t  t h e  q z  

d e p e n d e n c e  o f  t h e  weak i n t e r a c t i o n .  We a r e ,  
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t h e r e f o r e ,  a t  a v e r y  i n t r i g u i n g  moment i n  h i g h -  

e n e r g y  p h y s i c s  where  we can  do an e x p e r i m e n t  f o r  

which we have s u c h  d e f i n i t e  p r e d i c t i o n s  and a r e  on 

t h e  v e r g e  of b e i n g  a b l e  t o  d e c i d e  a b o u t  a v e r y  f u n d a -  

m e n t a l  p r o p e r t y  of  s t r o n g l y  i n t e r a c t i n g  s y s t e m s .  

We have  p u t  t h i s  p r o p e r t y  i n  t h e  l a n g u a g e  " c h a r g e d  

p a r t o n s  a r e  q u a r k s , "  b u t  o t h e r  t h e o r e t i c a l  i n t e r p r e -  

t a t i o n s  o f  t h e  same r e s u l t s ,  s a y ,  i n  t e r m s  of  c u r r e n t  

commuta tor  r u l e s ,  w i l l  n o t  a l t e r  t h e  f a c t  t h a t  i f  

t h e  p r e d i c t i o n s  work ,  s o m e t h i n g  p r o f o u n d  has  been 

e s t a b l i s h e d  t h a t  mus t  be d i r e c t l y  i n c o r p o r a t e d  i n t o  

f u t u r e  t h e o r y  . 
Anothe r  e x p e r i m e n t  t h a t  p o s e s  some p rob lems  f o r  

t h e  q u a r k  p a r t o n  model m e a s u r e s  e'e- + any h a d r o n s .  

We would e x p e c t  t h i s  p r o c e s s  t o  be d e s c r i b e d  by t h e  

d i a g r a m  

where  t h e  q u a r k s  s u b s e q u e n t l y  g e n e r a t e  t h e  f i n a l  

h a d r o n s .  B u t  i n  t h i s  c a s e ,  t h e  r a t i o  of t h e  c r o s s  

s e c t i o n  f o r  t h i s  p r o c e s s  t o  t h a t  f o r  e'e- + LI p 

s h o u l d  be e q u a l  t o  t h e  s u m  of  t h e  s q u a r e s  o f  t h e  

t -  
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q u a r k  c h a r g e s ;  name ly ,  4 / 9  t 1 / 9  + 1 / 9  = 2 / 3 .  The 

d a t a  i n d i c a t e  a v a l u e  g r e a t e r  t h a n  2 .  Of c o u r s e ,  

i f  t h e r e  were t h r e e  " c o l o r s "  o f  q u a r k s ,  t h e  p r e d i c -  

t i o n  would be 3 x ( 2 / 3 )  = 2 ,  which i s  c l o s e r  t o  t h e  

e x p e r i m e n t .  The re  a r e  o t h e r  r e a s o n s  f o r  i n t r o d u c i n g  

t h e  c o l o r  q u a n t u m  number ,  a n d  we m i g h t  a s  w e l l  r e v i e w  

a few o f  them h e r e .  One h a s  t o  do w i t h  t h e  s p i n -  

s t a t i s t i c s  p rob lem.  C o n s i d e r  a A + + :  i n  t h e  non- 

r e l a t i v i s t i c  q u a r k  model t h i s  i s  made u p  o f  t h r e e  

u ' s  i n  a r e l a t i v e  s - s t a t e  w i t h  a l l  t h e i r  s p i n s  

a l i g n e d .  T h i s  i s  i m p o s s i b l e  f o r  r e a l  f e r m i o n s  

a c c o r d i n g  t o  t h e  s p i n - s t a t i s t i  c s  t heo rem.  Now maybe 

i f  q u a r k s  c a n ' t  g e t  o u t ,  t h e  t h e o r e m  d o e s n ' t  a p p l y ,  

b u t  a n o t h e r  way o u t  i s  t o  make them d i s t i n g u i s h a b l e  

b y ,  s a y ,  c o l o r i n g  one o f  them c h a r t r e u s e ,  one  l a v e n -  

d e r ,  and  one  b e i g e .  ( T h i s  i s  n o t  t h e  s t a n d a r d  c o l o r  

n o t a t i o n . )  The t h r e e  v a l u e s  o f  t h e  c o l o r  quantum 

number can be i n c o r p o r a t e d  i n t o  an SU3 symmetry .  

T h i s  t h e n  can be used  t o  e x p l a i n  why t h e  p h y s i c a l  

h a d r o n s  have  0 o r  3 qua rks ,  b u t  n o t  1 ,  2 ,  4 ,  ..., 
by a s suming  t h a t  we o n l y  g e t  b i n d i n g  f o r  a s t a t e  

t h a t  i s  a c o l o r  s i n g l e t .  The b a r y o n s  w i l l  t h e n  

a lways  have one  q u a r k  o f  e a c h  c o l o r .  
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L E C T U R E  4 

H I G H - E N E R G Y  HADRONIC COLLISIONS 

I n  t h i s  l e c t u r e ,  I am g o i n g  t o  d i s c u s s  h i g h - e n e r g y  

h a d r o n i c  c o l l i s i o n s .  The i d e a  o f  p a r t o n s - - t h e  s t u d y  

o f  t h e  w a v e f u n c t i o n  a t  h i g h  e n e r g y - - w a s ,  a s  I 

e x p l a i n e d ,  o r i g i n a l l y  i n v e n t e d  t o  d e a l  w i t h  h a d r o n i c  

c o l l i s i o n s .  The deve lopmen t  o f  t h e  i d e a s  was g u i d e d  

by some o f  t h e  e x p e r i m e n t a l  f e a t u r e s  o f  hadron  

p h y s i c s ,  and t h e  ne t  r e s u l t  was t o  p r e d i c t  some 

p r o p e r t i e s  t o  be e x p e c t e d  i n  t h e s e  c o l l i s i o n s  a t  

h i g h  enough e n e r g i e s .  The o b s e r v e d  f a c t  o f  l i m i t e d  

t r a n s v e r s e  momentum was used  t o  g e t  t h e  i d e a  t h a t  

p a r t o n s  do n o t  i n t e r a c t  s t r o n g l y  when t h e i r  r e l a t i v e  

r a p i d i t y  i s  h i g h .  As we have  s e e n  i n  p r e v i o u s  l e c -  

t u r e s ,  t h i s  l e d  t o  t h e  n o t i o n  t h a t  t h e  w a v e f u n c t i o n  

was l i k e l y  t o  s c a l e  and  t h e r e f o r e ,  a f t e r  t h e  c o l l i -  

s i o n  i s  o v e r ,  i t  was a v e r y  good g u e s s  t h a t  t he  

p r o d u c t s  would s c a l e .  S o  t h e  s c a l i n g  p r i n c i p l e  was 

e s t a b l i s h e d  i n  my mind i n  t h i s  way, and t h e  i d e a  o f  

a p l a t e a u  i n  t h e  r a p i d i t y  p l o t .  These  two i d e a s  a r e  

r e a l l y  a b o u t  a l l  t h a t  I have  been  a b l e  t o  e x t r a c t  a s  

f a r  a s  h a d r o n i  c c o l l  i s i o n s  a r e  c o n c e r n e d .  N e v e r t h e -  

l e s s ,  i n  t h i n k i n g  a b o u t  t h e s e  t h i n g s ,  I a l s o  c o n s i -  

d e r e d  some o t h e r  p h y s i c a l  v iews  o f  h i g h - e n e r g y  

c o l l i s i o n s ,  which c o r r o b o r a t e d  w i t h  t h e  i d e a s  I was 
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g e t t i n g  f r o m  t h e  p a r t o n  v i e w ,  some o f  w h i c h  I w i l l  

d i s c u s s  h e r e .  

F o r  e x a m p l e ,  l a t e r  o n  i n  t h i s  l e c t u r e  I s h a l l  

c o n s i d e r  some s u g g e s t i o n s  a b o u t  w h a t  i s  known as 

Regge b e h a v i o r ,  b y  w h i c h  I mean t h e  p o w e r  l a w  f a l l -  

o f f  w i t h  s o f  c r o s s  s e c t i o n s  f o r  p r o c e s s e s  i n v o l v i n g  

an e x c h a n g e  o f  q u a n t u m  n u m b e r s .  I s p e c i f i c a l l y  

e x c l u d e  f r o m  t h a t  d i s c u s s i o n  p r o c e s s e s  i n  w h i c h  n o  

q u a n t u m  n u m b e r s  a r e  e x c h a n g e d ;  t h a t  i s ,  t h o s e  

i n v o l v i n g  w h a t  i s  c a l l e d  " P o m e r o n  e x c h a n g e . "  T h e s e  

I r e g a r d  as b e i n g  e l a s t i c  s c a t t e r i n g  p l u s  d i f f r a c t i o n  

d i s s o c i a t i o n .  I w a n t  t o  s e p a r a t e  t h e  phenomena  i n t o  

d i f f r a c t i o n  e f f e c t s  a n d  " t r u e "  i n e l a s t i c  p r o c e s s e s :  

 TOTAL) =  DIFFRACTION) +  TRUE INEL.). 

w h e r e  

u(D1FFRACTION) = a ( E L A S T 1 C )  + u ( D I F F .  D I S S . ) ,  

T h i s  i s  b a s e d  o n  a p i c t u r e  i n  w h i c h  an i n c o m i n g  wave  

i s  a b s o r b e d  i n  some f i n i t e  r e g i o n .  The  a b s o r p t i o n  

i s  r e l a t e d  t o  t h e  t r u e  i n e l a s t i c  p r o c e s s e s ,  a n d  t h e  

e l a s t i c  s c a t t e r i n g  i s  c o n n e c t e d  t o  i t  t h r o u g h  t h e  

o p t i c a l  t h e o r e m - - i t  i s  a shadow e f f e c t  i n  w h i c h  t h e  

i n c i d e n t  w a v e  u n d e r g o e s  d i f f r a c t i o n  i n t o  t h e  shadow 

r e g i o n .  I f  t h e  i n c i d e n t  w a v e  i s  n o t  s i m p l y  a f u n d a -  

m e n t a l  p a r t i c l e ,  b u t  i s  s t r u c t u r e d ,  t h e  v a r i o u s  p a r t s  

may b e  d i f f r a c t e d  d i f f e r e n t l y ,  l e a d i n g  t o  an  e x c i t a -  

t i o n  o r  b r e a k i n g  up o f  t h e  wave .  T h i s  we c a l l  

d i f f r a c t i o n  d i s s o c i a t i o n ,  a n d  w i l l  r e g a r d  as d i s t i n c t  
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f r o m  t h e  f u n d a m e n t a l l y  i n e l a s t i c  p r o c e s s e s .  I w i l l  

d i s c u s s  t h e  d i f f r a c t i o n  e f f e c t s  i n  m o r e  d e t a i l  i n  

t h e  n e x t  l e c t u r e ,  a n d  g i v e  a m a t h e m a t i c a l  d e f i n i t i o n  

o f  t h e  s e p a r a t i o n  o f  t h e  c r o s s  s e c t i o n  i n t o  d i f f r a c -  

t i v e  a n d  t r u e  i n e l a s t i c  p a r t s .  The i d e a s  I am g o i n g  

t o  d i s c u s s  do n o t  t a k e  i n t o  a c c o u n t  t h e  p o s s i b i l i t y  

( s u g g e s t e d  b y  e x p e r i m e n t s  i n  t h e  l a s t  y e a r )  t h a t  t h e  

t o t a l  c r o s s  s e c t i o n  may b e  r i s i n g  as some p o w e r  o f  

l o g  s ;  I h a v e  n o t  m o d i f i e d  t h e  a r g u m e n t s  t o  i n c l u d e  

t h i s  k i n d  o f  b e h a v i o r .  

Now l e t ' s  d i s c u s s  t h e  i d e a s  t h a t  come f r o m  t h e  

p a r t o n  p i c t u r e  o f  t h e  w a v e f u n c t i o n .  The o b s e r v a t i o n  

o f  f i n i t e  t r a n s v e r s e  momenta has  l e d  us t o  a n o t i o n  

w h i c h  h a s  b e e n  u s e d  a g a i n  a n d  a g a i n - - t h e  i d e a  t h a t  

when t h e  r e l a t i v e  momentum o f  t h e  p a r t o n s  i s  v e r y  

l a r g e ,  t h e i r  i n t e r a c t i o n  i s  v e r y  s m a l l .  O n l y  f i n i t e  

r e l a t i v e  r a p i d i t y  a n d  f i n i t e  t r a n s v e r s e  momenta  a r e  

g e n e r a t e d  b y  t h e  i n t e r a c t i o n ,  w h i c h  means t h e  wee 

p a r t o n s  come f r o m  a l o n g  c a s c a d e  a n d  become i n d e p e n -  

d e n t ,  s i n c e  t h e r e  a r e  s o  many s t e p s  i n  t h e  c a s c a d e ,  

o f  how i t  s t a r t e d .  I t  seems t o  me t h a t  a l l  t h e s e  

i d e a s  a r e  c o m i n g  f r o m  o n e  p h y s i c a l  p r i n c i p l e ,  w h i c h  

i s  t h a t  t h e  c o u p l i n g s  i n  t h e  H a m i l t o n i a n  a r e  s u c h  

t h a t  d i r e c t  i n t e r a c t i o n s  among p a r t o n s  o f  h i g h - r e l a -  

t i v e  momentum a r e  v e r y  s m a l l .  I f  t h i s  i s  t h e  c a s e ,  

t h e n  i n  a v e r y  h i g h - e n e r g y  h a d r o n i c  c o l l i s i o n ,  p i c -  

t u r e d  as b e l o w :  

53  



612 

t h e  i n t e r a c t i o n  p r o c e e d s  t h r o u g h  t h e  wee p a r t o n s  

s i n c e  o n l y  t h e s e  have  f i n i t e  r e l a t i v e  momenta. My 

p i c t u r e  o f  how t h e  c o l l i s i o n  p r o c e e d s  i s  t h a t  t h e  

i n t e r a c t i o n  o f  t h e  wee p a r t o n s  d i s t u r b s  t h e  phase  

r e l a t i o n s h i p s  i n  t h e  h a d r o n i c  w a v e f u n c t i o n s ,  s o  t h a t  

t h e y  come a p a r t  i n  some s e n s e .  T h a t  i s ,  a f t e r  t h e  

i n t e r a c t i o n ,  t h e  r e l a t i v e  p h a s e s  be tween t h e  p a r t o n s  

a r e  no l o n g e r  t h o s e  o f  t h e  o r i g i n a l  had ron  s t a t e ,  s o  

t h e  f i n a l  s t a t e  i s  a c o m p l i c a t e d  s u p e r p o s i t i o n  o f  

h a d r o n  c o n f i g u r a t i o n s .  Of c o u r s e ,  t h e  p a r t o n s  them- 

s e l v e s  c a n n o t  come o u t  s i n c e  t h e y  a r e  n o t  e i g e n f u n c -  

t i o n s  o f  t he  H a m i l t o n i a n .  The o u t g o i n g  p a r t o n s  must 

d i s t r i b u t e  t h e m s e l v e s  i n  some way t o  form r e a l  

h a d r o n s .  T h e  way i n  which t h i s  o c c u r s  i s  g e n e r a l l y  

l o c a l  i n  r e l a t i v e  momentum--not e x a c t l y ,  s i n c e  an 

o u t g o i n g  f a s t  p a r t o n  must use  u p  some o f  t h e  wee 

p a r t o n s  t o  fo rm an o u t g o i n g  h a d r o n .  B u t  s i n c  

wee r e g i o n  i s  u n i v e r s a l ,  t h e  c h a r a c t e r  o f  t h e  

t h a t  come o u t  w i l l  depend on t h e  c h a r a c t e r  o f  

f a s t  p a r t o n s  g o i n g  i n  t h e  same d i r e c t i o n .  T h  

t h e  

h a d r o n s  

t he  

s i s  

e s s e n t i a l l y  the  i d e a  o f  l i m i t i n g  f r a g m e n t a t i o n ,  

wh ich ,  when i t  was s u g g e s t e d  by Yang a t  t h e  S t o n y  
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B r o o k  c o n f e r e n c e  i n  1 9 6 9 ,  I r e a l i z e d  f i t  i n  w i t h  my 

p a r t o n  i d e a s  v e r y  w e l l .  

T h e s e  i d e a s  a r e  n i c e l y  r e p r e s e n t e d  o n  a r a p i d i t y  

p l o t ,  w h e r e  we m e a s u r e  t h e  r a p i d i t y  t o  t h e  r i g h t  o f  

t h e  o r i g i n  f o r  p a r t i c l e s  m o v i n g  t o  t h e  r i g h t ,  a n d  t o  

t h e  l e f t  o f  t h e  o r i g i n  f o r  t h o s e  m o v i n g  t o  t h e  l e f t .  

I f  we h a v e  an i n c o m i n g  p a r t i c l e  A w i t h  momentum P t o  

t h e  r i g h t ,  i t s  r a p i d i t y  i s  

2 2 2  
( 1 / 2 ) 1 0 g ( 4 p A / u  'Q 9 

w h i c h  i s  a p p r o x i m a t e l y  l o g  2PA f o r  l a r g e  P A .  

w i l l  b e  t h e  r i g h t  e n d  o f  t h e  r a p i d i t y  p l o t .  I f  t h e  

o t h e r  p a r t i c l e  B h a s  l a r g e  momentum PB t o  t h e  l e f t ,  

t h e  l e f t  e n d  o f  t h e  p l o t  w i l l  b e  a t  - l o g  2 P B .  

i d e a  o f  l i m i t i n g  f r a g m e n t a t i o n  t e l l s  us t h a t  t h e  

d i s t r i b u t i o n  o f  p r o d u c t s  w h i c h  f a l l  n e a r  t h e  e n d s  o f  

t h e  r a p i d i t y  p l o t  w i l l  b e  d e t e r m i n e d  b y  t h e  n a t u r e  

o f  t h e  i n c o m i n g  p a r t i c l e  c o r r e s p o n d i n g  t o  t h a t  e n d ,  

a n d  w i l l  b e  i n d e p e n d e n t  o f  w h a t  goes  o n  a t  t h e  o t h e r  

e n d .  Now i n  b e t w e e n ,  a t  f i n i t e  v a l u e s  o f  y ,  i f  t h e  

i d e a  o f  a d x / x  d i s t r i b u t i o n  i s  c o r r e c t ,  t h e  d i s t r i -  

b u t i o n  w i l l  b e  f l a t  o n  e i t h e r  s i d e  o f  y = 0 ,  a n d  w i l l  

m a t c h  i n  t h e  m i d d l e .  The  m a t c h i n g  i s  g u a r a n t e e d  b y  

t h e  f a c t  t h a t  a b o o s t  a l o n g  t h e  l o n g i t u d i n a l  d i r e c -  

t i o n  w o u l d  s i m p l y  s h i f t  t h e  p l o t  b y  a f i n i t e  a m o u n t .  

So we g e t  t w o  f r a g m e n t a t i o n  r e g i o n s  s e p a r a t e d  b y  a 

f l a t  p l a t e a u :  

T h i s  

The  
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f r a g m e n t s  o f  B p l a t e a u  r e g i o n  f r a g m e n t s  o f  A 

- l o g  2PB l o g  2P* 

The t o t a l  r a p i d i t y  d i f f e r e n c e  b e t w e e n  t h e  e n d s  o f  t h e  

p l o t  i s  

l o g  2PA + l o g  2PB = l o g  4P*PB = l o g  s . 
T h i s  p i c t u r e  o f  t h e  b r e a k u p  o f  t h e  h a d r o n  w a v e -  

f u n c t i o n  due t o  d i s t u r b a n c e  o f  t h e  p h a s e  r e l a t i o n -  

s h i p s  o f  t h e  wee p a r t o n s  i s  n o t  an  h o n e s t  c o n c l u s i o n  

o f  t h e  p a r t o n  m o d e l  i t s e l f .  Wha t  i s  m i s s i n g  i s  some 

d e s c r i p t i o n  o f  how, g i v e n  t h e  i n i t i a l  w a v e f u n c t i o n  

r e p r e s e n t e d  i n  t e r m s  o f  p a r t o n s ,  t h e  H a m i l  t o n i a n  a c t s  

t o  p r o d u c e  t h e  o u t g o i n g  h a d r o n s .  You d o n ' t  s e e  t h e  

w a v e f u n c t i o n s  o f  a l l  t h e  h a d r o n s  i n  t h i s  p i c t u r e .  

Once,  when I was w o r k i n g  o n  l i q u i d  H e l i u m ,  I w e n t  t o  

a m e e t i n g  a n d  P a u l i  was t h e r e .  He a s k e d  me t o  come 

t o  h i s  h o t e l  r o o m  t o  t e l l  h i m  a b o u t  my w o r k .  I t r i e d  

t o  d e s c r i b e  t o  h i m  t h e  c h a r a c t e r  o f  t h e  w a v e f u n c t i o n  

when y o u  c h a n g e  t h e  a toms  a r o u n d - - h o w  t h e  a m p l i t u d e  

h a d  t o  s h i f t ,  a n d  how, when t h e y  w e r e  c l o s e  t o g e t h e r ,  

i t  h a d  t o  go  down,  a n d  s o  o n .  A f t e r  f o r t y  m i n u t e s  

h e  s a i d  t o  me, "Feynman ,  y o u ' v e  b e e n  w a v i n g  y o u r  arms 
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w r i t e  a n  e q u a t i o n . "  Well i n  t h i s  p a r t i c u l a r  f i e l d  I 

h a v e n ' t  g o t t e n  t o  t h e  c o n d i t i o n  where  I can w r i t e  a n  

e q u a t i o n - - I ' m  s t i l l  waving  my arms a f t e r  f o u r  y e a r s - -  

and  I a p p r e c i a t e  t h e  l a c k !  

To summar ize ,  t h e  b e s t  way t o  p u t  t h e  p h y s i c a l  

a s s u m p t i o n  i s  n o t  t o  s a y  how i t  w o r k s ,  w h e t h e r  by 

d i s t u r b i n g  t h e  p h a s e s  o r  some o t h e r  m y s t e r y ,  b u t  t o  

s a y  t h a t  t h e  w a v e f u n c t i o n  a f t e r  i n t e r a c t i o n  i s  a 

w a v e f u n c t i o n  which r e p r e s e n t s  a l a r g e  number o f  

h a d r o n s  coming o u t  which a r e  d i s t r i b u t e d  i n  momentum 

l i k e  t h e  p a r t o n s  i n  t h e  q u a l i t a t i v e  s e n s e  of  l i m i t e d  

t r a n s v e r s e  momentum, s c a l i n g  i n  l o n g i t u d i n a l  momen- 

t u m ,  and a d P Z / E  b e h a v i o r  f o r  s m a l l  P z  ( c e n t r a l  

p l a t e a u  i n  y ) .  A n d  t h a t  t h e  q u a n t u m  numbers o f  t h e  

h a d r o n s  a r e  d e t e r m i n e d  l o c a l l y  by t h e  quantum numbers 

o f  t h e  p a r t o n s ,  s o  t h a t  t h e  c h a r a c t e r  o f  t h e  p a r t i -  

c l e s  t h a t  come o u t  i n  a c e r t a i n  d i r e c t i o n  depends  

o n l y  on t h e  incoming  p a r t i c l e  t h a t  was g o i n g  i n  t h a t  

d i r e c t i o n .  Al though I was n o t  aware  of  i t ,  e v e r y  one  

o f  t h e s e  f e a t u r e s  h a d  a l r e a d y  been s u g g e s t e d  a decade  

a g o  by Kenneth G .  Wi lson  ( A c t a  P h y s i c a  A u s t r i a c a  17, 
37 ( 1 9 6 3 ) ) .  

I would l i k e  t o  p r e s e n t  some o f  t h e  a rgumen t s  

t h a t  l e d  me t o  t h i n k  t h a t  t h e  wee p a r t o n s  were  p rob-  

a b l y  t h e  o n l y  ones  t h a t  i n t e r a c t e d ,  which i s  an e s s e w  

t i a l  p a r t  o f  t h e  i d e a .  F i r s t ,  s u p p o s e  we r e p r e s e n t  
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a p a r t i c l e  m o v i n g  t o  t h e  r i g h t  b y  

ITA> = F * l o >  , A 
w h e r e  FA*  i s  some o p e r a t o r  w h i c h  c o n t a i n s  c r e a t i o n  

o p e r a t o r s  o n l y  f o r  p a r t o n s  m o v i n g  t o  t h e  r i g h t  a n d ,  

o f  c o u r s e ,  as we e x p e c t ,  wee p a r t o n s .  B u t  s u p p o s e  

f o r  t h e  s a k e  o f  a r g u m e n t  t h a t  t h e  w a v e f u n c t i o n  a c t u -  

a l l y  t u r n e d  o u t  t o  h a v e  a v a n i s h i n g  n u m b e r  o f  wee 

p a r t o n s  as P + a. S i m i l a r l y ,  s u p p o s e  

ITB> = F B * l O >  

i s  a s i m i l a r  p a r t i c l e  m o v i n g  t o  t h e  l e f t .  The H a m i l -  

t o n i a n  i s  s u c h  t h a t  t h e s e  a r e  e i g e n f u n c t i o n s ,  s o  

H I T A >  = E A I Y A >  , 

H I T B >  = E B I Y B >  . 
T h a t  i s ,  ITA> i s  an  e i g e n s t a t e  o f  t h e  H a m i l t o n i a n  

i n v o l v i n g  o n l y  r i g h t - m o v i n g  p a r t i c l e s  a n d  I T B >  a 

s o l u t i o n  c o n t a i n i n g  o n l y  l e f t .  T h e  H a m i l t o n i a n  m u s t  

b e  o f  s u c h  a k i n d  as t o  p e r m i t  s u c h  a s o l u t i o n .  I t  

i s  n o t  r i g o r o u s l y  n e c e s s a r y  p e r h a p s ;  b u t  i t  i s  v e r y  

s u g g e s t i v e  t h a t  i f  s u c h  i s  t h e  c a s e , t h e  p r o d u c t  w a v e -  

f u n c t i o n ,  i n v o l v i n g  as i t  d o e s  o n l y  o n e  o r  a n o t h e r  o f  

t h e s e  k i n d s  o f  p a r t i c l e s - - e a c h  i n  a d i s t r i b u t i o n  

w h i c h  i s  a s o l u t i o n  o f  t h e  H a m i l t o n i a n ,  w o u l d  a l s o  

b e  an e i g e n f u n c t i o n  o f  t h e  H a m i l t o n i a n .  T o  t a k e  t h e  

s i m p l e s t  e x a m p l e ,  o f  c o u r s e ,  assume t h e  H a m i l t o n i a n  

c a n  b e  s p l i t  i n t o  p i e c e s  HA a n d  H B  s u c h  t h a t  H A  

d o e s n ' t  c o n t a i n  any  o f  t h e  o p e r a t o r s  i n  FB* ,and  FIB 
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d o e s n ' t  c o n t a i n  any o f  t h o s e  i n  F A * .  

t h e  s t a t e  

I f  we c o n s i d e r  

F ~ * F ~ * I o >  , 

we have  

H( F A * F B * )  1 O >  

= ( H A  + H B ) F A * F B * I O >  

= F ~ * ( H ~ F ~ * I o > )  t F ~ * ( H ~ F ~ * I o > ) .  
T h i s  l a s t  f o l l o w s  s i n c e  o u r  a s s u m p t i o n s  mean t h a t  H A  

and F x commute w i t h  F B * ,  and H B  commutes w i t h  F * .  
B u t  t h e n  t h i s  i s  

A A 

( E A  + E B ) F A * F B * I O >  , 

s o  t h e  w a v e f u n c t i o n  i s  a n  e i g e n f u n c t i o n  o f  H .  T h i s  

means t h a t  t h e  s t a t e  c o n s i s t i n g  o f  two p a r t i c l e s  

moving i n  o p p o s i t e  d i r e c t i o n s  i s  a n  e i g e n s t a t e  o f  t h e  

H a m i l t o n i a n - - t h e y  d o n ' t  i n t e r a c t ,  o r  b e t t e r ,  t h e  

i n t e r a c t i o n  f a l l s  t o  z e r o  a s  s i n c r e a s e s .  T h i s  a r g u -  

ment w i l l  f a i l  i f  t h e r e  a r e  some p a r t o n s  common t o  

b o t h  p a r t i c l e s ,  and  a c o n s t a n t  c r o s s  s e c t i o n  s u g g e s t s  

t h a t  t h e  number o f  t h e s e ,  n e c e s s a r i l y  wee p a r t o n s ,  

does  n o t  f a l l  w i t h  P .  

A s  an example  t o  i l l u s t r a t e  how t h e  wee p a r t o n s  

f rom the  two h a d r o n s  mesh t o g e t h e r ,  c o n s i d e r  t h e  

model d i s c u s s e d  i n  L e c t u r e  2 ,  where  we had t h e  

w a v e f u n c t i  on 

 IT^> = e x p { ~  c ( l t ) a * ( t ) )  ( 0 2 ,  
k 

w i t h  
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f o r  a p a r t i c l e  m o v i n g  t o  t h e  r i g h t .  We know t h i s  

g i v e s  a d x / x  d i s t r i b u t i o n ,  a n d  wee p a r t o n s ,  s o  we 

e x p e c t  i n t e r a c t i o n  i n  t h i s  c a s e .  A l e f t - m o v i n g  p a r -  

t i c l e  w o u l d  h a v e  a w a v e f u n c t i o n  

w i t h  

c'(;) = a / ( w + k z ) w  3/ 2 . 
Now s u p p o s e  we l o o k  a t  t h e  w a v e f u n c t i o n  t h a t  r e s u l t s  

f r o m  mu1 t i p l y i n g  t h e s e  o p e r a t o r s - -  

1yAB> = e x p ( 1  [ c ( s t )  + c l ( i ; ) l  a * ( i ; ) ) l o >  . 
k 

2 2  2 The c o e f f i c i e n t  i s  ( n o t e  w - k Z  = )-I + Q 2 )  

w h e r e  Q i s  t h e  t r a n s v e r s e  momentum. We s e e  t h a t  t h e  

d i s t r i b u t i o n  h a s  a d k z / w  + d x / x  b e h a v i o r .  

e a s y  t o  c h e c k  t h a t  t h i s  w a v e f u n c t i o n  i s  n o t  an  

e i g e n f u n c t i o n  o f  t h e  H a m i l t o n i a n .  Now t h i s  i n i t i a l  

d i s t r i b u t i o n  o f  p a r t o n s  i s  d i s t u r b e d  b y  f u t u r e  

a p p l  i c a t i o n s  o f  t h e  Hami 1 t o n i  an i n  p r o d u c i n g  t h e  

t i m e  e v o l u t i o n  t o  t h e  f i n a l  s t a t e .  

I t  i s  a l s o  

One may g u e s s  t h a t  t h e  e n e r g y  d e p e n d e n c e ,  a t  

l e a s t ,  o f  t h e  i n t e r a c t i o n  c r o s s  s e c t i o n  i s  m e a s u r e d  

b y  t h e  d e g r e e  t h a t  t h e s e  i n i t i a l  w a v e f u n c t i o n s  o v e r -  

l a p ;  i . e . ,  c o n t a i n  common p a r t o n s .  We may c a l c u l a t e  

t h e  a m p l i t u d e  f o r  t h i s ,  <yBlyA>, w h i c h  comes o u t  as 

e x p { - i  c'(;)c(;)}. T h e  q u a n t i t y  i n  t h e  e x p o n e n t  
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b e  comes 

a f i n i t e  n u m b e r .  

To r e t u r n  t o  t h e  s u b j e c t  o f  Regge b e h a v i o r ,  I 

w a n t  t o  d i s c u s s  some p h y s i c a l  i d e a s  w h i c h ,  a l t h o u g h  

n o t  r e a l l y  f r o m  t h e  p a r t o n  m o d e l ,  g o  a l o n g  w i t h  i t  i n  

s u p p o r t i n g  o u r  c o n c l u s i o n s .  A s  we h a v e  s a i d ,  t h e  

m a i n  f e a t u r e  we w a n t  t o  u n d e r s t a n d  i s  why t h e  c r o s s  

s e c t i o n  f o r  p r o c e s s e s  i n v o l v i n g  t h e  e x c h a n g e  o f  

q u a n t u m  n u m b e r s  f a l l  as some p o w e r  o f  t h e  e n e r g y .  

L o o k  a t  a p r o c e s s  l i k e :  

We s e e  h e r e  t h a t  d u r i n g  t h e  c o l l i s i o n  a c u r r e n t  i s  

s u d d e n l y  r e v e r s e d .  The i n c o m i n g  n e u t r o n  h a s  3- 

c o m p o n e n t  o f  i s o s p i n  - 1 / 2 ,  a n d  t h i s  i s  f l i p p e d  t o  

g i v e  an o u t g o i n g  p r o t o n  w i t h  3 - c o m p o n e n t  o f  i s o s p i n  

+ 1 / 2 ;  t h e  i n c o m i n g  p i o n  h a s  i t s  3 - c o m p o n e n t  o f  

i s o s p i n  s u d d e n l y  c h a n g e d  f r o m  + 1  t o  0 .  t le may i m a -  

g i n e  t h a t  t h e  3 - c o m p o n e n t  o f  i s o s p i n  c a r r i e d  i n  b y  

t h e  IT+ i s  s u d d e n l y  t u r n e d  a r o u n d  d u r i n g  t h e  b r i e f  

t i m e  o f  c o l l i s i o n .  Now G e l l - M a n n  h a s  b e e n  empha- 

s i z i n g  t h a t  h a d r o n i c  s y s t e m s  a r e  c o u p l e d  t o  c u r r e n t s ,  

a n d  i t  seems v e r y  l i k e l y  t h a t  t h e  p ,  f o r  i n s t a n c e ,  

i s  c o u p l e d  t o  t h e  i s o s p i n  c u r r e n t .  S o  we c a n  a s k ,  

6 1  
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when t h e r e  i s  s u c h  a t r e m e n d o u s  t i m e  r a t e  o f  c h a n g e  

o f  a c u r r e n t ,  why d o n ' t  we s e e  r a d i a t i o n  o f  t h e  

p a r t i c l e s  c o u p l e d  t o  t h e  c u r r e n t ?  The a n s w e r  i s  t h a t  

t h e r e  i s  r a d i a t i o n - - b u t  when we a r e  l o o k i n g  a t  a 

s p e c i f i c  e x c l u s i v e  p r o c e s s  s u c h  as t h e  t w o - b o d y  

c h a r g e - e x c h a n g e  o n e  a b o v e ,  we a r e  a s k i n g  f o r  t h a t  

f r a c t i o n  o f  t h e  c r o s s  s e c t i o n  w h i c h  h a s  n o  s u c h  

r a d i a t i o n .  I n  o t h e r  w o r d s ,  we a r e  a s k i n g  f o r  t h e  

p r o b a b i l i t y  t h a t  t h e r e  i s  a r a p i d  a c c e l e r a t i o n  o f  t h e  

i s o s p i n  c u r r e n t  w i t h o u t  a c o r r e s p o n d i n g  r a d i a t i o n  o f  

t h e  p a r t i c l e s  c o u p l e d  t o  i s o s p i n .  I f  y o u  t a k e  a 

t h e o r y  l i k e  b r e m s s t r a h l u n g ,  f o r  e x a m p l e ,  i t  t u r n s  o u t  

t h a t  f o r  a s u d d e n  r e v e r s a l  l i k e  t h i s ,  y o u  f i n d  m o r e  

a n d  m o r e  r a d i a t i o n  as t h e  e n e r g y  g o e s  up ;  i n  f a c t  t h e  

mean n u m b e r  o f  p a r t i c l e s  r a d i a t e d  i n c r e a s e s  as l o g  s .  

So t h e  p r o b a b i l i t y  o f  n o  r a d i a t i o n  i s  p r o p o r t i o n a l  t o  

e x p ( - a n ) =  s - ~ .  I n  t h e  t h e o r y  o f  b r e m s s t r a h l u n g ,  t h i s  

l o g a r i t h m i c  g r o w t h  o f  n i s  p r o d u c e d  o n l y  i f  t h e  p a r -  

t i c l e s  w h i c h  a r e  g o i n g  t o  b e  r a d i a t e d  h a v e  a d k / w  

d i s t r i b u t i o n .  I n  g e n e r a l ,  we w o u l d  l i k e  t o  s a y  t h a t  

t h e  p r o b a b i l i t y  o f  a p r o c e s s  w h i c h  d o e s n ' t  r a d i a - t e  

any p a r t i c l e s  i n  a gap  o f  r a p i d i t y  Ay g o e s  l i k e  

e x p ( - a A y ) .  I n  a t w o - b o d y  + t w o - b o d y  r e a c t i o n ,  Ay i s  

o f  o r d e r  l o g  s a n d  we g e t  t h e  s - a  b e h a v i o r  o f  Regge 

t h e o r y .  The c o n s t a n t  a p r e s u m a b l y  d e p e n d s  o n  t h e  

q u a n t u m  n u m b e r s  b e i n g  e x c h a n g e d ,  s i n c e  t h e y  a r e  

r e l a t e d  t o  t h e  c u r r e n t  t h a t  i s  b e i n g  a c c e l e r a t e d .  
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( S e e  n o t e  a t  e n d  o f  t h i s  l e c t u r e . )  

A n o t h e r  p o i n t :  c o n s i d e r  t h e  p r o c e s s e s  

a n d  

P P 

+ 
71 

+ 
TI 

0 
71 

w h e r e  i n  t h e  s e c o n d  c a s e  t h e  ( m a s s ) *  o f  t h e  pn+  

s y s t e m  m i g h t  b e  n o w h e r e  n e a r  t h e  r e s o n a n c e  r e g i o n .  

The f i r s t  c a s e  i s  j u s t  l i k e  t h e  o n e  t r e a t e d ,  a n d  we 

e x p e c t  a p o w e r  l a w  b e h a v i o r  l i k e  s W a .  

c a s e ,  i f  we c o n s i d e r  t h e  p a n d  TI a t  s p e c i f i c  x 

v a l u e s  ( s o  t h a t  i n c i d e n t a l l y  t h e  i n v a r i a n t  mass 

s q u a r e d  o f  t h e  o u t g o i n g  PTI s y s t e m  i s  f i x e d ) ,  t h e n  

i n  t h e  r a p i d i t y  p l o t  we a r e  s t i l l  a s k i n g  f o r  no  p a r -  

t i c l e s  i n  a gap  w h i c h  g r o w s  as l o g  s ,  a n d  t h e  c r o s s  

s e c t i o n  a g a i n  f a l l s  as s - ~ .  The c o n s t a n t  a w i l l  b e  

t h e  same i n  b o t h  c a s e s ,  s i n c e  t h e  same q u a n t u m  

n u m b e r s  a r e  e x c h a n g e d .  M o r e  g e n e r a l l y ,  t h e  p r o b a b i -  

l i t y  f o r  a n y  p r o c e s s  l i k e  A t B -+ C + D s h o u l d  

b e h a v e  l i k e  

I n  t h e  s e c o n d  
+ 

+ 
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- a  2 
F ( M D )  9 

2 f o r  M D  f i n i t e ,  r e g a r d l e s s  o f  w h e t h e r  D i s  a s p e c i f i c  

r e s o n a n c e  o r  n o t ,  s i n c e  f i n i t e  M D  means t h a t  D c o n -  

s i s t s  o f  a f i n i t e  n u m b e r  o f  h a d r o n s  a n d  t h e r e  w i l l  

s t i l l  b e  a gap  i n  t h e  r a p i d i t y  p l o t  w h i c h  g r o w s  as 

l o g  s .  D i f f r a c t i o n  d i s s o c i a t i o n  p r o c e s s e s  a r e  b e i n g  

e x c l u d e d  f r o m  t h i s  d i s c u s s i o n - - w h e n  t h e r e  a r e  n o  

q u a n t u m  n u m b e r s  e x c h a n g e d ,  we h a v e  n o  r e v e r s a l  o f  

c u r r e n t  a n d  no  r e a s o n  t o  e x p e c t  r a d i a t i o n .  I n  t h a t  

c a s e  t h e  p h y s i c a l  s i t u a t i o n  i s  q u i t e  d i f f e r e n t .  

2 

We c a n  make a m u l t i - p a r t i c l e  g e n e r a l i z a t i o n  o f  

t h e  Regge i d e a s .  S u p p o s e  we l o o k  a t  a p r o c e s s  w h i c h  

i s  p a r t i a l l y  e x c l u s i v e .  F o r  e x a m p l e ,  s u p p o s e  i n  t h e  

f i n a l  s t a t e  we a l l o w  any  n u m b e r  o f  p i o n s  b u t  n o  K ' s .  

Then  b y  t h e  same l o g i c ,  we e x p e c t  t h e  p r o b a b i l i t y  o f  

t h i s  t o  b e  e x p ( - a n K ) ,  w h e r e  n K  i s  t h e  mean n u r r b e r  o f  

K ' s  e x p e c t e d  t o  b e  p r o d u c e d  i n  a c o m p l e t e l y  i n c l u s i v e  

c o l l i s i c n .  P h y s i c a l l y ,  we e x p e c t  t h e  p l a t e a u  r e g i o n  

i n  r a p i d i t y  t o  become u n i v e r s a l  as i t  w i d e n s ,  a n d  s o  

t h e  mean n u m b e r  o f  a n y  p a r t i c l e  s h o u l d  g r o w  as t h e  

w i d t h  o f  t h e  p l a t e a u ;  t h a t  i s ,  l i k e  l o g  s .  

goes  as l o g  s s o  we g e t  a p o w e r  l a w  f a l l - o f f  f o r  t h e  

c r o s s  s e c t i o n  i n  t h i s  c a s e ,  t o o ,  a l t h o u g h  t h e  p o w e r s  

a r e  n o t  t h e  s t a n d a r d  Regge p o w e r s .  

Thus :K 

The n e x t  c a s e  I w a n t  t o  c o n s i d e r  u s e s  t h e  same 

l o g i c  b u t  p r e d i c t s  s o m e t h i n g  q u i t e  d i f f e r e n t .  Con- 

s i d e r  t h e  p r o c e s s  A + B + C + " a n y t h i n g , "  a n d  s u p p o s e  
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t h a t  C c a r r i e s  a l m o s t  a l l  t h e  momentum o f  A ;  t h a t  i s ,  

x c  i s  n e a r l y  1 ,  b u t  n o t  e x a c t l y  1 .  

p l o t ,  C w i l l  b e  a t  a y o f  o r d e r  l o g  2PA.  

" a n y t h i n g "  we c a n  h a v e  some t h i n g s  t h a t  a r e  a l s o  

m o v i n g  t o  t h e  r i g h t ,  b u t  t h e y  c a n  c a r r y  a f r a c t i o n  o f  

PA  w h i c h  t o t a l s  o n l y  1 - x  

r a p i d i t y  p l o t  f r o m  l o g  2 P A  + l o g ( 1 - x c )  up t o  l o g  2PA,  

g i v i n g  Ay = - l o g ( l - x c ) .  The  p r o b a b i l i t y  o f  t h i s  goes  

a s  

I n  t h e  r a p i d i t y  

Now i n  t h e  

So we h a v e  a gap i n  t h e  C '  

e x p ( - a n y )  = ( I - x , ) ~  . 
The d i s t r i b u t i o n  f u n c t i o n  w i l l  b e  t h e  d i f f e r e n t i a l  o f  

t h i s ,  a n d  go as ( l - x C ) a - l d x C .  

q u a n t u m  numbers  o f  C - A  a n d  s o  a c a n  b e  d e t e r m i n e d  

f r o m  t h e  Regge p a r a m e t e r  a f o u n d  i n  a t w o - b o d y  p r o -  

c e s s  w i t h  t h e  same q u a n t u m  numbers  e x c h a n g e d ,  v i a  

a = Z ( 1 - a ) .  To t e s t  t h i s  e x p e r i m e n t a l l y ,  t h e r e  a r e  

some t e c h n i c a l  q u e s t i o n s  o f  b a c k g r o u n d ,  p a r t i c u l a r l y  

f r o m  d i f f r a c t i o n  d i s s o c i a t i o n ,  w h i c h  m u s t  b e  t a k e n  

i n t o  a c c o u n t ,  a n d  I d o n ' t  know w h e t h e r  i t  h a s  b e e n  

c h e c k e d  v e r y  w e l l .  S i n c e  t h i s  i d e a  was d e v e l o p e d ,  

t h e r e  h a s  b e e n  a v e r y  b e a u t i f u l  t h e o r y  b y  A .  M u e l l e r  

w h i c h  makes i t  m a t h e m a t i c a l l y  u n d e r s t a n d a b l e  how t o  

c o n n e c t  t h e s e  p r o c e s s e s .  May I r e f e r  y o u  t o  an  

e x c e l l e n t  r e p o r t  o n  t h e  t h e o r y  o f  h i g h - e n e r g y  c o l l i -  

s i o n s ,  i n  g e n e r a l ,  a n d  t h e s e  p o i n t s  i n  p a r t i c u l a r ,  

by M u e l l e r  a t  t h e  1 9 7 2  N A L  c o n f e r e n c e  ( A .  H .  M u e l l e r ,  

" P r o d u c t i o n  P r o c e s s e s  a t  H i g h  E n e r g y , "  P r o c e e d i n g s  

The  gap  c a r r i e s  t h e  
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o f  t h e  X V I  I n t e r n a t i o n a l  C o n f e r e n c e  o n  H i g h - E n e r g y  

P h y s i c s ,  V o l .  1 ,  p .  347). 

T h e r e  i s  a n o t h e r  i n t e r e s t i n g  c o n s e q u e n c e  o f  

t h i s ,  w h i c h  I h a v e  d e v e l o p e d  t h r o u g h  c o n v e r s a t i o n s  

w i t h  B j o r k e n ,  a n d  w h i c h  seems t o  me an  i m p o r t a n t  

p r i n c i p l e .  ( I t  a l s o  f o l l o w s  i m m e d i a t e l y  i n  M u e l l e r ' s  

a n a l y s i s . )  C o n s i d e r  a g a i n  t h e  r e a c t i o n  A + B + C  + D,  

w h e r e  D now c a n  b e  a n y t h i n g ,  i n c l u d i n g  v a r i o u s  r e s o -  

n a n c e s .  S u p p o s e  t h e  o n l y  p r o p e r t y  o f  D we m e a s u r e  

i s  i t s  i n v a r i a n t  mass MD.  

a1 r e a d y  r e m a r k e d ,  t h e  p r o b a b i l i t y  f o r  t h e  r e a c t i o n  
- a  2 goes  as s 

we h a v e  

2 2 For  MD f i n i t e ,  as we h a v e  

F ( M D ) .  Now i f  a l l  t h e  momenta a r e  l a r g e ,  

MD 2 7 ( p A + p B - p c ) *  2 S ( l - X c )  * 

Thus f i n i t e  M i  m u s t  come f r o m  1 - x c  v e r y  s m a l l ;  t h a t  

i s ,  f r o m  x c  v e r y  c l o s e  t o  1.  

t h a t  t h e  p r o b a b i l i t y  o f  f i n d i n g  x c  n e a r  1 g o e s  as 

( I - x , ) ~ .  

o n t o  o n e  a n o t h e r , w e  s e e  t h a t  we m u s t  h a v e  F (MD)  go  

l i k e  ( M i ) a  f o r  MD l a r g e  e n o u g h  t o  b e  i n  t h e  t r a n s i -  

t i o n  r e g i o n  w h e r e  t h e  d i s t r i b u t i o n s  j o i n .  

We h a v e  a l r e a d y  a r g u e d  

I n  o r d e r  f o r  t h e s e  t w o  d i s t r i b u t i o n s  t o  f i t  
2 

2 

To s e e  w h a t  t h i s  means,  s u p p o s e  we p l o t  t h e  

i n v a r i a n t  d i f f e r e n t i a l  c r o s s  s e c t i o n ,  f i r s t  as a 

f u n c t i o n  o f  1 - x c ,  f o r  t w o  d i f f e r e n t  v a l u e s  o f  s .  

As  s g e t s  l a r g e r ,  t h e  r e s o n a n c e  r e g i o n  s h r i n k s  i n  

s i z e ,  b e c a u s e  o f  t h e  s - a  d e p e n d e n c e ,  a n d  i s  s q u e e z e d  

i n t o  a s m a l l e r  r e g i o n  o f  x c ,  s i n c e  t h e  t r a n s i t i o n  
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T 
C w 1 - x  

Re s o n'a n c e ' Seal i n g  
r e g i o n  r e g i o n  r e g i o n  r e g i  on  

S m a l l e r  s L a r g e r  s 
n L o c c u r s  a t  some 1 - x c  p r o p o r t i o n a l  t o  MD/s. The t w o  

r e g i o n s  w i l l  s t i l l  j o i n  s m o o t h l y  t o  o n e  a n o t h e r .  Now 

l o o k  a t  t h e  p i c t u r e  if we p l o t  t h e  d i s t r i b u t i o n  as a 

f u n c t i o n  o f  M D .  2 

kM; S m a l l e r  s ;T--..: L a r g e r  s 

I n  t h i s  c a s e  t h e  t w o  p i c t u r e s  l o o k  a l i k e ,  p r o v i d e d  

i n  t h e  s e c o n d  we h a v e  s c a l e d  up t h e  o r d i n a t e  b y  s a .  

The  t h i n g  t h a t  i s  i m p o r t a n t  a b o u t  t h i s  i s  t h a t  y o u  

c a n  n e v e r  t e l l  t h e  r e s o n a n c e s  f r o m  t h e  b a c k g r o u n d .  

The  s c a l i n g  r e g i o n  a n d  t h e  r e s o n a n c e  r e g i o n  j o i n  

s m o o t h l y  i n  s u c h  a way t h a t  we c a n ' t  c h a n g e  t h e  

e x p e r i m e n t a l  c o n d i  t i o n s - - s a y  b y  g o i n g  t o  h i g h e r  

e n e r g y - - t o  i s 0 1  a t e  t h e  r e s o n a n c e s  s o  t h a t  t h e y  become 

c l e a n e r .  T h e r e  i s  a k i n d  o f  " c o m p l e m e n t a r i t y , "  i f  

y o u  w i l l ,  b e t w e e n  r e s o n a n c e s  a n d  t h e  b a c k g r o u n d  due  

6 7  
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t o  s c a l i n g  o r  s o m e t h i n g  e l s e .  ( T h i s  c o m p l e m e n t a r i t y  

d o e s n ' t  w o r k  i n  t h e  c a s e  o f  d i f f r a c t i o n  d i s s o c i a t i o n ,  

I b e l i e v e ,  a n d  I ' l l d i s c u s s  i t  i n  t h e  n e x t  l e c t u r e . )  

The D r e l l - Y a n  r e l a t i o n s h i p  comes f r o m  t h e  same p r i n -  

c i p l e  a p p l i e d  t o  c o m p a r e  t h e  d e e p - i n e l a s t i c  s c a t -  

t e r i n g  a n d  t h e  deep-el asti c o r  d e e p - r e s o n a n c e  

p r o d u c  t i  o n .  

What  I mean b y  t h i s  " c o m p l e m e n t a r i t y "  i s  t h a t  

d i f f e r e n t  p h y s i c a l  i d e a s  a r e  u s e f u l  i n  d i f f e r e n t  

p h y s i c a l  r e g i o n s .  F o r  l o w  M D ,  we h a v e  a p i c t u r e  i n  

w h i c h  t h e  o u t g o i n g  s y s t e m  i s  made up o f  r e s o n a n c e s .  

A s  M D  goes  u p ,  t h e  p i c t u r e  becomes  m o r e  c o m p l i c a t e d - -  

we g e t  m o r e  a n d  m o r e  r e s o n a n c e s  a n d  t h e y  b e g i n  t o  

o v e r l a p ,  s o  t h e  r e s o n a n c e  p i c t u r e  becomes h a r d  t o  

u s e  ( b u t  p r e s u m a b l y  n o t  i n c o r r e c t  i n  p r i n c i p l e ) .  B u t  

i n  t h i s  r e g i o n  a n o t h e r  p h y s i c a l  p i c t u r e  c a n  r e p l a c e  

i t - - t h e  i d e a s  o f  s c a l i n g  t h a t  come f r o m  a b r e m s s t r a h -  

l u n g  t y p e  o f  t h e o r y .  The p i c t u r e s  a r e  c o m p l e t e l y  

d i f f e r e n t ,  b u t  n a t u r e  d o e s n ' t  c a r e  how y o u  t h i n k  

a b o u t  h e r .  She f i t s  t o g e t h e r  s o  y o u ' l l  n e v e r  make 

up y o u r  m i n d  p r e c i s e l y  w h e r e  o n e  p i c t u r e  s t o p s  a n d  

t h e  o t h e r  b e g i n s .  

2 

2 

N o t e  r e l a t i v e  t o  Regge b e h a v i o r :  

We h a v e  s u g g e s t e d  t h a t  i n  a t w o - b o d y  e x c h a n g e  

c o l l i s i o n ,  t h e  p e r t u r b a t i o n  e x p r e s s i o n  f o r  t h e  

a m p l i t u d e  f o r  t h e  e x c h a n g e  o f  a p a r t i c l e  c a r r y i n g  

q u a n t u m  numbers  may b e  a l t e r e d  b y  a n  a d d i t i o n a l  
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f a c t o r  s - ~  b e c a u s e  o f  t h e  r e q u i r e m e n t  t h a t  t h e  

r a p i d l y  r e v e r s e d  c u r r e n t  n o t  r a d i a t e .  The Regge 

t h e o r y  c o u p l e d  w i t h  t h e  i d e a  t h a t  t r a j e c t o r i e s  seem 

t o  h a v e  a common s l o p e  a' s u g g e s t s  t h a t  t h i s  a d d i -  

t i o n a l  p o w e r  i s  t h e  d i f f e r e n c e  o f  a a t  t = 0 ,  a(O), 

a n d  a a t  t h e  mass o f  t h e  p e r t u r b a t i o n  p a r t i c l e  

e x c h a n g e d ,  t = u . Thus  c = a ' u  . Hence  f o r  IT 

e x c h a n g e  w h e r e  u 2  i s  v e r y  s m a l l ,  t h e r e  i s  v e r y  l i t t l e  

c o r r e c t i o n  ( f r o m  t h e  p e r t u r b a t i o n  t h e o r y  amp1 i t u d e  

l / s ) ,  b u t  f o r  p e x c h a n g e  t h e  c o r r e c t i o n  i s  n e a r l y  1 / 2 .  

Y e t  t h e  q u a n t u m  n u m b e r  e x c h a n g e ,  say,  t h e  ? - c o m p o n e n t  

o f  i s o s p i n ,  i s  t h e  same. Can t h e  r a d i a t i o n  t h e o r y  

u n d e r s t a n d  a t  l e a s t  q u a l i t a t i v e l y  ( i t  does  n o t  q u a n -  

t i t a t i v e l y )  t h a t  t h e  e x c h a n g e  o f  a l i g h t  mass makes 

a s m a l l e r  c o r r e c t i o n  f o r  l a c k  o f  r a d i a t i o n  t h a n  does  

2 2 

t h e  e x c h a n g e  o f  a l a r g e r  m a s s ?  

I f  y o u  c a l c u l a t e  b y  b r e m s s t r a h l u n g  t h e o r y  t h e  

h i g h - e n e r g y  b e h a v i o r  o f  t h e  a m p l i t u d e  t o  e x c h a n g e  a 

p a r t i c l e  o f  mass p w i t h o u t  r a d i a t i n g  a v e c t o r  p a r t i -  

c l e  o f  mass m ,  t h e  r e s u l t  i s ,  f o r  a c o l l i s i o n  a t  

i mpa c t p a  r ame t e  r b , 
a m p l i t u d e  = K o ( u b ) e x p  I - g  2 ( l o g  s ) K o ( m b ) } ,  

\ " 
w h e r e  g L  i s  p r o p o r t i o n a l  t o  t h e  s q u a r e  o f  t h e  

c o u p l i n g  c o n s t a n t  o f  t h e  r a d i a t i o n ,  a n d  K o ( m b )  i s  

t h e  B e s s e l  f u n c t i o n  ( t w o - d i m e n s i o n a l  p r o j e c t i o n  o f  

t h e  Yukawa f u n c t i o n  e x p ( - m r ) / r ) )  w h i c h  f a l l s  f o r  

l a r g e  b as e x p ( - m b ) .  Now c o n s i d e r ,  f o r  e x a m p l e ,  
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s c a t t e r i n g  f o r w a r d ,  t h e  i n t e g r a l  o v e r  b o f  t h e  a b o v e  

a m p l i t u d e .  F o r  s m a l l  p ( s a y  << m), l a r g e  b i s  

i m p o r t a n t  w h e r e  K o ( m b )  i n  t h e  e x p o n e n t  i s  s m a l l  a n d  

t h e  e f f e c t  o f  t h e  r a d i a t i o n  i s  s m a l l .  On t h e  o t h e r  

h a n d ,  i f  p i s  n o t  s m a l l ,  t h e  r a n g e  o f  b i s  l i m i t e d  

t o  r e g i o n s  w h e r e  K o ( m b )  i s  a p p r e c i a b l e  a n d  t h e  c o r -  

r e c t i o n  i s  l a r g e r .  Thus  we o b t a i n  t h e  c o r r e c t  q u a l i -  

t a t i v e  r e s u l t .  

I s  t h e r e  a s u g g e s t i o n  h e r e  t h a t  d a t a  f o r  n e g a -  

t i v e  t a t  l e a s t  t o  b e  a n a l y z e d  e m p i r i c a l l y ,  n o t  by 

a s s u m i n g  an  i n v e r s e  p o w e r  l a w  i n  s f o r  e a c h  momentum 
n 

t r a n s f e r  Q ,  Q L  = - t ,  b u t  r a t h e r  an i n v e r s e  p o w e r  o f  

s f o r  e a c h  i m p a c t  p a r a m e t e r  b ,  u l t i m a t e l y  F o u r i e r  

t r a n s f o r m e d  b y  e x p ( i Q . b )  t o  g e t  t h e  Q d e p e n d e n c e ?  
+ +  
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LECTURE 5 

DIFFRACTION DISSOCIATION 

A N D  SOME P R O B L E M S  FOR THEORISTS 

I n  t h e  l a s t  l e c t u r e ,  I d i s c u s s e d  t h e  i n e l a s t i c  

h a d r o n i c  c o l l i s i o n s  f r o m  t h e  p o i n t  o f  v i e w  o f  t h e  

p a r t o n  m o d e l ,  b u t  I p o i n t e d  o u t  t h a t  I was s e p a r a t i n g  

t h e  t o t a l  c r o s s  s e c t i o n  f o r  a l l  e v e n t s  i n t o  t h r e e  

k i n d s :  e l a s t i c  e v e n t s ,  t h o s e  i n e l a s t i c  e v e n t s  

a s s o c i a t e d  w i t h  t h e  e l a s t i c  w h i c h  I c a l l e d  d i f f r a c -  

t i o n  d i s s o c i a t i o n ,  a n d  t h e  t r u e  i n e l a s t i c  e v e n t s .  

The  p r e v i o u s  l e c t u r e  d e a l t  o n l y  w i t h  t h e  l a s t  o f  

t h e s e .  I f  we p i c t u r e  a c o l l i s i o n  i n  t e r m s  o f  i m p a c t  

p a r a m e t e r ,  a t a r g e t  h a s  a c e r t a i n  e f f e c t i v e  s i z e  f o r  

a b s o r b i n g  t h e  i n c o m i n g  wave .  A t  l a r g e  i m p a c t  p a r a -  

m e t e r s ,  t h e  i n c o m i n g  wave  p a s s e s  b y  u n d i s t u r b e d ,  

b u t  i n  t h e  r e g i o n  b e h i n d  t h e  t a r g e t ,  i t  w i l l  b e  

a l t e r e d  i n  i n t e n s i t y  a n d  p o s s i b l y  i n  p h a s e - - a  shadow 

i s  f o r m e d .  We a l l  know t h a t  as  a r e s u l t  o f  t h i s ,  

t h e  shadow d i f f r a c t s .  I f  t h e  i n c o m i n g  wave  w e r e  a 

s i m p l e  p a r t i c l e ,  t h e  d i f f r a c t i o n  w o u l d  j u s t  p r o d u c e  

e l a s t i c  s c a t t e r i n g ,  w h i c h  c o u l d  b e  r e l a t e d  t o  t h e  

i n e l a s t i c  e f f e c t s  p r o d u c i n g  t h e  shadow t h r o u g h  t h e  

o p t i c a l  t h e o r e m .  Now, as Good  a n d  W a l k e r  p o i n t e d  

o u t ,  as i s  g e n e r a l l y  t r u e  i n  o t h e r  a r e a s  o f  p h y s i c s  

s u c h  as a t o m i c  p h y s i c s ,  i f  t h e  i n c o m i n g  wave 

d e s c r i b e s  a s y s t e m  made u p  o f  p a r t s ,  t h e n  t h e r e  a r e  
7 1  
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t w o  ways i n  w h i c h  t h e  p i c t u r e  i s  a l t e r e d .  F i r s t ,  t h e  

a m p l i t u d e  f o r  a b s o r p t i o n  b y  t h e  t a r g e t  may b e  d i f -  

f e r e n t  f o r  t h e  v a r i o u s  p a r t s ,  s o  t h a t  w h a t  i s  b e h i n d  

t h e  t a r g e t  i s  a d i s t o r t e d  w a v e f u n c t i o n  w i t h  a d i f -  

f e r e n t  p r o p o r t i o n  o f  t h e s e  p a r t s .  And  s e c o n d ,  e v e n  

if a l l  t h e  p a r t s  a r e  c o m p l e t e l y  a b s o r b e d ,  t h e  d i f f u -  

s i o n  i n t o  t h e  shadow f r o m  t h e  e d g e  w i l l  d i f f e r  f o r  

p a r t s  o f  d i f f e r e n t  m a s s e s ,  a n d  s o  on .  As an e x a m p l e  

f r o m  a t o m i c  p h y s i c s ,  t h e  d i f f r a c t i o n  o f  a h y d r o g e n  

a t o m  w i l l  r e s u l t  i n  a r e l a t i v e  d i s t o r t i o n  o f  t h e  

p r o t o n  a n d  e l e c t r o n  w a v e f u n c t i o n s  w h i c h  c a n  e x c i t e  

o r  i o n i z e  t h e  a t o m .  I f  t h i s  p i c t u r e  i s  r i g h t ,  t h e n  

when t h e  a b s o r p t i o n  i s  s t r o n g ,  m o s t  o f  t h e  d i s t o r t i o n  

o f  t h e  w a v e f u n c t i o n  comes f r o m  r e g i o n s  n e a r  t h e  e d g e  

o f  t h e  t a r g e t ,  w h i l e  e l a s t i c  s c a t t e r i n g  comes f r o m  

t h e  w h o l e  d i s c .  F o r  t h i s  r e a s o n ,  I e x p e c t  t h e  

e l a s t i c  s c a t t e r i n g  t o  b e  t h e  b i g g e s t  f r a c t i o n  o f  t h e  

d i f f r a c t i v e  e f f e c t s - - 1  w i l l  b e  s u r p r i s e d  i f  t h e  d i f -  

f r a c t i o n  d i s s o c i a t i o n  t u r n s  o u t  t o  b e  b i g g e r  t h a n  1 / 2  

t h e  e l a s t i c .  The d i f f r a c t e d  w a v e ,  b o t h  t h e  e l a s t i c  

a n d  d i f f r a c t i o n  d i s s o c i a t i o n  p a r t s ,  c a r r i e s  t h e  

q u a n t u m  n u m b e r s  o f  t h e  i n c o m i n g  wave .  

We c a n  d e s c r i b e  t h e  d i f f r a c t i v e  p a r t  o f  t h e  

s c a t t e r i n g  i n  t e r m s  o f  a p r o b a b i l i t y  o f  e x c i t i n g  a 

s t a t e  o f  i n v a r i a n t  mass M,  F ( M  )dM . The  e l a s t i c  

s c a t t e r i n g  c o n t r i b u t e s  a & - f u n c t i o n  a t  t h e  mass o f  

t h e  i n c o m i n g  p a r t i c l e .  I h a v e  s t u d i e d  a n u m b e r  o f  

2 2  
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mode l s  of s y s t e m s  w i t h  p a r t s  which a r e  d i f f e r e n i i a l l y  

a b s o r b e d  a n d  have  a l w a y s  d i s c o v e r e d ,  t o  my s u r p r i s e ,  

t h a t  t he  p r o b a b i l i t y  o f  e x c i t a t i o n  i s  s m a l l  a n d  f a l l s  
2 o f f  v e r y  r a p i d l y  w i t h  M . I would g u e s s  t h a t  i n  

2 h a r d o n i c  c o l l i s i o n s ,  F ( M  ) f a l l s  e s s e n t i a l l y  t o  z e r o  

by M o f  t h e  o r d e r  o f  a few GeV. N o w ,  i f  a l l  t h e  

v i ews  t h a t  I have r e g a r d i n g  t h i s  a r e  r i g h t ,  I can  

d e f i n e  t h e  d i f f r a c t i o n  d i s s o c i a t i o n  i n  a n  i n t e r e s t i n g  

way. Suppose  we have  t h e  c r o s s  s e c t i o n  f o r  f i n d i n g  

t h e  p r o d u c t s  o f  a c o l l i s i o n  w i t h  f r a c t i o n s  o f  t h e  

l o n g i t u d i n a l  momentum x l ,  x 2 ,  e t c . , a n d  w i t h  t r a n s -  

v e r s e  momenta 6 , ,  $,. e t c . ,  a t  some t o t a l  c e n t e r - o f -  

mass ( e n e r g y )  s .  We c a l l  t h i s  2 

+ -+ -+ 
u ( x l  , Q ,  ; x 2 , Q 2 ; .  . . ; s )  = a ( { x , Q I ; s ) ,  

where  by t x , q l  we mean some s e t  of x ' s  and 6 ' s .  

w i l l  d e f i n e  t h e  l i m i t  of t h i s  a s  S- t o  L c  t h e  

We 

d i f f r a c t i v e  c r o s s  s e c t i o n  f o r  t h i s  p a r t i c u l a r  s e t  of 

x ' s  and a ' s .  and w r i t e  

Now a t  a g i v e n  v a l u e  o f  s ,  t h e  t o t a l  c r o s s  s e c t i o n  i s  

-+ 
where  t h e  sum i s  o v e r  a l l  a l l o w e d  s e t s  o f  x ' s  and  Q's.  

L e t ' s  s u p p o s e  t h a t  t h e  t o t a l  c r o s s  s e c t i o n  a p p r o a c h e s  
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a c o n s t a n t  a t  h i g h  e n e r g y :  

l i m  a T O T ( s )  = aT,. 
s +a 

We t h e n  d e f i n e  t h e  d i f f r a c t i v e  p a r t  o f  t h i s  t o  b e  

T h e s e  t w o  c r o s s  s e c t i o n s ,  oTm a n d  uD,, a r e  d i f f e r e n t  

i n  g e n e r a l ,  s i n c e  i n  t h e  f i r s t  we t a k e  t h e  l i m i t  o f  

a sum, a n d  i n  t h e  s e c o n d ,  t h e  sum o f  t h e  l i m i t s .  We 

e x p e c t  t h a t  p r o c e s s e s  i n v o l v i n g  t h e  e x c h a n g e  o f  

q u a n t u m  n u m b e r s  w i l l  f a l l  o f f  a s  some p o w e r  o f  l / s ,  

s o  t h a t  o D ( { x , 6 > )  a n d  t h e r e f o r e  aDm w i l l  i n v o l v e  o n l y  

p r o c e s s e s  w i t h  n o  q u a n t u m  n u m b e r  e x c h a n g e .  

To c l a r i f y  t h e s e  i d e a s ,  s u p p o s e  we s e e  w h a t  we 

s h o u l d  e x p e c t  f o r  a c e r t a i n  c l a s s  o f  c o l l i s i o n s :  

H e r e  we r e q u i r e  t h a t  o n e  i n c o m i n g  p r o t o n  e m e r g e  a s  a 

p r o t o n  w i t h  x n e a r  1 ,  w h i l e  t h e  o t h e r  i n c o m i n g  p a r -  

t i c l e  may b r e a k  u p  t o  f o r m  a s t a t e  o f  i n v a r i a n t  mass 

M. I f  we c o n s i d e r e d  o n l y  t h e  t r u e  i n e l a s t i c  e f f e c t s ,  

we w o u l d  e x p e c t  a d i s t r i b u t i o n  t h a t  d e p e n d e d  o n l y  o n  

x b y  s c a l i n g .  S i n c e  x i s  n e a r  1 ,  i t  i s  c o n v e n i e n t  t o  
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u s e  t h e  v a r i a b l e  x '  = 1 - x .  T h e  e l a s t i c  s c a t t e r i n g  

w o u l d  c o n t r i b u t e  a 6 ( x ' ) ,  w h i c h  we t a k e  o u t .  T h e  

d i f f r a c t i o n  d i s s o c i a t i o n  w i l l  a d d  some f u n c t i o n  o f  M , 
w h i c h  f o r  l a r g e  s and  x n e a r  1 ,  i s  a p p r o x i m a t e l y  

2 

2 M = S ( 1 - X )  = S X ' .  

T h e  o v e r a l l  d i s t r i b u t i o n ,  i g n o r i n g  t h e  e l a s t i c  p a r t ,  

l o o k s  l i k e  t h e  sum 

2 2  f ( x ' ) d x  t F(F1 )dM . 

I f  we w a n t  t o  p l o t  t h i s  a s  a f u n c t i o n  o f  X I ,  we w r i t e  

i t  a s  

[ f ( x l )  t s F ( s x ' ) l d x ' ,  

w h i c h  g i v e s  a p i c t u r e  l i k e :  

S m a l l e r  s L a r g e r  s 

The p a r t  o f  t h i s  c u r v e  t h a t  i s  d u e  t o  f ( x ' ) - - t h e  p a r t  

t h a t  s c a l e s - - l o o k s  t h e  same i n  b o t h  p i c t u r e s .  T h e  

p a r t  d u e  t o  F(M ) becomes h i g h e r  as  s i n c r e a s e s ,  

s i n c e  we a r e  r e a l l y  p l o t t i n g  s F ( M 2 ) ;  a n d ,  m o r e o v e r ,  

7 5  
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s i n c e  a g i v e n  r a n g e  A M 2  c o r r e s p o n d s  t o  a r a n g e  

A x '  = A M ' / s ,  i t  i s  s q u e e z e d  i n t o  a s m a l l e r  r e g i o n  o n  

t h e  x ' - a x i s .  Now s u p p o s e  we p l o t  t h e  s i t u a t i o n  a s  a 

f u n c t i o n  o f  M 2 .  F o r  t h i s  we u s e  

[ f ( M Z / s ) / s  + F ( M 2 ) ] d M 2 ,  

a n d  t h e  p i c t u r e  l o o k s  l i k e  

S m a l l e r  s L a r g e r  s 

H e r e  we s e e  t h a t  t h e  b a c k g r o u n d  s h r i n k s  w i t h  i n c r e a s -  

i n g  s ,  and  s o  i t  i s  p o s s i b l e  t o  t e l l  d i f f r a c t i v e l y  

p r o d u c e d  r e s o n a n c e s  f r o m  t h e  b a c k g r o u n d  o f  t r u l y  i n -  

e l  a s t i  c c o l l  i s i o n s  ( i n c l u d i n g  p i  o n i  z a t i o n ,  f o r  

e x a m p l e )  i f  my p i c t u r e  i s  r i g h t .  T h e  " c o m p l e m e n -  

t a r i t y "  t h a t  I s p o k e  a b o u t  p r e v i o u s l y  f o r  Regge  e x -  

c h a n g e s  i s  n o t  e x p e c t e d  h e r e .  

I f  i t  s h o u l d  h a p p e n  t h a t  t h e  d i f f r a c t i o n  d i s -  

s o c i a t i o n  g i v e s  F (M2)dM2 t h a t  g o e s  as dM2/M2 f o r  

l a r g e  M 2 ,  t h e n  t h i s  s e p a r a t i o n  c o u l d  n o t  b e  made,  

s i n c e  a t  h i g h  e n e r g y  t h e  d i s t r i b u t i o n  w o u l d  become 

d x / ( l - x ) ,  w h i c h  s c a l e s .  B u t  I t h i n k  i t  i s  v e r y  

7 6  



u n l i k e l y  t h a t  t h e  p r o b a b i l i t y  o f  e x c i t a t i o n  o f  h i g h -  

mass s t a t e s  f a l l s  o f f  s o  s l o w l y .  ( S u c h  a t e r m  i s  

e x p e c t e d  i n  t h e o r i e s  w h i c h  a l l o w  a t r i p l e  Pomeron  

e x c h a n g e  i n  t h e  M u e l l e r  a n a l y s i s ,  b u t  w i t h  o u r  i n t e r -  

p r e t a t i o n  o f  " P o m e r o n  e x c h a n g e "  I d o n ' t  know w h a t  

t h i s  c o u l d  mean p h y s i c a l l y  a n d  do n o t  e x p e c t  i t . )  

O f  c o u r s e ,  t o  t h e  d i f f r a c t i v e l y  p r o d u c e d  r e s o -  

n a n c e s  t h e r e  w i  1 1  b e  a s u b s  t a n t i  a1 d i  f f r a c t i  v e l y  

p r o d u c e d  n o n - r e s o n a n t  b a c k g r o u n d ,  some o f  w h i c h  i s  

p r o d u c e d ,  f o r  e x a m p l e ,  b y  t h e  Deck e f f e c t .  T h i s  

e f f e c t  i s  e x p e c t e d  f r o m  o u r  v i e w  f o r  as i t  i s  u s u a l l y  

d e s c r i b e d ,  s a y  f o r  a p - p  c o l l i s i o n ,  t h e  i n c o m i n g  

p r o t o n  w a v e f u n c t i o n  d o e s  c o n t a i n  some a m p l i t u d e  t o  

be ,  s a y , a  n e u t r o n  a n d  a ~i ( t w o  b u n c h e s  o f  c o r r e l a t e d  

p a r t o n s ,  i f  y o u  w i l l ) .  The TI i s  s c a t t e r e d  b y  t h e  

o t h e r  p r o t o n  s o  t h e  nTi s y s t e m  comes a p a r t .  T h i s  

makes a s t r o n g  n o n - r e s o n a n t  e f f e c t ,  w h i c h  f a l l s  o f f  

r a p i d l y  e n o u g h  w i t h  M 2  ( l i k e  dM / ( M 2 ) 3 ,  I b e l i e v e )  

t h a t  i t  c a n n o t  b e  c o n f u s e d  w i t h  a s c a l i n g  b a c k g r o u n d .  

I s h o u l d  l i k e  t o  s u m m a r i z e  t h i s  p a r t  o f  my 

l e c t u r e  w i t h  a l i s t  o f  g o o d  t h e o r e t i c a l  q u e s t i o n s  f o r  

t h e o r i s t s  t o  w o r r y  a b o u t  c o n c e r n i n g  h a d r o n i c  

c o l l i s i o n s .  

- - F i r s t ,  how do  t h e  p a r t o n - p a r t o n  i n t e r a c t i o n s  o p e r -  

a t e  t o  c a u s e  t h e  b r e a k u p  o f  t h e  h a d r o n i c  w a v e f u n c -  

t i o n ?  I h a v e  d i s c u s s e d  t h e  i d e a  t h a t  t h e  wee p a r t o n s  

i n t e r a c t  a n d  d i s t u r b  t h e  p h a s e  r e l a t i o n s h i p s ,  b u t  

t 

t 

t 
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we need  some m a t h e m a t i c a l  example  t o  s e e  how the  

mechanism works .  

- - T h e r e  a r e  a l l  s o r t s  o f  q u e s t i o n s  a b o u t  t r a n s v e r s e  

momentum. Why a r e  t h e  t r a n s v e r s e  momenta l i m i t e d ,  

and how a r e  t h e y  c o r r e l a t e d ?  The w a v e f u n c t i o n  must 

c o n t a i n  t h i s  s o r t  o f  i n f o r m a t i o n .  

- - T h e o r i s t s  s h o u l d  t r y  t o  u n d e r s t a n d  how t h e  c r o s s  

s e c t i o n  a t  h i g h  e n e r g y  r e a l l y  b e h a v e s ,  i n s t e a d  o f  

j u s t  s a y i n g  i t  goes  t o  a c o n s t a n t  b e c a u s e  

c o n s t a n t ,  o r  goes  a s  a l o g a r i t h m  b e c a u s e  

t h a t  way. 

--We need  t o  u n d e r s t a n d  t h e  mechanisms w h  

l a r g e  t r a n s v e r s e  momentum. The work by K 

i t  

t 

ch 

s l  

1 ooks 

ooks  

p r o d u c e  

n g e r  

r e p o r t e d  a t  t h i s  c o n f e r e n c e ,  and  work o f  B j o r k e n ,  a re  

s u g g e s t i o n s  i n  t h i s  d i r e c t i o n .  I f  we u n d e r s t o o d  t h e  

mechanism, t h e n  t h e  1 a r g e  t r a n s v e r s e  momentum d a t a  

would g i v e  us more i n f o r m a t i o n  a b o u t  the  p a r t o n  

d i s t r i b u t i o n s .  

--How can we c o n n e c t  t h e  d i s t r i b u t i o n  f u n c t i o n s  found  

i n  t he  d e e p - i n e l a s t i c  s c a t t e r i n g  e x p e r i m e n t s  w i t h  the  

d a t a  on t h e  p r o d u c t s  i n  h i g h - e n e r g y  h a d r o n i c  c o l l i -  

s i o n s ?  We have  d a t a  on t h e  p e r c e n t a g e s  o f  K's and 

I T ' S  p r o d u c e d ,  and s o  o n ,  b u t  a s  y e t  no t h e o r y  t o  

c o n n e c t  t h i s  d a t a  w i t h  w h a t  we a l r e a d y  know a b o u t  

t h e  w a v e f u n c t i o n ,  o r  t o  e n a b l e  us t o  u s e  t h e  d a t a  t o  

l e a r n  more a b o u t  t h e  w a v e f u n c t i o n .  

- - F i n a l l y ,  an i n t e r e s t i n g  e x e r c i s e  f o r  t h e o r i s t s .  I 
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have  f r e q u e n t l y  ment i o n e d  bremss t r a  h l  ung i n  t h e s e  

l e c t u r e s ;  my a n a l o g i e s  were  w i t h  t h e  e l e c t r i c a l  c a s e  

i n  which t h e  c h a r g e  t h a t  i s  a c c e l e r a t e d  r a d i a t e s  

o n l y  p a r t i c l e s  t h a t  have  no c h a r g e .  The b e h a v i o r  of  

b r e m s s t r a h l u n g  i n  a Yang-Mi l l s  t h e o r y ,  where  t h e  r a -  

d i a t e d  p a r t i c l e s  c a r r y  t h e  c h a r g e s  whose a c c e l e r a t i o n  

g i v e s  r i s e  t o  t h e  r a d i a t i o n ,  i s  an i n t e r e s t i n g  

t e c h n i c a l  q u e s t i o n .  The p a r a d o x i c a l  f e a t u r e  i s  t h a t  

i f  we c o n s i d e r  a c h a r g e d  o b j e c t  b e i n g  a c c e l e r a t e d ,  

and i t s  r a d i a t i o n  c a r r i e s  o f f  c h a r g e ,  t h e n  t h e  c h a r g e  

i t s e l f  may n o t  have  been  a c c e l e r a t e d ,  i n  which c a s e  

t h e r e  would have been no r a d i a t i o n  . . .  ? 

Now I s h o u l d  l i k e  t o  go on t o  a n o t h e r  s u b j e c t .  

We have  emphas ized  t h a t  e x p e r i m e n t s  may v e r y  s h o r t l y  

t e l l  us w h e t h e r  p a r t o n s  a r e  q u a r k s .  L e t  us now con-  

s i d e r  t h e  s e t  o f  q u e s t i o n s  which  a r i s e  i f  i t  s h o u l d  

turn o u t  t h a t  t h e s e  e x p e r i m e n t s  d o  s u p p o r t  t h e  

h y p o t h e s i s  t h a t  p a r t o n s  a r e  q u a r k s .  

--What k i n d s  o f  g l u o n s  a r e  t h e r e ?  We have  goad r e a -  

son  t o  b e l i e v e  t h e r e  a r e  n e u t r a l  c o n s t i t u e n t s ,  and 

i t  i s  r e a s o n a b l e  t o  a s s o c i a t e  t h e s e  w i t h  t h e  p a r t i -  

c l e s  t h a t  m e d i a t e  q u a r k - q u a r k  i n t e r a c t i o n s .  B u t  

what  a r e  t h e i r  s p i n s - - a r e  t h e y  v e c t o r  p a r t i c l e s ,  f o r  

i n s t a n c e - - a n d  o t h e r  quantum numbers?  How many k i n d s  

o f  g l u o n s  a r e  t h e r e ?  And s o  f o r t h .  

--How can  we r e l a t e  t h e  q u a r k - p a r t o n  p i c t u r e  t o  t h e  

low e n e r g y  q u a r k  model?  The s t u d y  o f  l o w - e n e r g y  
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r e s o n a n c e s  g a v e  u s  a p i c t u r e  o f  b a r y o n s  made o f  t h r e e  

q u a r k s ,  w h i c h  f i t s  t h e  e v i d e n c e  s e m i - q u a n t i t a t i v e l y  

v e r y  w e l l .  Now we h a v e  a w a v e f u n c t i o n  i n  a r a p i d l y  

m o v i n g  c o o r d i n a t e  s y s t e m ,  a n d  we seem t o  h a v e  t h e  

o r i g i n a l  q u a r k s  a l o n g  w i t h  a d d i t i o n a l  q u a r k - a n t i -  

q u a r k  p a i r s .  We c a n ' t  c o n n e c t  t h e  p i c t u r e s  v e r y  w e l l  

b e c a u s e  we h a v e  t o  know t h e  H a m i l t o n i a n  t o  t r a n s f o r m  

f r o m  o n e  t o  t h e  o t h e r .  

--Why d o  q u a r k s ,  w h i c h  h a v e  s p i n  1 / 2 ,  seem t o  o b e y  

B o s e  s t a t i s t i c s ?  Why a r e  h a d r o n s  s t a t e s  o f  z e r o  

t r i a l i t y ?  T h e s e  q u e s t i o n s  c o u l d  b e  c o n n e c t e d  i f  

t h e r e  a r e  r e a l l y  t h r e e  c o l o r s  o f  q u a r k s ,  and  t h e  

p h y s i c a l  b a r y o n s  a r e  c o l o r  s i n g l e t s ,  b u t  we n e e d  t o  

f i l l  o u t  s u c h  a p i c t u r e  w i t h  some u n d e r s t a n d i n g  o f  

t h e  s a t u r a t i o n  o f  t h e  q u a r k - q u a r k  f o r c e s .  

--How c a n  we e x p l a i n  t h e  a b s e n c e  o f  f r e e  q u a r k s ?  I n  

p a r t i c u l a r ,  w h a t  i s  t h e  m e c h a n i s m  b y  w h i c h  t h e  o u t -  

g o i n g  q u a r k s  i n  a d e e p - i n e l a s t i c  c o l l i s i o n  " d e c a y "  

i n t o  h a d r o n s  i n  s u c h  a way t h a t  q u a r k  q u a n t u m  n u m b e r s  

d o n ' t  g e t  o u t ?  

You w o n ' t  b e  s u r p r i s e d  t o  h e a r  t h a t  I d o n ' t  know 

t h e  a n s w e r s  t o  t h e s e  q u e s t i o n s .  H o w e v e r ,  I ' v e  c o n -  

s i d e r e d  a n u m b e r  o f  t h e m ,  a n d  I ' d  l i k e  t o  o u t l i n e  

some o f  t h e  i d e a s .  T h e y  a r e  n o t  a s o l u t i o n  t o  a n y -  

t h i n g - - t h e y  j u s t  r e p r e s e n t  t h e  s t r u g g l e  t o  u n d e r -  

s t a n d  w h i c h  p r o b l e m s  a r e  m o r e  s e r i o u s  and  w h a t  we 
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m i g h t  b e  a b l e  t o  d o  a b o u t  t h e m .  

T h e  f i r s t  c o n s i d e r a t i o n  I w a n t  t o  d e s c r i b e  r e -  

l a t e s  t o  t h e  h a r m o n i c  f o r c e s  o f t e n  i n v o k e d  f o r  t h e  

l o w - e n e r g y  q u a r k  m o d e l .  S u p p o s e  we t a k e  t h e  i d e a  

m o r e  s e r i o u s l y - - w h a t  a r e  t h e  a d v a n t a q e s ,  a n d  w h a t  

p r o b l e m s  a r i s e ?  One a d v a n t a g e  w o u l d  b e  t h a t  t h e  

q u a r k s  c o u l d  n o t  g e t  o u t  a n d  we w o u l d n ' t  s e e  f r e e  

q u a r k s .  T h i s  a s s u m p t i o n  w o r k s  f i n e  i n  t h e  n o n - r e l a -  

t i v i s i t i c  m o d e l ,  o f  c o u r s e ,  a n d  a l s o  p o s e s  n o  d i f f i -  

c u l t y  f o r  t h e  a r g u m e n t s  we h a v e  b e e n  m a k i n q  i n  t h e  

p a r t o n  m o d e l .  T h i s  i s  b e c a u s e  t h e  h a r m o n i c  p o t e n t i a l  

i s  s o f t  f o r  s h o r t  d i s t a n c e s ;  s o  w h e n  we c a l c u l a t e  t h e  

p r o b a b i l i t y  o f  a p a r t o n  g o i n g  o f f  i n  some d i r e c t i o n  

a s  t h e  r e s u l t  o f  a c o l l i s i o n ,  we c a n  n e g l e c t  t h e  

b i n d i n g  t o  t h e  o t h e r  p a r t o n s .  O n l y  w h e n  i t  g e t s  f a r  

a w a y ,  l o n g  a f t e r  t h e  c o l l i s i o n  h a s  t a k e n  p l a c e ,  d o e s  

i t  k n o w  t h a t  i t  i s  g o i n g  t o  b e  p u l l e d  b a c k .  A s  l o n c l  

a s  t h e  l e v e l  s p a c i n g  o f  t h e  h a r m o n i c  o s c i l l a t o r  i s  

s m a l l  c o m p a r e d  t o  t h e  q 2  a n d  v o f  t h e  c o l l i s i o n ,  a l l  

o u r  p a r t o n  c a l c u l a t i o n s  g o  t h r o u g h .  T h e r e  w i l l  b e  

d i f f e r e n c e s  i n  t h e  p r e d i c t i o n s  o f  t h e  p r o d u c t s  o f  a 

c o l l i s i o n  i f  t h e r e  a r e  h a r m o n i c  f o r c e s ,  h o w e v e r ,  

s i n c e  i n  t h i s  c a s e  t h e r e  a r e  s t r o n g  c o u p l i n o s  o f  t h e  

o u t g o i n g  p a r t o n  t o  t h e  o t h e r s .  

P r e s u m a b l y , w e  h a v e  t o  h a v e  some s o r t  o f  s a t u r a -  

t i o n  o f  t h e  h a r m o n i c  f o r c e s  s o  t h a t  t w o  o b j e c t s ,  e a c h  

made  o f  t h r e e  q u a r k s , d o  n o t  h a v e  a s t r o n g  l o n g - r a n g e  
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i n t e r a c t i o n .  T h i s  i s  a n a l o g o u s  t o  t h e  c a s e  o f  t w o  

e l e c t r i c a l l y  n e u t r a l  a t o m s ,  b u t  t h e  a n a l o g y  p o i n t s  

up  a p r o b l e m .  E v e n  i f  t h e  f o r c e s  a r e  o r i g i n a l l y  

z e r o  b e c a u s e  o f  s a t u r a t i o n ,  a f o r c e  c o u l d  a r i s e  i f  

t h e  o b j e c t s  w e r e  p o l a r i z e d  i n  some s e n s e ,  a n d  i n d u c e d  

p o l a r i z a t i o n s  c o u l d  b e  e x p e c t e d  t o  o c c u r ,  g i v i n g  r i s e  

t o  a l o n g - r a n g e  f o r c e  a n a l o g o u s  t o  t h e  v a n  d e r  W a a l s  

f o r c e  b e t w e e n  e l e c t r i c a l l y  n e u t r a l  m o l e c u l e s .  The  

r a p i d  r i s e  w i t h  d i s t a n c e  o f  a t r u l y  h a r m o n i c  f o r c e  

c o u l d  make t h i s  a l a r g e  e f f e c t ,  a n d  t h i s  i s  a m a j o r  

d i s a d v a n t a g e  t o  b e  c o n s i d e r e d  i n  m o d e l - b u i l d i n g  w i t h  

s u c h  f o r c e s .  

T h e r e  i s  a n o t h e r  c o n s e q u e n c e  t h a t  l e a d s  t o  a 

new i d e a .  S u p p o s e  we i m a g i n e  a p r o c e s s  l i k e  

+ 
e 

a n d  c o n s i d e r  t h e  o u t g o i n g  q u a r k  a n d  a n t i - q u a r k  

m o v i n g  f a r t h e r  and  f a r t h e r  a p a r t .  A s  t h e y  d o  t h i s ,  

t h e  h a r m o n i c  f o r c e  b e t w e e n  t h e m  i m p l i e s  t h a t  a 

t r e m e n d o u s  f i e l d  w i l l  d e v e l o p  b e t w e e n  t h e m ;  a n d  when 

i t  g e t s  l a r g e  e n o u g h ,  q u a r k s  a n d  a n t i - q u a r k s  w i l l  b e  

p r o d u c e d  i n  p a i r s  b y  t h e  f i e l d  a l l  o v e r  t h e  p l a c e .  

T h e s e  w i l l  t h e n  s e t t l e  down i n t o  t h e i r  s t a b l e  s a t u -  

r a t e d  s y s t e m s - - w h i c h  a r e  t h e  h a d r o n s - - p r o d u c i n g  
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hadron  p a t t e r n s  l i k e  t h o s e  we s e e .  In  t h i s  v i ew,  we 

s e e  t h a t  t h e  ha rmon ic  f o r c e  i t s e l f  d o e s n ' t  l o o k  

ha rmon ic  a t  l a r g e  d i s t a n c e s .  

I do n o t  c o n s i d e r  t he  ha rmon ic  f o r c e  a s  a p a r -  

t i c u l a r l y  good i d e a .  B u t  I do t h i n k  t h i s  i d e a  t h a t  

i t  has  l e d  us t o  may be o f  r e a l  u t i l i t y ;  name ly ,  when 

a s i n g l e  q u a r k  i s  moving a l o n e  away f rom o t h e r s  ( s a y ,  

backwards  i n  t h e  d e e p - i n e l a s t i c  e l e c t r o n  s c a t t e r i n g ) ,  

i t  p r o d u c e s  l a r g e  numbers o f  p a i r s  o f  q u a r k s  r o u g h l y  

e v e n l y  d i s t r i b u t e d  i n  r a p i  

changed  t h e  o r i g i n a l  s p a c e  

monic f o r c e ,  t o  one  i n  r a p  

i s  t h e  p r o p e r  r e l a t i v i s t i c  

i t y  ( n o t e  I have  a r t f u l l y  

d i s t r i b u t i o n  f o r  a h a r -  

d i t y ,  g u e s s i n g  t h a t  t h i s  

r e p r e s e n t a t i o n )  and t h a t  

t h e s e  mani f o l  d p a r t o n s  t h e r e  a s s e m b l e  t h e m s e l v e s  i n t o  

h a d r o n s  o f  z e r o  t r i a l i t y .  I f  t h i s  i s  t r u e ,  many o f  

t h e  q u a l i t a t i v e  e x p e c t a t i o n s  f o r  t h e  d i s t r i b u t i o n s  

o f  h a d r o n s  i n  d e e p - i n e l a s t i c  c o l l i s i o n s  a r e  v a l i d  

even  f o r  p a r t o n s  which do n o t  c a r r y  had ron  quantum 

numbers .  ( S e e  n o t e  a t  end  o f  t h i s  l e c t u r e . )  

Whether  t h e  f o r c e s  a r e  ha rmon ic  o r  n o t ,  we s t i l l  

have  t o  u n d e r s t a n d  s a t u r a t i o n  and t h e  q u e s t i o n  o f  

t r i a l i t y .  I have  done some t h i n k i n g  a b o u t  t h i s  i n  

c o n v e r s a t i o n s  w i t h  a s t u d e n t ,  Ken Kauffmann, and  I 

am g o i n g  t o  o u t l i n e  h e r e  t h e  i d e a s  we have  d i s c u s s e d .  

I have  s i n c e  l e a r n e d  t h a t  s u c h  i d e a s  a r e  q u i t e  o l d .  

For  e x a m p l e ,  t h e y  a r e  d i s c u s s e d  by Y .  Nambu ( P r e l u d e s  

i n  T h e o r e t i c a l  P h y s i c s ,  e d i t e d  by A .  d e - S h a l i t ,  
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H .  F e s h b a c h ,  and  L .  Van H o v e ,  N o r t h  H o l l a n d ,  1 9 6 6 ,  

p .  1 3 3 ) .  A d e t a i l e d  d i s c u s s i o n  h a s  b e e n  r e c e n t l y  

g i v e n  b y  L i p k i n  ( " T r i a l i t y ,  E x o t i c s ,  a n d  t h e  D y n a m i c a l  

B a s i s  o f  t h e  Q u a r k  M o d e l , "  b y  H. J .  L i p k i n ,  Weizmann 

I n s t i t u t e  p r e p r i n t  W I S  7 3 / 1 3  P h ) .  

I n  t h e  c a s e  o f  e l e c t r i c i t y  we g e t  s a t u r a t i o n - -  

m o s t  m a t t e r  i s  n e u t r a l .  T h i s  i s  e a s y  t o  d o  w i t h  o n l y  

t w o  k i n d s  o f  c h a r g e ,  b u t  i n  t h e  c a s e  a t  h a n d  we n e e d  

s a t u r a t i o n  a t  t h r e e .  We e v e n t u a l l y  saw t h a t  t o  g e t  

t h i s ,  we h a d  t o  h a v e  s o m e t h i n g  a n a l o g o u s  t o  SU3. So 

we s u p p o s e  t h e  q u a r k  c a r r i e s  a q u a n t u m  n u m b e r  o f  t h e  

S U 3  t y p e ,  b u t  d i s t i n c t  f r o m  i t s  u s u a l  S U 3  q u a n t u m  

n u m b e r  w h i c h  d i s t i n g u i s h e s  t h e  u ,  d ,  and  s f r o m  o n e  

a n o t h e r .  T h e  new q u a n t u m  n u m b e r  t a k e s  on  t h r e e  

v a l u e s  w h i c h  we c a l l  c o l o r s ,  a n d  w i l l  c a l l  h e r e  

s i m p l y  a ,  b y  and  c .  I n  t h i s  m o d e l  we h a v e  n i n e  

q u a r k s ,  s i n c e  we h a v e  u p  q u a r k s  o f  t y p e  a ,  t y p e  b y  

and  t y p e  c ,  and  s i m i l a r l y  f o r  down and  s t r a n g e  q u a r k s .  

We assume t h e  q u a r k s  i n t e r a c t  b y  a c o u D l i n g  o f  t y p e  

x;x~, a n a l o g o u s  t o  t h e  u a - 8 b  c o u p l i n g  o f  s p i n s ,  

w h e r e  t h e  A ' s  a r e  t h e  e i g h t  c o l o r  SU3 m a t r i c e s ,  a n d  

t h e  d o t  p r o d u c t  i n d i c a t e s  a sum o v e r  a l l  e i g h t  v a l u e s  

o f  t h e  S U 3  i n d e x .  

i n t e r p r e t i n g  t h e  i n t e r a c t i o n  i n  t e r m s  o f  t h e  e x c h a n g e  

o f  an o c t e t  o f  o b j e c t s  f o r m e d  i n  t h e  u s u a l  w a y .  

T h a t  i s ,  i f  we u s e  t h e  n o t a t i o n  o f  t h e  o r d i n a r y  meson  

-+ 

We c a n  e v a l u a t e  t h e  c o u p l i n g s  b y  
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o c t e t ,  we c a n  e x c h a n g e  o b j e c t s  l i k e  

and  s o  o n .  C o n s i d e r  t h e  i n t e r a c t i o n  b e t w o e n  t w o  P . ' s  

( t w o  q u a r k s  c a r r y i n g  c o l o r  q u a n t u m  n u m b e r  a - - w e  

i g n o r e  a l l  o t h e r  q u a n t u m  n u m b e r s ) ,  < A A l h a ' X b l A A > .  

We r e p r e s e n t  t h i s  b y  a d i a g r a m  

The  e x c h a n g e d  o b j e c t  c a n  o n l y  b e  n o r  n o ;  t h e  o t h e r s  

d o n ' t  c o u p l e  t o  an A A  v e r t e x .  

e a c h  v e r t e x  w i t h  a s t r e n g t h  l/n, c o n t r i b u t i n q  1 / 2  

o v e r a l l .  The  rl  g i v e s  -l/v'K a t  e a c h  v e r t e x ,  o r  + 1 / 6  

o v e r a l l .  So t h e  n e t  c o u p l i n g  i s  1 / 2  + 1 / 6  = 2 / 3 .  

S i m i l a r l y ,  t h e  d i a g r a m s  

The  n o  c o u p l e s  t o  

g i v e  - 1 / 2  + 1 / 6  = - 1 / 3 ,  a n d  1, r e s p e c t i v e l y .  The  

c o u p l i n g  r u l e s  c a n  b e  e a s i l y  s u m m a r i z e d  b y  n o t i n g  

t h a t  

= - ( 1 / 3 )  + P a b *  X a . A b  
85  
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w h e r e  Pab  i s  t h e  c o l o r  e x c h a n g e  o p e r a t o r .  ( T h i s  i s  

t h e  a n a l o g u e  o f  D i r a c ' s  famous  e x p r e s s i o n  f o r  ;a-zb 
i n  t e r m s  o f  t h e  s p i n  e x c h a n g e  o p e r a t o r . )  F o r  example,  

X a . X b l A A >  = - ( 1 / 3 ) I A A >  + IAA>  , 

s o  

s o  

a n d  

as  we c a l c u l a t e d  a b o v e .  T h i s  makes t h e  c a l c u l a t i o n s  

v e r y  e a s y .  F o r  a n y  s y s t e m ,  a d d  o n e  f o r  e v e r y  p a i r  

s y m m e t r i c  u n d e r  i n t e r c h a n g e ,  - 1  f o r  e v e r y  a n t i -  

s y m m e t r i c  p a i r ,  a n d  i n c l u d e  - 1 / 3  f o r  e v e r y  p a i r .  

When d e a l i n g  w i t h  a n t i - q u a r k s ,  we h a v e  t o  r e v e r s e  t h e  

s i g n  o f  t h e  c o u p l i n g s ,  s o  t h a t  t h e  A A  s y s t e m  c o u p l e s  

w i t h  - 2 / 3  a n d  t h e  E A  w i t h  + 2 / 3 .  

a m p l i t u d e  - 1  t o  t u r n  i n t o  S S .  

The  A A  s y s t e m  h a s  

Now s u p p o s e  we l o o k  a t  t h e  c o u p l i n g  f o r  a 

q u a r k - a n t i - q u a r k  s y s t e m  ( m e s o n )  w h i c h  i s  a c o l o r  

s i n g l e t .  T h i s  w i l l  h a v e  e q u a l  a m p l i t u d e s  t o  b e  A A ,  
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B E ,  o r  E C ,  g i v i n g  a t o t a l  c o u p l i n g  o f  ( 1 / 3 ) [ 3 ( - 2 / 3  + 

6 ( - l ) ]  = - 8 / 3 .  We w i l l  a s s o c i a t e  t h e  m i n u s  s i g n  w i t h  

b i n d i n g ,  a n d  a p o s i t i v e  s i g n  w i t h  r e p u l s i v e  f o r c e s .  

C o l o r  o c t e t  s t a t e s  l i k e  B A  h a v e  c o u p l i n g  + 1 / 3  a n d  

a r e  n o t  b o u n d .  T h u s  we g e t  t h e  d e s i r e d  r e s u l t  t h a t ,  

f o r  mesons  a t  l e a s t ,  t h e  b o u n d  s t a t e s  a r e  c o l o r  

s i n g l e t s ,  

L e t ' s  l o o k  a t  t h e  s t a t e s  i n v o l v i n g  o n l y  q u a r k s .  

We c a n  c l a s s i f y  t h e s e  i n t o  c o l o r  SU3 m u l t i p l e t s ,  a n d  

u s e  Young d i a g r a m s  t o  r e p r e s e n t  t h e  s y m m e t r i e s .  I n  

t h e s e  d i a g r a m s ,  p a i r s  i n  t h e  same r o w  a r e  a n t i -  

s y m m e t r i c  u n d e r  i n t e r c h a n g e ,  a n d  t h o s e  i n  t h e  same 

c o l u m n  a r e  s y m m e t r i c .  C o n s i d e r  f i r s t  t h e  t w o - q u a r k  

s y s t e m .  The  q u a r k s  a r e  a c o l o r  t r i p l e t ,  a n d  3 x 3 = 

3 t 6, s o  t h e  m u l t i p l e t s  we c a n  g e t  a r e  r e p r e s e n t e d  

by 

F o r  t h e  3 ,  we h a v e  1 a n t i - s y m m e t r i c  p a i r ,  w h i c h  c o n -  

t r i b u t e s  - 1 ,  s o  t h e  n e t  c o u p l i n g  i s  - 1 - ( 1 / 3 )  = - 4 / 3 .  

T h i s  i s  b o u n d .  The  6 ,  h o w e v e r ,  h a s  a s y m m e t r i c  p a i r ,  

s o  t h e  c o u p l i n g  i s  1 - ( 1 / 3 )  2 / 3  a n d  i t  i s  n o t  b o u n d .  

The  t h r e e - q u a r k  s t a t e s  c a n  b e  c o l o r  s i n g l e t s ,  

o c t e t s ,  o r  d e c i m e t s ,  w i t h  Young d i a g r a m s :  
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Each  o f  t h e s e  h a s  t h r e e  ways  t o  c h o o s e  a p a i r ,  s o  we 

g e t  a c o n s t a n t  c o n t r i b u t i o n  o f  - 1  t o  t h e  c o u p l i n g .  

The s i n g l e t  h a s  a l l  t h r e e  p a i r s  a n t i - s y m m e t r i c ,  

w h i c h  a d d s  - 3  t o  g i v e  a n e t  c o u p l i n g  o f  - 4 .  T h i s  i s  

s t r o n g l y  b o u n d ,  a n d  we s e e  t h e  t w o - q u a r k  3 s t a t e  

i s  n o t  s a t u r a t e d .  I t  w i l l  t e n d  t o  p i c k  u p  a t h i r d  

q u a r k  a n d  f o r m  a c o l o r  s i n g l e t .  T h e  o c t e t  s t a t e ,  

w i t h  o n e  s y m m e t r i c  a n d  a n t i - s y m m e t r i c  p a i r ,  h a s  

c o u p l i n g  - 1 ,  s o  t h e  f o r c e s  a r e  a t t r a c t i v e .  B u t  i t  i s  

u n s t a b l e  a g a i n s t  b r e a k u p  i n t o  t h e  t w o - q u a r k  3 s t a t e  

w i t h  b i n d i n g  -4/3, p l u s  a s i n g l e  q u a r k ,  s o  i t  i s  n o t  

b o u n d .  The  d e c i m e t  h a s  c o u p l i n g  + 3 - 1  + 2  a n d  i s  

a l s o  n o t  b o u n d .  

An S U 3  Young d i a g r a m  h a s  r o w s  o f  maximum l e n g t h  

t h r e e .  C l e a r l y ,  t h e  maximum b i n d i n g  i s  a t t a i n e d  when 

we make t h e  r o w s  as  l o n g  a s  p o s s i b l e  ( t o  g e t  as  many 

a n t i - s y m m e t r i c  p a i r s  a s  p o s s i b l e )  a n d  t h e  c o l u m n s  a s  

s h o r t  a s  p o s s i b l e  ( t o  g e t  a s  f e w  s y m m e t r i c  p a i r s  a s  

p o s s i b l e ) .  F o r  e x a m p l e ,  t h e  f o u r - q u a r k  s t a t e  w i t h  

t h e  maximum b i n d i n g  h a s  Young d i a g r a m  
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A l l  f o u r - q u a r k  s t a t e s  h a v e  6 p a i r s ,  c o n t r i b u t i n g  - 2  

t o  t h e  c o u p l i n g ,  a n d  t h i s  c a s e  h a s  3 a n t i - s y m m e t r i c  

p a i r s  a n d  1 s y m m e t r i c  p a i r .  T h e  o v e r a l l  c o u p l i n g ,  

- 2 - 3 + 1  = - 4 ,  i n d i c a t e s  t h i s  s t a t e  i s  n e u t r a l  w i t h  

r e s p e c t  t o  

S i m i l a r l y ,  t h e  m a x i m a l l y  b o u n d  5 - q u a r k  s t a t e  i s  

h 
T h e r e  a r e  1 0  p a i r s ,  o f  w h i c h  3+1 = 4 a r e  a n t i -  

s y m m e t r i c ,  a n d  1 + 1  = 2 a r e  s y m m e t r i c ,  s o  t h e  o v e r a l l  

c o u p l i n g  i s  - ( 1 0 / 3 ) - 4 + 2  = - 1 6 / 3 .  T h i s  i s  n e u t r a l  

w i t h  r e s p e c t  t o  

T h e  s t a t e  w i t h  3 k  q u a r k s  h a s  3 k ( 3 k - 1 ) / 2  p a i r s .  

T h e  s y s t e m  w i t h  t h e  g r e a t e s t  b i n d i n g  w i l l  h a v e  a 

Young d i a g r a m  w i t h  k r o w s  o f  l e n g t h  t h r e e ,  a n d  s o  

w i l l  h a v e  3 k  a n t i - s y m m e t r i c  p a i r s .  E a c h  c o l u m n  h a s  

k ( k - 1 ) / 2  p a i r s ,  s o  we h a v e  3 k ( k - 1 ) / 2  s y m m e t r i c  p a i r s  

T h e  n e t  c o u p l i n g  i s  

- k ( 3 k - 1 ) / 2  - 3 k  + 8 3 k ( k - 1 ) / 2  = - 4 k .  

B u t  t h i s  s y s t e m  i s  n e u t r a l  w i t h  r e s p e c t  t o  k t h r e e -  

q u a r k  c o l o r  s i n g l e t  s t a t e s  ( U U ) ,  e a c h  w i t h  c o u p l i n g  

- 4 .  We s e e  t h a t  a n y  t i m e  t h e  a n t i - s y m m e t r i c  t r i o  

c a n  f o r m  i t  becomes  n e u t r a l  i n  i t s  i n t e r a c t i o n  
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w i t h  o t h e r  q u a r k s  a n d  f a l l s  away a s  a b a r y o n .  I f  y o u  

w i s h  a l l  t h e s e  b o u n d  s t a t e s  o f  z e r o  t r i a l i t y  t o  b e  

n e a r  t h e  same e n e r g y  ( s a y  z e r o )  c o m p a r e d  t o  a l l  

o t h e r s  o f  v e r y  l a r g e  p o s i t i v e  e n e r g y ,  j u s t  a d d  a n  

e n e r g y  o f  +4/3 f o r  e a c h  q u a r k  a n d  e a c h  a n t i - q u a r k ,  

So o u r  scheme p r o v i d e s  a s a t u r a t i o n  w i t h  a n  a n t i -  

s y m m e t r i c  t h r e e - q u a r k  s y s t e m  ( w h i c h  a l s o  s o l v e s  t h e  

B o s e  q u a r k  p r o b l e m )  f o r  b a r y o n s ,  a n d  a c o l o r  s i n g l e t  

s t a t e  f o r  m e s o n s ,  w i t h  a l l  o t h e r  s t a t e s  u n s a t u r a t e d .  

We s h a l l  h a v e  t o  assume a l a r g e  l o n g - r a n g e  f o r c e  t o  

e n s u r e  t h a t  t h i s  s a t u r a t i o n  i s  d y n a m i c a l l y  m a i n t a i n e d .  

I f  we r e p r e s e n t  t h e s e  f o r c e s  i n  t h e  c o n v e n t i o n a l  

way b y  t h e  e x c h a n g e  o f  v e c t o r  g l u o n s  ( w h i c h  g i v e s  

t h e  r i g h t  s i g n s  f o r  p a r t i c l e s  a n d  a n t i - p a r t i c l e s ) ,  

we h a v e  a t h e o r y  w i t h  1 7  p a r t i c l e s ,  s o  i t  l o o k s  a s  

i f  we a r e  o f f  a g a i n  i n t o  a w o r l d  o f  many p a r t i c l e s ,  

a n d  t h e  n e x t  g e n e r a t i o n  w i l l  b e  w o r k i n g  o n  t h e  c o n -  

s t i t u e n t s  o f  t h e s e !  I f  we w e r e  a n y  g o o d  a t  f i e l d  

t h e o r y , w e  c o u l d  w o r k  o u t  t h e  c o n s e q u e n c e s  o f  t h e  

m o d e l  a n d  s e e  i f  i t  i s  r i g h t  o r  w r o n g .  I t  i s  v e r y  

a m u s i n g  t h a t  we m i g h t  h a v e  t h e  c o r r e c t  t h e o r y  a n d  n o t  

know t h a t  w e ’ v e  g o t  i t - - w h i c h  i s  a f u n n y  c o n d i t i o n  t o  

b e  i n .  H o w e v e r ,  I w o u l d  e x p e c t  t h a t  s u c h  an  o r d i n a r y  

f i e l d  t h e o r y  w i l l  n o t  g i v e  t h e  l o n g - r a n g e  c h a r a c t e r  

t o  t h e  i n t e r a c t i o n  t h a t  we h a v e  h a d  t o  p o s t u l a t e  a s  

e s s e n t i a l  t o  make t h i s  m o d e l  k e e p  t h e  q u a r k s  f r o m  

c o m i n g  a p a r t .  N e v e r t h e l e s s ,  t h e s e  l e a d s ,  s u g g e s t e d  
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by a n u m b e r  o f  p h y s i c i s t s ,  s h o u l d  be pursued more 

t h o r o u g h  1 y . 
Note r e g a r d i n g  p r o d u c t s  i n  d e e p - i n e l a s t i c  

s c a t t e r i n g .  

I had  o r i g i n a l l y  meant  t o  d i s c u s s  t he  p r o d u c t  

h a d r o n s  e x p e c t e d  f rom d e e p - i n e l a s t i c  l e p t o n - p r o t o n  

s c a t t e r i n g .  However, t h e r e  was n o t  enough t i m e ,  

and  my v iews  a r e  a l l  p u b l i s h e d  i n  Pho ton  Hadron 

I n t e r a c t i o n s  ( W .  A .  Benjamin  Co . ,  1 9 7 2 ,  p p .  250 f f ) ,  

w i t h ,  however ,  one  i m p o r t a n t  c h a n g e .  O n  pages  260 

and 261 ,  i t  i s  a r g u e d  t h a t  i n  a s i t u a t i o n  w i t h  a 

s i n g l e  q u a r k  moving t o  t h e  r i g h t ,  s a y ,  t i le r i g h t  

moving hadron  quantum numbers ( s u c h  a s  c h a r g e ,  f o r  

example )  wou ld ,  on t h e  a v e r a g e ,  be t h o s e  o f  t h e  q u a r k .  

T h a t  t h i s  was n o t  n e c e s s a r i l y  t r u e  was p o i n t e d  o u t  

by F a r r a r  and Rosne r  ( P h y s .  Rev. DJ, 2747 ( 1 9 7 3 ) ) ,  

and  1 would  l i k e  t o  t a k e  t h i s  o p p o r t u n i t y  t o  s t a t e  

p u b l i c l y  t h a t  I b e l i e v e  t h e y  a r e  c o r r e c t  and t h a t  

o b s e r v a t i o n  o f  t h e  t o t a l  quantum numbers o f  t h e  

h a d r o n s  moving t o  t h e  r i g h t  need  n o t  d i r e c t l y  g i v e  

t h o s e  o f  t h e  q u a r k  which g e n e r a t e d  them. What i s  

i n v o l v e d  may be most  e a s i l y  s e e n  by c o n s i d e r i n g  

t h e  s p e c i a l  c a s e  e'e- p r o d u c i n g  a p a i r  o f  q u a r k s ,  

s a y  a q u a r k  Q t o  t h e  r i g h t  and an a n t i - q u a r k  Q t o  

the  l e f t  i n  a r a p i d i t y  p l o t  ( s e e  f i g u r e ) .  P a i r s  

o f  q u a r k s  a r e  formed a n d  g a t h e r e d  i n t o  h a d r o n s  

a c c o r d i n g  t o  o u r  i d e a s .  The t r i a l i t y  ( n e t  q u a r k  
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n u m b e r  m o d u l o  3 )  o f  t h e  q u a r k  t o  t h e  r i g h t  i s  +1, 

w h e r e a s  no  m a t t e r  how many h a d r o n s  a r e  f o r m e d  t o  t h e  

r i g h t ,  t h e  l e f t  o v e r  t r i a l i t y  i s  s t i l l  +l. 

T I ,  P ,  e t c .  

I t  i s  t r u e  t h a t  t h e  p l a t e a u  i s  n e u t r a l  i n  t h e  s e n s e ,  

f o r  e x a m p l e ,  t h a t  t h e  mean n u m b e r s  o f  K a n d  K -  a r e  

e q u a l  ( s o  t h a t  c h a r g e  may b e  c o n s e r v e d  a s  t h e  p l a t e a u  

o f  l e n g t h  l o g  s w i d e n s ) .  N e v e r t h e l e s s ,  t h i s  p l a t e a u  

may b e  p o l a r i z e d  i n  t h e  s e n s e  t h a t  t h e r e  i s  a c o r -  

r e l a t i o n ,  say, f o r  e x a m p l e , t h a t  w h e n e v e r  a K -  i s  

f o u n d  i t  i s  m o r e  l i k e l y  t h a t  a n e a r b y  K +  i s  t o  t h e  

l e f t  o f  t h e  K -  t h a n  i t  i s  t o  t h e  r i g h t .  T h a t  s u c h  a 

c o r r e l a t i o n  w i t h  a s i g n  i s  p o s s i b l e  i s  b e c a u s e  t h e  

p l a t e a u  h a s  a s i g n ,  i t  i s  c a r r y i n g  + 1  t r i a l i t y  f r o m  

r i g h t  t o  l e f t .  T h a t  i s ,  t o  p u t  i t  i n v a r i a n t l y ,  o f  

a p a i r  K 'K- ,  t h e  K -  i s  m o r e  l i k e l y  t o  b e  f o u n d  n e a r  

t h e  q u a r k  e n d .  F o r  a n  a n t i - q u a r k  t o  t h e  r i g h t  t h i s  

w o u l d  b e  r e v e r s e d ,  o f  c o u r s e ,  w i t h  K t o  t h e  r i g h t  o f  

K - .  T h u s  f o r  o u r  c a s e ,  a n t i - q u a r k  t o  t h e  l e f t ,  o n  

t h e  l e f t  s i d e  o f  t h e  p l a t e a u  we h a v e  K +  t o  t h e  l e f t  

o f  K - .  B u t  t h i s  i s  j u s t  w h a t  we f o u n d  f o r  t h e  r i g h t  

s i d e  o f  t h e  p l a t e a u .  T h u s  t h e  t w o  p a r t s ,  l e f t  a n d  

t 

+ 
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r i g h t ,  o f  t h e  p l a t e a u  f i t  t o g e t h e r  p e r f e c t l y  a n d  t h e  

p o l a r i z a t i o n  c o n t i n u e s  u n i f o r m l y  a c r o s s  t h e  e n t i r e  

p l a t e a u .  T h i s  p o l a r i z a t i o n ,  o f  c o u r s e ,  c a r r i e s  q u a n -  

t u m  n u m b e r s  ( i n  o u r  e x a m p l e ,  s t r a n g e n e s s )  s o  t h a t  t h e  

t o t a l  q u a n t u m  n u m b e r  o f  t h e  r i g h t  m o v e r s  w i t h  r a p i d -  

i t y  a b o v e  a c e r t a i n  p o i n t  ( s a y  0 i n  t h e  c e n t e r - o f -  

m a s s )  n e e d  n o t  e q u a l  t h a t  o f  t h e  q u a r k  o r i g i n a l l y  

m o v i n g  i n  t h a t  d i r e c t i o n .  I s o s p i n  s y m m e t r y  p e r m i t s  

t h e  o r i g i n a l  r u l e  t o  w o r k  f o r  i s o s p i n ,  b u t  i t  n e e d  

n o t  w o r k  i n  g e n e r a l  f o r  s t r a n g e n e s s ,  and ,  h e n c e ,  

c h a r g e  ( u n l e s s  e x a c t  S U 3  w e r e  assumed ,  an  u n l i k e l y  

h y p o t h e s i s  f o r  t h e s e  p r o d u c t s ) .  T h e s e  c o n s i d e r a t i o n s  

do n o t  a f f e c t  t h e  e x p e c t a t i o n s  f o r  h a d r o n - h a d r o n  

c o l l i s i o n s ,  f o r  t h e r e  we h a v e  n o  n e c e s s a r y  q u a n t u m  

n u m b e r  p a s s e d  b y  t h e  p l a t e a u  a n d  i t  i s  u n p o l a r i z e d  

as w e l l  as n e u t r a l .  

N o t e  a d d e d  i n  p r o o f .  

H a v i n g  o n l y  h a l f  a l e c t u r e  o n  t h e  t h e o r e t i c a l  

q u e s t i o n s ,  I s e e  I d i d n ' t  b r i n g  my d i s c u s s i o n  t o  a 

f o c u s  - s o  I w o u l d  l i k e  t o  a d d  t h e s e  s u p p l e m e n t a r y  

r e m a r k s .  I f  we b r i n g  a l l  t h e s e  i d e a s  t o g e t h e r ,  we can  

make a " t r y  o u t  f o r  s i z e "  m o d e l  w h i c h  seems q u a l i -  

t a t i v e l y ,  a t  l e a s t ,  c a p a b l e  o f  c o n t r o l l i n g  a l l  t h e  

p a r a d o x i c a l  a s p e c t s  o f  t h e  q u a r k  m o d e l .  The c h o i c e  

o f  c h a r a c t e r ,  u ,  d ,  s ,  i s  o n e  t h a t  a n y  q u a r k  c a n  

h a v e ,  b u t  i n  a d d i t i o n  t o  t h a t  we h a v e  a new p e r f e c t  
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S U 3  of  c o l o r .  

c o l o r s  w i t h  p e r f e c t  symmetry .  The i n t e r a c t i o n  i s  v i a  

e i g h t  v e c t o r  meson g l u o n s  c o u p l e d  s y m m e t r i c a l l y  a s  i n  

t h e  t h e o r y  o f  Yang and M i l l s ,  t o  e i g h t  c u r r e n t s  c o r -  

r e s p o n d i n g  t o  g r o u p  g e n e r a t o r s ,  s o  t h a t  t h e  SU3 c o l o r  

c h a r a c t e r  i s  n o t  b roken  i n  any  way. A n i n t h  g l u o n  

c o u p l e d  t o  " c o l o r  s i n g l e t "  i s  e x p l i c i t l y  assumed not 
t o  be p r e s e n t  ( i n  t h i s  t r i a l  m o d e l ) .  B u t ,  u n l i k e  t h e  

c o n v e n t i o n a l  Yang-Mi l l s  o r  o t h e r  f i e l d  t h e o r y ,  s u p -  

p o s e  t h e  f o r c e  i s  v e r y  l o n g  r a n g e ,  a p o t e n t i a l  e n e r g y  

r i s i n g  w i t h o u t  l i m i t  w i t h  d i s t a n c e .  

Quarks  a r e  s p i n  1 / 2  f e r m i o n s  o f  t h r e e  

How t h i s  l o n g  r a n g e  can  come a b o u t  we do n o t  

know, and t h i s  i s  t h e  mos t  s e r i o u s  q u e s t i o n  i n  o u r  

model - b u t  f o r  d e f i n i t e n e s s ,  t a k e  t h e  s u g g e s t i o n s  

(made t o  me by Kenneth Kauffmann) t h a t  t h e  p r o p a -  

g a t o r  o f  t h e  f i e l d s  i s  l / k 4  i n s t e a d  o f  1 / k 2  ( a n d  

d i s r e g a r d  " g h o s t "  p rob lems  f o r  now). The p o t e n t i a l  

from a f i x e d  p o i n t - c h a r g e  i s  then  r i n s t e a d  o f  l / r .  

T h i s  f o r c e  be tween c o l o r e d  o b j e c t s ,  w i t h  p o t e n -  

t i a l  e v e r  r i s t n g  w i t h  d i s t a n c e ,  means t h a t  s u c h  ob-  

j e c t s  can  n e v e r  come a p a r t .  The o n l y  o b j e c t s  which 

can  come a p a r t  a r e  n e u t r a l  w i t h  r e s p e c t  t o  a l l  e i g h t  

c u r r e n t s  and a r e  t h e r e f o r e  c o l o r  s i n g l e t s .  These  

a r e  s t a t e s  w i t h  t h e  quantum numbers of  t h r e e  q u a r k s  

of  c o l o r s ,  a ,  b y  c ,  i n  an a n t i - s y m m e t r i c  s t a t e  i n  

b a r y o n s ,  or q u a r k - a n t i q u a r k  i n  l / &  (:a + 6 b  + c c )  

i n  mesons.  The g l u o n s  t h e m s e l v e s  a l s o  c a n n o t  come 
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f a r  o u t  o f  a s y s t e m ,  o f  c o u r s e ,  b e c a u s e  t h e y  them- 

s e l v e s  a r e  c o l o r e d .  (Murray  Gell-Mann has  p o i n t e d  

o u t  t o  me t h a t  t h i s  p r o b a b l y  removes my w o r r y ,  

e x p r e s s e d  on page 8 2 ,  L e c t u r e  5 ,  t h a t  t h e r e  migh t  

be l a r g e  p o l a r i z a t i o n  f o r c e s  - t h e  e f f e c t s  a r e  s e c o n d  

o r d e r  i n  the  i n t e r a c t i o n ,  an exchange  o f  two g l u o n s  

which i n t e r a c t  may be t h e  exchange  o f  a m a s s i v e  

o b j e c t ,  and hence  o f  l i m i t e d  r a n g e . )  

Sometimes one  a t t e m p t s  e n e r g e t i c a l l y ,  t o  s e p a -  

r a t e  c o l o r  a s  i n  t h e  e'e- -+ QO, p e r h a p s  an a t o  r i g h t  

and a t o  l e f t ,  o r  i n  t h e  d e e p - i n e l a s t i c  s c a t t e r i n g  

i n  which one  q u a r k  i s  t a k e n  f rom t h e  o t h e r s  and  

s e n t  v i o l e n t l y  backward  ( I  am i n v e s t i g a t i n g  w h e t h e r  

h i g h - e n e r g y  hadron  c o l l i s i o n s  may a l s o  i n v o l v e  t h i s  

e f f e c t ) .  In  s u c h  c a s e s ,  a s  t h e  c o l o r e d  p a r t s  s e p a -  

r a t e ,  a f o r c e  d e v e l o p s  between them a s  a r e s u l t  o f  

g l u o n  e x c h a n g e ,  and  i n  t h i s  f o r c e  f i e l d  p a i r s  of  new 

q u a r k s  a r e  c r e a t e d  u n t i l  u l t i m a t e l y  t h e y  a r e  g a t h e r e d  

i n t o  s i n g l e t s  which can  s e p a r a t e  i n d e f i n i t e l y ,  p r o -  

d u c i n g  t h e  c h a r a c t e r i s t i c  p l a t e a u  i n  r a p i d i t y ,  e t c .  , 
t h a t  we e x p e c t  t o  g e t .  

The f a c t  t h a t  t h e  n o n - r e l a t i v i s t i c  q u a r k  model 

works r o u g h l y ,  and  t h e  c o n f i r m i n g  f a c t  t h a t  t h e r e  i s  

l i t t l e  momentum i n  q u a r k  p a i r s  i n  t h e  p a r t o n  d i s t r i -  

b u t i o n  o f  a p a r t o n ,  i n d i c a t e s  t h a t  f o r c e s  a r e  s o f t  

a t  s h o r t  d i s t a n c e s .  I t  i s  n o t  o b v i o u s  t h a t  t h i s  

comes o u t  a u t o m a t i c a l l y  f rom o u r  model and s o m e t h i n g  
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e l s e  may h a v e  t o  b e  added .  I t  i s  a m u s i n g ,  h o w e v e r ,  
2 t h a t  K a u f f m a n n ' s  p r o p a g a t o r  l / k 4  i s  weak a t  l a r g e  k 

( i . e . ,  t h e  p o t e n t i a l  r i s  n o t  a s  s i n g u l a r  a s  l / r  f o r  

s m a l l  r )  a n d  m i g h t  a c c o u n t  f o r  t h e  e f f e c t .  

I s h o u l d  l i k e  t o  recommend  a v e r y  i n t e r e s t i n g  

p a p e r  b y  C a s h e r ,  K o g u t  a n d  S u s s k i n d  ( P h y s .  Rev.  L e t -  

t e r s  =, 7 9 2  ( 1 9 7 3 ) )  t h a t  I h a v e  j u s t  s e e n .  T h e y  do  

a p r o b l e m  o f  f e r m i o n s  i n  q u a n t u m  e l e c t r o d y n a m i c s ,  

b u t  i n  o n e  s p a c e  d i m e n s i o n .  I n  o n e  d i m e n s i o n  t h e  

p o t e n t i a l  f r o m  a c h a r g e  i s  1x1 a n d  a u t o m a t i c a l l y  

r i s e s  w i t h  d i s t a n c e .  I t  i s  c o n f i r m e d  t h a t  t h e  p h e -  

nomena o f  t h e  t y p e  we e x p e c t  o c c u r .  One s h o u l d  r e a d  

t h i s  p a p e r  f o r  a v e r y  g o o d  d e t a i l e d  p h y s i c a l  d e s c r i p -  

t i o n  o f  t h i s ,  f o l l o w i n g  i d e a s  o f  B j o r k e n .  I t  i s  v e r y  

g o o d  t o  h a v e  a m a t h e m a t i c a l  m o d e l  o f  t h e s e  i d e a s ,  t o  

make  t h e m  c l e a r  a n d  d e f i n i t e  s o  o n e  c a n  a d v a n c e  t o  

f u r t h e r  i d e a s .  By c h o o s i n g  t h e  mass o f  t h e  f e r m i o n s  

t o  b e  z e r o ,  t h e y  s o l v e  t h e  p r o b l e m s  e x a c t l y  ( a f t e r  

S c h w i n g e r ) .  T h e  c a s e  t h a t  t h e  f e r m i o n  mass  i s  n o t  

z e r o  c a n n o t  b e  s o l v e d  e x a c t l y ,  b u t  we e x p e c t ,  o f  

c o u r s e ,  t h e  same t y p e  o f  phenomena  o f  p r o d u c t i o n  o f  

f e r m i o n  p a i r s ,  s i n c e  t h e  p o t e n t i a l  r i s e s  w i t h  d i s -  

t a n c e .  A s t u d y  o f  s u c h  c a s e s  s h o u l d  b e  p u r s u e d  t o  

t e a c h  o n e s e l f  t h e  p h y s i c s  o f  t h e s e  phenomena .  A 

n e x t  s t e p ,  a f t e r  t h e  c a s e  o f  n o n - z e r o  f e r m i o n  mass ,  

w o u l d  b e  a n  SU3 s y s t e m ,  Y a n g - M i l l s ,  i n  o n e  d i m e n s i o n  

w h e r e  b a r y o n s  ( t h r e e - q u a r k  s t a t e s )  , a n d  m e s o n s  w o u l d  

9 6  
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f o r m .  N e x t ,  a t t e m p t  t o  j u m p  t o  t h r e e - s p a c e  d i m e n -  

s i o n s  w i t h  some g u e s s  a s  t o  how t h e  l o n g - r a n g e  f o r c e  

w o r k s .  You may n o t  end  u p  w i t h  e x a c t l y  t h e  r i g h t  

t h e o r y ,  b u t  y o u  h a v e  a d e f i n i t e  p r o g r a m  t o  d e v e l o p  

f r o m  w h i c h  y o u  m u s t  l e a r n  a v e r y  g r e a t  d e a l  a b o u t  t h e  

r e a l  w o r l d .  
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1. Introduction 

In 1954 Yang and Mills [ l ]  wrote a paper in which they made a theory in 
analogy with QED for a system in which a particle could carry more than one 
“charge”. In those days there were particles like protons and neutrons which 
were thought to be one object - a nucleon which appears in two guises - pro- 
ton and neutron. This is the theory of isospin in which the analogue of charge 
is I,, the z-component of isospin; + for proton, - f for neutron. Then there 
was the question of what field, analogous to the photon in QED, could inter- 
act with such a charge. In the case of QED the photon is a vector field; there- 
fore Yang and Mills tried to make a theory of a vector field interacting with 
“charges” that might have more than one value. There had already existed for 
some time a theory of (pseudo) scalar fields which could interact with particles 
of different “charge” but their properties weren’t as interesting as those of 
vector Gelds. Since the “charge” can be flipped back and forth, the fields which 
are coupled to the “charges” are more interesting than that of QED. Finally 
the theory had very great beauty and simplicity. 

We human beings see in a symmetrical theory a certain beauty; the Greeks, 
for example, saw in the theory of the planets that they went around in circles 
at a uniform speed, a phenomenon which today, we would characterise by a 
group theoretic property: the orbit is such that a displacement in time is 
equivalent to a rotation. 

Y-M theory looks very good. In contrast to QED, here we have a field with 
many components which couple to different “charges”. This is because the 
field, in addition to the neutral component which couples to + and - charge, 
also has charged components which flip one “charge” into another. Therefore 
in the case of isospin we have a source of isospin f (the nucleon) and a field 
of isospin 1. Now this theory was beautifully symmetric but it did not agree 
with experiment; although isospin is almost exactly conserved the theory is 
similar to electrodynamics in that the mass of the vector field is zero, but there 
is no obvious long range force be tween nucleons: so it’s wrong. The first hope 

Today we still have this desire to see symmetrical things and therefore the 
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was to put a mass in somehow, but that destroyed the symmetry and conse- 
quently the beauty. What were the vector particles anyhow? They were sup- 
posed to be p mesons, but there seemed to be nothing more fundamental 
about the p meson than all the other hadrons. So the idea that one of these 
hadrons was the fundamental field was lost. 

Later people such as Goldstone [2] began to look at broken symmetries; 
Higgs [3,4] and Kibble [S] found that a massless vector theory with broken 
symmetry was in some sense equivalent to one with mass. Today the only 
symmetries we see in nature are isospin (a near perfect symmetry) and SU(3) 
(a clear, but imperfect symmetry) and we would, therefore, think that, be- 
cause we like symmetries so much, the excitement of the day would be that 
we had an understanding of these symmetries at last. We do not. In fact, the 
Y-M theory with broken symmetry is assumed to apply somewhere else. 

In the meantime, there was developed a weak interaction theory in which, 
in one interpretation, one had vector mesons with mass. Taken directly, a field 
theory of massive vector mesons is highly non-renormalisable. Such a theory 
works fine as long as we only work with first order diagrams. However, at- 
tempts to go to higher order lead to unremovable divergences. It is necessary 
to go to higher order for two reasons: 

(1) It is not sensible to have a theory which only works to first order. 
( 2 )  Consider a process where the amplitude is calculated to first order in g. 

The probability of the process occuring is O(g2). Therefore the probability of 
non-occurrence is - 1 - O(g2). Hence the amplitude for non-occurrence 
- d w )  - 1 - O(g2). Therefore one must know something about am- 
plitudes to order g 2 .  It is, therefore impossible to have a theory which only 
works to first order if one wants to conserve probability. People did not worry 
about this until recently. When they did, they found that if they started with 
one of these symmetric theories and used the Higgs mechanism to add mass 
they might be able to represent these vector mesons (intermediate vector 
bosons) with mass in a way that was renormalisable in the same sense as QED. 
This was subsequently proved in detail, and the consequences of these theo- 
ries are, therefore, as calculable as those of QED. 

Sunsequently it was found by Llewellyn Smith [6], that if one starts with 
massive vector mesons and requires renormalisability one is driven to Y-M 
theories with broken symmetries, provided one is prepared to introduce new 
particles to cancel divergences. One has a choice of such particles and a par- 
ticular choice leads to a particular model. It is important to realise that there 
is no unique prescription for doing this. One can also use different symmetry 
groups and different methods of breaking the symmetry. It is therefore, not 
true to say that these theories make an unambiguous prediction of the exis- 
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tence of neutral currents, becausc one can always takc a different theory which 
has no neutral currcnt but some other new particle(s) (e.g. “heavy” lepton). It 
appears that there is now experimental evidence for bo th  neutral currents and 
heavy leptons. 

In hadron physics the quai-k theory was evolved and found t o  be paradoxi- 
cal. Protons arc supposed to be made out of three quarks as is the A++ which 
has spin 5 .  Consider the case where ./- = + T :  3 3 

u u u  
t f t ’  

The dynamical theory says that the quarks are in a relative S-state in order t o  
get the right order of magnitude for matrix elements and magnetic moments; 
then we have three particles in the same state. There is a problem in that it had 
becn proved that we can’t put three spin 
proof assumed that the particles could be separated from each other. We also 
know that quarks don’t seem t o  appear as free particles. It is, therefore, not 
clear that the proof holds for quarks. Nevertheless: t o  be conservative, we will 
accept the theorem, and so a simple explanation of the problem is that the 
three quarks are different, i.e. we assign them a new quantum number (colour) 
which takes three values A, B, C: 

particles in the same state. This 

‘A ‘C 

t f t  
There are, a t  present, only two places in the experimental world where the 

colour hypothesis can be checked: 
(1) A subtle test is connected with the anomaly in the no + 27 decay. I t  

turns out  that a theory without colour gives a decay rate a factor of  three too  
small; a theory with three colours agrees with experiment. 

(2) The ratio 

R =  u(eF -+ hadrons) 
u(eZ + pj7) ’ 

is equal to the sum of the squares of the quark charges and equals 2/3 for u, d. s 
without colour. In fact, the data shown symbolically* in fig. 1.1 are in disagree- 
ment with this value. u, d, s with colour giveR = 2 in better agreement below 4 GeV. 

Another possible experimental test of colour is lepton production in pp  col- 
lisions by  the Drell-Yan mechanism but the evidence is inconclusive. The 
amount of experimental evidence for the beautiful symmetry of colour is not 

* See the lectures by G. Wolff and B.H. Wiik for n discussion of the data. 
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R 

1 I L - - 
1 2 3 4 5 6  E Gev 

Fig. 1.1. 

great but is theoretically very strong because it helps to explain a number of 
other features e.e. why three quarks in a baryon held together. 

This theory of colour is so symmetrical that a good guess is that hadrons 
are made of quarks with flavours u, d,  s, c, ... and three colours A, B, C with 
exact colour symmetry. It turns out that the colour couples to an eight com- 
ponent field. The reason why there are eight components is as follows: 

When a field quantum (gluon) is emitted, the quark colour may or may 
not change. There are nine ways of coupling a gluon between an initial (three 
colour possibilities) and a final (three colour possibilities) quark. 

A + B  
A + C  A - + A  
B + A  B - t B  
B - t C  C + C .  
C + A  
C + B  

But the linear combination of the components of the vector field which cou- 
ples equally to all the quarks (the singlet) need not be in the theory, all its 
properties are independent of the other eight Components. Under a linear 
transformation of the colours, the eight mix together so all are necessary, but 
the singlet stays unchanged. Hence we are left with eight components. (Whether 
we add the ninth or not, and with what coupling, is up to us, but we will leave 
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it out as apparently unnecessary at present.) This theory with exact SU(3) 
colour symmetry is called quantum chromodynainics (QCD). 

a long range force between quarks and so we could separate them. Experimen- 
tally this does not seem to be true. One solution to the problem is that QCD 
is wrong. Another way out is to say that we do not understand the conse- 
quences of Y-M well enough and that a t  large distances the forces might be- 
come large enough to confine the quarks. That is the foremost problem of 
QCD. Also there are infrared divergences in QCD whch  are more serious that 
in QED and the method to handle them is not yet known. In spontaneously 
broken Y-M theories these infrared problems are absent. 

To summarize, there are two applications of Y-M theories: with broken 
symmetry in weak interaction (e.g. Weinberg [7] - Salam [8] model) and in 
strong interactions by QCD with perfect unbroken colour symmetry. 

At first sight we have a problem, viz., massless vector mesons would imply 

2. Classical Yang-Mills theory 

We are going to take a more or less elementary and direct view of Yang- 
Mills theory, rather like the authors did. We start with the example of SU(2) 
in which we have a 2 component spinor representing proton and neutron. We 
start with the Lagrangian density for the free proton and neutron fields 

lF = iiJpd$p + iiJna$, - mp&,+, ~~ m,;LnJI, , (2.1) 
where we use the notation of Bjorken and Drell [9]. 

cles. Consider 3 pseudoscalar particles (e.g. the pion) with charges O(G0), 
+l(@+), -l(@-); the simplest coupling to the nucleons is 

In the old days people wanted to add interactions with pseudoscalar parti- 

l l  = i{"J/p@Oy5 $p + PGn@oy5 $ n  + y&p4+75 G n  + yqnQ-75 $p 1. (2.2) 
If the nucleon-nucleon force is independent of the nucleon type (and y # 0), 
then 

a = -p = y / G .  (2.3) 
A neater way to write the Lagrangian in this case is to introduce a spinor 
$, (a = p, n) and an isovector Gi (i = 1, 2, 3) in isospin space, where 

i 
$2 =&4+ - 

If me = mn the Lagrangian LF + L1 must be invariant under a rotation of the 
$ field in isospin space, i.e. 
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GP -+ cos Wp + sin O$,, 

d: = i&$$ - rn$+ t c.u&+rrs$ + K.E. terms for 

$, + -sin @ $ p  + cos 0Gn  , (2.5) 

provided we also rotate the @I field at the same time. The Lagrangian becomes 

, (2.6) 
where 

are the Pauli spin matrides. 
This is the famous pseudoscalar meson theory which was supposed to be 

the explanation of everything. When there were summer schools, professors 
explained that this was the key to the whole of strong interaction theory; they 
were going to explain scattering and everything else and it was just a matter of 
calculating the next order on a machine. But that failed so they keep on trying! 
The question now is, can we write a similar theory for a vector particle inter- 
acting with nucleons. It is easy to guess that a vector particle A,, could be cou- 
pled the same way i.e. 

d : =  i$4$ - mlL$ &(A,,.t)r,$ , ( 2  -8) 
where A has been rescaled to absorb the coupling constant g. The y, is present 
to contract with the space time index on the A ,, and the 7 is present to con- 
tract with the isospin index on A .  We could also add derivative couplings on 
the form 

- 
$(a,,+)wsr,,$ > (2.9) 

in the pseudoscalar case, and similarly in the vector case. However for simplici- 
ty we exclude these and other more complicated couplings. (There is no way 
a priori to exclude these couplings but theoretically there may be problems 
with renormalisability but in the old pion theory of nuclear forces they were 
all tried.) 

of the real problem which is - what are the equations for the propagation of 
the field? Yang and Mills treated this problem in analogy with electrodynamics. 
In electrodynamics, the piece of the Lagrangian connected with the propaga- 
tor of the vector fields is 

Now the problem of coupling the vector field is very easy but it is only part 

Ffi V F , ,  Y ’ 
where 
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The piece of the Lagrangian analogous to (2.8) is 

L = $(i$ - m)$ + $A,T, $ .  

(a,A,)(a,A,). (2.12) 

(2.1 1) 

Why do we have such a funny looking business? Why not have, for example, 

Electrodynamics has a property of gauge invariance; this means firstly if 
$ -+ e-ia $ and LY is a constant, nothing happens to (2.1 1). But now suppose 
that the phase of the wave function is changed by different amounts at differ- 
ent space-time points i.e. a is a function of x. This is usually called a local gauge 
transformation. Now the kinetic energy term in (2.1 1)  will change since 

iJ/a,$ + i$a,$ + $(a,&)$ . (2.13) 

One can easily make (2.1 1) gauge invariant by supposing that at the same time 
we change 

A ,  -+A,, - a,a . (2.14) 

Now if the theory is to be gauge invariant we cannot use (2.12) in the Lagran- 
@an as it changes under the gauge transformation; however Fpv is invariant so 
that FpvF,,  is a possible invariant contribution to the Lagrangian. 

Now we can use the same trick to try to find what kind of invariant we get 
in this new theory with the multiple component field (isovector). Consider 
the trans format ion 

$ .+ expI - i ( a - f ) )$ ,  (2.15) 

applied to (2.8). The transformation has to be unitary and consequently it can 
be written in the form (2.15). We only consider the transformation to first 
order in a, viz. 

$ -+ (1 - i a . f )$  . (2.16) 

(It can be shown that if the theory is invariant under infinitesimal transforma- 
tions then it is also invariant under a finite transformation, (2.15) since this 
can be built up from infinitesimal transformations.) Eq. (2.8) is invariant if a 
is not a function of space-time provided 

A;r -+ exp(-ia-r)(A,-r)exp(ia-r) 

i.e. 

~ l - r  = ~ ; r  - i [ a - t , ~ , - r ]  =A;T + ( a X A p ) * r  

i.e. 
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A l = A , + ( a X A , ) ,  (2.17) 

which is an infinitesimal rotation of the vector A ,  in isospace. 

similar sort of thing except that the 7’s would be a different set of matrices, 
with another set of commutation relations. In general 

So far we have consideied only SU(2). In another group one should have a 

[ T i ,  T i ]  = ifiikTk, (e.g. for su(2),fijk = Ei ik ) .  (2.18) 

We can generalise the notion of a vector to any group ai = u where c = a  X b 
means ci = fjjkajbk. 

for SU(2). Some properties of the cross product are 
Then all the equations we write are completely general, they apply not just 

a . ( b  X c) = (a X b )  - c ,  u X u  = 0,  a X b = -b X u ,  

a X ( b  X c) + b X (c X a) + c X (a X b )  = 0 (Jacobi identity) (2.19) 

but note u X (b  X c )  = b(a - c)  - c(u * 6) holds only for SU(2). For any group 
SU(n), the number of components of A ,  is n2 - 1 because the transformation 
parameter, a can have n2 - 1 components (this being the dimension of the 
P U P ) .  

Now consider a in (2.16) to be a function of space-time. The idea is that 
we should be able to change the phase of the wave function arbitrarily at each 
space-time point and transform the vector field such that the physics does not 
depend on this choice. We must choose the transformation ofA, so that (2.8) 
is invariant under the transformation (2.16). a is called the gauge parameter. 
Therefore under 

$ --f (1 - ia(x) -TI$, 

So A must transform like 

A ,  +A,  t a X A, - a,a . 

i&T,a,$ --f iiLT,a,$ + &y,(a,a) - T  + . (2.20) 

(2.21) 

The next problem is to find a Lagrangian term for A, which is invariant when 
A ,  is changed in this manner. There are very beautiful and elegant ways of 
getting these things these days; but suppose that you were inventing it, what 
would you do to find an invariant form? You fiddle around. All the elegant 
stuff is found later; the way to learn is not to learn elegant things, it’s t o  fiddle 
around blind and stupid. Later you see how it works; polish it up; remove the 
scaffolding and publish the result for other students to be amazed at your in- 
genuity. 

For the moment forget the a X A ,  term in (2.21), and try to find some ex- 
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pression like the square of the electromagnetic field tensor, i.e. 

@,A, - aoA,)2 . 

This transforms under (2.21) as 

a,& a,,A; = a,A,-a,A,+ aX(a,A,-a,A,) 

+(a,a)xA,- (a ,a)xA, .  (2.22)  

I f  the last 2 terms were absent we would be O.K. because then 

a,A, - a,A, , 
would transform as an isovector (i.e. V -+ V t a X V) and therefore its square 
would be invariant. So we must try to get rid of the last 2 terms. Notice that 
the gradient of a is coming from the transformation ofA, (2.21) so that i f  we 
had a term like A , X A then when we transformed it we would pick up a 
A ,  X a,a. Try 

A ;  X A 1 = A ,  X A t A ,  X (a  X A, )  - A ,  X a,a 

+ (aXA,) XA,  - @,a) XA, . 
But 

(aXA, )XA,=A,X(A,Xa) .  

Add and subtract aX ( A ,  XA,) and use the Jacobi identity (eq. (2.19)) to  get 

A ;  X A ;  = A ,  xA,-(a,a) ~ A , - A ,  x @,a) t a x  (A,  XA, )  . (2.23) 

We can now get rid of the debris between (2.22) and (2.23) by defining 

E,,=~,A,-~,A,+A,  X A , ,  

E,, -+ EN, + aX E,, . 
and so 

( 2  24)  

Hence we can make an invariant quantity E,,. E,,. Therefore we may write 
the Lagrangian density (in analogy with QED) as 

(2.25) 
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where Ell, is now 

E,, = a,A,  - a,A, + g A ,  X A ,  . 

You may ask why use E,, E,,  in the Lagrangian instead of another in- 
This is the form given by Abers and Lee [lo]. 

variant piece? For example p,, called the dual2fJpV, defined by g,,, = 
E,,,, , ,~ Epu is such that the quantities 3. E and E - E are also invariant. The 
former is a pseudoscalar and one could consider it as a possible additional 
term in L. It can be shown that this term has no consequences for the equa- 
tions of motion provided that when A is varied to obtain them one assumes 
that as usual there is no variation ofA at 00. Possible consequences of a viola- 
tion of this condition will be discussed later. 

Now consider the action S derived from the Lagrangian (2.25) 

(2.26) 
S = ~ ( - - E E , , ~ E , , , + ~ ( i ~ + A ~ z ) ~ -  1 $rnJ,}d4x. 

4g2 
We find the equations of motion by varying the action. Varying with respect 
to J /  gives 

(id + A  -I)$ = rn$ , (2.27) 

and a similar equation for $ is obtained by varying with respect to J,. Varying 
with respect to A gives 

(2.28) 1 
- - (a ,E , ,+A,  XE, , )=  J , ,  

g2 
where 

J,  = $7, 7 -  $ . 
Any vector will transform as 

+ + + + a x $ .  

The derivative of a vector transforms in a more complicated way: 

(2.29) 

(2.30) 

a , + - a , + t  a X a , $ + a , a x + .  (2.3 1) 

Therefore if + is a vector, its derivative is not. However we notice that 

a,++A x +, (2.32) 

transforms as a vector. Hence we define a covariant derivative 

D, =(a, + A ,  x )  (2.33) 
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which when operating on a vector produces a vector. We can now re-write 
(2.28) as 

1 --D E = J , .  
82 I.1 f lu  

(2.34) 

Consider the action of the commutator [D, , D,] on 4. We easily see that 

q$,+- DUDP+ = E,, x 4 .  (2.35) 

This is the first time we have got this combination ofA’s (viz. E P u )  out in a 
logical way. 

using the antisymmetry of E,, 
Since E,,, is an isovector, we can substitute it for $in (2.35). Then we get, 

D,D,E,, = 0 .  (2.36) 

Comparing this with (2.34) we see that for consistency we must have 

D,J,,=O. (2.37) 

In other words these field equations are meaningless equations unless the cur- 
rent is conserved in the sense that its covariant divergence is zero. This causes 
a lot of complications when we go to the quantum theory. The reason is that 
in the quantum theory, when we calculate a diagram and so forth, some par- 
ticles in the theory interact and provide a contribution to the current which 
is then a source which generates a new field propagating to the next interac- 
tion. We figure out how the vector fields propagate by solving the differential 
equations (2.34). It may not be that our source automatically satisfies (2.37), 
and hence eq. (2.37) does not make sense, it has no solution and we do not 
know how the field should propagate. Eq. (2.34) is the analogue of the Max- 
well equations* 

a,F,, = J ,  . (2.38) 

The current J ,  is produced by the matter field and it is a consequence of the 
Dirac equation (2.27) (and its conjugate) that this current is indeed conserved 
and satisfies (2.37). If matter is a Dirac spinor as we have assumed, J ,  does 
not explicitly depend on A , .  This is not true in general, if we define J p  as the 

* The analogue of the other 2 Maxwell equations, which are an algebraic consequence of 
FPu being a curl, is 

D,E,, f D p E o ,  f D,Epp = 0 .  

It is easy to check that this is an identity satisfied by Epv since it is of the form a,A, - 
auA, + A ,  X A,. 
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first variation of the matter term (in the action) with respect to A , .  The cur- 
rent would have a different form in, for example, scalar electrodynamics where 
the quadratic term is the Lagrangian has the form 

(a, + A , ) @ + @ ,  +-4,,)4 + m2#+4. (2.39) 

The current is found by differentating this with respect to A and is 
4 3  

J, =@+a,# +24+A,4, (2.40) 

and so in this case there is an extra non-matter term in the current. Let us write 

E I.rv = F  P V  + A , X A , ,  (2.41) 

where F,, looks like the field tensor in electrodynamics being just the curl of 
A , .  Then eq. (2.34) can be written as 

1 1 --a F , = J , + - { ~ , ( A , X A , ) + A , X E , , )  
g2 g2 /J , (2.42) 

This is just like electrodynamics. Each field is produced by a source; the source 
is isospin density (analogous to electric charge in electrodynamics) which here 
is a sum of the contributions from the matter and the field itself. The disad- 
vantage of looking at it in this way is that we have lost the gauge invariance. 
It’s strange but it’s true that the amount of isospin density in the field depends 
upon the gauge - it’s not a gauge invariant quantity. This is analogous to the 
way some people like to do gravitation. 

The gravitational field equations (cf. (2.34)) are 

G,, - - T,, ’ (2.43) 

where T,, is the energy-momentum tensor of the matter and G,, is the 
Einstein tensor. Algebraically 

D,G,, 0 , (2.44) 

where D, is some covariant derivative, and hence we have 

D,T,,=O, (2.45) 

analogous to (2.37). However, as in (2.42) we can rewrite (2.43) as 

GI, = T,u+K,v ’ (2.46) 

where GI,, is linear in g,, and K,, contains only terms quadratic and higher 
ing,,. This is now the equation for a spin 2 particle where K,, is the energy- 
momentum density in the gravitational field, and we say that the gravitational 
field is produced by all energy, the energy of matter and the energy of the field 
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itself; that’s why it’s non-linear. However if we make a generalised co-ordinate 
transformation, T,, + K P v  is not a real tensor; this is a famous problem, there 
is no real way t o  define the total energy-momentum tensor of the universe. 

3.  A geometrical look at gauge invariance 

At each point in space-time imagine a frame defining axes in S U ( n )  in some 
sense continuous (nearby frames nearly the same), but  otherwise arbitrary. 
Then physically we might hope to  define what we mean b y  the frames at x 
and x‘ are in the same direction. That is, imagine that we take an up  particle 
(e.g. a proton in SU(2)) at x and send it over to  x’ so the guy at  x‘ can see what 
we call up. If there were n o  external influence, which could rotate isospin, 
acting in the space between x and x‘, we might hope t o  define and check that 
everyone is using the same frame and can expect that one choice of frames at  
all x to  be best in the sense of making the physics equations simplest (e.g. all 
parallel). 

But under an influence, we must correct for the influence. If the influence 
is not universal (e.g. acts on protons but not o n  pions), we can compare frames 
using a particle which is affected least, or by looking at  the different ways in 
which different particles are affected. If a universal influence acts which ro- 
tates the axis of  isospin of every particle t o  the same degree, it clearly has no 
effect locally; but if the rotation varies from point to  point and from time t o  
time, than under some circumstances there may be an effect. 

Now suppose there is such a universal influence and let us try to  compare 
a frame at b t o  a frame at  a by sending a particle from a t o  b .  Then the frame 
at Q “carried” to  point b might find (the frame as it is carried is of course turned 
by the universal influence), in general, that it is not lined up with the frame 
originally chosen at  b ,  but  requires an additional rotation R(b  + a). Thus 
R(b + Q) tells us how much the frame b differs from the frame a when a is 
carried over, through space-time, t o  make the comparison. We could, of  course, 
get a set of “best” frames so that all R = 1 by choosing a t  b the frame we get 
by carrying our  a frame t o  each space-time point. 

R(c + a) = R(c +- b) R(b +a)  , (3.1) 

i.e. unless R(c +- u)  is independent of the route by which a is carried, in which 
case we d o  not have an interesting physical theory at all: R can be made equal 
to the identity by  a proper choice of a universal set of  frames. 

depends on  the path 8 i n  space connecting the points. We now study this gen- 
The interesting theory arises if this is not the case, i.e. if the r o t a t i o n R ( b T )  
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eral case - the geometry of a field of frames with a method of parallel displace- 
ment, or comparison along geomatrical paths. (If the frames were Lorentz 
frames arbitrarily displaced, the theory is differential geometry and the physi- 
cal theory is Einstein’s General Relativity.) 

a 

Of course R(b>“) which compares frames at  b and a does depend on  the origi- 
nal frame choice a t  each point. If the frames at  each point were rotated by 
P(Q) then the rotation between b and Q would now be 

(3.2) 

Physics should not depend on this choice, so we look for invariant properties 
of R ,  this is most easily done geometrically. 

For a closed path &o, Q +- Q, we might get a resulting rotation R(‘7 )  de- 
pendent on 4. This determines a “strain” or physical effect indepenaent of 
the choice of frames and thus invariant. To analyse these things most easily, 
we work with infinitesimal displacements and closed circuits (as any finite 
closed circuit can be represented as an area integral of  infinitesimal closed cir- 
cuits, in the manner familiar in the usual demonstration of Stokes’s theorem). 

Thus consider b to  be separated from Q b y  an infinitesimal coordinate dis- 
placement Ax,. Then R is nearly 1, the difference being of  order Ax,. Hence 
we can write, to  first order in Ax, 

R(Q + A x  +-a) = 1 - iq,(x)Ax, , (3.3) 

where q, is a vector field, in Minkowski space, depending on  x ,  the location 
of point a ,  and is an operator in isospace. The transformation property ofv, un- 
der a rotation P of the frames is given (using (3.2)) by  

1 - iq; Ax, = p(x t Ax)(  1 - iv, Ax,)P-’(x) 

Putting 

we get 
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(we call this a gauge transformation o f  17). 
What happens if we go round a small square? 

I-I 
I laxr (3.5) 

Calculating to second order we obtain ( to  be correct to 2nd order we should 
expand each R to  second order beyond (3.3), but  it is readily seen that these 
terms will cancel in this order in going up and down the sides of  the square, 
i.e. such terms in the first bracket will cancel with terms in the third bracket, 
since to  second order they are opposite) 

R =  l t i q  x t -  6x ,+  ... l t i q ,  x t - t t x  Ax,+  ... [ 4 7) I[ ( A; 1 1 
X 1 - iq, x t A x  t- 6x, + ... 1 - iq x t - Ax, t ... [ ( I[ 4 1 
= 1 + ica,77, - auv, + i[17,> 17,1)6x,Ax, 

= 1 + i%pv6xpAx, ,  (3.7) 

(3.6) 

where we have defined 

q,, = a,% - a,s, t i[17,, 17,l 9 (3 .8)  

which is associated with an area tx,Ax, and is an antisymmetric tensor opera- 
tor of the second rank. Wwu is the physically interesting thing associated with 
the connection 17, which takes us from place t o  place. 

Suppose 93 is any tensor operator. We wish t o  know how it changes from 
place to  place. It will not d o  simply t o  take c13 (x + Ax) - 33 (x) since we can- 
not compare objects at a distance because o f  the effects of  the universal in- 
fluence. We must take account of the rotation of the frame by transporting 
93(x + Ax) back to x before making a comparison. Hence the total change 
in CM is 

[ l  t iq,Ax,]9(x t Ax)[1 - iv,Ax,] - 9 ( x )  

(3.9) 
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This enables us t o  define a covariant derivative on any tensor CM by 

Oil3 = a,'?3 + i[qp,Cn J . 

We will now deduce an interesting geometrical identity satisfied by  W,,,. 
(3.10) 

We wish to calculate the difference in circulation between the  top  and bot-  
tom faces of the cube. To get this difference it will not d o  simply t o  take 
%,,,(x + dx,) - -Xfi,(x), because t o  get back t o  0 we must go from 0 to  P 
(a factor 1 - igrdx,), then around the top (a factor 1 + im,,(x + dx)bx,Ax,), 
and !5en back down t o  0 (a factor 1 + ig,dx,); hence we want t o  compare 

(1 + i?,dx,] [ I  + i'X,,(x + dx,)6x,AxV] [ l  - iq7dx7J 

with 

3 + i i V i ~ v ( ~ ) 6 ~ , , A x ,  . 

'The difference between these two terms is 

(3.1 1) 

where 

dVpvo  =6xfiAxvdx,  . 

Notice that the term in the bracket is just the covariant derivative o f  cl?z,,v; 
this is riot surprising as all we have done is t o  compare %,, (cf. (3.5)) at 0 
and P. 

By comparing 7?lpv on opposite pairs of faces, and noting that the net 
effect of going round the sum of  the following 3 paths is zero, 
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(A -+ B + C +  C -+ F-+ B-+ A +  E-t  H .+ D +  A) 

t (A -+ D-+ C -+ B + A +  E +  F -+ G - t H  -+ E -+A) 

t ( A + B  -+ F-+ E + A - + D - + H + C + C  +D-+ A ) ,  

we get 

D,W,,, -t DPcm ,, -t D,cyIz,, = 0 .  (3.13) 

By taking U round a small closed loop, or by using (3.10), we get 

D,D,U -- D,D,U = i[-T,,, B]  , (3.13) 

and hence 

D,DvcLT,, = 0 .  (3.14) 

Now we will associate this with what we did beforz with Yang-Mills theory. 
Here each R is a rotation in isospace and so can be written i n  the form 

R = exp(-ia. T )  (3.15) 

where the Tare the generators of some representation of the SU(2) Lie algebra, 
and (I is a vector depending on the rotation it is desired to represent. 

For the infinitesimal rotation (3.3), a is also an infinitesimal of first order 
in Ax,,  say a = -A,  A x ,  so 

R = 1 + ' ( A ,  - T ) A x ,  . (3.16) 

Comparing this with (3.3) we see that 

77, = -A, * T .  (3.17) 

Substituting this into (3.8) we obtain 

W = -E,, * T ,, (3.18) 

where 

E,, = a,A, - a,A, t A ,  X A , ,  (3.19) 

and we see that is the same as the E,, which we obtained in (2.24). The ques- 
tion now is - can we understand any of the Yang-Mills field equations 
(2.26)-(2.37) geometrically? The answer is for most of the equations, no. In 
particular, why did we put the combination -(1/4g2)E,,- E,,, in the Lagran- 
gian? Physics tells us, not geometry, All we have discussed are the qualitative 
features of a classical field, and the response of particles to it (they rotate the 
axes as they move through it), but how the field itself has energy and behaves 
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dynamically we haven't determined. But there are a few things we can work 
out. Using (3.12) and (3.18) we have 

D,Euo +DUEO,  + DOE,,= 0 .  

And using (3.13) and (3.14), we have 

(3.20) 

D,D$- DUD,,&= E,, X s ,  (3.21) 

where 6 is any isovector and  

D,D,E,, = 0 

The analogue of (2.34) would be 
(cf. (2.35) and (2.36)). 

(3.22) 

(3.23) - 
D,m,u -g , .  

What is D,c1M,, geometrically? If I knew an easy way t o  describe this 
geometrically then we could state this equation as: D,% ,, is the total isospin 
in a small volume. Unfortunately I haven't worked this out ,  and therefore I 
cannot describe the full Yang-Mills classical theory in an elementary way. ( I  
am looking for a law like that in gravity, which says that the excess of the 
proper radius of a small 3 dimensional sphere over the radius calculated from 
the area, ~'(area/4n), is proportional t o  the mass inside the sphere - which is, 
assuming Lorentz invariance, a complete statement of the Einstein law R,, - ,- - 

&,,R = TPUJ 
We have said that the A field represents a universal turning of the axes of 

a diffusing particle, and now we should check that the equation of motion of 
the matter (ig - 4  -r)$ = m $ ,  for example, implies that indeed it does. To  
make it is easy, we first d o  it with the Schroedinger equation and electrody- 
namics but you will see that the method of proof is readily extendible to other 
cases. The free particle Schroedinger equation is 

(3.24) 

Solving this equation, we find that a particle propagates as follows. Suppose 
it is confined at  x1 at  time t l  (the wave-function is a delta-function). Then the 
wave-function at time r 2  and position x2 is 

(3.25) 

which we call Ko(2,1), this being the function which describes how the parti- 
cle diffuses outwards in time. Now consider a possible trajectory for the particle 
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The amplitude for the particle to go from A to B can be found by multiplying 
the amplitudes for i t  to go along all the infinitesimal sections of the path. 

Now add an external field to the Schroedinger equation 

(3.26) 

Consider an infinitesimal distance Ax. Over this distance, A and V may be 
treated as constants and are therefore expressible as the gradient of a poten- 
tial x 

- A = V X ,  - v =  a d a t ,  (3.27) 

where 

x=_A._x  + Vf. 
By a gauge transformation we see that the wave-function $‘ = eciX+ is a solu- 
tion of (3.26) if 
tude for propagation over a short distance and time Ax in the presence of the 
field as 

is a solution of (3.24), and hence we may write the ampli- 

KA (x + Ax, x) = exp { ix(x + Ax)}exp { -ix(x)} Ko(x + Ax, x) 

= exp(iA,Ax,)K,-,(x + Ax, x) , 
where 

(3.28) 

A 0 = - V ,  A , = A .  - 

Iterating this over a continuous path, we get 

exp(iJA,dx,) X (Amplitude for process without the A field) . 

In the case of Yang-Mills theory, this generalises to 

(3.29) 

exp(i A,. Tdx,) X (Amplitude for process without Y-M field), (3.30) 

where we must order the operator T along the path 
For infintesimal paths this reduces to 
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[ l  t i(AP * T ) A x , ]  X(Amplitude for process without Y -M field) , (3.3 1) 

and thus we see that the expression (3.16) has emerged naturally 

4. A qualitative critique of QCD 

One of the possible applications of Yang-Mills theory is to  Quantum 
Chromodynamics. The question t o  which we wish to  address ourselves in this 
chapter is whether or not this theory has a real chance of being right. Ordi- 
narily, when the right theory is found, it isn’t long before we can calculate 
consequences and check that it agrees with everything relevant that is known. 
For example, the whole subject of electrostatics was in complete confusion 
until the Coulomb law was discovered; before then people were rushing around 
in complete chaos and then suddenly they were calculating the capacity of  
elliptical condensors etc. ... . Similarly, before Schroedinger’s equation, there 
was a lot of pulling and hauling on ideas which were inconsistent, and sudden- 
ly, as soon as the equation was discovered, there was a tremendous tumbling 
out of results which showed how everything worked. Therefore it’s expected 
(at least by an old fogey like myself) than when the correct theory is found, 
lots of  results will tumble out which will agree with experiment. Now QCD is 
proposed as a theory which is supposed t o  be the correct theory of strong 
interactions; it’s been around for a few years now and we don’t have any quan- 
titative results. At the moment we cannot look at  the theory quantitatively 
(due possibly t o  technical difficulties in its interpretation) so we will look at 
it qualitatively to try and decide whether it is useful or not. 

4.1. Forces between tlw quarks 

The most characteristic thing about the quark bound state which have been 
seen is that they are colour singlets. Coloured states have riot been seen and we 
must conclude that either their mass is infinite or is out of the reach of present 
experiments. 

In this theory the three quarks in a baryon form an antisymmetric state 
with respect to  colour: 
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The first thing t o  look at is when we put three quarks together, can their 
energy be lower in some other state than in the singlet state? Similarly putting 
e quark and an anti-quark together, is the colourless (singlet) state lower than 
any other state? At the level we will woik, we will not attempt to calculate the 
energies correctly. we merely wish to see whether we can get their order right. In 
QED we know that the force between two static particles is 

e 2  
r ru- 

Similarly the force between two static quarks due t o  single gluon is 

(4.3) 

where Xi are the SU(3) matrices. 

the density of colour charge, we find a solution of the form A ,  = A, = A ,  = 0, 
A ,  # 0 where 

One can see this as follows. For a static source J, = J = J, = 0, and Jt = p, Y 

V2A, = pt (4.4) 
(from 2.34). This is just as in electrostatics except that here we have three iso- 
spin components. We could look at  this problem mathematically (by fiddling 
around with the h's); however we wish to  take a simpler view. The gluons 
which couple to  the colours of the quarks, can be represented as 

The last two gluons are the non colour changing states orthogonal t o  the 
singlet (1 /43) (AA + B B  + CC) which is omitted for reasons discussed earlier. 
This symbolism really tells us what happens to the colour of  a quark when it 
emits or absorbs a gluon. That is, an AB gluon can be absorbed by  an A quark 
turning it into B? with amplitude 1. (Annihilate the A and create a B instead.) 
We now calculate the relative strengths with which various quarks couple. Con- 
sider this vertex; a r  A quark emits a BA gluon changing to  B. 

A 
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I tiis BA g l u m  can be absorbed by  a B quark (turning it to A) but cannot be 
absorbed by an A or C (it can by  an antiquark however). Therefore, if we 
wjsh to  look at the A-A quark force, this vertex cannot contribute because 
this gluon cannot be absorbed by an A quark, i.e. 

A A 

does not go. 

exchange, viz. 
The only contribution t o  the A-A force is that due t o  the colourless gluon 

A A 

The interaction energy for this process is t2/4(+2/45) = + $, which is posi- 
tive, so they repel just  as in electrostatics (like charges repel). 

Now what about the A-B force? Here there are two allowed diagrams. 

1 

interaction energy = + 
A B 

and the exchange diagram 

A B (4.9) interaction energy = (+I)(+1)  = t 1 . 

4.8 and 4.9 must be combined to give the total interaction energy which gives 
t3. 

We could d o  the same for all the other colour combinations, but we’d be 
wasting our time as we know that the interaction is symmetric with respect to  
colour. The only cases we have t o  worry about are when the colours of the 
quarks are the same or different. We can summarize the results as follows. In- 
troduce a colour exchange operator P which interchanges a pair of quarks, it 

2 
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has eigenvalues t1 or -1 corresponding to whether the quarks are in a sym- 
metric or antisymmetric colour state. In the case when the quarks are different 
(cf. (4.8), (4.9), the interaction energy can be written 

(4.10) 

where p is the eigenvalue of P. The lovely thing about this formula is that, if 
we apply i t  to the case where the colours are the same (cf. (4.7), p = 1 in this 
case), we get the right answer 1 - 3 = ;. Thus we have shown that .Z(Xi)1(Xi)2 = 
P - 5 .  This is analogous to the Dirac formula for the interaction between two 
spins (e.g. two electrons in an atom): 

Pexch - (4.1 1) 

(the -$  becomes - 1/17 for SU(n). 

merely sum it over all possible pairs of quarks. 

quark will have some selfenergy, we don't know what this is, but to make it 
easier to see what's going on, we will take +8 for each quark - the qualitative 
results do not depend on this choice (because we will always compare the ener- 
gies of states of the same total number of quarks). 

We will symbolise the quark states as follows: draw a series of boxes with 
one box for each quark in the state, for example a possible 6 quark state is 

In order to generalise formula (4.10) to states of more than two quarks, we 

We shall now calculate the energy of various quark states using (4. lo). Each 

levels 
+ 

colows 
(4.12) 

This represents a quark configuration in which the wave-function is sym- 
metric with respect to the interchange of any pair of quarks in the same row, 
and antisymmetric with respect to the interchange of any pair of quarks in the 
same column, e.g. for a two quark state, I r e p r e s e n t s  the symmetric state 

and Erepresents  the antisymmetric state. We can use these (Young) diagrams 

to calculate the energy of a bound state using (4.10). We will work out one of 
these diagrams in detail for a three quark state which is symmetric under ex- 
change of one pair of quarks and antisymmetric under exchange of another 
pair: 
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The ccntribution from the exchange is 

(+I)  + (- 1) 
row column 

(4.13) 

Therefore the total interaction energy is (+ 1) + (- 1) - 3(f )  = - 1. When we 
add +: for each quark we obtain + 3. The following table summarises the results 
for various states. 

No. of Diagram 
quarks 

Interaction energy 

1 

2 

F 
4 F 
5 EP 

3 

6 

0 
1 2  + 1 - 3  = + J  

1 4  -1 _ - -  3 - - 3  

3(+ 1) - 3(5) = + 2  

1 + 1 + (- 1) - 3(3) = - 1 

1 3(- 1) - 3(3) = - 4  

1 +1 + 3(- 1) - 6 ( 3 ) =  - 4  

1 16 2(+ 1) + 4(- 1) - 10(g) = - j 

I 3(+ 1) + 6 ( -  1) - 15(3) = - 8  

State energy 
(+: added per 
quark) 

4 
+J 
+$! 

4 
+J 

+6 

+ 3  

0 

4 
+3 

4 
+ 3  

0 

Notice that ,which is totally antisymmetric with respect to colour and 

has the 

1 
which we identify with a baryon, has the lowest energy. Further 
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same energy as + 0 i.e. a single quark should be only weakly bound to a 

(in our approximation, #.a has the same energy as 

B 
El proton. Similarly 

zero) and it is impossible to say, in this poor approximation, whether or not 
such a bound state of two baryons will exist. 

Now let us try the same thing for the mesons. Consider 

1 % interaction energy = + 2 (4.14) 
A - (ZiiA-BB-CC) a 

A A 

The minus sign appears at the antiparticle vertex because the theory is a 
vector theory; this is just like electricity where the antiparticle has the oppo- 
site charge to the particle. Another possible term in the A-A interaction is 
that in which the quarks change their states 

interaction energy = + 1 (- 1) = - 1 (4.15) 

Similarly 

has the same energy as (4.19, -1 . (4.16) 
A A 

Now we can figure out the energy of the meson state ( l / g ) ( I A ) l x ) +  IB)IB) 
+ I O l C ) )  (singlet) i.e. we need to consider the coupling of this state to itself. 
Since this state is symmetric in A, B, C we get 3 X l / f i l A ) l ~ )  X l/&(IA)I& 
+ IB)IB) + IO lC) )  which is simply the sum of (4.14)-(4.16). Therefore the 
interaction energy is -$. Adding +: for each quark, we find the meson energy 
to be 0. (The mesons have the same energy scale as baryons, with this +; choice 
for each quark.) 
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Finally, we examine the state IA)IB), a coloured meson; there is only one 
possible diagram 

1 ( ZXA-EBFC ) 

interaction energy = + 
A 6  

Adding the quark self-energy we get a coloured meson energy of t3, which 
is much higher than for a colourless meson. We could ask why 

$ 
A.B 

does not contribute to the energy of the colourless meson. The answer is that 
the s channel gluon must be colourless; no such gluon exists - it was elimi- 
nated earlier. 

4.2. Infra-red behaviour 

We have indicated that a r - l  potential exists between two quarks in this 
theory. We know that this cannot really be correct, since the force between 
two quarks is known not to be long range - it is not easy to knock the quarks 
apart inside a proton (c.f. the case with which we can knock electrons out of 
atoms). This problem cannot be argued away by saying that the charges in 
QCD are stronger than in QED - with enough energy, we should be able to  
pull them apart. The long distance (infra-red) forces have to be modified in 
order to agree with experiment. Those who believe in QCD believe that this 
will happen when the theory is worked out. I think that the central problem 
in QCD is to see if, qualitatively, the forces are so modified. In some models, 
e.g. the lattice theory (see [12]), they are, but we are not sure if this an arti- 
fact of the models or not. It is true that when we go to higher order perturba- 
tions, we find the force increasing with distance (there are logarithmic correc- 
tions) relative to l / r2 ,  but it is unknown if this change is sufficient. 
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4.3. Dependence of masses on flavours 

4.3.1. Isospin dependence 

totally antisymmetric colour state. 
The proton and the A are both supposed to be made out of 3 quarks in a 

Mass (MeV) Isospin Spin 

1 1 

3 3 
2 

- - P 938 2 2 

A 1236 r - 

If QCD has forces depending only colour, how could there be a difference 
between these two masses depending on the isospin? In addition to the isospin 
being different, the spins are also different and we know, for example, that 
the forces are spin dependent and different for different spin states in QED; so 
there is no reason why this cannot be the case in QCD. The difference in the 
P and A masses, therefore, may simply be due to the fact that their spins are 
different. Then we say - look through the Rosenfeld tables to find particles 
with different isospins and masses, but the same spins and for which we expect 
the same space. Then QCD could be in trouble. However we cannot find any 
for the following reason. 

The wave-function is antisymmetric with respect to interchange of two 
quarks (Fermi statistics). This total exchange is equivalent to an exchange of 
space, spin, flavour and colour. Since the state is antisymmetric with respect 
to colour exchange (colour singlet), the flavour symmetry must equal the 
space symmetry X the spin symmetry; hence the flavour symmetry properties 
of a state are completely determined by its space and spin symmetry proper- 
ties. But colour forces depend on the space and spin configurations and there- 
fore can apparently depend on the isospin symmetry. In other words, we can 
find no wiy to verify the proposition that the forces are independent of fla- 
vour. Tlus, by the way, should be noted because in the early days of hadron 
theory the forces had explicit isospin dependence, e.g. there were interaction 
terms like &(+- Y)$, for a proton coupled to a pion. In QCD we cannot have 
any such directly isospin dependent terms, but it doesn’t matter as we have 
seen that the masses can depend indirectly on isospin. 

A very rough empirical formula exists [ 131 which summarises the mass 
splitting between baryon multiplets. It says that there is a contribution of 
-0.53 (GeV)2 to the (mass)* for every pair of quarks which are both syrn- 
metric in space and antisymmetric in spin. Mathematically this is 
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AM2 = -0.53 (GeV)2 
pairs 

Notice that the masses are lower if the spacial state is symmetric as opposed 
to antisymmetric, in an antisymmetric state, it is impossible for the quarks t o  
be at the same point; bu t  in the symmetric state this is allowed, so that the 
qualitative features of (4.18) may be summarized by saying that the correc- 
tion force is short range. The spin part says that antiparallel spin states are 
lower which is the right sign for the spin interaction of  attracting particles due 
to  a vector potential. 

4.3.2. Dependence on the quark masses 
We know that the K mass does not equal the n mass, although the K and 

the 71 both have the same spin-parity. How can we explain this? I f  all the forces 
are independent of flavour, then the masses should be exactly the same. It is 
therefore a failure of the simplest possible picture that SU(3) is broken. But 
we do not need to destroy QCD, we need only complicate it by supposing 
that the s quark has a higher mass than the LI and d quarks (but keeping 
the interaction independent of flavour). No-one knows where this extra mass 
comes from, we have left for the people of the future the problem of why the 
masses are different. Some people think that the masses of the u and d quarks 
are equal and that all the mass differences in isospin mukiplets are due to elec- 
trodynamics (e.g. proton-neutron), there are some technical difficulties in 
signs and magnitudes in this approach and i t  would help if we could say that 
the d quark is slightly heavier than the u quark for the same intrinsic (unknown) 
reason that the s quark is heavier than the u and d quarks. Another flavour 
now seems to have been found and maybe there are more; this new quark 
(usually called charm) must have a higher mass than the other three. We 
mustn’t forget that it is strange that we have to put in mass differences which 
are of  the same order of  magnitude as the bound state masses we are trying to 
explain. If we go t o  very high momentum transfers where masses are irrelevant, 
the SU(3) (flavour) should become better, 1 don’t know of‘ any direct dernon- 
stration that this is, or is not, the case - it would be nice to think o f  some ex- 
periment in which this could be tested. 

4.4. Zweig rule 

Consider the following groups of mesons 
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77 77 v’ 0- 

Mass(GeV) 0.14 0.55 0.96 

Mass(CeV) 0.77 0.78 1.02 

A2 f f’ 2+ 

Mass(GeV) 1.31 1.27 1.52 

These are the non-strange mesons from the 0- , 1 - and 2’ nonets and one 
might expect some similarity between these groups. Now it is known that the 
Q (e.g. in its decay, KK dominates) is an IsS) state. Similarly the w (3n decay 
modc dominates) is l/dT(luG) + Ida) )  and the p is l / f l ( l u i i )  - Ida) )  and 
they are very nearly degenerate. But the 77 and the q’ d o  not have this pattern 
App roximately , 

q = l ( I u U ) + l d d ) - f i I s F ) )  and n ’ = ~ ( I u u ) + I d d ) + ~ l s S ) )  

agrees with experiment. Note that this combination is very different from the 
w ,  4 case. Why? We would think that, in a state which contains IsS), the s and 
s could annihilate and then turn back into s and 7, but also into u and ii or d 
and d; therefore an I sS) state should become a mixture of all 3 quark types, 
and this is presumbly what is happening in the q, 7’ system. Why does this not 
happen in the w ,  4 case (and also does not happen in the f ,  f’ case)? This is a 
mystery. This mystery is summed up in the Zweig rule, an ad hoc rule which 
says that this annihilation process is inhibited. 

- 

One possible attitude is as follows 

With an 0- state, we need 2 gluons to  connect both sides of tlus diagram. 
At first sight, we would think that with a 1- state, we could connect with 1 
gluon since the gluon has quantum numbers 1- (cf. photon); but this would 
require a colour singlet gluon and we have n o  such object; so we need a rnini- 
mum of 3 gluons. If we could assume that the gluons were weakly coupled t o  
the quarks, we might try t o  argue that the mixing in the a, Q case is less than 
in the q, q‘ case, but it’s a little hard t o  get g3 less than g2 unless g (the cou- 
pling constant) itself is very small. Furthermore, if we look at the 2’ mesons, 
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we could make the connection in  the diagram with only 2 gluons, so it should 
look rather like 7, q' system; but  it doesn't (here the suggestion was made that 
the higher angular momentum 2' makes it harder for the gluons t o  get to- 
gether t o  annihilate). 

There is also another attitude, which is t o  suppose that ,  for some reason, 
when momentum transfers and energies become large, the coupling becomes 
small, then we can say the mixing is less in the 2' case than in the 0- case be- 
cause the energy is higher. In order for this work, the rate of change of coupling 
with mass scale must be large. 

This is not a satisfactory situation - it looks suspicious, as there is some 
feature of QCD that we d o  not understand. If we have a way of calculating 
with QCD (e.g. on a lattice) and if we wish to concentrate on something which 
will tell us if the theory is wrong, this seems t o  me t o  be an ideal place. 

4.5. Large transverse momentum in hndronic collisions 

Consider the process 

p + p --f hadron (large p , )  + X . (4.19) 

The average pL of a produced hadron at high energies is of order 350 MeV. 
In a field theory, it is not easy t o  understand why there isn't a reasonable 
amount of larger pI. Let us look specifically at particles produced at  very 
large p , .  

that a large pL particle would be produced by quarks scattering via gluon ex- 
change. 

In ou r  picture the proton is made of a bunch of  quarks, so we might expect 

equa ls  

quorks quorks 
(4.20) 

If the ratio x, = p , / p  is kept constant, the cross-section at  large p I  should 
go as pL4. (This follows merely by dimensional arguments and this result would 
be obtained for any gluon diagram.) Experimentally, it is more like p L 8 . * .  
This is very disturbing. Is this process operating or not? A possibility is that 
it really does occur, but when we put in the correct couplings and allow for 
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the fact that the coupling constant will fall as p L  increases, the process (4.20) 
is masked by some other process which falls like We must then assume 
that this other process hasn't yet fallen enough to let us see the mechanism 
(4.20). However the cross-section is already pretty small a t  400 GeV and still 
seems t o  be falling like p,'; it is therefore up to  the people who propose this 
explanation to  give some energy above which they believe the process (4.20) 
will take over; and to  explain what mechanism is responsible for the present 
trend. (One possible mechanism is described by the constituent interchange 
model, which gives a cross-section falling like p;'.) But in any event there is 
a challenge to  see what process QCD predicts that is so large as to  dominate 
over all the experimental range so far investigated and which behaves like p r 8 .  
Any theory of this process has t o  explain much data such as charge ratios cor- 
relations, etc ... . Details such as the fact that as x I  rises (toward 0.6) the ratio 
n+/n- rises to more than 2,  have to  be explained. 

4.6. Partially conserved axial current and vector meson dominance 

Certain hadrons have special properties and it is not clear where these prop- 
erties come from. One of these hadrons is the pion, which has the property of  
PCAC associated with it; another is the p meson which participates in VMD. 

cles were themselves fundamental fields. Why bound states of quarks (as QCD 
assumes the n and p are) should behave as if they were fundamental fields is 
a puzzle. I don't know whether this is a serious problem for QCD or not. 

Both PCAC and VMD were discovered when it was thought that the parti- 

5 .  Spontaneously broken symmetries and the Higgs mechanism 

We will try to  show why it is necessary to  use a Yang-Mills theory in weak 
interactions by considering the difficulties which appear in a more phenomeno- 
logical approach. We will discuss some relevent points from weak interaction 
theory although we d o  not propose to  give a review of  it. Consider the decay 
of a p - ;  one interpretation df this decay is the following diagram. 

where the weak interaction is mediated by a massive charged spin one boson 
W-. (The W- must be massive as the weak interaction is short range.) The 
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couplings at the two vertices are assumed t o  be V-A and equal (coupling con- 
stant f ) .  The amplitude for this decay is 

( 5  -2)  
f 2  a =  

q2  -Mi' 
where 9 is the momentum transfer between the I-(- and the e- . For q QM,, 
this reduces to  

f 2 I M i .  (5.3) 
In this limit the interaction looks like the four point Fermi interaction 

"'x' Amplitude = (C/&!) 
'- "e 

(5.4) 

i.e. comparing (5.3) with (5.4) we get 

f 2 / M k  = GIs. ( 5 . 5 )  

L?= -:(apt, - a,w,)l + :M*w, W ,  t matter te rms ,  

Let us write a Lagrangian for the W- and its anti-particle, the W', with a 
mass; we do this by analogy with QED for a massive photon:  

(5.6) 
Varying the action with respect to  W ,  t o  obtain the equations of motion, we 
get 

a,(a, w, - a, w,) + wv = s, , ( 5  -7) 
where S, is the current generated by  the matter fields in the Lagrangian.S, is 
not conserved: one contribution toS,  (the puWvertex in (5.1)) is 

- 
J/(.,)Y,(l - Ys>J/(P) . (5.8) 

This has non-zero divergence. I t  would have zero divergence if the y5 were 
absent and the masses ofp-  and up were equal, but this non-zero divergence 
is all right since the divergence of (5.7) is 

~ 2 a ,  w, = a,s, . (5.9) 
So we see that the presence of the mass term saves us from a possible incon- 
sis tency . 

using (5.9) as 
We derive the propagator for the W,  as follows. Eq. (5.7) can be re-written 
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0 W c1 + M 2 W  P =S, +----a (a,S,). (5.10) 

M 2  ’ 
In momentum space, this is 

(5 .  I I )  

Therefore, given the sources S , ,  we can calculate the field W, using the propa- 
gator 

(5.12) 

This tells us how a field W ,  propagates from one interaction to  the next. Using 
this, we can construct diagrams for the theory. There are indices on the propa- 
gator because W is a vector and therefore has various polarisation states. We 
can see that a free W, has three polarisation states, as required of a vector par- 
ticle, and not four as we might guess at first sight: take (5.7) with s,, = 0; this 
describes the propagation of  non interacting Ws. Substitute a free particle solu- 
tion 

w = e  eik.x (5.13) P ,  

where e ,  is the W polarisation vector. This gives 

- k,(k,e, - k,e,) + M2eU = 0 . (5.14) 

Multiplying by k ,  we get 

- k 2 ( k . e ) + k 2 ( k . e ) + M 2 ( k . e ) = 0 .  (5.15) 

Hence 

k - e = O  ( M f O ) ,  (5.16) 

i.e. the polarisation vector e,  is orthogonal t o  k ,  and so has only three de- 
grees of freedom. Of course, when the w’s are off mass shell, there are four 
polarisation states. Similarly, in massless QED, the photon has two polarisa- 
tion states when it is on its mass shell, and three when it’s off (the extra degree 
of freedom represents the freedom to make gauge transformations in QED 
which is lost if a mass term is added as in (5.6)). 

as long as we do not have any diagrams with closed loops i.e. as long as we 
only calculate tree diagrams: 

We attempt t o  calculate with this massive W theory. Everything works well 
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(5.17) 

Another way t o  say this is that the theory works perfectly a t  the classical level. 
At the quantum level, we run into difficulties with closed loops 

x (5.18) 

The reason is that we must integrate over the momentum k running round the 
closed loop. At large k ,  the propagator, 5.12 - k,k,/k2 so the propagator does 
not assist the convergence of the integral; the diagram diverges. Unfortunately 
we cannot remove these divergences as in QED, because as we go t o  more loops 
the divergences become more and more severe: (i.e. it is not  renormalizable), 
e.g. 

(5.19) 

The theory is therefore a disaster quantum mechanically and in order t o  con- 
struct ;i workable renormalisable theory of weak interactions we go to  a Ymg- 
Mills theory with broken symmetry. To d o  this, we first discuss symmetry 
breaking in simpler cases. 1 shall take a rather physical view of symmetry break- 
ing and leave the more abstract mathematics t o  other people. 1 do this because 
1 think that it is useful t o  have more than one way of looking at a problem; 
the way 1 shall present it may be unfamiliar, but people may benefit from this 
physical approach. 

We will start with a simple model and gradually increase its complexity. 
First take a real scalar field only; the Lagrangian is 

(5.20) 

where we have included a $4 interaction term. The theory has discrete symme- 
try $ -+ -6. Normally the vacuum expectation value of $((@)) is zero; however 
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this is not always the case as we must choose (@) to niinimise the energy. 
In fig. 5.1, we have plotted the classical potential 

(5.21) 

for the two cases (a) p 2  > 0 and (b) p 2  < 0. We look for the state of minimum 
energy (the vacuum) which we get by minimising V(@):  

W)=3 P2 @ 2 +744 

(5.22) 

(5.23) 

Take (4) to be + u, although the choice of sign is arbitrary; however notice 
that once we have chosen (@) = f u ,  we have broken the symmetry @ + -@. 

In case (b), we now perturb about u 

@(XI = u + v(x> (5.24) 

Substituting this in (5.20) we get 

(5.25) P= -+ (aPv)2  - xU2+ - -+ + -u4 x . 
4 4  
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Suppose is small*; to  a first approximation only the first two terms matter; 
these represent a scalar meson with a real mass of m. (Note that in 5.20 
the @ meson had an imaginary mass in the case p 2  < 0.) The other two 71 terms 
in the Lagrangian represent 77 self couplings viz. 

(5.26) 

These couplings would appear when we d o  perturbation theory with (5.25). 
Why does the whole world have (9) = + u ?  Why doesn't it have (@) = --v 

somewhere? Suppose that God created the universe in the state (6) = 0 and 
then the universe discovered that it could lower its energy; where it puts its 
energy is none of my business, but it gets rid of it - gives it back to God or 
something; then under some disturbance the vacuum tries t o  fall down with 
some parts going to  + u and other parts t o  - u .  But what happens in between? 
It just changes suddenly, but not too suddenly, because to  get low energy the 
(a,@)2 term must not be too large. This extra (a,@)2 energy, plus the energy 
due to the fact that @is  above its minimum potential energy, is stored in  the 
boundary between the two regions, so that i t  we have some region i n  which 
(4) = - u  surrounded by a region where (4) = -t u. we can lower the enei-gy b y  
shrinking the region where (4)  = - u to zero decreasing the surface area and 
hence the enet-gy so t h a t  the whole universe is in the same state. 

with the components Re I$ and Im @. 
Secondly. we look at a complex scalar fjeld i.e. I$ is a two component field 

(5.27) 

with p2 < 0. 
We minimise the potential 

i.e. 4* = o (a local maximum) or 1412 = -p2/x = $. 

* Large perturbations about the minimum 1vil1 not interest us. They can only occur is sys- 
tems at very high energy density e.g. in very dense material such as neutron stars. Other- 
wise there are only minor effects due to barrier penetration. 
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The minimum fixes 141 
plane. 

Since 0 (the phase angle of the complex field) is undetermined, we can fix 
the vacuuni to be at any 0 we wish. We will take 0 = 0. In order t o  make per- 
turbations about this vacuum we now make the substitution 

to be u2,  i.e. the niinimuni is ;1 circle i i i  the @ 

4 = eit/u(u + 77)  , (5.29) 

where { represents perturbations in the 6 direction and 77 represents perturba- 
tions in the radial direction. For small <, 77 this reduces to  

@ =  u + q  + i t ,  (5 30) 

which is equivalent t o  doing perturbations about Re 4 = u and Im 4 = 0. Sub- 
stituting this into (5.27) we get 

xu' L?= + (dp77)2] --$ + cubic and higher order terms.  (5.31) 
4 

This tells us that we have a particle q with mass hu2/2. This mass is a conse- 
quence of trying t o  displace the 77 against the restoring forces of the potential 
(the potential is like fig. 5.1 (b) in the 77 direction). The C; particle has no mass 
-- it is known as a Goldstone boson; it corresponds t o  displacements around 
the minimum surface (i.e. around the circle in fig. 5.2) where there is no re- 
storing force, since the potential is flat. 

different places A and B. In between, we would like t o  keep the gradient of 
4 as small as possible in order to keep the energy as small as possible; but if 
A and B are far apart we can manage this because (4) can continuously vary 
as we go from A and B. As A and B get infinitely far apart, the gradients tend 

We can ask in this case, what happens if (4) takes different phase values in 
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t o  zero and so the energy stored is zero. We can consider this changing of 4 in 
the vacuum as a long wavelength excitation; as the ,wavelength tends to  in- 
finity (A and B tend t o  infinite separation) the energy tends to zero, so this 
excitation in the vacuum will correspond t o  a zero mass particle. 

The need for such a massless particle appears t o  be general, and not depen- 
dent on our specific example. I f  the  original Lagrangian has symmetry, this 
symmetry may be broken by  the solution of minimum energy in the real world 
(the physical vacuum). But if the symmetry is represented by a continuous 
variable (like a rotation of phase) the “direction” of breaking can be slightly 
different in different places and waves due t o  perturbations in this direction 
must always be possible. In general, little energy is associated with long wave 
disturbances and we have (after quantising these perturbation waves) particles 
of necessarily zero mass - called Goldstone bosons. There are, however, cases 
where the variation of direction generates a current or charge density of some 
kind with which there are long range forces associated (i.e. r - l  potentials). 
Then the large contribution of large volumes t o  the energy of interaction in 
the long wavelength waves, increases the energy w of the long waves to  a 
finite value; the quantised excitations are now of  finite energy as the wave- 
number k + 0 and hence of finite mass. (This ‘‘mass’’ generation by long range 
force is familiar in solid state physics where density variations of neutral mole- 
cules give rise t o  phonons with a dispersion w = C,k, but compressional oscil- 
lations of charges like electrons give rise t o  plasma waves with a dispersion w = 
dwp2 + k 2  (wp = a constant) due to  the long range Coulomb interaction be- 
tween the charge densities.) 

Since later we shall want t o  use symmetry breaking to explain how mass 
terms arise and since zero mass Coldstone bosons are not found, we whall have 
to  add long range interactions (of zero mass Yang-Mills fields) t o  give them 
mass by this mechanism, called the Higgs-Kibble mechanism [4,5,14]. If there 
is more than one way to  vary $,while keeping the energy a minimum then there 
will be more than one Goldstone boson. The following example illustrates 
this. In SU(2), take an isovector+; the minimum of the potential V ( @ + @ )  will 
occur for some non zero magnitude of 4, but  its direction is undetermined and 

we can take (4) = o . In  order to look at small perturbations about the mini- 

mum we consider (by analogy with the previous example) 
(:) 

(5.32) 

where L and L 2  are two of the three SU(2) generators. Now the minimum is 
on the surface of  a sphere (cf. the circle in fig. 5.2) there are now two inde- 
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pendent directions in which the potential is flat viz. the and g 2 .  The q meson 
has a mass corresponding to  radial displacements off the sphere, in which direc- 
tion v(@++) increases. 

I n  general if the Lagrangian is invariant under a group G but the vacuum 
has a lower symmetry i.e. i t  is invariant under a group G’ where G‘ < G. Then 
there will be massless bosom whose number IZ = dim G - dim C‘. ln the SU(2) 
example above, the vacuum is invariant under U( l )  so that the number of  
nlassless mesons is 3 - 1 = 2.  

the physical world. Suppose the u and d quarks have zero mass. Then the 
Lagrangian 

We give another example of this phenomenon which has more relevance to  

P= ?,,i$+, + + chirally invariant interaction terms,  (5.33) 

$ -+ e - i h g  $, J /  -+ Ge-ibrs (5.34) 

is invariant under the transformation 

which is called a “chiral transformation” for arbitrary constant 0. We can see 
this easily, as y5 anticommutes with the other y matrices. Note however that 
a mass term would not be invariant 

but a coupling to a vector potential via y, would be invariant. Thus unless the 
symmetry is broken all the solutions of the Lagrangian must be chirally in- 
variant and so, for example, the proton would have t o  be massless or parity 
doubled (because the chiral transformation changes the parity of a wavefunc- 
tion). Experimentally the physical world does not have this symmetry. There- 
fore this symmetry must be broken and a Goldstone boson must exist if (5.33) 
is valid. No such massless particle exists but it would have to  be a pseudoscalar 
meson, and therefore there is a temptation to  associate it with the pion. Un- 
fortunately the pion is not massless - but it is very light and people have there- 
fore concluded the following. It might be that the u and d quarks have a small 
mass and therefore the chiral symmetry is only approximate; this would then 
possibly give a small mass t o  the pion. If this is the case, we can deduce a num- 
ber of things about the pion couplings; these relations, such as the Goldberger- 
Treiman relation [e.g. 151, known as PCAC, are approximately verified ex- 
perimentally. (We could expect another low mass boson coupled to  UU + d d  
i.e. a pseudoscalar but with isospin equal to  zero. This is not found, people 
feel that the q’ is too heavy, and how this difficulty can be resolved has always 
been a fascinating problem (the problem of the ninth pseudoscalar boson in 
SU(3)). I am sorry to find that the length of this course is t o o  short to permit 
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me t o  discuss it along with many other interesting things I had hoped to discuss). 
Let us return to  vector fields. As we have so far discussed them, only the 

massless ones seem to make sense quantum mechanically. These have long 
range forces and we might therefore expect that the presence of these fields 
would eliminate the Coldstone boson when we break the symmetry. This is 
indeed the case as we will now show. Take a Lagrangian describing charged 
scalar particles interacting with photons 

P= ;(a, t iA,)@*(d, - iA,)@ -T P2 4*4 --(4 A *  4)2 - 4 FpvF,, , (5.36) 
- 4 

with p2 < 0. 

We make the same substitution as before viz. qb = eiC/"(u + 77). Again we take 
the minimum of the potential t o  be u ,  giving 

This is just the same as the Lagrangian (5.27) with electromagnetism added. 

I t  looks as if the A ,  field has acquired a mass (see the term f v 2 A 2 )  but there 
is a peculiar term where A ,  is coupled to apg but the coupling is really 4 u2 
(A,  - (a,(/ v))* so we can remove this term by doing a gauge transformation 

(5.38) 4 '  = e-itlu 4, A ; =  A ,  - (a,</ u)  . 

The Lagrangian then becomes 

x 
AW3 - p 4  

X U 2  pz f ( a  77j2 -- 77?. + f u 2 A ' 2  - 
P 4 

t f A ' 2 q 2  -t v A r 2 q  - 4FPvF,,,,  (5.39) 

(FPv is invariant under this gauge transformation). in this Lagrangian we again 
have a massive field A ;  but now the field [ has disappeared altogether and 
all the interactions are cubic or higher order. This phenomenon is called the 
Higgs mechanism. (There is no t e m  like A,"$.) These interactions may be 
represented by the following diagrams 

(5.40) 

where------ is an q propagator:- is an A: propagator. 
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One could say: haven't we lost a degree of freedom ( t )  between Lagrangians 
(5.36) and (5.39)? No, because the theory is no longer gauge invariant electro- 
dynamics - tlie free vector particle A h  now has three polarisation states since 
it has a mass, whereas the massless A ,  only had two polarisation states. There 
are four dynaniical degrees of freedom in each case. We lost the gauge invari- 
ance when we made the explicit gauge transformation to  eliminate $ and 3 

gauge transforination on (5.39) will not leave it invariant: in particular, it will 
bring back a term of the form A,a,$ where $ is the gauge parameter. 

We will now give a physical example of this phenomenon. The example is 
superconductivity and it is discussed in detail in [ 161 ; here we shall merely 
give an outline. Superconductivity has the same properties as described above" 
except that i t  is non-relativistic. In the case of a metal a t  low temperatures, the 
electrons form (Cooper) pairs of opposite spin in such a way that these pairs 
act as bosons. Let $ be tlie wave function for one of these bosons: it satisfies 
the Schroedinger equation. We consider the case of $ interacting with an elec- 
tromagnetic field 

(5.41) 

where E is a constant and e is the charge of a pair of electrons. Since tlie $ is 
a boson, many pairs of electrons can be in the same state. The electromagnetic 
current is 

(5.42) 

Suppose that in the absence of  _A there is no current but that all particles are 
in the same state because of the Bose condensation. This j represents not only 
the probability current of one particle, but  when multiplied by e and N / 2  (the 
number of particles) represents the physical electric current of the bosons. 
When very many bosons are in the same state, the wave function acquires a 
real physical significance, just as the photon wave function becomes the physi- 
cally real (gauge transformations excepted) _A (x, t )  of classical mechanics and 
electromagnetism (Maxwell theory) when there are sufficient numbers of 
photons in the same state to  make a "real" light wave. Turn on  a very small 
field _A. To a first approximation, in many cases (those which yield supercon- 
ductivity) the wavefunction is unchanged because so many interacting bosons 
are in the same state; so that the current we get is 

The Higgs Lagransian (5.36) in the static case is identical to  the Ginzbure--Landau free * 
energy in the theory of type I1 superconductors [ 171. 
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(5.43) 

But $*$  is simply the density of bosons; call this N / 2  (N is the density of the 
electrons). The current is 

(5.44) 

i.e. the current in a superconductor is proportional t o  the vector potential. 
The Maxwell equation 

becomes 

v2 A =texternal  'jsuperconducting 

i.e. 

(5.45) 

(5.46) 

(V2 - ' ) A  =jexternal , (5.47) 

where A = N e 2 / 2 m  and is called the London constant. This is the equation 
which describes the behaviour of a vector particle with a mass. The theory has 
spontaneously acquired a mass exactly as in the Higgs case. Notice that we have 
also lost the gauge invariance as we did in the Higgs case; we have chosen the 
gauge where the equations describing the physical properties of the theory are 
in simplest form. 

Recall that when we considered the geometrical significance of gauge in- 
variance in sect. 3 we saw how the gauge information could be carried from 
place t o  place by a particle. In this problem we have merely chosen the gauge 
which is carried by the electrons and it is clear that this is the natural gauge 
for this problem; this is why the equations appear simpler in this gauge. 

theories. We look at two cases 
We shall now look at spontaneous symmetry breakdown in Yang-Mills 

(i) Isospinor scalar particles. We construct the same V ( @ )  as we had earlier 

where i = 1,2.  Let us assume that at some point in space 

$ =  u ( ; )  

(5.48) 

(5.49) 

If 4 is pointing in the three direction of  the three dimensional space of SU(2), 
there will no longer be gauge independence in the 1 and 2 directions since if 
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we rotate about the 1 or 2 directions @ changes, so we expect that two coni- 
ponents of  the A ,  field pick up mass. But what about the 3 direction? When 
we rotate about the 3 direction, a spinor gets multiplied by a phase i.e. 

(6) -+ (eiY2) 9 (5.50) 

for a rotation through 8 .  So we d o  not have any gauge freedom left and there- 
fore all three components ofA,  pick up a mass. 

Mathematically 

+ $(d, + i r . A > Q ( a ,  - i r - A ) + -  ~ ( 4 ) .  (5.51) 
1 Ll=--E 

4g2 P v  P v  

Put @ = ( A )  u and look at the inass term for the A’s. This is 

(5.52) 

So we see that all three components o f A  have acquired the same mass. 
(ii) Isovector scalar particles 

$ 1  +=( 0;) 
The potential has the same form as (5.48) with i = 1 ,  2 , 3 .  Let the vacuum expec- 

tation value of 4, (4) = 0 u, define the 3 direction in isospace. Carrying this 

@ particle around tells us where the 3 directions is everywhere. Hence, we lose 
the freedom t o  rotate the @ field about the 1 and 2 directions and therefore 
A and A will become massive - we have broken the gaua oe invariance ir, the 
1 and 2 directions. But if we rotate by 0 about the 3 direction the 1 compo- 
nent is multiplied by e ie ,  the 2 component is multiplied by e c i e ,  and the 3 
component is left unchanged i.e. we still have a freedom of gauge rotation 
about the 3 direction. A will still have zero mass. 

(3 

Mathematically, 

P =  - E  v ~ , v  t f [i(d, +A,x)+J+[~(~ ,  + A P  x)$] - ~ ( 4 )  (5.53) 1 
4g2 

u we get the mass term for A : 

U2 

2 - [ (A 1)2 + ( A  *)2] (5.54) 
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i.e. A and A* have the same mass and A 3  is massless, as expected. One might 
ask - why do we use scalar particles t o  break the symmetry? They are of 
course the simplest to write down. But this “superconductivity” effect can be 
generated in many ways (as indeed in real electrodynamics where pairs of fe r -  
mions d o  it), and it is possible that the symmetry breaking if it occurs, in say, 
weak interactions or other places in physics, may have a more complex mecha- 
nism than the Higgs scalar method. But to-day we have a severe restriction on 
the meaningful theories we can write down i.e. that they are relativistic, quan- 
tum mechanical, and renormalisable. If all these restrictions are imposed it 
looks as if only the Higgs method can be formulated at present. 

6. Quantisation 

6.1. Philosopli-v 

Before we commence a detailed study of  the quantisation of a Yang-Mills 
fields, we shall describe the various approaches t o  quantising a classical theory. 
Fig. 6.1 illustrate a general schema for quantising particle mechanics. 

nian, written in terms of 4( r )  and its conjugate momentum p ( t ) ,  defined by 
p ( t )  = dP/d$( t ) .  There are two routes by which we can quantise the theory. 

We begin with a Lagrangian from which we can deduce a classical Hamilto- 

LAGRANGIAN HAMlLTONI AN 
CLASSICAL 

q ( t )  P ( t )  ACTION 
q ( t )  

PATH INTEGRAL ti ( SPACE ) 
OPERATORS 

q ( t )  p ( t )  QUANTUM 
SCHROEDINGER 

\ \  / /  
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(0 ( x , t ) ,  r ( x , t )  
ACTION 

al ( x , t )  

From the Hamiltonian we can define operators associated with p ( t )  and q(t)  
and hence obtain either the Heisenberg or Scliroedinger pictures; from these 
we can deduce results which predict the behaviour of phenomena in the physi- 
cal world. There may be a problem with operator ordering when we go from 
tlic classical to  the quantum theory. The alternative approach is to  start with 
the Lagrangian and introduce a path integral which associates a certain ampli- 
tude with each trajectory in space [ 181; this enables us to proceed directly t o  
calculate the consequences of the quantum theory. (There exists an alternative 
path integral method, not much used these days, devised by DeWitt -Morette 
[I91 and Gnrrod [20] i n  which one can construct a path integral in phase space 
directly from the Hainiltonian. This resolves many questions of the order 
of operators in the Hainiltonian. From it the ordinary path integral is easily 
obtained.) All methods lead to the same consequence physically, but each 
iiiethod has its advantages and disadvantages and we choose which ever is the 
more convenient for the problem at  hand e.g. spin f is very awkward t o  handle 
in path integral approach. 

Consider now the situation when we try to  quantise a field theory (fig. 6.2). 

I LAGRANGIAN I I HAMILTONIAN I 

PROBLEM 

(PHASE SPACE ) OPERATOR 
ORDERING 

OUANTUM INTEGRAL 
SPACE -TIME 
0 ( x , t  1 

THEORY 

RULES LJ 
I HEISENBERG 

OPERATORS I 

PYENOMENA 'I 
~ 

Fig. 6.2. 
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The classical variables s(t) and ~ ( f )  are replaced by @ ( x ,  t )  and its conju- 
gate momentum n ( x ,  t )  defined by  n(x ,  t )  = ap/a@(x, t ) .  The situation is simi- 
lar t o  that in quantising a particle theory and historically people like Heisen- 
berg and Dirac [e.g. 211 followed the Hamiltonian approach. This leads t o  
@(x, t )  and n ( x ,  t )  being operators and again we have a problem with operator 
ordering in the more complicated field theories. There is also a Schroedinger 
approach which people don’t use much these days in which the vacuum has a 
wave function in terms of the co-ordinates i.e. an explicit functional of  the 
field function @(x). Alternatively we can proceed by the path integral method; 
the path is now a function of @ ( x ,  r ) .  Because of  difficulties in calculating with 
the theory we usually proceed by  perturbative methods. To d o  this we nor- 
mally use diagrams and rules, all of  which can easily be deduced from the path 
integral formulation. We can also get these rules from a Heisenberg approach, 
but it is more difficult. Nowadays we know of an obvious and simple-minded 
short cut to  get straight from the Lagrangian t o  the diagram rules. Some peo- 
ple who are not sufficiently acquainted with the theory, think that the rules 
are all there is, and then say that the theory is only defined by a perturbation 
expansion. It is true that we can only calculate things by perturbation theory, 
but this may be only a limitation of  the era and in any case there are certain 
things that we can deduce from the Lagrangian without using perturbation 
theory. (For non-relativistic field theories, such as those that arise in solid state 
physics, we are not at all limited t o  perturbation theory, and many methods 
and solutions for large or intermediate couplings are known.) 

calculate diagrams with closed loops we get infinite answers. When we go 
through the Heisenberg approach, the theory is not manifestly Lorentz in- 
variant; but in the path integral approach it is, so for this reason the latter ap- 
proach is to  be preferred when we attempt t o  renormalise the theory. The dif- 
ficulty is to  keep the renormalisation process Lorentz invariant when the form 
of the equations is not manifestly invariant. There is difficulty in the path inte- 
gral approach, however, and that is concerned with the inclusion of fermions. 
The path integral method doesn’t work in this case: but when people went 
through the operator approach they found that there were only differences in 
signs when fermions were introduced, and so minor were these differences 
that they forced the path integral formalism to work by  introducing Grassmann 
algebras. 

In attempting to  quantise Yang-Mills theory, Schwinger [ 2 2 ] ,  after a lot 
of hard work, found the Hamiltonian from the Lagrangian, but an attempt t o  
proceed with the Hamiltonian approach ran into serious difficulties with the 
ordering of operators and progress in this direction ceased. 1 took the short cut  

In a field theory there is a problem of renormalisability, because, when we 
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(in fig. 6.2) [23] and found that there are certain complications in the diagrams 
at the one loop level; but  I got round these by introducing a contribution from 
a fictitious particle. The correct rules for this particle were first worked out by 
de Witt [24] and subsequently understood in a more general way by Fadde’ev 
and Popov [26]. However I could only do it for one closed loop; if there were 
two or more closed loops I didn’t know what to  d o  - I sort of half understood 
it. Fadde’ev and Popov straightened this problem out  by going via the path in- 
tegral method and discovered that to  all orders we have to  add a closed loop 
of scalar particle with Fermi statistics for every closed loop with a Yang-Mills 
vector meson, they also went via the Morett path integral approach using the 
I-lamiltonian derived by Schwinger. The problem of renormalisability was solved 
by ’t Hooft [25] using his method of dimensional regularisation. 

Yang-Mills theory is often presented as being complicated, but now that 
all this work is done and proofs proved, it is really not much more complicated 
than QED apart from the more complex algebra which is involved; and a bit 
more care is needed with the gauge invariance. We just add the contribution of  
the ghost and regulate by the dimensional regularisation scheme. 

It would be sensible now t o  give the correct and complete theory, say as 
outlined in Abers and Lee [ l o ]  and many students might prefer this. But t o  
get a clear feeling for the need for the Fadde’ev-Popov ghost, we can contrast 
the theory with QED by asking what happens if we just plough along and make 
diagram rules by direct analogy with QED. This is a sort of “damn the torpe- 
does, full speed ahead” approach. We will discover that we are hit by a torpedo, 
but let’s try it anyhow. 

We will attempt to  calculate with the theory by first deriving the diagram 
rules directly from the Lagrangian. 

6.2. Derivation of the rules for diagrams 

We shall assume that the reader is familiar with the methods of deriving the 
rules from the Lagrangian and so we will merely give an outline of  the deriva- 
tion as we go along. Consider the following model Lagrangian for spin iso- 
spinors $ and spin 0 isovectors +interacting with Yang-Mills fields A, 

where we have rescaled A ,  t o  gA, and so now 

EPv = a,A,  - a,A, + gA, X A ,  . 
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We separate the Lagrangian into rernis of second order and terms of  third and 
higher orders in the fields. The second order terms give the propagators and 
the higher order terms give the interactions: 

P= - I F  4 P V  - F P V  + &(iy,,a,, - nz)ii/ + f [(a,cp)+(a,&) - M2++4] 2nd order 

+. 8 7 , ~  ,, - $ - g(A , x A ,) . a,, A + f g  [a,,$ + - (A ,, x+) + a,,+ (A,, x ++)I 
3rd order 

4th order + I  2 g 2 ( A p  X++) - ( A ,  X 9 )  - $R2(A, x A,> - ( A ,  x A , )  

(6.3) 
where we have retained FPu = a,A, - a , A ,  t o  pull out  second order terms in 
A ,  which will give the vector field propagator. 

first derive the diagram rules for the interaction terms. Consider the term 
As there is some problem in deriving the propagator for the A ,  field, we will 

gJIy,A, * T $ 3 (6.4) 
this corresponds to  the following interaction - I) coming in, absorbing or 
emitting an A ~ and going out as a $, viz. 

In co-ordinate space we take 
- 

II, = u ,  e-iP,X = ii7 e+iP2X, A P P  =(I e + i v ,  (6.6) 

i.e. free waves. Going to momentum space the diagram becomes 

where the momenta carried by the particles are indicated on the diagram. We 
can now read off the vertex; i t  is 

This, except for the presence of  the 7 matrix, is identical to  QED. In fact, as 
in OED, we d o  not need actually to write the u l ,  Ti2 spinors for virtual fer- 
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mions, but just string the Dirac (and r )  niatrices together in a product in order, 
as we conie t o  them following a ferinion line. 

We now consider, i n  a similar fashion, the third order (in the fields) term 
for the scalar field @ interacting with the Yang-Mills field A ,  

+ ; g  {a,++ - (A, x+) + a,+ - ( A ,  x++H. 
Putting in, as before, the free fields 

(6.12) 

So far, these interaction are similar t o  (apart from the isospin labels) those in 
QED. But in Yang-Mills theory there are two extra vertices which have no 
QED analogue (they arise because the A ,  field itself carries "charge"). The 
term - g ( A ,  X A , )  - a,A, gives, in momentum space, -g(u, X b,) - c 4 

C P  when we substitutea elqlax for the first, b,e'qb.' for the second, and 
c , ~ ' ~ C '  for the third with momenta q,, q b ,  qc. Hence altogether it gives, 
taking account of permutations and with a bit of re-arranging of  the dots and 
crosses: 
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There are six terms altogether since each of the three A,’s can be either a,, b, 
or c, in every possibly way. 

The term-$g*(A, X A , ) . ( A ,  XAJgives 

g2 
- - { (u,X b,) - (cp X dJ + three other symmetric 

combinations}, (6.15) 
4 

which comes t o  a total of -gz (up X b,) * (c, X d,)  by a bit of rearranging. 
We must finally derive the propagators for the theory from the quadratic 

terms in (6.3). The propagators for J, and 4 are easy t o  get. The equation of 
motion for J, is (obtained from the Lagrangian by varying with respect t o  6) 

(i3- m)J, =/f> (6.16) 

where J is some source for $ (whose exact form is irrelevant, e.g. some non- 
linear combination of other fields like A - 5  J,, that in the diagrams generate a 
source away from which a particle J, is to  propagate) 

So symbolically 

J / = -  1. I? - ni 

In momentum space this is 

(6.17) 

(6.18) 

This gives the J, which enters into a source term for another interaction, and 
so each virtual J, line brings in a factor (p - -  n z ) - l .  This then defines the propa- 
gator 

(6.19) 

The i and j are isospin indices. The ijii is present since J ,  must couple t o  the  
same isospin at both ends. 
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For the 4 field, the equation of motion is 

(0 + M 2 ) + =  -J '  . 

The re fore 

(6.20) 

(6.2 1) 

where we have again transformed to momentum s p ~  
gator 

:: gives the 4 propa- 

where the a and b are isospin indices. 
Finally consider the A ,  propagator; the equation of motion is 

a,(a,A, - a,A,) = -JJ , 

i.e. 

(6.22) 

(6.23) 

O A ,  - a,(a,A,) = -J;  (6.24) 

where Ji is the total current - matter plus contributions from the A ,  itself 
due to the third and higher order terms in the Lagrangian. We need to solve 
this equation to get the propagator. However in general we cannot solve it be- 
cause by itself it is meaningless unless the divergence of J i  is zero, for the diver- 
gence of the left side is identically zero. We conclude therefore that 

a , J i = o ,  
i.e. 

a, { J ,  + a,(A, x A ~ )  + A ,  x q Y j  = o . 

When we attempt to obtain the propagator in QED, we do so by choosing 

a,A, = 0 ,  (6.26) 

as we may do due to gauge invariance. The equation of motion then becomes 
simply 

(6.25) 

This equation can indeed be verified using the relation (2.42). 

O A ,  = -.I, , (6.28) 

and we can solve this to obtain the propagator viz. 
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(6.29) 

so the propagator is 

6,”lP2 . (6.30) 

It turns out that when we use this and calculate diagrams in QED, the current 
we get from the diagrams is automatically conserved so that everything is al- 
right, as it must be since 

a P o A p = - a  P J P 7  (6.31) 

from (6.28), and both sides are separately zero: so the gauge choice is self con- 
sistent. This is equivalent to replacing the action -iJF,,f-,,d4x by -$  J(a,,A,) 
(a,A,)d4x, or in other words t o  adding an extra term +yJ(a,AP)2d4x t o  the 
action, so the Lagrangian becomes simply - f  FPVF,,, + ~ ( a P d P ) ( ~ v A v ) .  
Take a flying guess and try to  do the same thing for Yang-Mills - an excel- 
lent method of doing physics. The purpose of physics is to  find out what’s 
true, not to  find out what you can prove. I f  you allow yourself the liberty of 
knowing things with different degrees of certainty, then you can know a lot 
more physics than if you have to prove everything. So in (6.24) we suppose 
that we can choose the gauge 

a p , ,  = 0 ,  (6.32) 

and we then get the following for the equation of motion 

U A ,  - - J L .  (6.33) 

We can invert this equation to get 

6 , J P  I n = - ( - . I  ) ” CI 

which in moinentuni space is 

This defines the propagator 

(6.34) 

(6.35) 

(6.36) 

Notice that if we take the divergence of both sides of (6.33), both sides are 
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separately zero, the left side by the gauge condition (6.32) and the right side 
by (6.25) so we appear to be self consistent. We have all the rules and can cal- 
culate processes and see whether we run up against any problems, such as gauge 
non invariance of a physical process. We will, indeed, run into problems when 
we consider Yang-Mills loops and shall see that we need to introduce some- 
thing extra (the ghost particle) to cure them. 

6.3, Explicit calculations of physical processes in Yang-Mills theoty 

As an application of the rules that we have derived, we shall now calculate 
several physical processes. We begin with Compton scattering for I = 1 scalon. 

The process under consideration here is Compton scattering of a gluon A ,  
and an isovector scalar particle +(scalon) using the Lagrangian (6.1) 

gluon + scalon + gluon + scalon . (6.37) 

We define the momenta, polarisation vectors and isospin labels as follows 

(6.38) 

The momenta are p 1, p 2  and 9 1, q 2 ,  the isospin labels of the scalons are Sl 
andS, and the polarisation vectors and isospin labels of the gluons are a 
a2p. To second order in the coupling constant there are four diagrams which 
contribute to this process, and we will calculate them in turn 

and "t 

6) 

(6.39) 
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where we have temporarily put an isospin index u on the intermediate scalon 
to make it easier to apply our rules. The amplitude for this process is (we must 
sum over all isospin directions of u as all will contribute to the diagram) 

x U’  (‘IIP x S,)(2Pl + 9JP 7 (6.40) 

Re-writing S 2  - ( ‘ I ~ ~  X u) as (S2 X a z v )  - u and using the formula 

c ( A  - u ) ( u . B ) = A  . B ,  (6.41) 
a 

we get for the contribution from this diagram 

(PI + 9112 - m2 
The second diagram is the same as (i) with the two gluons interchanged. 

(ii) 

(6.42) 

(6.43) 

The amplitude for this diagram can be obtained immediately from (i) if we 
notice that making the substitutions 

41 - -42 ,  ‘ I IP  -qP I (6.44) 

in (i) gives (ii). Therefore the contribution from (ii) is 

(6.45) 
( 2 P 2  - 41)”(S2 x ‘ I l u ) ’ ( ’ 1 2 P  XS,)(2P1--  4 d P  

( P ,  - 4212 - m2 
g2 

The third diagram is 
(iii) 

(6.46) 
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amplitude = - - 
(P1 - P 2 I 2  

+ (-42 - 9 1 )vC, * (azp  x 1 @) + ( P  1 - P 2  + 42 ),a1 . (cp x 0 2 p ) )  3 

where c, i s  the polarisation vector of the intermediate gluon, and therefore we 
must sum over its directions in space and isospace using the formula 

c(A .c, ) ( c ;B)=A -B6,, . 
C Y  

The amplitude for this diagram is then 

(6.47) 

(6.49) 

The amplitude is 

g2{(S2 Xa2J ' (S1  X a 1 J + ( S 2 X q p ) - ( S 1  X 0 2 J ) .  (6.50) 

Adding the contributions from each of the diagrams, rearranging dot and cross 
vector products, putting the scalons on mass shell and using momentum con- 
servation (but keeping the gluons off mass shell for the moment) we get the 
total amplitude for the process to be 

(6.5 1) 
equation contimed on next page. 
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(291 - 92),(P1 + P 2 ) ,  + ( P i  +P2)u(292 - 9 1 ) p  

(91 - q2I2 
+- 

6,” . (6.5 1, cont’d) 1 -(Pi +P2) ’ (91  + 9 2 ) + ( 9 1  - 9 ~ ) ~  

(91 - 92)2 
+ 

So what? What do we do with the answer? There are two possibilities - we 
can use it to calculate the Compton scattering - maybe we are interested in 
this; or we can use it to calculate the annihilation of a pair of scalons into a 
pair of gluons (see below). 

In order to get the Compton scattering of real gluons we must put them on 
their mass shell i.e. 9: = 9: = 0 but this alone is not sufficient, as we can see as 
follows. Consider the equation of motion for the gluons in the absence of any 
sources (free gluons): 

a,(a,A, - a&) = 0 

9,(9,a, - 9,0,) = 0 

92% - (9,a,)9, = 0 . 

In momentum space, this becomes 

i.e. 

(6.52) 

(6.53) 

(6.54) 

There are two solutions to this equation: either (a) q2  = 0 and we must have 
9 u = 0. 1.e. for a Yang-Mills particle on its mass shell, the polarisation vec- 
tor is perpendicular to the momentum; or (b) 9 2  # 0;  then (I, = (y,u,/q2)9,, 
i.e. 

f i ?  

u, = a 9 ,  . (6.55) 

This corresponds in co-ordinate space to A ,  = a,x which is a pure gradient. So 
we would perhaps expect that this field could be removed by an infinitesimal 
gauge transformation. Let us try ths ;  to gauge it away we would have to have 

0 = d u x  t a,a t (a,x X a) . 
Since d u x  X a is higher order in the field, it can be neglected since we are 
working with a free wave and hence u, must be small (otherwise there would 
be self coupling terms on the right hand side of 6.52 which we neglected in 
order t o  get the free wave solution, since they are of second and higher order 
in the fields). We can therefore take a to be - X  and gauge the field away. 
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Case (b) cannot produce any physics. If we calculate an amplitude for a 
physical process first with a,,, and then with u;,  where u; is related to a, by 
an infinitesimal gauge transformation u; = a, + a,a , there should be no dif- 
ference in the answers since the theory is gauge invariant. The effect of a,, and 
a; is linear and this means that if we were to calculate with a,a the amplitude 
must be zero. 

So we can test for the correctness of the solution to any physical process 
by putting the polarisation vector a,, of an external gluon equal to aq, where 
4 ,  is its momentum, and checking that this gives zero. Note that we must carry 
out this test for a whole physical process; we should not expect that a single 
diagram by itself is gauge invariant as it is only part of an answer and by itself 
represents no physics. 

In the Compton effect above, we gauge the incoming gluon, putting 

a l p  - -aq1, (6.56) 
Do we get zero? We make the substitution, and of course we don't get zero - 
because we made a couple of mistakes; however fiddling around a bit more and 
correcting the mistakes, the Compton amplitude (6.5 1) becomes 

where 

Is this zero? Yes, because u2= is supposed to represent a free sourceless gluon, 
so the termj2U(u.L) must vanish by 6.54. 

\\ P1 - '. 
5 2  '\ 

ComptDn 
scattering 
diagrams 

- /  
51 ,' 
4' p1 

If u2,, is not sourceless 

(6.58) 
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j2,,(n2) is not zero, so the process we have calculated does not seem to be 
gauge invariant. Is there a fault in the theory? Need the theory be gauge in- 
variant if the a2p  has come from a source? Yes, the theory must be - the fault 
lies in the fact that we are not now calculating a complete physical process. 
Consider as an example that the source of u2p is another scalon, i.e. 

I 
I 
I 
I 

Then in addition to the diagrams 

(6.59) 

(6.60) 

which contribute to (6.58), there are two additional diagrams which we must 
consider for the whole physical process, viz. 

(6.61) 

When the sum of all diagrams in (6.60) and (6.61) is considered and we put 
a l p  " L 9 l p ,  we will get zero. It is not surprising that we do not get zero for 
the diagrams (6.60) as they only constitute part of an answer to a physical 
process, and there is no reason why this partial answer should be gauge in- 
variant. The diagrams (6.61) correspond to a modification of the source in 
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(6.58). Therefore, if we always only apply a gauge transformation to a physi- 
cal process we will find that the amplitude is invariant (provided we stick with 
tree diagrams). Hence the diagram rules which we have constructed will work 
as long as we do not calculate any diagrams with closed loops. Before consider- 
ing the difficulties with closed loops, we will consider the Compton scattering 
process further. 

both gluons on their mass shells i.e. 
The formula for the real Compton effect is obtained from (6.5 1 )  by putting 

2 -  2 -  . 91 - 9 2 -  0 ,  91p01p"92pa2,, = o  9 

in accordance with the situation (a) earlier. We get 

(6.62) 

(6.63) 

By taking the crossed diagrams of the Compton scattering process we obtain 
the process for scalon annihilation into gluons 

in the center of mass system 1. w 

- 
Crossing 

(6.64) 

(6.65) 

The amplitude for this process can be deduced immediately from (6.63); it is 
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where 

A , ,  = -(s1 X 0,) ' (s2 X bp),  B,, = -(S1 X 6,) * (S2 X a, ) .  (6.67) 
In the centre of mass system, the incident scalons have three momenta pi and 
-pi respectively and velocity ui and -ui where 

ui = P i / W  = p i / J p 7 - T z  . 

The amplitude for this process is then 

(6.68) 

(6.69) 

We consider the possible polarisation states for the gluon: state (a) in the plane 
of the reaction viz., 

t x y z  
up = (0, -sin 8, cos 8 , o ) a  , (6.70) 

state (b) perpensicular to the plane of the reaction viz., 
t x y z  

u, = (O,O,  0 , l )  a. (6.71) 

Apply (6.69) to the following polarisation combinations: 
(i) both gluons in state (b) 

Amplitude = [(l + u cos 8)Aii  + (1 - u cos 8)Bii] = p , (6.72) 

(ii) both gluons in state (a) 

Amplitude = pt(cos 8 )  , (6.73) 

where 

(6.74) 2 sin2 8 u2 

1 - u2 cos2 8 ' 
t(C0s 8) = 1 - 

(iii) one gluon in state (a) and one in state (b) 

Amplitude = 0 . (6.75) 

given the isospin states of the scalons. The results are tabu- We can calculate 
lated below, where I is the total isospin of the scalons in the initial state 

(6.76) 
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Finally we outline the calculation of the Compton scattering of gluons 
from isospin 
rived from it. The diagrams and the amplitudes are 

spinors using the Lagrangian (6.1) and the rules which we de- 

(9 

(ii) 

(iii) 

We do not have the fourth diagram in this case. As in the scalar case, we can 
gauge one vector boson, a lp  +aql,,  where upon we get, adding the results 
(6.77) -(6.79) 

(6.80) 

As before (6.57),j2/l(~2) = qZczzr - q2p(q2va2v) and again this is zero if u2, 
is free wave, or if it is a pure gradient (c.f. (6.54). Howeverj2,(a2) is not zero 

has a source (j2M(~2) = source2,), but in this case, viz., 
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(6.81) 

We have again another type of diagram where the a l p  acts on the source: 

(6.82) 

All the diagrams are taken into account, we again find that the physical 
process is gauge invariant. Hence there is no difficulty here as we expect, since 
these are tree diagrams. 

7. Quantisation continued - Loops 

So far we have been successful in our attempt to quantise Yang-Mills theo- 
ry. Now we want to try the procedure that we have adopted for higher order 
diagrams; this will entail diagrams with closed loops (the higher order tree dia- 
grams do not present any difficulties). Why not therefore try to calculate the 
polarisation of the vacuum? But wait, if you want to discover a difficulty with 
a theory, you’ve got to look at a physical problem because some of your diffi- 
culties might come from not asking for a complete physical process (see the 
previous section). So the only way to discover whether something is right or 
wrong is not to pick up some arbitrary thing like the vacuum polarisation or 
the vacuum expectation value of a pair of operators, but to ask a physical 
question. But what should we ask? Correction to the Compton effect. This 
would be a fine problem, as good as any, but I decided to look at the follow- 
ing example - the scattering of two scalons by gluon exchange. In lowest order 
this is 
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The correction diagrams to this coming from next order are of the type 

We are not actually going to evaluate these diagrams, but only indicate what 
happens. When we calculate the diagrams (7.2) we, of course, have problems 
with renormalisation; but when we've straightened these out we would still 
like to check the result in some way. We can do this by checking whether or 
not we satisfy unitarity. 

gluons 
Consider the following diagram, where a pair of scalons annihilate into two 

The amplitude for this process is 

where W,,,, is some tensor function of the momenta and isospin labels of the 
scalons. (We calculated this process to first order in the previous chapter.) 

If we assume that the gluons are physical particles, there are constraints 
which their momenta and polarisation vectors must satisfy. 
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i.e. there are only two polarisation states for each physical gluon. The proba- 
bility for process (7.3) to take place is alAmplitudeI2 i.e. 

Probability a ( ~ Z p Y a l p a ~ Y ) ( C M ~ ~ Y .  a l p ,  a2,,,) (7.6) 
where we have taken the a's to be real. In calculating this we see that it is 
closely related to the amplitude for the following process 

The amplitude for this process is 

c %'l,,,W~,, X (propagator terms for gluons A and B).  
all fi  
all Y 

If we take the imaginary part of (7.8) we get 

where the propagators have been removed by this process and the correspond- 
ing gluons are now on mass shell, and irrelevant constants have been ignored. 
Unitarity tells us that t h s  must be the same as (7.6) summed over physical 
polarisation states: 

polarisa tion 
states 

(7.10) 

However note that in evaluating (7.9) we have summed over more polarisation 
states than we would have done had the intermediate gluons been physically 
real particles, so it is not obvious that (7.9) and (7.10) are equal. 

In making the comparison we will only consider the index. We lose no 
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generality by doing this since if we can sort this out then we can also sort out 
the v index. In making this assumption, we really compare 

of a l p ;  all 
u states 

with (7.9). We can think of (7.1 1) as follows 

(7.1 1) 

(7.12) 

The gluons al  and a2 are on mass shell since they are physical gluons. This 
diagram, when the gluon line is not connected, is similar to, but more com- 
plicated than the Compton scattering process; it is 

(7.13) 

When we calculated the Compton effect we noticed that when a ~ = a9 cI, 

g ( a X  c*)  '&(a21  > (7.14) 

then the amplitude was of the form 

where 
2 

j k ( Q 2 )  = 9 2 ' 2 ~  - ( 4 2 ~ ~ 2 v ) q ~ ~  . 
In the case of the Compton scattering proper 

(7.15) 

(7.16) 
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but in general we may think of ck as being the gluori field produced by some 
source 

. , ,:- G .' 
Since we are really only interested in the indices, define 

so that (7.1 1) becomes 

o f a l p  

and (7.9) becomes 

Since 9: = 0 we can choose the axes so that 
I z x y  

41 = W ( l , 1 , 0 , 0 > .  

(7.17) 

(7.18) 

(7.19) 

(7.20) 

(7.21) 

a1 then has components only in the x andy direction and (7.19) becomes 

%,, - 
Y 

(7.22) mrY ' 

Similarly (7.20) becomes 

+I,  - * x x  - 

Eqs. (7.22) and (7.23) differ by 

Gzz - 

(7.23) 

(7.24) 

So when we took the imaginary part of (7.8) we obtained the extra piece 
(7.24), which we do not want; the theory will be unitary if we can show that 
this extra piece is zero. Rotating the axes we can re-write (7.24) as 

(7.25) 

Consider the first term in (7.25): the second term is similar. We would get 
such a term if we considered a process with two gluons which have polarisa- 
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tions in the directions 

and 

viz. 

(7.26) 

(7.27) 
- 

We get zero for % ( Z - - r ) , ( Z + t )  only ifjA(a2) is zero (from(7.14)). However it 
is not zero although q i  is, since q2 - a2 is not zero (the particle is not free). 

In QED, this problem does not occur, because when we have a process with 
two external photons, if we gauge one photon (i.e. put the polarisation vector 
parallel to the momentum) the amplitude vanishes irrespective of whether or 
not the other photon is physical. That is, the quantity analogous tojA(a2) is 
identically zero independently of the state of the photon. 

There is nothing we can do about this problem in Yang-Mills theory. If 
we wish to make the theory unitary we must subtract something to get rid of 
these extra pieces. By taking the simple Compton case, we can get some idea 
of the form of the thing we have to subtract. The Compton amplitude (7.14) 
becomes 

g ( a X  ‘ a q 2 X  3 (7.28) 

when we use (7.27) and the fact that 4: = 0. The polarisation a is summed 
over when we make a closed loop. This is the extra piece that we have to get 
rid of. We can see that the most direct way to do this is to add an isovector 
scalar particle a which is self coupled and also coupled to the vector according 
to (7.28). (This is the ghost particle.) In co-ordinate space this coupling be- 
comes 

g ( P X A ) , ) ’ a ) , P .  (7.29) 

Clearly since the particle has to cancel a piece coming from the A , ,  its propa- 
gator must have the same form as that of the A ,  viz. l /k2 .  We can see from 
the form of its coupling that this ghost appears in closed loops in diagrams in 
the same way as A’s.  It is not allowed to appear in the initial or final states 
since it is not a physical particle. It was not obvious to me from the type of 
analysis presented above, what to do in a diagram with more than one closed 
loop. (Unitarity is not a sufficient constraint in this case.) In fact the solution 
to the problem for larger numbers of loops is to add the ghost as if it were a 
Fermi particle. (At the one loop level, adding a Fermi particle is equivalent to 
subtracting the contribution from a particle coupled in the same way but 
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having Bose statistics, which is what we did above.) The contribution from 
this ghost could come from a Lagrangian of the form 

pg = f a,P+ a P P + a,p+ - ( A ~  x P) 

ghost propagator: 

o x x x x x x x x x  b 6,,/k2 (7.31) 

ghost vertex: 

(7.30) 

This Lagrangian leads to the following diagram rules. 

(7.32) 

where the ghost only enters in closed loops. Topologically for every diagram 
with an A ,  closed loop there is one with a ghost loop in the same place. Note 
that (7.32) is not symmetric looking and this asymmetry is fundamental, so 
we add a check mark (d) to one of the ghost legs. We must keep track of 
these 4’s as we go round a closed loop so as to ensure that they are always on 
the same side of a vertex. (It does not matter on which leg we put the pro- 
vided that we always put it on the same one, since it can be shown that both 
choices lead to the same results.) In order to get the right factors it is neces- 
sary to assume that the ghost is a complex field. 

them; we have merely indicated how if we proceed in a straight forward and 
naive way, we come into difficulties; and we got a pretty good smell of what 
to do. But for the full glory of the theory we must follow the approach of 
Fadde’ev - it requires more machinery and we will discuss it later. 

All these details were proved by Fadde’ev and Popov [26]. We haven’t proved 

Finally we write the total Lagrangian as 

P =  - ~ E , , , . E , , ,  - i (a ,A, )2  +;a,p+- a,p 

+ i g a , P + .  ( A ,  X P) t Matter (+, $,A) (7.33) 

Why is the second term in (7.33) present? If we expand the quadratic parts of 
-L E E,,, which will give us the propagator we get: 4 P V  

-u(a,Av-avA,).(a,A,-a,A,)=-~(a 1 A ) 2 + $ ( a , ~ , ) 2 .  (7.34) 
/ J v  

We have changed the form of the Lagrangian in this by integrating the action 
by parts, throwing away (as usual) the surface terms at infinity. These changes 



can produce no physics as they do not change the action. We now see that the 
-:(a,A,)2 term in (7 .33)  cancels the saiiie term in (7.34) to  leave the qua- 
dratic terms in the Lagrangian as 

- g a p  ~2 . (7 .35)  

This is exactly what we want to  give the propagator 6,b6,,/k2 which we have 
been using. (This is equivalent to  choosing the gauge d M A ,  = 0.) That the 
Lagrangian (7.33) is equivalent to the Lagrangian 

p=- !F  ,,, - Epu + Matter (4, $ , A )  (7.36) 

(i.e. that the ghost Lagrangian (7.30) compensates for the extra term) is a 
inore difficult problem which was solved by Fadde'ev and Popov [ 'GI,  who 
also showed what form the extra terms in the Lagrangian would take in dif- 
fe re n t gauges. 

8. Quantisation via the Hamiltonian formalism. A ghostless gauge 

We will now quantise Yang-Mills theory by  going via the Hamiltonian 
formalism, rather than by path integrals; a similar procedure has been carried 
out in Q E D  and one disadvantage is that we lose manifest Lorentz invariance, 
although we know that the final results must be relativistically invariant. We 
must choose a gauge before constructing the Hamiltonian since, as we know 
ftom our experience with QED, otherwise there are too  many variables. The 
Hamiltonian is a machine for telling us how operators change with time; thus 
the important operator is 

a l a t  . (8.1) 

But we have seen that in Yang-Mills theory the physically interesting operator 
is D, which has a time component 

(;+/lo x ) .  

Hence to  recover the operator (8.1) which is appropriate for the Hamiltonian 
formalism, we want t o  put 

A , = O .  (8.3) 
Since we have the freedom of  gauge transformations we can make this choice. 
If we d o  not do this the Hamiltonian formalism becomes extremely cumber- 
some and very difficult. By the way, why don't we make this choice in QED? 
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If we do,  then a static charge has a vector potential associated with it which 
rises linearly with time. This is an inconvenience. However, in QCD, perhaps 
there are no static charges, i.e. we imagine that hadrons cannot separate into 
quarks or, when doing a problem, we start initially with n o  matter present and 
then create the matter and anti-matter (so that by doing this we ensure that 
the total colour charge of  the world stays zero) which exists over a finite time. 
There seems t o  be a danger in this non-linear theory, since if the vector poten- 
tial rises linearly with time, certain cross terms may produce physical effects 
(e.g. by quantum fluctuations); of course that’s a dream, since if it were true, 
we could say that t o  avoid these difficulties, the vector potential is not al- 
lowed to rise linearly with time for ever, and hence we have proved colour 
confinement. 

We shall write the classical equations for the Yang-Mills field, construct 
the Hamiltonian, having defined the conjugate momenta, and then quantise 
the theory by using the canonical commutation relations. The classical equa- 
tion of motion is (2.28) 

= - J V y r t e r  - A ,  X E p v  3 

E P V  = a,Av - avA, + A ,  X A v  , 

where 

(8.4) 

The EPv tensor has six (Lorentz) components. Since we have singled out the 
time axis by our  gauge choice, consider the ti component of EPv. (i = x,y, 2 ) .  

From (8.4) 

where by definition Lj is the colour electric field (named using the analogy 
with QED). Similarly the components are (from (8.4)) 

E . . = ~ . A . - ~ . A . + A . X A . - E . .  IJ  I J J I I 1 i jk  1) k 7  (8 4 

- 11 = curl 4 + ib  x k .  

where by definition I l k  is the colour magnetic field. Using this d.ciinition,(8.6) 
gives 

X 
(8.7) 

Look at the i component of(8.4). This now reads 
a2ni X 

-+ at:! (curl g)i = -J; - (J x N , 

where we have introduced the notation that the upper vector symbols refer t o  
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isospace and the lower symbols to real space. 
These three equations can be written generally as 

- i- cur lg  = -L - F J  x E .  a 2A X 

at2  
(8.9) 

N 

The fourth equation comes from taking the time component of (8.3); this is 

a -(p) = - 
a t  

X P - 4  * g , (8.10) 

where we have put 

p - J g .  (8.1 1) 

I f  we solve (8.9) we do not have to solve (8.10), because (8.10) is practically 
a consequence of (8.9); we can see this by taking the divergence of (8.9) and 
re-arranging the terms: 

This is the same as the time derivative of 8.10 provided 

X - _  a p - Q * j + F J  j .  
a t  - - - 

(8.12) 

(8.13) 

The matter will be such that we have current conservation (in the covariant 
sense) and hence this equation will be satisfied. In principle, integrating (8.12) 
with respect to time to get (8.10) (using (8.13)), we could generate a function 
of x , y ,  and z .  We assume that the initial conditions are such that this func- 
tion is zero; it will then stay zero for all time. We can therefore forget about 
(8.10) in solving the theory. 

We can solve (8.9) for Aj&, t):  (8.9) is just a complicated non-linear dif- 
ferential equation for Ai .  The dynamical features of the theory are simple 
since the only derivative of A which appears is the second time one, and this 
appears linearly. Can we find a Lagrangian from which (8.9) comes? It’s easy, 
because we know all about Newton’s laws and to get a term like a2Ai /a t2  in 
the equation of motion, we know that we must have a term like (aA,/at)2 in 
the Lagrangian. This is just like having the square of the velocity in the Lagran- 
@an; the equation of motion then has a term linear in the acceleration. In 
order to generate the rest of the terms in the equation of motion we proceed 
as follows: the term J j  is generated by a Lagrangian term of the form J j  * A i ,  
and it turns out that the remaining field pieces i.e. 1 X E can be de- 
rived from a term of the form E : g. So the Lagrangian has the form 

+ FJ 
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a A i '  a A i  , 
2 B i '  Bi + Ji ' A i  . 2 a r  a r  

This is clearly the same as the Lagrangian 

(8.14) 

- t E," - E,,, + Matter . (8.1 5) 

when we put A .  = 0 and use the definition of Bi given earlier. What about the 
Hamiltonian? Nothing could be simpler; define the momentum conjugate t o  
Ai by 

(8.16) 

To get the Hamiltonian take the square of the momentum and add the poten- 
tial energy, viz. 

~ = i n . ' r i . t  I 1  i ~ . ' i j . -  I I j . ' ~ .  i I '  (8.17) 

We now quantise the theory by imposing the canonical quantisation condi- 
tions, and treating Il and A as operators 

[ I I ; ( ~ ,  1). ~ ; ( . v ,  - r,l = i 6 ~ b 6 i i 6 3 ( x  - -  ~~ I , > .  (8.18) 

What would the diagrams look like for such a theory? We can get the propaga- 
tor from (8.9) by looking at the linear part. This is substituting for using 
(8.7) 

(8.19) 

All the terms on the left side are linear in 3 and all  the terms on the right are 
higher order. We can solve this to  obtain the propagator which is 

tiii - ( k i k , / w 2 )  

w2 ~ kiki  
(8.20) 

This proof is left as an exercise; it is simple t o  complete using the method we 
described in sect. 6 .  

What :ibotit thc coupliiig tei-ins'! They are the saiiie as before except that 
there ;ire no time components. This set of  rules tlicn gives the correct answers 
for Ya ng-M i I Is p ro b lerns. 

derful, but it's also mysterious because a11 the rules depend on choosing a time 
axis and it's not clear that the answer to  a physical problem will b e  relatavisti- 
cally invariant. So what? We know that i t  mus t  be relativistically invariant be- 

N o  fooling around! N o  ghosts! No nothing! Isn't that wonderful? Yes it's won- 
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cause the theory we started with was. True, but the theory diverges and we 
encounter the delicate problem of imposing renormalisation without destroy- 
ing Lorentz invariance - a problem which took 20 years to solve in the case 
of QED. I t  shouldn’t take us this long to solve the pi-oblem in Yang-Mills as 
we’re much smarter now. 

Ilespik these pi-oblenis these are per-fcctly good rules and we can go away 
and calculate with them. 

Suppose we try to compare closed loops with this propagator and with the 
p 1’0 p aga to r we I ia d earl ie r viz. 

(8.21) 

In using (8.21) we are counting the contribution f r o m A O ;  b u t  there arc super- 
fluous degrees of freedom; therefore we must subtract something t o  get rid of 
them - this something is the ghost. i n  some sense therefore, the ghost is the 
difference between the result one gets by using (8.20) and (8.21). What wc 
subtract doesn’t look relativistically invariant. The subtraction will be diffct-- 
ent depending on the orientation of the axes; in this case we have singled out 
the time axis and therefore if we rotate the axes things will change. The pl-ob- 
lem of showing that the results are independent of the method of subtraction 
was solved by Fadde’ev and Popov 1261. 

9. The equivalence of different gauges 

The purpose of this chapter is to  make clear the ideas involved in Fadde’ev 
and Popov’s demonstration of the equivalence of different gauges. I shall not 
prove anything in great detail as this would take too long. We will start with 
the fornialism of sect. 8, the A .  = 0 gauge, and attempt to  transform it so as 
to  obtain the formalism in different gauges; in particular we will try t o  obtain 
the system in which the propagator is 6,,/k2 ( a w A ,  = 0 gauge). The simplest 
thing t o  d o  would be t o  write down the rules in the A .  = 0 gauge and then 
transform them to the rules for the a K A ,  = 0 gauge. In order to get more 
generality and check that the formalism works in all orders we will use a more 
central approach via path integrals. What we shall d o  is to construct a path 
integral for t h e A O  = 0 gauge, transform the path integral t o  the other gauge, 
and then get the rules for the other gauge from the path integral. We shall see 
that these rules are the same as those obtained in sects. 6 and 7. 

As everybody knows, if we have a Lagrangian of  the form 
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Then the amplitude for the particle t o  go along a particular trajectory q(t)  is 
1181 

(9.2) exp(iS/ti),  

where S is the classical action obtained from (9.1). The total amplitude for 
the particle t o  go from u t o  b is obtained by  summing over all trajectories con- 
necting a and b, viz. 

Amplitude -iexp($J [IT - V(q(t)) d t  Qq(t) . I 1  (9-3) 

If we have a system of several variables qi(t), (9.3) becomes 

In a field theory the variable i becomes continuous and is denoted by  2. Eq. 
(9.4) then becomes 

Amplitude a J e x p [ i J P ( A ) d 3 ~ d t  1 QA(2,  t )  , (9.5) 

where P(A) is the Lagrangian density for the theory and the integra! over 2 
replaces the sum over i in the limit i continuous 

Eq. (9.5) means this: if A is distributed in some way in spacetime, there is a 
certain action for this distribution which we can calculate. The classical theory 
corresponds to  the distribution which makes the action a minimum. Quantum 
mechanics corresponds to adding the amplitude corresponding t o  the actions 
for all possible distributions. We can deduce the classical limit by noticing that 
in the integration over field distributions, the amplitudes corresponding t o  
near stationary values of the action add coherently whereas those far from the 
minimum are changing so rapidly that the amplitudes from neighbouring dis- 
tributions tend t o  cancel. In the limit of  action S/fi being very large only paths 
near the minimum contribute to  the integral over distributions and so we ob- 
tain the classical theory. 

We now return t o  the Lagrangian density which we derived for the A .  = 0 
gauge in the previous section (8.14) and substitute it in (9.5). This gives 
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Qh(z,  f) is defined to mean l l j , u , x , l d A ~ ( z ,  f) and in OMatter we have to 
integrate over the spin $ field. TI% means that we must use the path inte- 
gral using Grassinan algebra, which we mentioned earlier. 

festly Lorentz invariant. However we can write (9.7) as follows 
Unfortunately from the path integral viewpoint, the expression is not mani- 

exp i [--$E,, , .E,, , ,  t J , ' A , ] ~ ~ x  ~ ( A ~ ( X ,  f))cBA,,(x, t ) qMat te r ,  

(9.8) 
J- (I  ̂ i 

where F ( A o ( z ,  f)) is defined to mean l l u , ~ ~ , l  F(A:(x,  f)) and in this expres- 
sion the functional integral runs over all fo"r space-time components of 
A,(?, f). Although (9.8) and (9.7) are equivalent (by construction) we note 
that in (9.8): 

(i) EPy'  E, ,  is invariant under all gauge transformations; 
(ii) .I, A ,  is also invariant under gauge transformations piovided that the 

(iii) ' D A ,  is also invariant under an infinitesimal gauge transformation 
matter fields transform in the correct way; 

A ,  + A ,  t a,a t a X A , , .  (9.9) 

We can see that (iii) is true by the following argument. Since we are consider- 
ing Q A , ,  i.e. an infinitesimal, we can drop the a,a term since i t  is higher order 
in infinitesimal. CDA, is a volume element in isospace 

(9.10) 

The remaining gauge transformation in (9.9) (a XA,) is a rotation in isospace 
and volume elements are invariant under such transformations (cf. d x  dy d z  
which is invariant under a rotation in three dimensional Euclidean space). 
Hence % A ,  is invariant. 

We have therefore shown that (9.8) is gauge invariant apart from the 6 -  
function. What happens to  it under a gauge transformation? Under a gauge 
transformation (not necessarily infinitesimal), 

which in general contains the space as well as time components of A , .  Since 
any A ,  distribution can be gauge transformed so that A .  = 0, the 6-function 
is really more universal than it looks. Consequently we can get to  any other 
gauge by suitably choosing G. 

As a specific example, let us choose t o  transform t o  the gauge 
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a p A ,  = 0 .  (9.12) 

We will find that when we transform t o  this gauge, 

W O )  + W , A , ) W )  (9.13) 

and we will also find that the factor !?(A) can be written in such a way that it 
exactly reproduces the ghost term (Lagrangian (7.30)) which we required in 
the dpA, = 0 gauge. 

There are several mathematical tricks which we will need in what follcws. 
Because of the vast number of indices flying around, we will often use a sym- 
bolic notation. 

Matl?emarical trick I .  Since almost all the questions about path integrals 
which are important are concerned with changes in the fields, the overall nor- 
malisation of the path integrals is irrelevant. We can, therefore, ignore any 
constants (including infinite ones) which appear as multiplicative factors out- 
side the path integral provided that they d o  not depend on the fields. 

Mathernutical trick 2. Suppose that we have a number of variables xi and 
a number of functionsyi. which depend on the xi. If we wish to  transform 
from the x i  to the yi then the &-function transform as follows: 

(9.14) 

or 

6(x.) = [Det 21 &(y i  ~ .vi(0)) , 
I d x j  s . = o  

I 
where as before the &-functions are the generalised functions, i.e. h ( j i i )  means 
l l i&(yi) .  This can be seen by extending the result for one variable y = f (x)  viz. 

(9.15) 

to several variables. 
Mutlicmaticol trick 3. Consider the integral 

Jexp(- f c.p2)dp = m. (9.16) 

We drop the &factors in what follows since they will be irrelevant because 
of mathematical trick 1. Let us now have several variables ar?d look at  the inte. 
gral 
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fore we need the matrix 

A@, A , ) /A@ 0 1 ; (9.24) 

which is analogous to  the matrix dvi/dxi. This matrix A(a,A,(y))/A(AO(x)) 
has infinite dimension corresponding t o  the continuous variables x and y ,  and 
in addition has isospin labels. If we try t o  evaluate (9.24) directly, we will run 
into difficulties since the two gauges are linked by  a finite gauge transforma- 
tion which depends on the original fields. (We know that finite gauge transfor- 
mations are difficult t o  handle.) The derivative dyi/dxi can fortunately be ob- 
tained in an indirect way. Supposeyi  and xi are changed by changing a variable 
f. We may be able t o  evaluate dyj/dxi by first evaluating dyi/dt and dxi /dt  
and then using 

(9.25) 

It was the very clever idea of Fadde'ev to extend this idea t o  evaluate (9.24): 
in this case he took r to be an infinitesimal gauge transformation. If we d o  an 
infinitesimal gauge transformation on A. (gauge parameter a )  we get: 

A ;  = A ~  + a  X A 0  + a O a .  (9.26) 

Transform a , A ,  by an  infinitesimal gauge transformation with parameter fl: 

a,AL = a,A, + B X  a,np + a,p X A ,  + a,a,B. (9.27) 

As we are trying to use an  equation of the form (9.25) t o  evaluate the matrix 
(9.24), we would naively think that we should take a = 0 .  But wait a minute. 
What we really need is for the gauge parameter B t o  be a gauge transformed 
by the finite gauge transformation G, d e f i e d  by (9.1 1). (All the fields are 
rotated by the gauge transformation G and so what we really want is to know 
how the fields A and d,A , change in terms of the variables a and Ca respec- 
tively.) However we will use a for a gauge transformed for ease of notation in 
what follows. (This sublety is not vital t o  the argument and must not be al- 
lowed to  confuse us.) Since A. = 0 in the original gauge, the change in the 
original A produced by a (from (9.26)) is 

aoa .  (9.28) 

The matrix (9.23) is to be considered as the product of the two factors 

(9.29) 

So we have rea!ly factored the matrix which described how one gauge varies 
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with respect to  the other gauge into two parts, each of which tells us how one 
of the gauges varies with respect to the infinitesimal gauge transformation a. 
The second of these two factors is independent of the fields since A@,) is 
independent of the fields (9.28). Using maths trick I we can drop this factor. 
The change in a,A,, is from (9.27): 

a,a x A ,  t a,a,a , (9.30) 

where we liave used the fact that a , A ,  = 0 and we have put p =  a. This de- 
pends on the field A ,  and so we cannot get rid of the A(a,A,)/A(a) term in 
the same way as we got rid of  A(Ao)/A(aj.  

We can now write (9.8) as 

where ?(A,)  is the Jacobian for the transformation from & ( A o )  to 6(a,A,) 
which we have identified as 

(9.32) 

This can be written in the form 

exp - p+(a,a, - A ,  x a,)Pd4x Q P ,  (9.33) s (3 1 
where P is a Fermi particle. We can show this as follows. Let (9.32) be sym- 
bolically Det ci,; this can be written, using maths trick 3 (9.21) as 

Jexp(iPTci,P,) n dpI . (9.34) 

Jexp{-iP; [yi(xj + Pi) -yi(xj)l) n dPi . 

1 

Use (9.23) to  re-write the exponent of this, giving 

(9.35) 
1 

We now convert back from the symbolism to the A's, putting as before y i  -+ 

a,A,  and xi * A , :  

s e x p {  -; P* A(a,A ,)} iZ, P . (9.36) 

Substituting for A(a,A,) from (9.30) and carrying out  a Wick rotation, we 
get eq. (9.33). Integrating by parts in (9.33) and noting that a,A, = 0 by the 
choice of gauge, we get 
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(9.37) 

and thus we have obtained the same propagator and coupling as we did in 
sect. 7. 

In general, if we wish to transform to the gaugeJ’(Ap) = 0, we first calculate 

To summarise, we have transformed the path integral (9.7) to 

x 6(a,A,) :BA,W D h l a t t e r  . (9.40) 

People have tried to make I-tiles fi-om this, but there is an easier way. From 
(9.14). w e  note that the determinant is independent of the value o f j ~ ; ( O )  in  
the 6-function. Hence if instead of’ choosing the gauge a,,A, = 0 (i.e.jlj(0) = 0 )  
we chose the gauge 

a,A,(s, [) = p(,?;, t )  (i.e . . .v j (  0 )  = 0) . (9.41) 

the only changes this will produce will be to  replace 6 ( a , A p )  in (9.40) by 
&((a,!, ~ p), and add a n  additional piece to 9.30. The last piece produces an 
additional tern) 

; P + ‘ ( P x p )  (9.42) 

which will cancel the cxti-3 term appearing in  0.37 when we integrate by part:; 
since now a , A ,  =fl. We now ilia1 we can niultiply 9.48 by [he constant 

exp (- ; T a 2  ) f D B .  (9.43 } 

as this does not produce any cliffcrencc in the theory. 
integrating ovci- p using 6 ( d , i l p  - - p )  wc obtain the following patti inregrai 

(9.44) 
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We have recovered the Lagrangian (7.33) wliich led to the rules i n  the a,A, = 0 
gauge. and we have therefore shown that the gauges A.  = 0 and d,A, = 0 are 
cquivalent. 

by ( ~ / ~ ) ( ~ , ~ , ) ‘ ( d ! , ~ ! , ) ,  wher-c X takcs ~ t n y  viiluc I ~ i w e c n  0 and I ,  7’11is o f  
course will produce a dit’ferent effective Lagrangian. (What peoplc really d o  
when they choose a gauge is to construct an effective Lagrangian and then cal- 
ciilatc with it.) This produces a propagator for the A ,  of the form 

I t  is possible to choose other g:iugcs by replacing the term i(d,A,) - ( ? ! , A , , )  

(9.45) 

which of course must produce the same physics. The niodificd propagatoi- is 
useful when i t  conies to proving the rcnornialisability of gauge theories (about 
which I would have said more if I had more time) since if‘ we take the h = 1 
gauge we can then use naive power counting ( i t .  the smart thing to do). Naive 
power counting tells us whether something has a danger of diverging ~~ it 
doesn’t prove anything: theories which look divergent by naive power count- 
ing may not be, due to  cancelations among the divergences. In some gauges 
naive power counting makes the theory look horribly divergent but  we know 
;hat this cannot be the case. In the X = 1 gauge, there are no powers of mo- 
menta in the numerator of the propagator and so naively the power counting 
is better. 

Fadde’ev and Popov, in fact, proceeded in  the following way, without choos- 
ing a specific gauge. Blindly if we were to write the simple simplest possible 
path integral for the theory, it would be 

(9.46) 

However, if we make a gauge transformation on the exponent, it does not 
change: so when we integrate over the A,’s which are connected by this gauge 
transformation, we will get infinity. An analogy is when we evaluate the integral 

sexp{-cy(x2 + 2 p  + y 2 ) ) d x  d,v (9.47) 

Changing variables t o  x - y and x + y ,  thus becomes, up to  a constant, 

Jexp{-cy(x + y ) 2 } d ( x + y ) d ( x  - y ) .  (9.48) 

Since the exponent is independent of (x -- y ) ,  the integral over (x - y )  diverges. 
A similar thing happens in the path integral except that the situation is more 
complicated: the Jacobian in the change of  variables depends on  A ,  and this 
is what introduces the ghosts we have been discussing. 
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Quantum-chromodynamic approach for the large-transverse-momentum production 
of particles and jets 
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(Received 15 May 1978) 

It is shown that if, in a calculatioa of high-transverse-momentum ( p J  meson production in hadron-hadron 
collisions, one includes not only the scale-breaking effects that might be expected from asymptotically free 
theones but also the effects due to the transverse momentum of quarks in hadrons and further adds 
contributions From quark-gluon and gluon-gluon scattering to those of quark-quark scattering then the results 
are not inconsistent with the data. The approach yields the correct magnitude and an apparent approximate 
l/p; behavior in accord with single-particle data for the energy range currently observed. Two-particle 
correlations are examined. Because of scale-breaking effects and tHe presence of gluons, the theory does not 
have the problem of predicting too many away-side hadrons at large p I  as did an earlier quark-quark 
scattering “black-box” approach. We conclude that the quantum-chromodynamics approach is in reasonable 
accord with the data although theoretical uncertainties (especially at low p , )  make incontrovertible 
conclusions impossible at present. Crucial tests of the theory require higher pI than are now available; 
estimates for this region are made. 

1. INTRODUCTION 

We investigate whether the present experimental 
behavior of mesons with la rge  t ransverse  mo- 
mentum in hadron-hadron collisions is consistent 
with the theory of quantum-chromodynamics (QCD) 
with asymptotic freedom, at  least  as the theory is 
now partially understood. It is shown that if things 
behave more  o r  l e s s  according to  current theo- 
retical ideas, the experimental data at high PL 
would be explicable with reasonable choices f o r  
currently unknown quantities (such as the dis- 
tribution of gluons in the proton and the fragmen- 
tation functions describing gluon jets). The theory 
of QCD might provide an adequate explanation of 
all the experimental results that we have discussed 
in previous papers  (hereafter referred to  as FF1’ 
and FFF’). 

We and  other^^-^ investigated th i s  large-P, ex- 
perimental  behavior phenomenologically. In par- 
t icular,  the view that large-P, mesons a r e  gen- 
erated by hard large-angle collisions between 
quarks  present in the initial hadrons has  been 
found to be very fruitful. The outgoing quarks  a r e  
assumed not to  come out freely, but to distribute 
their  momentum over a s e r i e s  of hadrons that 
form a “jet” in the general direction of the “origi- 
nal quark.” 

This view when compared in detail with all 
available experiments is found to  be successful 
in many regards.  In particular,  the distributions 
of particles in single-arm experiments and the 
la rge  ratio of jet to  particle c r o s s  sections a r e  
successfully interpreted o r  predicted. To  do this, 
the differential c r o s s  section for quark-quark 
collisions, d6/d? ( ”black-box’’ c r o s s  sections), 

18 - 

was  taken to  vary as f(?/s^)i-4 in disagree- 
ment with field theory which expects :-‘ behavio.. 
The-size and angular dependence, 2300 mb/ 
( - s ^ t 3 ) ,  was  chosen empirically. In addition, in 
FF1 and FFF, the effects of collisions of gluons 
(as constituents within hadrgns) were  omitted. 
At that time, there  was  no experimental evidence 
to  requife the i r  existence. 

The f(t/s^)s*-4 behavior was  chosen as a direct  
result  of assumptions that parton distributions 
scaled with energy and the observation that ex- 
periments done at two o r  more  different center- 
of-mass energies TY but at a fixed x,  = 2 p , / W  
and fixed angle showed the invariant cross section 
varying as PI-’. 

It is necessary to include a t r ansve r se  momen- 
tum, ( k J h - # ,  of the  quarks  within the initial 
hadrons to  account for much of the data2”0-’4; fo r  
example, observations in two-arm experiments 
of Po,, (Ref. 15) (i.e., lack of coplanarity of the 
beam, target, and two outgoing hadrons).” Some 
of the apparent la rge  p ,  of a hadron can be due to 
the initial t ransverse  momentum of the incoming 
quarks. This  v!tiate: the direct  scaling connection 
between a &/d t  =f(t/i)s-” and the  invariant c ros s  
section behaving like PI-’“ at fixed x,  and Oc,,,,.. 
However, as long as (k,)*.., is 500 MeV or less ,  
the effects on the single-particle invariant c r o s s  
section are not grea t  and in FFF we limited our- 
se lves  to  values not higher than this. 

There  are, however, two ser ious  discrepancies 
with experiment which indicate that, in spite of 
the successes,  something is wrong with the  black- 
box model. First, recently measured values of 
Puu1 seem to  be higher than expected so that 
( k l ) h + q  must exceed 500 MeV. That would mean 

3320 
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that the scaling argument leading to  s^-4 for  t h e  
quark-quark c r o s s  section was  wrong in the range 
of data used. That is, the pL-* behavior of ex- 
periment would be accidental and not fundamental. 
For example, a quark-quark c r o s s  section vary- 
ing only as s^-3 could (with a (kL)h,p. big enough 
to explain the  l a rge  Pout’s observed) produce an 
apparent PI-’ hadron scaling. 

Second, in two-arm experiments with events 
tr iggered on one side by a high-p, hadron (the 
‘‘toward” side), the number of particles with la rge  
pL on the opposite side (the “away” side) was  ex- 
perimentally only about + of the number predicted. 
Some of this is accounted for by increasing 
( k L ) h - q ,  but not all, by far. The only explanation 
available in the approach i s  that the outgoing mo- 
mentum on the away side i s  distributed more  
softly (distributed among more  hadrons of lower 
momentum) than is typical of a quark; that is, 
there is more  than one component contributing Yo 
the high-transverse-momentum jets. This  is evi- 
dence fo r  the need to include gluons as well as 
quarks in the description of high-p, phenomena. 
It requi res  both gluons and the assumption that 
gluons fragment into a distribution of hadrons of 
lower average momentum than does a quark. 

These  discrepancies lead u s  to  include gluons 
in an analysis of high-p, hadron-hadron collisions, 
and to  the further suggestion that QCD field theory 
might not be  inconsistent with what is observed. 
Although with la rge  values of (kL)h-q,  the sca t te r -  
ing c r o s s  section behaving like f ( t /<) i -3  will yield 
a pL-’ behavior over  the range of data, th i s  still 
differs f rom the naive field-theory expectation of 
; -2 . (Including gluons does not help produce a 
PI-’ behavior.) But in the theory of QCD, there  
a re  a number of smal l  scale-breaking effects to  
notice. The effective coupling constant fa l l s  
logarithmically with energy. The  incoming parton 
distributions should not scale, but at high x should 
fall and at smal l  x r i s e  as QZ increases.  Effects 
in this direction a r e  already seen in e p  and pp 
scattering and have been analyzed in Refs. 17-20. 
An analogous modification of the fragmentation 
functions o”, (2) is also expected theoretically. 
None of these effects alone change the effective 
apparent p, power index Ne,r in p,-Nen very much 
and yet they all work in the same  direction an! 
together, as we show, they can change N,,,from 
the naive 4 to about 6 in the energy range of pres -  
ent experiments. (The scale breaking due to the 
large value of (k,),,, then brings N,, to  about 8 
Over th i s  range.) 

Thus the possibility exists that QCD can provide 
the full explanation of all the high-energy high-p, 
experimental results.  We analyze this possibility 
in this paper.  Some of our findings have been 

presented in Refs. 21 and 22. We wish to explain 
ou r  approach in detail here. The net result  is to 
demonstrate that th i s  possibility is very real.2s 

The main problem in such an analysis is that 
no complete calculation of a prediction for  QCD 
fo r  any phenomenon-even qualitative ones such 
as the confinement of quarks-has yet been made. 
At present, the mathematical complexities are 
still too great. However, at very high energy or 
high momentum t ransfer  Q, the theory is asymp- 
totically free;  the effective coupling constant fa l l s  
with increasing Q2. As emphasized by Politzer,26 
th i s  pe rmi t s  calculation of those pa r t s  of a col- 
lision involving high Q’. Yet every r ea l  p rocess  
involves high and low Q’ together and the prec ise  
separation of these par t s  and hence exact definition 
of the theory fo r  hadron-hadron collisions is a 
problem for  the (we hope near) future. We shall  
proceed here  in a preliminary way. 

to be present f rom existing ideas on QCD. We 
assume that the effective coupling behaves as 
aJG2)  = 12n/(251nQ2/AZ) with A determined f rom 
the sca le  breaking observed in ep and p p  col- 
lisions. The distribution of constituents i (quarks 
and gluons) in the proton G,,,(x, Q2) and the i r  
fragmentation functions Of(., Q‘) a r e  given a Q2 
dependence in accord with QCD analyses of ep 
and pp  collisions. The theory gives formulas f o r  
scaling violations (Q’ dependences), but thb func- 
tions must be known at some nominal reference 
momenta, say  Q,”. The distributions G,+i( x, Q;) 
a r e  determined f rom fits  to the eL and @p data. 
For the quark fragmentation functions D(z, Qo2) 
we u s e  the distributions of our previous quark-jet 
paper” and take Q: = 4 GeV’. We hope that data on the 
quark fragmentation functions f rom e’e- ,  ep, pp, 
or up experiments will soon be available to  t e s t  
the Q2 dependence expected f rom QCD and to allow 
for  a more  prec ise  determination of them. 

For the fundamental constituent c r o s s  sections 
for  quark-quark, quark-gluon, and gluon-gluon 
scattering, we have taken the f i r s t -order  per tur -  
bation scattering expected from QCD28*29 (see  
Table I) and normalized absolutely by the effective 
coupling (rAQ’). This  replaces the a rb i t r a ry  size,  
energy dependence, and angular dependence of the 
black box in our previous papers.  

of a rb i t r a ry  choice. This  would be t rue  were  it 
not fo r  the distributions of gluons in the proton 
G h d r ( x ,  Qo2), and the distribution of hadrons in a 
gluon jet D:(z, Q:), a t  the reference momenta. 
These  two functions a r e  not constrained much by 
other experiments and a r e  thus essentially arbi-  
t r a ry .  We have chosen these with an eye to  ex- 
periment.  In particular,  we have chosen D : ( q  Q,”) 

What we do is include all the ingredients thought 

Thus  it would seem that we have little freedom 
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TABLE I. Cross sections for the various constituent 
quark-quark, quark-gluon, and gluon-gluon subprc- 
ces ses .  a The differential c r o s s  section i s  given by de/d/di 
= a c ~ , 2 ( 8 ~ ) 1 A 1 ~ / s ^ ~ ,  where a,(Q2) is the effective coupling 
given by Eq. (3.1). 

Subprocess lAIZ 

a This table is identical to that in Ref. 29. 

“softer” than D”,z, Qt) because of experimental 
features of high-p, processes,  and our success 
depends on this choice in several  of the compari- 
sons. 

be so large.26*30-33 For  example, sometimes two 
quarks hit and scat ter  to two quarks plus a rela- 
tively hard radiated gluon, so that the two out- 
going quark jets are out of momentum coplanarity 
by the momentum of the gluon. These effects can 
be calculated, and we are engaged in such calcu- 
lations, What we have done here  is a temporary 
expedient. We have simply taken the k, distribu- 
tion measured for  fit f i -  pa i r s  in pp collisions 
(where s imilar  gluon emissions are possible) as 
a measure of an “effective” k, of quarks in the 
initial hadrons to mimic the effect of such 2 - 3 
constituent processes.  This is not precisely cor- 
rect  and the Q“ and x dependence of the high-k, 
tail to the effective t ransverse momentum of 
quarks in the hadrons is not handled properly in 
this manner. We hope to improve on this at a 
later date. 

of the quark-quark black-box approach and to 
examine closely its failures. The ingredients 
used in our QCD approach to high-P, processes 
a r e  explained in Sec. 111 and the results presented 
in Sec. IV. We reserve Sec, V for  summary and 
conclusions. The agreement with experiment is 

The theory of QCD also may explain how Po,, can 

We begin in Sec. I1 by reviewing the successes 

F I E L D ,  A N D  G .  C .  F O X  

very satisfactory. Q u a n t u m  chromodynamics 
might well be the correct theory behind these 
phenomena. 

18 - 

11. T H E  QU4RK-QUARK SCATTERING BLACK-BOX 
A P P R O A C H I - I O  

A .  Successes 

In spite of the rather ad lioc way in which we ad- 
justed the quark-quark scattering c r o s s  section 
d6/d?, many predictions of the black-box approach 
did not depend sensitively on it and were in agree- 
ment with experiment. A s  discussed in the sum- 
mary of FFF, the conclusions that did not depend 
strongly on the precise value of the internal t rans-  
verse  momenta of the quarks with hadrons were 
the most successful. They include: 

ratios were quite successful. The n + / n -  (and 
K’/K-) ratios were predicted to become l a rge r  
at high Y, since in this region the constituents 
that collide a r e  predominantly u quarks that frag- 
ment more often into n + ( I<+)  than n - ( K - ) .  Simi- 
larly,  the mixing of the q meson implied that , ) /no 
should be about at high x ,  also in agreement with 
data. The high-x, K + / T +  ratio was  used to deduce 
that Dl (z)/D:+(z) must be about $ at large L. 
Recent lepton data are consistent with this de- 
d u ~ t i o n . ~ ~  

(2) The number of and  jet^^^-^^ produced 
with a pion or proton beam is consistent with the 
expectation that the quarks in a pion carry,  on the 
average, more momentum than they do in a pro- 
ton. 

(3)  The quark-scattering approach predicted 
that the c ros s  section for  producing a jet of had- 
rons is considerably l a rge r  than that fo r  produc- 
ing a single meson at the same  p,.39 For example, 
the model predicted a jet (quark) to single particle 
( n o )  ratio of about 370 at Y, =0.4 and Qc,m, =90”. 
The expectations were in good agreement with 
subsequent jet tr igger  experiment^.^'*^^ 

high-p, particles are not isolated but members  
of a cluster (jet) of particles representing the 
fragmentation of the quark. In single-particle 
tr iggers,  one expected to see  the remainder of 
the jet as an enhancement of associated par t ic les  
in roughly the same direction as the tr igger.  With 
one additional a ~ s u m p t i o n ~ ’ ~ ~  about the character  
of fragmentation, the number of par t ic les  accom- 
panying a large-p, t r igger  could be successfully 
understood. 

support for the overall four jet s t ructure  shown 
in Fig. 1 for a large-p, event. These agreements 
between the quark scattering approach and experi- 

(1) Predictions for the large-p, single-particle 

(4)  A distinctive feature of the model w a s  that 

(5) There is now considerable experimental 
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Jet Towards Trigger 

Towords 
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. . , . . . . . . 

(bl 

OK\ ,2‘ 

FIG. 1. (a) Illustration of the four-jet structure re- 
sulting from a beam hadron (entering at left along dotted 
line) colliding with a target hadron (entering at right 
along dotted line) in the c. m. frame: two jets with large 
PI (collection of particles moving roughly in the same 
direction), one called the “toward” (trigger) side and 
one on the “away” side; and two jets with small 9~ that 
result from the breakup of the beam and target hadrons 
(usually referred to as the “soft hadronic” background). 
(b) Illustration of the underlying structure of the large- 
PL process A + B -  hi + h, + x. The large-PL trigger had- 
ron hi occurs as the result of a large-angle scattering 
of constituents (q.+ 40- clC+ e), followed by the decay 
or fragmentation of constituent C into a towards-side 
jet of hadrons (one being the trigger hi) and constituent 

into an away-side jet of hadrons (one being h, ) .  The 
quantities x,, %ar k, , ,  k l b  are the longitudinal fraction 
of the incoming hadrons A ,  B momentum and perpendic- 
ular momentum of constituents a, b and Zc, zd k , , ,  k L d  
are the fraction of the outgoing constituents longitudinal 
momentum and perpqndicular momentum carried by the 
detected hadrons kt and h,. 

ment indicate strongly that quarks play an impor- 
tant role in the production of high-p, mesons. In 
particular, they show that the mesons responsible 
for  high-p, t r iggers  probably arise from quarks  
that have fragmented in a manner s imi la r  to that 
observed in lepton-initiated processes.  

B .  Failures 

As noted in the Introduction, the quark sca t te r -  
in?  black-box model does not agree  in detail with 

all the  resu l t s  of high-p, experiments. It disagrees 
with data in the following ways.38 

(1) Large-P, events are far less coplanar than 
f i r s t  expected f rom a two-to-two scattering sub- 
process  as shown in Fig. 1. Our f i r s t  guessai41 
that (k,),,,=(k,),,,=330 MeV resulted in a too 
narrow away-side Pout distribution. Even our  
final choice in FFF of ( k l ) h 4 q  = 500 MeV yields 
more  coplanarity than seen in recent experiments. 

(2)  The quark-quark scattering model predicts 
too many high-p, particles on the away-side of a 
large-p, tr igger.  For example, the number of 
away hadrons with z,, 2 0.5 (Ref. 42) for  a p ,  
=4.5 GeV/c t r igger  at 6’=45”and W=53 GeV is 
predicted in FFF to  be 3-4 t imes  la rger  than 
seen experimentally by the CCHK group.I5 

away-side particles,  it predicts many more  posi- 
t ives than negatives on the away side. For a 
t r igger  p ,  of 3.0 GeV/c, BC ,,,. = 90” and u.’ = 53 GeV/ 
c, the model predicts about 50% more  positives 
than negatives on the away side with pL (away) 
> 1.5 GeV/c. Recent data from the CERN ISR 
(Ref. 43) show about equal away-side positives 
and negatives under these ciruumstances. These 
+ re  ser ious  problems for  the model. The last  two 
imply that (at the small-w, values probed by ISR 
experiments) the recoiling away-side parton does 
not fragment in a manner s imi la r  to  that observed 
by lepton experiments. Furthermore,  as dis- 
cussed in FFF Table 4, we cannot simply increase  
( k l ) h - ,  to  improve our  agreement with (1) and (2). 
The value of 500 MeV was  as la rge  as we could 
take in FFF without spoiling our  agreement with 
the energy dependence of the single-particle c r o s s  
section. We feel that it is not useful at  present 
to  t r y  to  “fiddle” the quark scattering model to  
make it agree  with recent experiments, particular-  
ly s ince  the re  is an emerging candidate theory of 
strong interactions that apparently has the fea- 
t u r e s  necessary to repair  the failures of the black- 
box model. 

(3) Not only does the  model predict too many 

HI. THE INGREDIENTS TO THE QCD APPROACH 

A. Effective coupling a,(QZ) 

falls logarithmically with increasing QZ, where  Q 
i s  some characterist ic momentum in a collision. 
In general, the effective quark-quark-gluon cou- 
pling is expected to  have the form 

The  effective strong-interaction coupling constant 

where  n, is the number of quark flavors (we use  
n, =4).  The constant C represents  corrections 
that, in general, differ f rom process  to process  
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but can, in principle, be calculated (although th is  
might be  quite difficult in practice).44 The quantity 
A is an unknown scale factor that can be deter-  
mined f rom the amount of "scale breaking" ob- 
served in a given experiment. Analysis of the 
scale breaking in ep and p p  collisions indicates 
that A is in the range 0.3 to  0.7 GeV/c (with C 
= 0). 17 -20 

For ep collisions, Q i s  the four-momentum 
t ransfer  f rom the electron to  the quark. On the 
other hand, the cor rec t  kinematic quantity to use  
f o r  QZ in the constituent subprocess shown in Fig. 
1 is not known. This problem is,  of course, r e -  
lated t o  the unknown f C in (3.1). For definitsness, 
we will take c = O  and choose 

Qz =2.?f;/(G2 +t^' +G2), (3 .2 )  

where 5 ,  f ,  and a r e  the usual Mandelstam s, t ,  
and u invariants but for the constituent subprocess. 
This form fo r  Qz is symmetric in i, f ,  and u and 
approaches - 1 in the case  ? <<s^. This uncertainty 
in the form for  and, correspondingly, the lack 
of knowledge of f C makes predictions at low @ 
(i.e., low p,) in hadron-hadron collisions a bit 
uncertain. 

If the distribution of quarks  within the proton, 
Gbdg(x), and the fragmentation of quarks in had- 
rons, D:(z), both scale,  then the invariant c ros s  
section Edu/d3p for  producing a large-p, meson 
reflects directly the energy dependence of the 
quark-quark c r o s s  section &/d. Thus if the 
latter behaves as h(i/s^)/c",  then the former  be- 
haves as f(x,, .9c.m.)/P,zn. The c r o s s  section for  
the scattering of partons in field theory (see Table 
I) with a,=constant yield 2n=Neff  = 4  where we 
define 

N ~ N  = - ln (~ , /~ , ) / ln (P , , /~ , , ) ,  (3.3) 

where uI9 is the invariant c r o s s  section (at fixed 
x,) at fill,. Including an as that depends on Q 
according to (3 .1 )  and (3.2) produces an E&/d3P 
that decreases fas te r  than l/pL4 at small p, 
(N,,, ~ 4 . 8  for  2 -Cp, 
approaches the behavior at la rge  p , .  This  
can be seen by the dot-dash curve in Fig. 2 where 
we plot p18 t imes  the predicted Edo/dsp arising 
f rom quark-quark scattering at  x ,  =0.2 versus  
p ,  using A =0.4 GeV/c. One s e e s  that including 
the a,( Q) dependence brings one a smal l  way 
toward the flat (l/p,') dependence seen experi- 
mentally at  pL 5 6 GeV/c. 

10 GeV/c at x ,  =0.2) but 

B. The quark and &on distributions G(x, Q2) 

In the QCD approach, the "effective" quark dis- 
tributions in a proton, G,,,(x, Q), do not scale. 
The influence of this on uW2(x, Q") fo r  ep and )LP 

18 - F I E L D ,  A N D  G .  C .  F O X  

p," Eda/d3p versus pl 8x,m,=90" 

q + q * q + q  Subprocess 

h = 0.4 GeVlc ,  no s m e a r  
h.04 GeV/c.<k,>,-q:848 MeV ,:" 

XI = 0 20 

! I 1 
2 4 6 8 10 I2 14 

pI (GeV/c) 

FIG. 2. The behavior of pistimes the invariant cross 
section Edu/d3P forPP--"+Xat Oc.m.=900 and x,=O.2 
arising from the QCD subprocess 4+ 4' 4 + 4 calculated 
with A = 0.4 Gev/c. If the quark distributions within pro- 
tons, G m  (x ) ,  and the quark fragmentation functions, 
D:' (4, scale and if the strong interaction coupling as 
is constant, then PL8Edu/d3P behaves like Pf at fixed 
x, and &,, (dotted line). Allowing mS to depend on Q2 
according to (3.1) yields the dot-dashed curves. Includ- 
ing the expected Q2 dependence as (Q2) and GH ( x ,  Q2) 
results in the dot-dot-dashed curves. Finally, allowing 
as (Qz), Gm (x,Q2) and D:' (2,  Q2) all to vary with Q2 in a 
manner expected from QCD results in dashed curve and 
the solid curve is the result after smearing with ( k d h y 
= 848 MeV and @L)~-,, =439 MeV. The shaded area re- 
presents uncertainties due to the way in which one cuts 
off the low 3 and f singularities in d 6 / d f  Above PI 2 3.5 
GeV/c at OC.,,.=9O0, the results are insensitive to the de- 
tails of this cutoff procedure. 

scattering has  been and may account 
for the lack of scaling seen in these  experiments 
over the range 4.0s Q's 20.0 GeV'. We use  the form- 
ulation of Ref. 18 to extrapolate these functions to 
the higher-Q region needed in analyzing high-p, 
hadron data ( see  Table II for the range of sam- 
pled). 

In an asymptotically f r e e  field theory, sca le  
violations a r e  generated by gluon corrections 
typified by gluon bremstrahlung from a quark and 
by quark-antiquark pair  creation by a gluon. One 
can predict the behavior of the constituent dis- 
tributions Gi (x ,  Q') given that they a r e  known at 
some reference momenta Q, [large enough so that 
a,(Q,Z) is smal l  enough to make perturbation theory 
applicable]. Following Ref. 18, the moments of 
the distributions 
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TABLE 11. The mean values of zc, Q,, and Q2 resulting 
for  pp -To  +X at  90" in the QCD approach with A = 0.4 
GeV/c, and where zc is the fraction of the constituent mo- 
mcnta carr ied by the trigger hadron (see Fig. 1); Q, is 
the component of momentum of the constituent scattering 
toward the trigger ( Q x = k , , + k a ,  see  Table I and Fig. 2 of 
FFF); Q 2  is defined by Eq. (3.2). 

53 2.0 0.68 1.25 
53 4.0 0.75 0.86 
53 7.0 0.81 0.61 
53 9.0 0.84 0.54 
19.4 1.94 0.74 1.53 
19.4 3.0 0.86 1.77 
19.4 4.0 0.89 1.76 
19.4 6.0 0.92 1.46 
19.4 7.0 0.94 1.46 

500 10.0 0.58 0.16 
500 30.0 0.69 0.10 

1000 10.0 0.53 0.21 
1000 30.0 0.61 0.10 

7.9 
33.7 
96.5 

149.0 
4.8 
7.6 

15.5 
42.9 
58.5 

525 
3003 

151  
4184 

(3.4) 

a re  given in t e r m s  of the moments at  Q, by 
9 

M,(n,  W = c MAn, Q,2)R,,(n, Q', Q,,? , (3.5) ,=, 
where R,,(n, Q2, Qoz) i s  a known matrix (depending 

SCALE BREAKING 11.0.4 GeV/c 

( a )  Electroproduction Structure Function 
of Proton 

1 'k -x- 0' = 500 
- FFI RFSIII TS ::j 0 0  01 

00 

on A)  and i corresponds to the constituent types 
(u, d, s, c, iI, 6, S; C, gluon). The final resulting dis- 
tributions at Q2 are calculated by inverting (3.4) 
by an inverse Mellin transform [Eq. (13) of Ref. 
18). 

Figure 3 shows the predicted Q2 behavior of 
uW2(x, Q) resulting from an analysis of the e p  
and p p  data. The x dependence of the parton dis- 
tributions at the reference momentum, Ci(x ,  Q,' 
=4  GeV), was  chosen to agree with experiment. 
Unfortunately, the analysis of e p  and p p  is rela- 
tively insensitive to  the input gluon distribution 
with the proton. We take xGl(x,  Q:) =xG,,,(x, Q:) 
=(1 + 9 w ) ( l -  x)' at the reference momentum. It 
integrates to a total momentum for gluons within 
the proton of 50%. The resulting Qz dependence of 
CP-,(x, Q2) is also shown in Fig. 3.  Both vW2(x,  Q2) 
and xC,,,(x, Q2) exhibit a r i s e  at  small  x and a 
decrease at large x as Qz increases.  The effect 
is particularly dramatic for the latter.  

The QCD interpretation of the e p  and p p  in- 
elastic-scattering data has some ambiguities be- 
cause one expects, not only the logarithmic scale 
breaking shown in Fig. 3, but also other correc-  
tions falling more rapidly with QZ. The latter 
would be unimportant at very large Q2 2 50 (GeV/ 
c)' but are important in the Q2 range probed by 
the current  data. One example of such a correc-  
tion is the O(m2/Q')  correction ( M  is proton mass) 
generated by using x ' and not x as the argument 
of the s t ructure  functions. Here 

(b) Gluon Distribution in Proton 

X X 

FIG. 3. (a) The predicted Q2 dependence (scale breaking) of the electroproduction structure function for the proton 
'"';(.I,Q?) arising from the constituent (quarks, antiquarks and gluons) distributions The 
diskbut ions a t  high Q2 a r e  calculated from the distributions a t  the reference momentum Q 2 = 4  GeV? using a QCD mo- 
ment analysis with h=0.4 GeV/c. In asymptotically f ree  theories, one expects a decrease Ln the number of htgh-x con- 
stituents and an increase in the number of low-x constituents as Q2 increases. Also shown is the value of i ~ ~ ~ ? ( x )  (in- 
h e n d e n t  of Q2) used in the quark-quark black box model of FF1. (b) The predicted Q2 dependence of the distribution 
of  gluons within the proton rG, -n(n ,  Q2) = x&r, Q2) used in this analysis. The distribution at high Q2 is calculated in 
terns of a distribution at  the reference momentum Q: = 4  GeV2 given by x g ( X ,  Q:) = (1 + 9X)(1- x)4. 

Q2) used in this analysis. 
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(3.6) 

This leads to scale  breaking that is about half the 
observed amount in the large xz 0.3 region. How- 
ever, one can construct variables of a similar 
type (for instance xSuper introduced by Atw0od4~) 
that can describe all the observed large-x scale 
breaking in t e r m s  of O ( m 2 / Q 2 )  corrections. Such 
models give essentially no scale breaking at low 
x and the important feature of the QCD approach 
is that the same value of A describes the scale 
breaking at both low and high x. This i s  shown 
in Fig. 4. It should be noted that the fit to the low- 
Y data is poorer than that at high x although the 
trend with Q' is given well in both cases.  This i s  
because the low-x data is new data that was not 
available when the parameters of the QCD solution 
were determined.46 In Ref. 18, we not only con- 
sidered structure functions that were a function 
of x but also a more complicated and probably 
more realist ic formalism developed by Georgi 
and P o l i t ~ e r . ' ~  This includes O(m'/Q") t e rms  
not only in the argument of the structure functions 
[similar to (3.6) above] but also as overall multi- 
plicative factors.  It turns out that the O(7)i2/Q2) 

t e r m s  tend to cancel among themselves and this 
formalism i s  phenomenoIogicaIIy equivalent to the 
simple formulation we use here. In particular, 
essentially the same value of A ~ 0 . 5  GeV/C is 
found in the best fit of both formalisms. 

If one includes the scale-breaking effects of 
Gt(x, Q') in addition to the running coupling con- 
stant UXQ'), the resulting p p -  n o + X  c ross  section 
arising from the quark-quark subprocess has an 
N,, equal to about 5.0 and 5.5 for the range 2.0 
CpL s 10.0 at x, =0.2 and 0.5, respectively. The 
scale breaking of G i ( x ,  Q') has  little effect at x,  
=0.2 (see Fig. 2) because at  this x ,  one is sensi- 
tive to G i ( x ,  Q') near the values of x that a r e  
stationary a s  Q2 increases.  

C. The fragmentation functions$ (2. Q2) 

The experimentally measurable constituent 
fragmentation functions Ef(z ,  Q2) (here  i r e fe r s  to 
a gluon o r  a u, d, s,  C, ii, d ,  S; C quark) are ex- 
pected, in asymptotically free theories, to show 
scale breaking (4  dependences) similar to that 
predicted for vW2(x,  Q2).26*4' The moments of the 
fragmentation functions to a given hadron h given 
by 

Rfin,  Q2) = / ' z " D : ( z ,  Qz)dz,  (3.7) 
0 

are given in t e r m s  of the moments at some ref- 
erence momentum Q, by an equation similar to 

I8 - F I E L D ,  A N D  G .  C. F O X  

SCALE BREAKING IN 
INELASTIC e.  p SCATTERING 

0 .5  

W2 

0.4 

0.2 

- OCD A : 0.4 GeV/c 
OCD A : 0 5 GeV/c _ _ _  

I I 

1 , , , , I  I 
30 5 10 

0.5 I I 

30 5 10 

Q2 [(GeV/c?] 
I 

0.180 

X = 0.5 

4 8 16 24 32 40 

Q2 [(GeV/d2] 

FIG. 4. Comparison of the scale-breaking effects (Q2 
dependence) expected from an asymptotically free theory 
with data on eP and PP inelastic scattering at X=O.O33  
and 0.08 (Ref. 20) and at  X =  0.5 (Ref. 72). The theory 
comes from the analysis of Ref. 18 using A = 0 . 4  GeV/C 
(solid curve) and A=O.5 GeV/c (dashed curve). 

(3.6). Namely, 
9 

@(o, Q? = 5 if (n, Q,Z)Et j (n,  Q2, Q:), 

where the matrix &, i s  simply related (but not 
equal to) Rt,.48 One then uses  the Mellin-trans- 
form technique of Ref. 18 to invert (3.7) and ob- 
tains @ ( z ,  Q") in terms of these functions at the 
reference momentum Q,' (we take Q,2 = 4  GeV). 

(3.8) 
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A s  explained by 
distribution function depends on its shape at the 
reference momenta. The faster the function 
D(z, QO2) falls off with increasing z at la rge  t ,  the 
faster the la rge  z points fall as Q is increased 
above Q,'. It i s  important when considering the 
fragmentation functions to  distinguish the dis- 
tribution of pr imary  (or direct)  mesons f rom the 
final net distribution (which includes decay prod- 
ucts). The above moment analysis should be ap- 
plied to  the fo rmer  not the latter.  This  is, of 
course, a bit difficult since we do not know ex- 
perimentally exactly how many resonances are in 
the quark jets at Q,'. What we shall do is to use  
the resu l t s  of Ref. 27 (hereafter called pF2) at 
the reference momentum Q,' = 4  GeV2. The dis- 
tribution of pr imary  mesons at  Q: is then given 
by 

the Q" dependence of a 

D:(z, Q;) =ACf( l -  z )  + B h F ( z ) ,  (3.9) 

with A: and Bh given in Table I of FF2 and 

F(z)  = F ( z )  -f(l - z )  (3.10) 

with 

f(1- 2 )  =f(q) = 1 - a  +3aq'. 

The parameter  a is chosen to be 0.77 and F ( z )  
is given by Eq. (2.23) in FF2. The distribution of 
pr imary  mesons  in a gluon jet at Q,2 is assumed 
to have the  form 

0: (2, Q,2) = BhF,(z) , 
where we arb i t ra r i ly  take 

(3.11) 

F , ( ~ ) = 3 ( 1  - Z ) ' / Z ,  (3.12) 

where we have assumed, as discussed ear l ie r ,  
that the  gluon fragmentation function falls off 
fas te r  with increasing z than do the quark func- 
tions. 

We take the pr imary  mesons precisely as ex- 
plained in FF2 as being either pseudoscalars 
( i i ,  I ( ,  etc.) o r  vector mesons ( p ,  K*, etc.) with 
equal likelihood. We use  the  QCD moment method 
to calculate the primary meson (pseudoscalar plus 
vector meson) distributions at  any desired Q'. The 
resonances a r e  then allowed to decay and we form 
the total net (direct  +indirect)  distributions a t  that 
G'. Typical results a r e  shown in Fig. 5. 

The effect on the predicted large-p, invariant 
c ros s  section of including scale violations of the 
fragmentation functions i s  that the Neff now be- 
comes 5.8 and 6.4 between p L  = 2  and 10 GeV/c at 
c. =0.2 and 0.5, respectively. Large-), resu l t s  
a re  particularly sensitive to scale violations of 
the D ( z ,  Q') function since these violations a r e  
largest at high e (see Fig. 5) and this is precisely 
the region sampled by the calculations. 

Z D ( Z , $ )  VERSUS z 

2 Z 

FIG. 5. The 6' dependence of the fragmentation func- 
tion for a u quark to a "0, D:'((., @), expected from an 
asymptotically free theory. The distributions at high 
Q2 are claculated from the distribution at the re fereye  
momentum Q;=4 GeV2 using A = 0 . 4  GeV/c, where D, 
(z,Q?) is taken from the analysis in FF2. (b) Same as 
(a) but for the gluon fragmentation function Dp''((., QZ). 

D. Transverse momentum 

A s  we learned in FFF, constituents have a la rge  
internal t ransverse  momentum inside the proton. 
Such effects (called smearing) are particularly 
important for  large-p, calculations, due to  the 
"trigger bias" which se lec ts  the configuration in 
which the initial quarks (or gluons) a r e  already 
moving toward the trigger11-15'41 ( see  Fig. 3 of 
FFF) .  In QCD, this t ransverse  momentum of the 
partons can a r i s e  f rom two sources  i l lustrated 
in Fig. 6. 

First ly,  in a proton beam, quarks  a r e  confined 
in the t ransverse  direction to within the proton 
radius. Therefore, f rom the uncertainty princi- 
ple, they must have some f ransverse  momentum. 
This  momentum is intrinsic to  the  basic parton 
' bave  function" inside the proton. A s  illustrated 
in Fig. 6(a), one might expect the wave function 
to have a t e rm where the tr igger parton k ,  is 
balanced by another constituent (or  constituents) 
which has  the opposite k ,  and most of the remain- 
ing longitudinal momentum. Consider now the  
plane formed by the beam, target,  and a 90" trig- 
ge r  hadron (called the x - z  plane in Fig. 6). Typ- 
ically, the  tr igger a r i s e s  f rom the fragmentation 
of a constituent with k,, > O  whfch i s  balanced by 
the  remaining constituents having k,, : 0. One ex- 
pects to see this negative k,, as a shift in the 
beam and target je t s  at  large /q I. This  shift 
(i.e., nonzero ( k L x ) )  of the beam jet as one in- 
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(0) Type I: kL Intr insic to Wovefunction 

Trigger Quark : q c  
I 

s:c 2-2 subprocess 

2 

Fragments a t y  qd 

large Ix,,I 
Away Slde - Beam ond Target Jets <p,>fO 

---* quarks - gluons 

( b )  Type II : “Effective” kl due to Bremstrohlung 
qc+ Trlgger Ouork 

2-2 subprocess 

2 Proton Torget 

2-3 subprocess ’ 
r. 

-Away Side - Beam and Target Jets <p.>=o 

FIG. 6. (a) Illustration of the nonperturbative compo- 
nent of the transverse momentum of quarks within proton 
that i s  intrinsic to the wave function of the proton. One 
expects this transverse momentum to be balanced by the 
remaining constituents in the proton which can, in turn, 
fragment into particles at high XII. The away-side con- 
sists of the recoiling quark qd and two slightly shifted 
jets, one from the beam and one from the target. b) 
Illustration of the perturbative component to the trans 
verse momentum of a quark with a hadron which is due 
to the bremstrahlung of a gluon before the basic 2‘ 2 
scattering occurs. In this case, the trigger quark is  
balanced by two away-side jets, one from the quark qd 
and from the radiated gluon q:. 

creases the PI of a 90” trigger has recently been 
observed by the British-French-Scandinavian 
(BFS) group at ISRSO (see Fig. 14 or Ref. 22). 

“effective” k ,  of quarks in protons due to the 
bredstrahlung of gluons. This perturbation term 
is illustrated in Fig. 6(b). It corresponds to in- 
cluding two particle to three or more particle 
processes (2 - 3) rather than just the two particle 
to two particle 2 - 2 scatterings. For such sub- 
processes, the k, of the quark Q. is  balanced by 
a gluon jet on the away side which subsequently 
fragments into many low-momentum hadrons. 
In addition, the mean value of the effective k, i s  
expected to depend on the x value of quark Qo and 
on the Q for the processes. Separating the origin 
of the transverse momenta into Types I and II as 
seen in Fig. 6 i s  a bit artificial since both mech- 
anisms occur simultaneously. 

Secondly, in QCD, one expects to receive an 

I O-Gt I I I j 

d r / d M  dYd2k, (PP-’p+p-+x) 
w = 27.4 GeV M = 8  GeV 

Y =  0.0 

k, (GeV/c) 

FIG. 7. The transverse-momentum spectrum, 
du/dMdYd2k,,  of muon pairs in PP collisions at  w= 27.4 
GeV, Mw=8 GeV, and rapidity y =  0 from Ref. 51. Also 
shown is  a Gaussian fit of the form exp (- 0.54 k?) 
which yields (k3,- 1.2 GeV and i s  interpreted a s  imply- 
ing Ih,)h-rp=848MeV. 

The effective constituent transverse momentum 
is directly observed in the Drell-Yan process 
p p -  F’ 1- i X .  Current data5’ indicate that 
(k , )u+, , -  i s  about 1.2 GeV (see Fig. I). There 
has been much speculation about how much of the 
dimuon k, spectra shown in Fig. I is due to the 
wave function (Type I) and how much i s  explained 
by QCD perturbation calculations (Type II).26s30-33 
The latter predicts a high-k, tail to the distribu- 
tion that falls roughly like a power and a mean 
that depends both on x and @ of the muon pair. 
For the present analysis, we  shall parameterize 
the transverse momentum of the constituents in 
protons by a Gaussian with ( k J b d s  = 848 MeV 
which produces for the Drell-Yan subprocess the 
curve shown in Fig. 7. W e  shall take this dis- 
tribution to be independent of x and Qp and to be the 
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same  fo r  quarks,  antiquarks, and gluons in the 
proton. In so doing, we a r e  not handling properly 
the x and dependence of the high-k, tail ex- 
pected f rom QCD bremstrahlung. At a later date, 
we hope to  calculate and include the 2 - 3 processes  
expected by QCD. For  the present, we merely 
use  the data in Fig. 7 to give u s  an  “effective” k ,  
distribution and include only 2 - 2 subprocesses. 

In a manner s imi la r  to  that illustrated in Fig. 
6, the emission of gluons after the hard-scatter-  
ing (2 - 2) subprocesses  induce an  “effective” k ,  
of the hadrons that fragment f rom the outgoing 
quarks  because one is really seeing two je t s  
ra ther  than one. As  for the quark distributions 
in the proton, we do not include these effects (we 
also neglect the  interferences that a r i s e  between 
the amplitude fo r  emitting gluon before and af te r  
the hard 2 - 2 process) and for the present take 
the t ransverse  momentum distribution of hadrons 
f rom outgoing quarks (and gluons) to  be a Gaussian 
with (k,),,,=439 MeV independent of z or  Q2 as 
in FF2. Again, th i s  is not precisely cor rec t  and 
we hope to  improve th i s  in later work. 

E. The cross sections d6ld? 

In the QCD approach, one includes not only the 
contributions f rom quark-quark scattering but 
also the contributions f rom quark-gluon and gluon- 
gluon scattering. We include all seven processes:  

- Tq, Tq - gg, and gg-gg, where g is a gluon. 
Each 2 - 2 differential c r o s s  section, & / d f ,  is 
calculated to  first o rde r  in perturbation theory 
with an effective coupling constant (u,(V) as in 
(3.1). These  c r o s s  sections have been calculated 
previously by Cutler and Sivers28 and by Com- 
bridge, Kripganz, and Ranft2’ and for complete- 
ness a r e  given in Table I.52 All these c r o s s  sec-  
tions behave as 6-’ at fixed t / ;  (and for  constant 
a,) so that including gluons does not help in 
changing Nerr f rom 4 to  8 but gluons a r e  important 
111 increasing the magnitude of the low-x, c ros s  sec-  
tion to agree  with data.‘3*28*29 In addition, we will 
see that gluons play an important role in under- 
Standing the high-P, correlation data. 

Including gluons, unfortunately, introduces an 
uncertainty (at low x,) in the high-p, predictions. 
As explained in Secs. I11 B and III C, the gluon 
distribution in a proton and the gluon fragmenta- 
tion functions a r e  essentially unknown. We only 
h o w  that the  total  momentum car r ied  by quarks  
and gluons in a proton i s  that of the proton and 
similarly the total energy car r ied  by all  the hadron 
fragments f rom a gluon i s  the gluon energy. Many 
of our high-p, predictions depend on these un- 
known distributions, for  the QCD quark-gluon and 

r14 - 44, 44 - m, 47 - q7, 54 - g4, gq- &-, g,r 

gluon-gluon scattering c r o s s  sections are large. 
If one accepts QCD as the cor rec t  description for 
high-p, processes,  then one could eventually hope 
to use  the hadron-hadron data to help determine 
these functions. Fo r  the present, we simply cal- 
culate with our  initial guesses for  C p - J x ,  Q:) and 
D:(z, Q;) and do not attempt to  find the optimal 
forms  fo r  these functions by fitting high-p, data. 

As  discussed in great detail in FFF, c ross  sec- 
tions of the type given in Table I a r e  not adequate 
once one allows f o r  a nonzero t ransverse  momen- 
tum of constituents in the hadrons or of hadrons 
from in the  outgoing jets.53 This i s  because they 
diverge at s^, k, or t^ equal zero  which can occur 
once (k , ) , , ,  o r  (k , ) , , ,  i s  nonzero. To  remove 
th is  unwanted sjngularity in the integral, we s im-  
ply replace s^, t ,  and 
- t ,  and .Woz - 2, respectively, with MO2 = 1.0 
GeV2.54 Because we a r e  generating the t ransverse  
momentum of the constituents by a Gaussian, the 
resu l t s  f o r  hadron production at la rge  pI are not 
sensitive to  this ad hoc cutoff procedure. With the 
large-k, damping, characterist ic of a Gaussian, 
once one has  removed the infinity at  say f = O  (by 
whatever means), one never samples th i s  low-? 
region when calculating high-), meson production. 
This  would not be t rue  for a transverse-momen- 
tum distribution falling off l e s s  rapidly with k ,  
(for example, like a power) so that the large-/<, 
tails expected by the QCD processes  in Fig. 6 
will have to  be handled differently in the future. 

Because ( k , ) h 4 q  is large, one does begin to  be- 
come sensitive to  the loy-; and - ?  cutoff at low 
3,. This  is illustrated in Fig. 2 where we show 
the resu l t s  for  p p -  IT’ +X at x ,  =0.2 and 8, ,  
= 90” ar i s ing  f rom quark-quark scattering before 
and af te r  smearing. The shaded a r e a  represents  
uncertainties due to  varying the low-: and - t^ 
cutoffs. The region of p, Q3.5 GeV/c cannot, at 
present, be  used to  quantitatively test the QCD 
ideas since this region is sensitive to the cutoff 
procedure.55 F o r  p ,  a 3.5 GeV/c, on the other 
hand, the manner of cutoff is not important and 
the resu l t  depends only on the amount of smear -  
ing (i.e., on ( k J h - * ) .  

in Table I by ŝ  +hi’:, 121: 

IV. RESULTS 

A. The single-particle cross section 

1 p;’ behavior 

Figure 8 shows a comparison of the predicted 
and experimental behavior ot pLs t imes  E d 3 / d 3 p  
for  p p - n + X a t  Q,, =gooand x , = O . 2 ,  0.35, and 
0.5 versus  9,. The dot-dashed and solid curves  
a r e  the final resu l t s  before and af te r  smearing, 
respectively, with A =0.4 GeV/c. The dashed 
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p;Edr/d3p versus pI 
p p + ~ + x  ec,,,=900 

-.- h.0.4 (before smear) - 
- h.0.4 (after smear) 

ID 
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- 
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D 

0 10 20 
pL (GeV/c) 

FIG. 8. The data on P? times E d o / $ g  for large PI pion 
production at @,,= 90" and f ixed x,= 0.2, 0.35, and 0.5 
versus PI (open squares: Ref. 73, solid dots: Ref. 74, 
crosses: Ref. 75) compared with the predictions (with 
absolute normalization) of a model that incorporates all 
the features expected from QCD. The dot-dashed and 
solid curves are the results before and after smearing, 
respectively, using A =  0.4 GeV/c and the dashed curves 
are the results using A=0.6 GeV/c (after smearing). 

curves are the resu l t s  (after smearing) using 
A =0.6 GeV/c. The  effect of smearing (at fixed 
w,)  is to increase the low-p, predictions (by about 
a factor of 10 at  pL = 2  GeV/c and x ,  =0.2) while 
not affecting much the high-p, region. F o r  the 
range 2.0 s p L  6 6 . 0  GeV/c at x ,  =0.2, and 4.0 
s pL g 10.0 GeV/c at xL =0.5, the resu l t s  a r e  
roughly independent of PI (when multipled by P,*). 
However, th i s  pL-* behavior is only a 'local" ef- 
fect. It holds only over a smal l  range of pL (at 
low bL); the  region depending somewhat on xL. 
As PI increases,  the predictions approach the ex- 
pected behavior. This  can be seen more  
clearly i n  Fig. 9 where we plot the predictions and 

18 - F I E L D ,  A N D  G .  C .  F O X  

p:Eda/d'p versus pI 

PP-T + x e,.,= 900 xI=0.2 

W= 19.4 

FIG. 9. The same as Fig. 8 except we now plot P L ~  
times E d c / d 3 p  versus P ,  at XI= 0.2 and oc.,,,. = 90". One 
clearly sees the asymptotic approach to an E d o / d p  (Y 

P L - ~  behavior at fixed XI. 

data t imes  pL4 at x ,  =0.2 and Q c m  =go". The be- 
havior becomes only asymptotically, but by 
PI = 10 GeV/c at th i s  x,,  it i s  fairly close (about 

A s  illustrated in Fig. 2, the low-p, region is 
sensitive to  the small-; and - i  cutoff employed.55 
However, because of the Gaussian falloff of the 
t ransverse  momentum distributions, the resu l t s  
a r e  completely insensitive to the form of the cutoff 
fo r  pL 2 3 . 5  GeV/c at Q c m  =go". For example, 
Table I1 shows that the constituent subprocess 
has  a mean momentum (Q, )  = 1.76 GeV/c f o r  a 
pL = 4  GeV/c t r igger  at W =  19.4 GeV but even fo r  
th i s  la rge  "trigger bias", only 12% of the  total  
pp- no  +X c r o s s  section arises f rom the  region 
I t ^ / <  10 GeVz and none arises for I t * / <  5 GeV. 

The data on E & / d 3 p  a t  fixed W = 19.4 and 53 
GeV versus pL are compared with the  theory in 

P I T .  
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at present be calculated precisely as the resu l t s  
depend sensitively on the  unknown gluon distribu- 
tions, the  shape of the  transverse-momentum 
distributions of the quark-within the hadrons, the 
nature of the low-; and - t  cutoff, our choice for 
Qz, and possibly higher-order corrections [such 
as the f C in Eq. (3.1)]. It may be that all of the 
invariant c r o s s  section down to b l J s  as low as 
1.5 or 2.0 GeV/c i s  due to the scattering of quarks  
and gluons as described by QCD. On the other 
hand, it may be that other nonleading constituent 
subprocesses such as the ones estimated by 
Blankenbecler, Brodsky, and G ~ n i o n ~ ~  make some 
contributions in the range of 1.5 2 p ,  2 4.0 GeV/c 
with QCD dominating at the higher p , ' ~ .  

0 w 53(77'+Tr 112 
w 53 770 

0 W 194 no 
W 19 4 770 

0 w 19 4 I T r f f T T  ) / 2  

2 Angular dependence 

In FF1 we us-ed the data shown in Fig. 11 to  de- 
duce that &/dt a l /Si3 was  the prefer red  form 
f o r  the angular dependence of quark-quark scatter-  
ing. We must now see  if  the QCD predictions are 

2 0  30 4 0  50 60 7 0  80 9 0  
pl iGeV/cl 

FIG, 10. Comparison of a QCD model (normalized 
absolutely) with data on large-PL pion production m pro- 
ton-proton collisions as &'= d s  =19.4 and 53 GeV/c 
with O,, = 90" (open squares 
74, crosses:Ref. 75, solid triangles. Ref. 76, open cir- 
cles. Ref. 77). The dot-dashed and solid curves a r e  the 
I esults before and after smearing, respectively, usmg 

foi 1-0.6 GeV/c (after smearmg). The contribution 
a i  ismg from quark-quark, quark-antiquark, and anti- 
quark-antlquark scattermg (i.e., no gluons) IS shown by 
the dotted curves (after smearmg). 

- QCD A - 0 4  

Ref. 73, solid dots: Ref. 

- 0.4 GeV/c and lbJ,,= 848 MeV and the dashed curves 

Fig. 10. The agreement is quite remarkable. 
It is almost as good as the black-box model (Fie 
13 of FF1) where we chose the behavior of &/dt  
and  the normalization to fit the data. The resu l t s  
before smearing are also shown (dot-dashed 
curves) .  Smearing has little effect fo r  PL 2 4.0 
GeV/c at U' = 53 GeV but has  a sizable effect (even 
at PA = 6.0 GeV/c) at T.1' = 19.4 GeV due to  the steep- 
n e s s  of the c r o s s  section at  th i s  low energy. The 
contributions to  the total invariant c r o s s  section 

"-' 00 0 2  04 06 0 8  10 
K l l  

f r o m  quark-quark elastic scattering (plus 4 q  
- O i l  and m-q- a r e  shown in Fig. 10 (dotted 
curve). Gluons make important contributions to 
t h e  c ross  section at small  Y, (xL 

FIG. 11. Data on the xi, dependence of the invariant 
c ross  section for P P -  T*+ x a t  w= 53 GeV and PI= 2.0 
and 3.3 GeV/C (solid dots: Ref. 74, solid triangles: Ref. 
78, solid Squares: Ref. 79) compared with the results of 
aQCD model with A = 0 . 4  GeV/c (solid curves). A t  these 0.4). 

We cannot at  this t ime say whether the slight low-Pl values, the predictions a r e  sensitive to the low .f 
and f cutoff of de/df. A t  any fixed PI, the uncertainty 
due to the cutoff procedure (illustrated by the shaded 
areas)  is greater  a t  large XI,. Also shown (dashed 
curves) a r e  the results from the quarkquark  black-box 
model of FF1 which was adjusted to fit these data. 

?;!sagreement in the normalization of the theory 
s e n  i n  Figs.  8, 9, and 10 at  lows, (about afactor of 
2 at ,OL = 2  GeV/c and W = 53 GeV) is significant. 
- i t  these low values of x ,  and PI, the theory cannot 
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p p - r r + +  X versus x l l  
I O C  I I I I l j  

W = 53 GeV 
OCD A 

FIG. 12. Contributions to the total E d ~ / d 3 P  for PP-T’ 
+ x arising from the various QCD subprocesses, 4+ 4- 4 
+ 4 ,  4+g4q+g,  andg+g-g+ga t  W=53GeV, P1=2.0 
GeV/c versus X~I. 

consistent with the same data. Figure 11 shows 
the QCD resu l t s  with A =0.4 GeV/c (after smear-  
ing) f o r  the xll dependence of E&/d3P f o r  p p  
- n + + X a t  p I = 2  and 3.3 GeV/cand W=53  GeV. 
As noted ear l ie r ,  the predictions a r e  a bit low 
at th i s  low PI; however, the QCD xli dependence 
i s  not in g ross  disagreement with the data. Un- 
fortunately, comparison with these low-p, data 
is not very significant. F i r s t ,  with the large value 
of (k,),, ,  we are now using, the resu l t s  for these 
pl values a r e  sensitive to the manner in which we 
remove the singularity in d G / d  at t^ (or h) equal 
zero. This  is particularly t r u e  at la rge  x,, where 
the constituent scattering occurs  at small  i (or 
2;) values. We have t r ied  t o  indicate th i s  un- 
certainty by the shaded region in Fig. 10. Secondly, 
since this region is so sensitive to  smearing, 
the resu l t s  depend on our assumption that (k,),,, 
is independent of the x, of the quark 4. Modifying 
this assumption could change the resulting xil 
dependence. 

Furthermore,  in the QCD approach, the xII de- 
pendence of the invariant c r o s s  section does no! 
directly reflect the  angular dependence of & / d t .  

~~ - 

Figure 1 2  showsthat the various QCDsubprocesses 
have differing xll dependences so that the result  
depends not only on the various &/d? but also 
on the amount of each t e rm.  F o r  example, the 
gluon-gluon scattering contributions fall off fast  
with increasing xl l .  We could cause the predicted 
Ed7/d3p to  fall off more rapidly with x , by in- 
creasing the amount of gluon-gluon scattering (by 
changing the relatively unknown functions 
C,&, Q2) and Dp”’(z, @ ) I .  

3 Particle ratios 

A s  mentioned ear l ie r ,  and as shown in Fig. 10, 
gluons make an important contribution to the 
single-particle invariant c r o s s  section at  low rl. 
However, since the  gluon fragmentation function 
has been chosen to  be  considerably smal le r  at  
l a rge  z than the quark fragmentation function, an 
experiment demanding a large-p, meson t r igger  
i s  ‘biased” in favor of the toward-side constituent 
being a quark ra ther  than a gluon. Table I11 gives 
the fraction of the single-particle c r o s s  section 
arising f rom the various combinations of toward 
and away constituents. At W = 53 and PI 2 4.0 
GeV/c, 45% of the n o  c r o s s  section a r i s e s  f rom a 
toward-side quark having scattered off a recoiling 
gluon while 27% a r i s e s  f rom the quark recoiling 
off another quark (a total of 72%). Tables  I11 and 
IV show that fo r  x ,  2 0.3, the toward constituent 
for  single-particle t r iggers  is almost always a 
quark. This quark, however, s ca t t e r s  off both 
quarks and gluons in the other proton so that the 
recoiling constituent is quite often a gluon. At 
W =  53 GeV, a n o  t r igger  with PI =4.0 GeV/c, the 
toward constituent is a quark (or antiquark) 72% 
of the t ime while the away constituent i s  a gluon 
62% of the time. 

This “bias” for  quarks ra ther  than gluons in 
single-particle t r iggers  means that the predictions 
for  ratios of different kinds of par t ic les  will not 
be  very different f rom those of the quark-quark 
scattering black-box approach. A s  shown in Fig. 
13, PP- (n’ /n-)  + X  ratio predictions of QCD are 
smal le r  due to  the contamination f rom the gluon 
decays (gluons fragment into equal numbers  of 
positives and negatives). They are in equally good 
agreement with data. The QCD particle ra t ios  do 
not “scale” as did the FF1 resu l t s  (i.e., they are 
a function of xl and W at fixed f?c.,,). The  curve 
displayed in Fig. 13(a) is calculated at W = 19.4 
GeV and increases  slightly as W i nc reases  (by 
about 20% in going f rom W = 19.4 t o  53 GeV/c). 

B. The jet cross section 

The “bias” in favor of toward-side quarks  does 
not occur when one t r iggers  on j e t s  ra ther  than 
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on single particles and, as can be seen in Table 
IV, gluons make up a sizable fraction of the total 
jet c r o s s  section. With our guesses for  the gluon 
distributions, gluons are responsible for  73% of 
the jet t r iggers  at pL = 4  GeV/c, W = 53 GeV, and 
6'c.m. i.90". Even at higher-w, values such as pL 
=6.0 GeV/c, W=19.4 GeV, OCm. =go", gluons still 
make up 45% of the jets. Because of the presence 
of gluon je ts  and because the quark fragmentation 
functions Dt(z, Q') a r e  smaller at  high z due to 
scale-breaking effects, the jet to single-no ratio 
is now predicted to be larger  than it was for the 
quark-quark black-box approach. This is  seen in 
Fig. 14 where we plot the invariant c ros s  section 
for Pp-Jet + X  divided by pp- n o + X  at Q,.,,=90° 
versus x,. In the QCD approach, this ratio no 
longer "scales." It is a function not only of x, 
(at fixed but also of W. We show results 
for W=19.4, 53, and 500 GeV. 

in FF1 and FFF agreed quite well with the jet 
c r o s s  section observed experimentally at W 
= 19.4 GeV and 3 <PI < 6.0 GeV/c. We might now 
be concerned that the QCD results for the jet c ros s  
section a r e  larger  than FF1 by a factor of about 
5 in this region. We have, however, previously 
been somewhat naive when comparing theory with 
experiment. What we show in Fig. 14 is the c r o s s  
section for  producing a quark (or gluon) with a 
given momentum (divided by the no c ross  section 
at the same momentum). However, as we noticed 
in Ref. 27, quarks of a given momentum (equal 
to their  energy) cannot produce je ts  with the mo- 
mentum of all particles equal to the energy of all 
particles.  Our jet model in F F 2  gives El,, - pzt0, 
~ 1 . 2  GeV for  quark jets. Since the c r o s s  sec- 
tion for producing jets falls so steeply, the c ros s  
section for producing a jet with a given pr,o, is 
considerably smaller than that for  producing one 
with a given E,,,. A s  explained in Ref. 41, it is 
the former that is more closely connected to what 
is  measured experimentally. At W = 19.4 GeV/c, 
we estimate that the c ros s  section to produce a 
jet where p,,,, = 5 GeV/c at 90" i s  about 10 t imes 
smaller than the c ros s  section to produce a jet 
whose E,,, = 5 GeV/c. If we correct  for this effect, 
the new QCD prediction at W = 19.4 GeV i s  within 
a factor of 2 of the old (incorrectly interpreted) 
FF1 resul ts  that appeared to agree so well with 
the data. 

The difference between EIol and p,, , ,  of a jet 
ar ises ,  of course,  from low-momentum particles 
that have energy due to their  mass  (or k,) but 
have little momentum p,. This i s  tangled with 
the experimental uncertainty in all  hadron-jet 
experiments concerning low-PI particles. One 
cannot be s u r e  that one is not losing the low-P, 

A s  noted in Ref. 57, the quark scattering model 
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TABLE IV.  Fract ion of the p p  -no + X  and pp - jet  +X c ross  section at  8, 
f rom the case  where the toward-side (or  tr igger) constituent is a u ,  d ,  or antiquarks 8 = F + d  
+S or a gluon. Also shown is the fraction ar is ing from the case  where the recoiling o r  away 
side constituent i s  a u ,  d ,  or antiquarks 

= 90" ar is ing 

or a gluon. 

Toward side Away side 
W (GeV) P,  (GeV/c) Trigger  u d Gluon u d Gluon 

53 2 no  0.20 0.20 0.13 0.43 0.14 0.09 0.06 0.70 
53 2 jet 0.12 0.10 0.14 0.64 0.18 0.09 0.08 0.63 
53 4 no 0.36 0.25 0.09 0.27 0.23 0.09 0.05 0.62 
53 4 jet  0.12 0.09 0.05 0.73 0.20 0.08 0.02 0.69 
53 7 no 0.55 0.26 0.05 0.13 0.28 0.14 0.05 0.53 

19.4 3.0 no 0.46 0.29 0.06 0.19 0.20 0.11 0.03 0.66 
19.4 3.0 je t  0.13 0.08 0.04 0.74 0.21 0.08 0.02 0.68 

19.4 6.0 no 0.73 0.24 0 0.03 0.42 0.15 0 0.43 
19.4 6.0 je t  0.37 0.17 0 0.45 0.36 0.14 0 0.50 

500 1 0  no 0.18 0.17 0.18 0.44 0.21 0.08 0.09 0.60 
500 10 jet  0.05 0.05 0.06 0.81 0.13 0.11 0.07 0.66 
500 30 no 0.37 0.23 0.14 0.24 0.29 0.12 0.05 0.53 
500 30 je t  0.11 0.08 0.10 0.69 0.21 0.11 0.06 0.60 

jet particles that are not well collimated or  gain- 
ing low-p, background f rom the  beam and target 
jets in Fig. 1. Only by doing a very careful anal- 
ysis, including the precise acceptances of a given 
experiment, can one distinguish between the re -  
sults of FF1 and the new QCD approach in spite 
of the i r  ra ther  la rge  differences. One might hope 
someday to distinguish experimentally between 
gluon and quark jets. The gluon je t s  a r e  assumed 
to have a higher multiplicity of particles each with 
lower momentum on the average. In addition, un- 
like the quark je t s  discussed in Ref. 27, gluon je t s  
will ca r ry  on the average no net charge (or 
strangeness, etc.). 

C. The toward-side correlations 

The jet physics, discussed in the previous sub- 
section, directly t e s t s  that particles at  high pL 
are not produced singly but, rather,  a r e  members  
of a cluster.  This aspect of constituent models 
can also be tested in single-particle t r iggers  by 
observing the accompanying particles produced 
near the tr igger (in phase space). Experimentally, 
one observes an enhancement of particles with 
high PI accompanying the high-p, tr igger which 
was  predicted correctly f rom the quark scattering 
m ~ d e l ~ . ~ ~  together with an assumption about the 
double fragmentation function, D:l'h(z,, .z2)." In 
the QCD case, the tr igger hadrons usually come 
f rom quarks ra ther  than gluons and, furthermore,  
the mean value of z ,  shown in Table II are s imi la r  
to  those in FFF.5n Thus the new predictions, as 

shown in Fig. 15, a re ,  in fact, very s imi la r  to  the 
quark scattering results.  However, the QCD re -  
sults have an additional uncertainty due to  our  lack 
of knowledge of the gluon double fragmentation 
functions, Dphl.b(zl, z2 ,  Q'). In Fig. 15  where  18% 
of the t r iggers  come f rom gluons, we have as- 
sumed that the accompanying particles were  just  
given by the fragmentation of a gluon with mo- 
mentum (1 - 2,) t imes  that of t r igger  gluon. Th i s  
has  the  feature of giving the co r rec t  multiplicity 
f o r  the produced hadrons; however, it is surely 
not exact. Fo r  example, for  a n' t r igger ,  one 
would expect to  find more  high-p, n-'s than 1~"s 
in the accompanying particles. In Ref. 22, an  
upper estimate fo r  the effect of the gluon decays 
was  deduced by assuming that the accompanying 
hadrons came f rom a ii (or  d )  jet car ry ing  all of 
the remaining momentum. Comparing with the  
CCHK data, this upper estimate and the lower 
estimate gotten by dropping gluon t e r m  completely 
roughly bracket the data. 

In summary, we find that the QCD calculations 
have somewhat grea te r  uncertainty than those in 
FFF coming f rom the gluon contribution. How- 
ever,  both models a r e  in good agreement with the 
same-side correlation data. 

D. Away-side correlations 

1.  Away-side multiplicity n(z,) 

An important consequence of the  QCD approach 
is that the number of away-side hadrons with 
large-), (-pJ is predicted to be considerably 
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FIG. 13. (a) Comparison of the data (Refs. 73 and 80). 
of the *+/*- ratio in PP collisions at  eC.,,,. = 90" versus ~1 
with the quark-quark scattering model of FF1 (which is 
independent of w at fixed XJ and the QCD results using 
-1 = 0.4 GeV/c. The QCD results a r e  plotted for w= 19.4 
GeV and a r e  not precisely independent of w. The a'/??- 
ratio increases a t  fixed xl and t$m. a s  w increases (by 
about 20%, in going from 19.4 to 53 GeV). 00) Compari- 
son of the data (Ref. 74) a t  w= 53 GeV on P P -  (a'/*-)+ x 
at 0, m. = 90" versus PL with the QCD results. 

s m a l l e r  than in the  quark-quark sca t te r ing  ap-  
proach. Figures 16, 17, and 18 show that  the  
number of away hadrons car ry ing  a certain frac- 
tion zp of t h e  t r i g g e r  momentum i s  predicted to 
be 3 to 4 t i m e s  less than the  FFF results, and now 
a g r e e s  qui te  well with experiment .  T h i s  reduction 
in the away-side multiplicity function, n ( t p )  is due 
to  t h r e e  fac tors .  F i r s t ,  w e  have increased  
k -  h..q f rom 500 to 848 MeV. T h i s  results in the 

la rge  Q,  values shown in T a b l e  I (compare  with 
Table  V in F F F )  and thus to a reduction of n ( z p ) .  
Second, the  fragmentat ion functions D: (2, p) de- 

I I 1 1 I I I 1 
o(pp-- Jet + Xl/u(pp+7ro+ X 1 
. . . . .. ... We= 500 GeV 

W =  19.4 GeV 
!041 --- W.53 GeV b',,,; 90" -. - 

I I I I I I 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

XI 

FIG. 14. Prediction of the jet-to-single-4 ratio Oc,,,,. 
= 90" versus XI for w= 500, 53, and 19.4 GeV from the 
QCD approach using A =  0.4 GeV/c. The jet cross section 
is defined a s  the cross  section for producing a parton 
(quark+ antiquark+ gluon) with the given XL. Also shown 
i s  the prediction from the quark scattering model of FF1 
which is independent of w at fixed XL and fL.. 

CCR; Trigger IT ' :  pl > \ GeV/c. ;O I 8;&,'s 110" 1 
"Some Side"  Charged Par l i c l es  

I + - + , , , p p e r ~  I 80 I 0 -  e,,,,,,, I 5 280 

0 f i  = 52.7GeV- QCD 

& = 30.6 i e V  -- - - OCD 
FFF iesulls - _. 

pl (GeV/ci 

FIG. 15. Toward-side correlation measurements from 
CCRS collaboration (Ref. 75) together with the predic- 

tions of the QCD approach with A = 0.4 GeV/c and the re- 
sults of the quark-quark black-box model of FFF. Pos- 
sible background contributions froin the fragmentation 
of the beam and target a r e  nut included. 
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FIG. 16. Opposite o r  away-side correlation measure- 
ments from the CCRS collaboration (Ref. 75) together 
with the prediction of the QCD approach with A = 0.4 
GeV/c and the results of the quark-quark black-box mo- 
del of FFF. Possible background contribution from the 
beam and target jets have not been included. 

AWAY SIDE W.53 GeV 
1.0 

0. I 
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Awoy Side W.53 GeV 
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FIG. 18. The dependence on the trigger PI  of the num- 
ber of away-side hadrons per trigger with zp 2 0.5 (a) and 
zp '1.0 (b) from the CCHK collaboration (Ref. 15) on PP - hi+ h;+ Xat w= 53 GeV, and 01 averaged over 45" and 
20" with an away-side acceptance of 40" in '$ and I Y2 I 
5 3. The predictions from the QCD approach with A = 0.4 
GeV/c (solid curves) and the results from the quark- 
quark black-box model of FFF (dashed curves) are 
shown. Background contributions from the beam and 
target jets (see Fig. 1 and Fig. 6) which might be im- 
portant for low-PI triggers have not been included in 
either the QCD or FFF predictions. 

c r ease  as Q2 increases  (see Fig. 5) and are 
smal le r  at high z than the FFF values (which now 
correspond to  Q2 = QO2 = 4  GeV'). Finally, in the 

I+-(IEO-+,,,~~)I I 25- often a gluon (see Tables III and IV) which produces 
on the average fewer hadrons at l a rge  zp than do 

& = 53 GeV i r i n n r r  <I  quarks (see Fig. 19). However, as Table V and 

BFS 0 1 1  chorged parliclesgnaway side "KI QCD approach, the away-side constituent is quite 

I Y I  (I lPou,l < OSGeV/c 
90' Trigger 

oo14"~";'''' 
/ '  " " , I  Fig. 16 show, the number of away hadrons with Theory Quark Ouark 3 4  

&Trigger) (GeV/c) Scolterlng z p  2 0.5 arising f rom gluon jets is still about half 
the total. (The fraction decreases  as x,  in- 
creases.)  This  means that the  away-side multi- 
plicity n(zp)  is sensitive to  the essentially unknown 
gluon distributions cp-a(x, QZ) and q(., Qz). 

F o r  both the QCD approach and the  quark scat-  
tering model, the away-side multiplicity function, 
n(zp), i s  roughly independent of the  t r igger  mo- 
mentum over the ranae 2.0 G P I  (trig) 5 6.0 GeV/c 

- OCD h = O  4 GeWc 

FIG. 17. The dependence on the trigger Pl of the away- 
side hadron multiplicity n(z& = (l/u)dc/dzp, where z p  
= - p ,  (aWaY)/Pi (trig) from the British-French-Scandi- 
navian collaboration (Ref. 43) on PP-ht+hi+X at w 
= 53 GeV, Bl = 90" and with an away-side acceptance of 
250 in @ and I Y,l < I ,  lPWti < 0.5 GeV/C. The predictions 
from the QCD approach with A =  0.4 GeV/c (solid curves) 
and the results of the quark-quark black-box model of - -. -. 
FFF (dash-dot curves) are Show. Background Wntribu- at w = 53 ~ v .  This means that the rise in the' tIons from the fragmentation of the beam and target (see 
Fig. 1 and Fig. 6) which mlght be important for low-Pl 
trtimers have 

data (Figs. 17 and 18) at smal l  Pl(trig) must be 
ascribed to 'background" f rom the  beam and tar- been included in either the QCD or FFF 

przictioNI. get j e t s  (see Fig. 1). We do not know how to cal- 
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p p + r o +  h'+ X 8, = 90" 

3.05 pl(trig)< 4.5 GeV/c 
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gluon fragmentation t --- 
! o - ~  
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Z P  

FIG. 19. The number of away-side charged hadrons 
per trigger, n ( z p ) ,  arising from the case that the away- 
side constituent is a quark or antiquark (solid curve) or 
a glilon (dashed curve) from the QCD approach with A 
= 0.4 GeV/c. The results are calculated for P P - + +  h* 
-A' at w= 53 GeV, 8, = 90" with 3.0 d P L  (trig) 54.5 GeV/C. 

culate th i s  properly at present, but es t imates  we 
have made indicate that th i s  is indeed possible." 
The r i s e  at smal l  p,(trig) in the CCHK experi- 
ment (Fig. 18) is l a rge r  than that seen in experi- 
ment R-413 (Fig. 17) because the fo rmer  has an 
away-side rapidity cut of 1 Y 1 c 3 while the la t te r  
has i Y 1 ,c 1. The  CCHK experiment thus rece ives  

a l a r g e r  background contamination at low p,(trig) 
particularly f rom the Type I background shown 
in Fig. 6. 

2. Away-side particle ratios 

Another effect of the presence of gluons is that 
the  away-side positive to  negative particle ratios 
at the ISR (low x,) a r e  predicted to  be consider- 
ably different than in FFF. Figure 20 shows that 
the QCD approach yields almost equal numbers of 
positives and negatives for  p,(away) > 1.5 GeV/c 
at W = 53 GeV and 3.0 6 PL(trig) 
agreement with the  recent ISR data.43 If the away- 
side constituent is always a quark or  antiquark 
as in FFF, then th i s  ratio i s  predicted to  be  about 
1.5 in g ross  disagreement with the e ~ p e r i m e n t . ~ '  
However, both the FFF model and the QCD ap- 
proach predict l i t t le dependence of the away-side 
particle ratios on the type of t r igger  species 
(i.e., It, n-, K',  K-).  This is because the sca t te r -  
ing fo rces  do not involve flavor exchange (they 
are due to gluon exchange). Neither the QCD ap- 
proach nor the FFF model can explain the ap- 
parently large increase  in the away-side positive 
to  negative ratio when triggering on K -  observed 
by R-413 (Fig. 20). The discrepancy can be seen 
more  clearly in Fig. 21 where we compare the 
predictions for  the  away-side rapidity spectrum 
of positives and negatives for a IT- and K -  t r igger  
with the preliminary R-413 data.43 

Th i s  question of the flavor dependence of the 
constituent subprocesses is an important one. 
In models such as the constituent-interchange 
model (CIM),56,61 the scattering forces  a r i s e  f rom 
the exchange of quarks  which ca r ry  flavor.6z In 
these models, drastic changes can occur in the 
away-side particle ratios as one changes t r igger  
species.63 Figure 22 shows data f rom the Fe rmi -  
lab experiment E-494 (Ref. 64) on the away-side 
multiplicity of n', 8-, K',  and K -  with zg 0.5 
for  a t r igger  meson of type n+, 8-, K',  K -  at W 

4.0 GeV/c in 

TABLE V. Total away-side multiplicity (Ref. 59). N(tp '0 .5) ,  per trigger for charged had- 
rons in the processes pp - ~ ~ + h *  +X at 8,=90" predicted from the QCD approach with A =0.4  
GeV/C. Also shown are the individual contributions to the multiplicity for Zp)0.5 from gluon 
and quark fragmentation. [The function A'(Z~,Pl l ,  6,) is defined by Eqs. (6.1) and (6.2) in FFF.1 

Quark Gluon 
W (GeV) P ,  (GeV/c)  Y L  fragmentation fragmentation Total 2 , )0 .5  

53 2.0 0.08 0.047 0.083 0.130 
53 3.4 0.13 0.052 0.050 0.102 
53 4.5 0.17 0.058 0.047 0.105 
53 5.3 0.20 0.063 0.038 0.101 
53 9.3 0.35 0.060 0.022 0.082 
53 13.2 0.50 0.058 0.014 0.072 
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=27.4 GeV and 3.0 sp,(Crig) < 5.0 GeV/c compared 
to the QCD predictions. The agreement is quite 
good. The away-side ratios a r e  roughly indepen- 
dent of the trigger species and given approximately 
by the single-particle ratios (shown by the wiggly 
arrows along the side) which is  just as expected 
for a flavorless-exchange constituent subprocess. 
There is a slight disagreement for the K- trigger 
but the data do not show the large positive plus 
negative sum seen by R-413. In fact, the away- 
side number of K’ mesons with a K- trigger i s  
correctly predicted. The data in Fig. 22 from 
E-494 a r e  taken off a beryllium target and there 
a re  A-dependence corrections@ (we have made no 
A-dependence correction to our theoretical pre- 
dictions) that make direct comparison a bit 
dangerous. Because of this and because of the 
apparent disagreement between R-413 and E-494 

A N D  G .  C .  F O X  

Awoy Slde W = 53 GeV 

v Negative p:*,i ~o.03-\i~* 2 

0.01 

> 
9 
G 0.00 0 I 2 3 .--. 
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\ 
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FIG. 21. The away-side rapidity distributions, (l/hk18) 
dN/dY, of positive and negative hadrons with PL (away) 
’1.5 GeV/c for 90” T and K -  triggers in the range 3.0 
‘PI(trig) 5 4 .  5GeV,k from the BFS collaboration (R- 
413) (Ref. 43). Predictions of the QCD approach with A 
= 0.4 GeV/c are shown w h m  background contributions 
from the beam and target jets (see Figs. 1 and 6) have 
not been included. 

for K -  triggers the question as to whether or  not 
there i s  any evidence for flavor exchange in the 
constituent subprocess i s  unsettled. 

3. %”t 

Due to our use of (kLjh-. =848 MeV and (kl)s-h 
=439 MeV, the mean values of Pout a r e  predicted 
to be considerably larger than the results of FFF 
((k,),,,=500 MeV,<k,),,,=330 MeV). In Figs. 
23 and 24, we compare both the new QCD results 
and the FFF results with the mean values of Po,,, 
obtained in the CCWK e~per iment . ’~  The value of 
(kL)h- . r  = 848 MeV, obtained from the fit to the data 
on pp- p’p- iX shown in Fig. 7, results in (&) 
values that agree better with the hadron experi- 
ments, although they a r e  still a bit small. (Some 
of the discrepancies may be due to contributions 
from the beam and target jets omitted in our 
analysis.) 
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Trigger Species 

FIG. 22, The number of away-side mesons (of type TI, 
--, K', K-) with zp 2 0.75 per  trigger b f  type T', n-, 
I<', K-) from the Fermilab experiment E494 (Ref. 64). 
The data a r e  taken a t  w =27.4 GeV with 3.0 ~ P L  (trig) 
5 4.0 for proton-beryllium collisions and are compared 
with the prediction of the QCD approach (for proton-pro- 
ton collisions) with A =  0.4 GeV/c. No A-dependence 
corrections have been made to the theory or the data. 

4. Experiniental tests for effects due to ( k l ) h - q  

A s  seen in Figs. 2 and 8, the basic constituent 
subprocess of QCD (before smearing) behaves 
roughly like 1/pL6 at fixed x I  for 2 -CpL c10 GeV/ 
c. The expmimentally observed l/pL8 behavior 
is obtained by including the effects of smearing 
( (k l )h -p  #O) which r a i se  the small-P, prediction 
while leaving the large-), region essentially un- 
changed. This increase at  small  p,, due to the 
'?rigger bias" effect, can be partially removed 
by triggering on events with equally la rge  pi's 
on the toward and away-side (i.e., z p  =l).65*68 
Thus, in general, we expect the PI dependence 
of the two-particle back-to-back c ross  section to  
differ (in the region where smearing is an im- 
portant effect) from that of the single-particle 
c ross  section. This i s  seen in Fig. 25 where we 
plot the two-particle back-to-back c r o s s  section 
ci.T;di, at z p  = 1 (times p18) versus  PL at X ,  =0.35. 
It behaves roughly like 1/pL6 over the range 4 
.' 1~. 
cross-section results,  when multiplied by kL*, 

6.0 GeV/c whereas the single-particle 

I I I 1 1 I 

W = 53 GeV 

- QCD 11.0.4, < k ~ > h - ~ = 8 4 8  MeV 
2.05 q( l r ig)c4.0 GeV/c 

0.0 
0.2 0.6 1.0 1.4 

2,  

FIG. 23. The dependence on zp of the mean value of the 
I%, 1 of away-side charged hadrons at w= 53 GeV and 

2.0 'PL(trig) 54.0 GeV/cwith 01 averaged over 45"and 20" 
fromtheCCHK collaboration (Ref. 15) on PP- hi'+ %+X. 
The predictions from the QCD approach at 8, = 45" with 
A = 0.4 GeV/c and @Ah, = 848 MeV (solid curve) and the 
results of F F F  (dashed curve) curve a r e  shown. 

-pX [GeV/c] 
1.3 

W = 53 GeV 

0.4 

o.2 t 1 0.6 < z p  < 0.7 

pl (trigger) [GeV/c] 

FIG. 24. The dependence on the trigger PI of the mean 
value of the lPout I of away-side charged hadrons with 
0.6 5 zp 5 0.7 at w =  53 GeV and Oi averaged over 45" and 
20" from the CCHK collaboration (Ref. 15) on P P -  h i  
+ h ; = X .  The predictions for 8, =45" from the QCD ap- 
proach with A = 0.4 GeV/c and @3,,= 848 MeV, GL),,~ 
= 439 MeV (solid curve) and the F F F  results (dashed 
curve) are shown. 
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FIG. 25. Comparison of the behavior of PL' times the 
single,-charged-particle cross section Edu/d 3p (pp- h t 
+ X ) ,  and P,8 times the two-particle back-to-back cross 
section du/dzp13=i ( p p - h ; + h i + x )  atfixed xi=O.35 
(times 40). The QCD predictions are calculated at 
= 90" with A = 0.4 GeV/c and ( kJn - ~ =848 MeV. 

are  roughly independent of p ,  over the range. The 
two-particle back-to-back cross section do/  
dz,(z,  =I) reflects more closely the dependence 
on PI of the basic subprocess without the additional 
scale breaking due to smearing. 

The predictions in Fig. 25 (and in all figures 
in this paper) a re  free from any beam and target 
jet background of the type discussed in Sec. IV D 1 
above. A s  seen in Fig. 18, below p, =3.5 GeV/c 
this background is important and i s  presumably 
the cause of the rise of dN/dz,  at low P,(trig). 
Any such increase of the expected dN/dz, at low 
p ,  due to background would vitiate the comparison 
in Fig. 25 by making it behave similarly to the 
single-particle cross section. The test must be 
performed at p,'s large enough so that the back- 
ground contamination i s  negligible. This i s  why 
we calculated the results in Fig. 25 at x,  =0.35 
so that pl 2 4 GeV/c. 

E. Very-high-energy expectations 

Figure 8 shows that the QCD predictions quickly 
deviate from a 1/p18 behavior (at fixed x,) a s  the 
pl increases yielding a much larger cross  section 
than expected from the black-box model. This i s  
also seen in Fig. 26 where we plot the QCD pre- 
dictions for plB times Edo/dsp versus pl at x ,  
=0.05 and Oo.,,. =goo. At W=500 GeV, the QCD 

18 - F I E L D ,  A N D  G .  C .  F O X  

107 I , I I , , ,  , , , , , 

D," €do/d3p versus pL 

FIG. 26. The behavior of P? times the 90" single-fl 
cross section, Edv/d3P, at XL= 0.05 versus PI calculated 
from the QCD approach with A =  0.4 GeV/c (solid curve) 
and A = 0.6 GeV/c (dashed curve). The two Iow-Pl data 
points are at  w= 53 and 63 (Ref. 74). The predictions 
a re  a factor of 100 (1000) times larger than the flat 
(pla) extrapolation to w= 500 GeV (1000 GeV). 

results a re  a factor of 100 larger than a straight 
( l/p,') extrapolation and show a factor of 1000 
increase at W = 1000 GeV. In Fig. 27 we display 
the predictions for 90" n o  and jet production at 
fixed W=53, 500, and 1000 GeV versus p,. The 
preliminary high-p, data from CCOR (Ref. 67) 
at W = 53 GeV are  also shown. The black-box 
model and the QCDpredictions agree with each 
other and both agree with the data. By going to 
higher energy, one can easily discriminate be- 
tween the two approaches. For example, at W 
= 500 GeV and p, =30 GeV/c, the n o  (jet) cross  
section from QCD i s  roughly a factor of 100 (500) 
times larger than the FF1 results. In fact, the 
p ,  = 30 GeV/c 90" r o  cross  section at W = 500 GeV 
i s  predicted in the QCD approach to be about the 
same magnitude a s  that measured at p ,  =6.0 
GeV/c at Fermilab (W = 19.4 GeV). 

tions (see also Fig. 14) predicted by QCD, if 
correct, will make it very difficult, if not im- 
possible, to find the W boson (and other new parti- 

These large single-particle and jet c ross  sec- 
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4 10 20 
pL (GeV/c) 

FIG. 27. Comparison of the results on the 90” 9 cross 
section, Edu/d3P, from the QCD approach with A = 0.4 
GeV/c (solid curve) and the quark-quark black-box mo- 
del of FF1 (dotted curves). Both models agree with the 
data at w= 53 GeV (crosses = Ref. 52) where the open 
squares are the “preliminary” data from the CCOR col- 
laboration (Ref. 67) normalized to agree with the lower- 
PI experiments. The QCD approach results in much 
larger cross sections than the FF1 model at w= 500 and 
1000 GeV. The FF1 results at 1000 GeV hot shown) are 
only slightly larger than the results at 500 GeV. Also 
shown are the cross sections for producing a jet 
at 90” (divided by 1000) as  predicted by the QCD ap- 
proach (dashed curves) and the FF1 model (dot-dashed 
curve). 

cles) f rom its qq or jet-jet decay. Quigg6’ showed 
that even the black-box (l/bL8) model extrapolation 
led to a W signal that was, at  best, 10 t imes  the 
hadronic (Jet-jet) background. The factor, of 500 
(1000) increase  in th i s  background at W = 500 
(1000) GeV predicted is obviously fatal. However, 
if one indeed observes such la rge  production rate 
for  single particles and jets, then QCD will  be 
verified and this may be a s  important as discover- 
ing the IV boson. 

It i s  not c l ea r  yet precisely what the quark and 
gluon je t s  will look like at very high PI (such as 
J L  =30 GeV/c). If QCD i s  correct,  they will ce r -  
tainly not look like the well collimated ( k , ) g - h  
= 130 MeV objects we u s e  in this calculation and 
1:lustrated in Fig. 1. At p ,  = 30 GeV/c, they should 

“appear” to be  fatter. This is because as the 
PI of the outgoing quark is increased, it becomes 
increasingly more  likely that it radiate a gluon 
and become two jets (one quark and one gluon). 
Then, th i s  quark or gluon might radiate producing 
sti l l  more  jets. The net result  is that most of 
the time it will look as if there i s  one fat jet; how- 
ever,  occasionally when the radiation is hard 
enough, one will see  the two or  three  distinct 
sub jet^.'^-'^ Much theoretical effort is being 
focused on such questions and we should soon have 
a good idea of precisely what to expect at  very 
high energies and p , ’ ~ .  

V. SUMMARY AND CONCLUSIONS 

If th i s  work istriewed as simply a comparison 
of one phenomenological model against another 
(e.g., the QCD approach versus  the black-box 
model), not much can be said to favor one over 
another. It is t rue  that the QCD approach has  
fewer f r ee  parameters  in the parton c r o s s  sec- 
tions &/d, but there  are more free choices in 
the gluon functions. More excuses &re needed 
concerning background effects at low pL, etc. 
It is t rue  that the black-box pure quark scheme 
could not fit the away-side large-p, particle multi- 
plicities and charge ratios,  but it probably could 
be fixed up with the inclusion of gluons. It has  
become apparent that present high energies are 
not really high enough t o  isolate the manifold of 
effects (parton distributions, fragmentation func- 
tions, constituent c r o s s  sections, t ransverse  
momentum of partons, different kinds of constit- 
uents, etc.) that a r e  mixed together so inti- 
mately in today’s experiments. If the resolution 
of th i s  would depend entirely on experiment, we 
shall have to  end this long research  with the t i re -  
some and obvious call  fo r  still higher energies. 
At high p , ,  predictions of the QCD approach are 
o r d e r s  of magnitude grea te r  than the black-box 
pL-* extrapolations, so c lear  t e s t s  lie there.  

It is a precise and complete theory purporting to  
be  an ultimate explanation of all hadronic experi- 
ments of all energies, high and low. There  are 
many reasons to  hope and expect it to  be right. 
The question is, i s  it indeed right? Mathematical 
complexity has, so far, prevented u s  f rom quan- 
titatively testing its correctness.  What it predicts 
is not clearly known. Nevertheless, i ts  property 
of asymptotic freedom leads u s  to  expect that 
phenomena of high momentum t ransfer  should be 
analyzable (by perturbation theory). Yet experi- 
ments a t  what was  thought to be high enough YL 
seemed to  show pL-’ behavior unlike the expected 
,bL-4 (with possible logarithmetic modifications). 

But QCD is more  than a phenomenological model. 
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It  was  a mystery .  Although many people  s a i d  
"perhaps t h e  energy  i s  not high enough," t h e  re- 
m a r k  w a s  s imply  an a r t i c l e  of faith; t h e  mech-  
anism leading to an apparent  e ighth power in the  
exper imenta l  region remained  unknown. 

the  QCD theory  i tself  to tell u s  what  might  happen 
in t h e  r a n g e  in  question. T h e r e  is, f r o m  the  point 
of view of QCD, no mystery .  T h e  energy  (PI) is 
indeed too low and t h e r e  are too many nonasymp- 
to t ic  e f fec ts  acting. R e s u l t s  closer to a PC4 fall- 
off should a p p e a r  only at much higher  pL ( s e e  
Fig. 9). Machines  c u r r e n t l y  planned f o r  t h e s e  
e n e r g i e s  wi l l  reso lve  t h e  ques t ion  of models  as 
soon as  they are turned  on. 

On the  o t h e r  s ide,  t h e r e  is a g r e a t  deal  of data  
now ava i lab le  at e n e r g i e s  and  PI values  in which 
asymptotic f r e e  f ie ld  t h e o r y  can make much more 
p r e c i s e  pred ic t ions  than  have  ye t  been made .  T h e  
QCD theory ,  unlike o t h e r  phenomenological  ap- 

ful l  d i scuss ion  of t h e o r e t i c a l  p red ic t ions  with 
l i m i t s  of errors  should be  p o s s i b l e  in t h e  p r e s e n t  
range .  T h e s e  theore t ica l  s tud ies  ( p e r h a p s  start-  
ing at v e r y  high energy  and working  down) should 
be p u r s u e d  vigorously.  It is l ikely tha t  among t h e  
present results of experiment, t h e r e  are some tha t  
can contribute a more precise and def ini te  test 
of QCD, if t h e  theory  could be developed a l i t t l e  
f u r t h e r  and  m a d e  a bit more p r e c i s e  than  we have 
done h e r e .  At the  t ime of t h i s  writing, t h e r e  is 
still no s h a r p  quant i ta t ive test of QCD. An i m -  
portant test will c o m e  in connect ion wi th  t h e  
phenomena  of high p ,  d i s c u s s e d  h e r e .  

W e  bel ieve we have reso lved  t h i s  mys tery ,  using 
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A model is analyzed that provides a parametrization of the properties of the jet of 
mesons generated by a fast outgoing quark. It is assumed that the meson that  contains 
the original quark leaves momentum and flavor to a remainingjet in which the particles 
are distributed (except for scaling of the energy and possible changes of flavor) like 
those of the original jet. One function, the probability f(q) that the remaining jet has a 
fraction r )  of the momentum of the original jet, is chosen (as a parabola) so the final dis- 
tribution of charged hadrons agrees with data from lepton experiments. All the proper- 
ties of quark jets are determined from f ( r ) )  and three parameters; the degree that SU(3) 
is broken in the formation of new quark-antiquark pairs (Ss is taken as half as likely as 
Uu), the spin nature of the primary mesons (assumed to be vector and pseudoscalar with 
equal probability), and the mean transverse momentum given to these primary mesons. 
Monte Carlo methods are used to generate typical jets. Analytic approximations are also 
given. Many features of quark jets are esamined. The distribution of momentum of 
various hadronsDq(z), the properties of the hadrons of largest momentum in the jet, 
correlations, rapidity-gap distributions, distribution of charge and of transverse momen- 
tum are some of the subjects discussed. The appearance of the jets to an instrument 
sensitive only to  particles above some minimum momentum is also described. Although 
the model is probably not a true description of the physical mechanism responsible for 
quark jets, many predictions of the model seem quite reasonable, possibly much like 
real quark jets (except that the possibility of the emission of baryons is disregarded). 
The purpose of this work is to  provide a model useful in the design of experiments in 
which quark jets may be observed, and further to provide a standard to facilitate the 
comparison of leptongenerated jets with the higligl jets found in hadron collisions. 

h 

1. Introduction 

Recent data from ISR [ 1,2] and Fermilab [3] indicate that the “jets” observed 
in large-pl hadron-hadron collisions are similar to those in processes initiated by 
leptons (i.e., e’e-, ep, and yp processes). The “jets” observed in both cases are 
thought to arise from quarks that fragment or cascade into a collection of hadrons 
moving in roughly the direction of the original quark. 

Work supported in part by the US Energy Research and Development Administration under 
Contract No. EY76C-034068.  
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The experimental verification of this should proceed simultaneously in two 
directions. First, the detailed properties of the jets produced in lepton reactions 
must be examined. (Incidentally, we must confirm via charge properties, etc., that 
these jets could actually arise from quarks.) Secondly, the hadron-initiated large-p, 
jets must be compared in great detail to the lepton jets to determine if they are 
actually identical. (Some theorists believe that gluon jets will be produced at large 
p l  in hadron-hadron collisions in addition to quark jets.) At the present time there 
is little data of either kind. However, hadron “jet trigger” experiments are proceed- 
ing or are planned. There is no comprehensive theory of the details of the jet struc- 
ture that we should expect t o  observe. So, it will be difficult to know in, say, a 
hadron experiment what data to collect and how to summarize it so that it will be 
useful to compare to some future lepton experiment whch will probably not mea- 
sure precisely the same thing. We thought it might prove useful to have some easy- 
to-analyze “standard” jet structure to compare to. Thus, a hadron experiment could 
say “the real jets differ from the ‘standard’ in such and such a way”, and the lepton 
experiment could then see whether they deviated from the same ‘standard’ in a 
similar way. 

In a previous paper [4] (hereafter called FFI), we used limited experimental data 
aided by some theoretical ideas to suggest parametrizations for the functions Dt (z), 
the mean number of hadrons of type h and momentum fraction z (per dz) in a jet 
initiated by a quark of flavor q with high momentum. The model presented here pro- 
vides a new, much simpler, parametrization for these functions, making only negli- 
gible changes for those functions that were determined by experiment and otherwise 
in agreement with all the theoretical ideas in FF 1. 

A virtue of the new model is that it gives detailed answers to many other ques- 
tions such as the number of correlated pairs of hadrons h l  , h, at z1 and z2, or the 
distributions of momentum gaps containing no hadrons, or the probability of observ- 
ing various total jet charges, etc. In addition, one can ask for the probability that a 
quark of large momentum fragments so that the sum of the fractional momenta z l ,  
z 2 ,  ... of all those hadrons with zi >zmin is z .  The latter is useful in analyzing “jet 
trigger” experiments. In this type of experiment, one triggers on a collection of par- 
ticles that sum to give a large p l .  It is experimentally very difficult to define a “jet”. 
One can never be sure that all the low-momentum particles from the quark are 
included or that one has not included some extra low-pi particles from the back- 
ground of particles moving in the beam or target jets and not properly belonging to 
the transverse jet. These experiments would be much cleaner if one sets a threshold 
p, , ,  say, 500 MeV, for the transverse momenta of the particles whose total momen- 
tum makes up the trigger (so z,in = pl,/pl(quark)). 

We generate typical jets using Monte Carlo methods but provide an analytic 
approximation for the convenience of the reader. The predictions of the model are 
reasonable enough physically that we expect it may be close enough to reality to be 
useful in designing future experiments and to serve as a reasonable approximation to 
compare to  data. We do not think of the model as a sound physical theory, and dis- 
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CUSS why in a later section. Also, as worked out here, the model does not include 
baryons. We must imagine the jets to contain only mesons because we have so little 
knowledge at present of what baryons to expect and the character of the model 
does not make a clear suggestion. It also makes no  clear suggestion of what correla- 
tions in transverse momentum of the hadrons to expect. We have added an addi- 
tional assumption to determine this which seems reasonable to us but may be far 
from the physical situation. Some of the features of the transverse-momentum dis- 
tributions are, however, strongly affected by the fact that the particles observed are 
often products of decays of higher resonances. These effects are not dependent on 
the details of our jet model and should be important also in analyzing the beam and 
target jets in ordinary inelastic hadron-hadron collisions. 

Our quark-jet model involves one arbitrary function, the probability f(q) that 
the hadron containing the original quark leaves the remaining jet a fraction of its 
lnomentum. This ultimately determines the momentum distribution of hadrons. 
We have found that takingf(r]) to be a parabola with one adjustable+parameter 
results in an adequate fit to the distribution of charged hadrons,D: (z)  t D:-(z), 
observed in lepton experiments. All the properties of quark jets are then determined 
fromf(q) and three additional parameters; the degree that SU(3) is broken in the 
formation of new quark-antiquark pairs (sTis taken as half as likely as Uu), the spin 
of the primary mesons (assumed to be vector and pseudoscalar with equal probability), 
and the mean transverse momentum given to these primary mesons. This later param- 
eter is determined by requiring that the final hadrons (after decay) have a mean 
transverse momentum of about 330 MeV. 

2. The model 

2. I .  The ansatz 

We assume that quark jets can be analyzed on the basis of a recursive principle. 
The ansatz is based on the idea that a quark of type “a” coming out at some momen- 
tum W, in the z direction creates a color field in which new quark-antiquark pairs 
are produced. Quark “a” then combines with an antiquark, say “6”, from the new 
pair bb to form a meson “ab” leaving the remaining quark “b” to combine with 
further antiquarks. The “meson” a6 may be directly observed as a pseudoscalar 
meson, or it may be a vector or higher-spin unstable resonance which subsequently 
decays into the observed mesons. To avoid complicating the ideas, we will call “ab”’ 
the “primary” meson state and shall discuss secondary decay processes later. A 
“hierarchy” of primary mesons is formed of which a6 is first in “rank”, bc is second 
in rank, ca is third in rank, etc., as shown in fig. 1. (The “rank” in “hierarchy” 
should not be confused with order in momentum, but only order in the flavor rela- 
tionships. The rank-2 primary meson may sometimes obtain a larger momentum 
than the rank-1 primary meson.) 
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“HIERARCHY” OF FINAL MESONS 

SOME “PRIMARY“ 
MESONS OECAY v t v  . .. 

Oi i lG lNAL  QUARK 
OF FLAVOR “a” I 

Illustration of the “hierarchy” structure of the final mesons produced when quark of 
type “a” fragments into hadrons. New quar_k pairs bb, cc, etc., are produced and “primary” 
mesons are formed. The “primary” meson ba that contains the original quark is said to  have 
“rank” one and primary meson Cb rank two, etc. Finally, some of the primary mesons decay 
and we assign all the decay products to have the rank of the parent. The order in “hierarchy” 
is not the same as order in momentum or rapidity. 

The “chain decay” ansatz assumes that, if the rank-1 primary meson carries 
away a momentum 
ing cascade starts with a quark of type “b” with momentum W, = Wo - 
remaining hadrons are distributed in exactly the same way as the hadrons which 
come from a jet originated by a quark of type “b” with momentum W ,  . It is further 
assumed that for very high momenta, all distributions scale so that they depend only 
on ratios of the hadron momenta to the quark momenta. Given these assumptions, 
complete knowledge of the structure of a quark jet is determined by one unknown 
function f ( q )  and three parameters describing flavor, primary meson spin, and 
transverse momentum to be discussed later. The function f(q) is defined by 

f(q) dq = the probability that the first hierarchy (rank-I) primary meson 

(from a quark jet of type “a” and momentum W,) the remain- 
and the 

leaves the fraction of momentum q to the remaining cascade, (2.1) 

*We believe this recursive principle was first suggested b y  Krywicki and Petersson [6] and b y  
Finkelstein and Peccei (71 in an analysis of proton-proton collisions. 
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and is normalized so that 

f(q) dq = 1 . 
0 

The rank-1 primary meson (with momentum fraction z1 = t l / W o )  contains the 
original quark “a” (see fig. 1) and 77 = 1 - z 1.  Thus for an initial quark with mo- 
mentum W o ,  the probability that the first-hierarchy primary meson has momentum 
g ,  in d t l  isf(1 - t l / W o )  dtl/Wo and the probability that the rank-2 primary 
meson has momentum t2 in d t Z  is f(1 - t 2 / W 1 )  dtz/W1, where Wl = W o  - tl, etc. 
The probability that we have a hierarchy sequence of primary mesons with the kth 
having momentum tk in dtk is 

OD 

Prob(El, t 2 7  ...) t k )  d t l  dtz ... dtk .-. = n f(77i) dVi 9 (2.3) 
i= 1 

where 77i = Wi/WiPl with .$ = Wi-l - Wi. That is, qi  = 1 - ti/Wi-l and dqi is to be 
replaced by dtj/Wi with Wi = Wo - E L l  t k .  

2.2. Single-particle decay distribution F(z) 

The above ansatz leads to an obvious and simple Monte Carlo calculation of a 
jet as well as to a straightforward recursive integral equation. For example, if we 
define a single-particle distribution in the quark jet as 

F(z) dz = the probability of finding any primary meson (independent of 
hierarchy) with fractional momentum z within dz in a quark 
jet, (2.4) 

then F(z) must satisfy the following integral equation (take Wo = 1) 

where the limits are automatic since we define f(1 -z) = 0 and F(z) = 0 for z > 1 
or z < 0. Eq. (2.5) arises because the primary meson might be the first in rank (with 
probabilityf(1 - z) dz) or if not, then the first-rank primary meson has left a mo- 
mentum fraction q with probability f(q) dq, and in this remaining cascade the pro- 
bability to find z in dz is F(z/q) dz/q by the scaling principle. Dividing out the dz 
leaves eq. (2.5). 

An integral equation for F(z) given f(q) as (2.5) involves only differences in 
rapidity (Y ,  = -In z) and hence can easily be analyzed by a Fourier transform 

In this paper, we will use the word rapidity to refer either to the “z rapidity” given by 
Y ,  = -In z in (3.4) or the true rapidity given by eq. (3.5). Usually the difference between the 
two will not be important; however, when it is, we label the former by Y ,  and the latter by 
Y .  
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in rapidity, or equivalently by taking moments in z .  If we define 
1 

M(r) = J Z'F(Z) dz , 
0 

1 

A(r)= J Z'f(1 - z )  dz . 
0 

(2.6a) 

(2.6b) 

(2.7a) 

(2.7b) 

(2 .7~)  

The functionA(r) is, of course, related to C ) for they are determined by t , e  same 
function, but the point we wish to make here is more general. The integral kernel of 
(2.5) can be inverted algebraically in moment space as 

1 /( 1 - C(r)) = 1 + C(r)/( 1 - C(r)) . (2.7d) 

Thus an equation of the form 

$4) = 4 z )  +Jm W V )  d d v  (2.8a) 

can be inverted to  give 

where 

J T r g o )  dv = C(r)/(l - C(r>> 2 (2 .8~)  

For example, (2.5) is solved by 

which can be interpreted in the following way. If a particle is found at z ,  either it is 
a first-rank primary meson or else the particles of lower rank have left a momentum 
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q ,  and it is the first of those remaining (i.e.,f(l -z/q) dz/g). That is,g(q) dq has the 
significance of being the probability that all the primary mesons of lower rank than a 
given particle have left momentum fraction q of the original momentum of the jet. 

The probability normalization off(q) given by (2.2) means that c(0) = 1. Then 
from eq. (2.5) (or (2.7b) sinceA(1) = 1 - C(l)), one finds that the total momen- 
tum of all the primary mesons in the quark jet,M(l), is unity (i.e., equal to the 
original quark momentum). Namely, 

zF(z) dz = 1 . 
0 

(2.10) 

Another important point is that for small z, eq. (2.5) implies that F(z) has the 
expected Rdzlz behavior (R = constazt). This represents a uniform distribution in 
rapidity, Y,  = -In z. We see from (2.7b) that M(r) diverges as r -+ 0, since C(0) = 1, 
as Rlr where 

(2.1 la) 1/R = -dC(r)/drI,=, , 
or 

(2.1 lb) 

For small r, the integral (2.6a) is dominated by small z if F(z) is R / z  and is R/r. This 
may also be understood as follows. Since rapidity Y, is -In z ,  l /R  from (2.1 lb) is 
the mean loss of rapidity, In q, per primary meson. Thus, deep in the cascade we 
must have R primary mesons per unit of rapidity dY, = dz/z.  For small 9, in the 
plateau, g(q) in eq. (2 .8~)  is given by g(q) = R/v. 

2.3. Double-decay distribution F2 (z 1, z 2 )  

Suppose we want the probability of finding two primary mesons, one at z l ,  the 
other at 22, regardless of their rank in hierarchy. First, we define the function 
FZ(Z19 2 2 )  by 

F2 (zl, z 2 )  dz dz2 = the probability of fmding two primary mesons, one 
at z1 of any rank and one at z2 ,  but of higher rank 
than the one at zl. (2.12) 

We can immediately write the integral equation 

FZ(Z1,  z 2 ) = f ( l  -Z1>~(Z2/(1 --z1))/(1 -z1> 

(2.13) 

The first term arises because z1 might be the first-rank primary meson (probability 
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f ( l  - zl)dzl), and z2 any primary meson in the following cascade (of total mo- 
mentum 1 - z l )  and hence with probability F(z2 / ( l  -zl))dz2/(l -zl) .  The sec- 
ond term arises if z1 is not of rank one. The rank-one primary meson leaves the 
others with momentum 77 with probability f(q)dv and then we find z l ,  z2 with 
scaled probability F2(z1/77,z2/77) dzl/q dz2 /77 .  Eq. (2.13) can be solved by the 
techniques discussed in subsect. 2.2, whereupon one gets 

FZ(Z1, z 2 > = f ( l  -Z1)F(Z2/(1 -z1))/(1 -z1> 

+ j g(77)f(l -z1/7))F(z*/(77--1)) drl/(rl(q-z1)). (2.14) 
21 + 2 2  

The complete double-fragmentation function, where the meson at z2 may be either 
of higher or lower rank than that at z l ,  is then given by 

F&l, zz>= F Z ( Z 1 ,  z2) +F2(Z2, z1).  (2.15) 

2.4. Choosing the form of f ( q )  

A form which makes the solution of the integral equation (2.5) the simplest is a 
power of 77, 

f(v)= (df l h d  * 

In this case 

C(r) = (d + l)/(r f d f 1) 

or 

C(r)/(l - C(r>> = (d + 1)lr , 

g(77) = (d f 1Y77 9 

zF(z) = (d + 1)( 1 -z)d . 

zF(z) = f( 1 - z) , 

so that 

and hence 

This means that 

(2.16) 

(2.1 7a) 

(2.1 7 b) 

(2.18a) 

(2.1 8b) 

(2.1 8c) 

which serves as a rather rough approximation for other forms of f(V). This power 
form for f(0) leads to a double-decay function of the form 

(2.19a) 

or disregarding order of rank, 
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F2(z , ,z2)=f( l  -z1 -z2)/z1z2 9 (2.19b) 

which can also serve as a rough approximation for other choices off($ . The inclu- 
sive probability to fi idNmesons with momentazl, z2 ,  ... zN is 

N N 
-., hi 
FN(z1, z2. ... ZN) ... d z N  = (d 1)Nc' (1 -c z;)d n - . (2.20) 

;=I i = l  Zi 

Tl1ls is the manner in which mesons are distributed in the one-dimensional field- 
[l ieory model of Casher, Kogut and Susskind [ lo] .  In fact, it results simply from 
rhc. assumption of particles produced independently at random having an a priori 
probability to exist and then to be distributed uniformly in two-dimensional rela- 
tivistic phase space (i.e., uniformly in rapidity, dz/z ) .  The total energy and momen- 
i u ~ i i  must, however, be that of the jet (o= d t 1). 

Although the forms of (2.16) and (2.18b) are simple and easy to interpret, they 
(10 not agree with the assumption we used in FF1, that the probability of finding 
iiissons in dz approaches a constant as z -+ 1. Eq. (2.5) has the property that F(z) 
~pproachesfll -z) as z becomes large. The mesons at large z almost surely contain 
i l i t  original quark and at z = 1, the meson must contain the original quark. Thus in 
t l r d c . r  for F(z) to approach a constant as z -+ 1 ,  we must require thatf(q) approach 
.I constant as 77 + 0, something that the form (2.16) does not do. A function that 
Icuds to results similar to those found in FF1 is simply (2.16) plus a small constant. 
We take 

f(q) = 1 - a + 3a$ , (2.2 1) 

where the parameter a and the power, d = 2, are chosen by comparingF(z) to 
cxperiment. (Actually we compare the charged-particle distribution, Di'(z) t Di-(z), 
t o  data.)  The form (2.21) gives 

C(r)= (1 -a)/(r t 1) t 3a/(r + 3) , (2.22a) 

so that using (2 .8~)  we find 

g(T?) = (3/q i- 4a(l - a)T?2-2")/(3 -%) , 

zF(z)= 3/(3 - 2a) 

and (2.8d) yields 

(2.22b) 

+ 3az2/(2a - 1) 

t h(h2 - 3a - 2 ) ~ ~ - ~ " / ( ( 3  - 2a)(2a - 1)) . (2.23) 

As we will see later after discussing flavor, if we interpret all primary mesons as 

Eq. (2.19b) withf(q) = 217 was used by Bjorken in ref. [8] to estimate the large-pl nono cross 
section in pp collisions and by Ellis, Jacob and Landshoff in ref. [9]  to estimate same side 
large-pl correlations in pp collisions. 
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Z Z 
Fig. 2. (a) (left) The probability of finding the first-rank meson at z (in dz),f(l - z) [---I, and 
the probability of finding any hadron at z (times z ) ,  zF(z)  [ -1, given by eqs. (2.21) and (2.23), 
respectively, with (I = 0.88, aps = 1, aV = 0. (b) (right) The functions aps f(1 - z )  and aps zF(z)  
give? by eqs. (2.21) a?d (2.23) with a = 0.77 together with the distribution of secondary mesons, 
avf(l - z )  and aV zF(z),  from parents distributed according to (2.21) and (2.23), where aps 
= a, = 0.5 and where we-have used the psrentdaughter relation in (2.54). - apszF(z);  ...... 
a p s f ( l - z ) ; - . - .  a,zF(z); - - -avf ( l  -2). 

pseudoscalar mesons with no secondary decays then by comparing @+(z) t D!-(z) 
with data and with the results of FF1, we find that a = 0.88 gives a good fit. Fig. 2a 
showszF(z) andf(1 - z )  for this case. We see that the relationship (2.18~) is still 
approximately valid. 

2.5. Including jlavor 

Next we examine the question of the flavor u, d, s, ii, d, and 5 of the quarks and 
hence the isospin and strangeness of the primary mesons. We call the isospin and 
strangeness properties the “flavor” of the primary mesons. For example, a “uz’ 
primary meson has the flavor of a n+ or equally well a p+.  In this section, we will 
discuss everything in terms of the pseudoscalars and in the next section include the 
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possibility of forming vectors or other resonances as well. We assume, as in FFI,  
that new qq pairs are UU with probability yu, dd with equal probability y d  and sB 
wl t t l  probability ys. From isospin symmetry yu = y d  = y, say, so ys = 1 - 27. As in 
FF 1, we suppose that strange SS pairs are half as likely as unstrange uii pairs so that * 

y=0 .4 .  (2.24) 

k t  the primary meson states be defined by quark labels “ab”, etc., where a is u, 
d, or s and likewise for b. A sum on such a label is a sum on u, d, and s. Our assump- 
tions about flavor mean that if the ranks of successive primary mesons are 1 , 2 , 3 ,  ..., 
t11en their flavors must be of the type of a chain a6 for the first with some 6, then 
1 ) ~  for the second, cd for the third, etc., as shown in fig. 1. The probability of find- 
Illg them with various momenta is still (2.3) but multiplied by the factor yb, ycr y d ,  ... 
giving the chance that the correct new pairs 6b, Ec, dd, ... were indeed formed. It is 
now easy to modify what we did earlier in subsect. 2.2 for flavor. 

For example, for a quark of type q,  the mean number of primary meson states 
of type “a6” at z is, in analogy to eq. (2.5), 

P$(z)= & q a Y b f ( l  -z> +sf(r)) ycP?(z/q) * (2.25) 

The first term arises because the “a6” primary meson state might be of first rank 
(only  if a = q, of course, hence the delta function Saq) with probability f(l  - z) 
limes the chance, yb, that the first new pair is of the required type b. The second 
term occurs if the “a6” primary meson is not of first rank in hierarchy. The first 
pair might be cE (with probability 7,) and leave a momentum q to the cascade of 
quark c (with probability f(q)) in which cascade we find an “a6” state with proba- 
bility P:b(z/q) &/q. 

I t  is seen that the flavor distribution of the 2nd and higher rank primary mesons 
are independent of what quark started the cascade because we have assumed the 
new pairs are made with flavors independent of the quark flavor that makes the 
cascade. Defining a “mean quark” flavor to be (q), and equal to u ,  d,  and s with 
probability y, y, and (1 - 2y), respectively, we write 

Pca“, (z)  = c yc Pc“”z> . 
C 

(2.26) 

I t  is not unreasonable that srpairs are formed less often than uu and da, for s quarks may have 
a larger mass than u or d. For example, in a vector force field (e.g. F = eE where E is an elec- 
tric field and e is the charge on a particle) constant in space and time, the rate of production 
of pairs of particles of rest mass rn and transverse momentum kl (kl is a twodimensional vec- 
tor transverse to the direction of the field, the particle has transverse momentum kl, the anti- 
particle 4 1 )  is, according to the Dirac equation, 

(F/2n) exp(-v(rn2 + k:)/F) d’/~,/(2n)~ 

Per unit volume per second. Thus it is more difficult to make pairs of mass m by a factor 
exp( -nrn2/n. 
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The quantity P(q, appears on the right hand side of eq. (2.25) so multiplying by yq 
and summing on q leaves 

@@) = YaYbf(1 -z> ‘Jf(7))p?,bJ(z/7)) d1)/7) 7 (2.27) 

which, after comparing with (2.5), yields 

p?q’) (z> = YaYb F(z) . (2.28) 

Thus if we know the distribution of primary mesons F(z) from quarks disregarding 
flavor, then those of flavor “a6” occur in the “mean quark” cascade with probabi- 
lities, yayb, that the first and the second quark of the pair “ab” have the appropri- 
ate flavors. Only the contribution of the first-rank quark differs from the average. 
Substituting back into eq. (2.25) and integrating, one finds in general that 

p$(z)= 6qaybf(l -z> + YarbF(z) > (2.29a) 

where 

F(z) = F(z) - f( 1 - z) (2.29 b) 

is the probability of finding a primary meson at z of rank higher than one, and F(z) 
and f( 1 - z) are the functions given in (2.2 1)  and (2.23). 

To be more explicit, the distributions of primary meson states of flavor h from a 
quark q are given by 

D;(z)=A:f(l -z) +BhF(z),  (2.30) 

where A: and Bh = Zq y ,At  have the values given in table 1 .  For example, the 
quark content of an eta meson is given by 7) = s cos OM + N sin OM, where N 
= G(ufi t da) and S =  SS. Thus, the quantity A! is given by iy sin2 OM, where y 
is the probability of producing a U quark (iiu pair) to combine with the initial u 
and sin2 OM is the chance that this Uu pair actually forms the desired 7). 

decays. To compare with FFI, we find from table 1 with y = 0.4 
For now we shall assume all primary mesons are pseudoscalar mesons with no 

D(z) D;+(z) -t D;-(z) = 0.32 F(z) t 0.40 f ( 1  - z) , (2.31a) 

KU(~)~D~+(~)+D~-(z)=0.16~(z)+0.20f(l - z ) ,  (2.31b) 

K,(z)=DF+(z) +DF-(z) = 0.16F(z) t 0.40f(l -z) ; (2 .31~)  

in addition we have 

D;’ (z) - D;- (z) = 0.4 f( 1 - z) , (2.32a) 

DF+(Z) - 0:- (z) = 0.2 f( 1 - z) , (2.32b) 
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DF-(z) - DF+(z)= 0.4f(l  - z )  , 

0:’ (z) = 0.5 D$ (z) , 

(2.32~) 

(2.3 2 d) 

DF-(z) = 0.5 DE-(z) .  (2.32e) 

These last two equations imply 

D,”-(z)/D,K’(z)= Dz-(z)/Dt+(z) , (2.33) 

which is what we assumed in eq. (3.7) of F F l .  In addition, we have 

(2.34) 

which approaches zero as z becomes large. This was another of our assumptions in 
FFl and here it is a consequence of the property that at z = 1, the primary meson 
must contain the original quark (i.e., F(z) = f(1 - z )  at z = 1 so F(z) -+ 0). 

For this case, where all the primary mesons are pseudoscalars with no subsequent 
decay, the best choice for parameter a in (2.21) and (2.23) is a = 0.88. This is deter- 
mined in fig. 3 by requiring that the model dashed curve) agree with the lepton 
data on the charged-particle distributionD: (z)  + D t - ( z )  and with the earlier FF1 
choice (solid curve). The value a is chosen so that Dqh+(z = 1) + D:-(z = 1) = 
0.6(1 - a)  agrees with the FF1 curve at z = 1. 

given by 

\ 

The fraction of the total momentum carried by each type of primary meson is 

where 

z= zf(1 - z ) d z  (2.36a) s 
is the mean momentum of the first hierarchy meson and is given by 

y =  1 2 - 4 ’  1, (2.3 6 b) 

for f(q) as in (2.21). The momentum carried by the various hadrons with a = 0.88 
is given in table 2. In FF1 we did not include the q and q’ explicitly and, as can be 
seen from table 2, if we allow the q and q’ to decay then the model reproduces the 
results of FF l  quite closely. 

It is of interest to ask how the charges of the primary mesons are distributed 
along the direction of the initial quark. Suppose we have some quantity such as 
charge Q, (or third component of isospin 13, or hypercharge Y) that can be calcu- 
lated for a primary meson state additively from the quark content of that meson 
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10’ 

(A 

5 - 100 t; z 
3 
2 10-1 
crl 
r2 

s 

10-2 
0.0 0.2 0.4 0.6 0.8 1.0 

kig.  3.  Comparison of the charged particle distribution D$+(z) + D$-(z) from the quark-jet 
riiodel with u = 0.88, aps = 1, av = 0 (dashed curve) and with a = 0.77, aps = av = 0.5 (dotted 
~ t i r v c )  with  the lepton data from fig. 6 of FF1 and with the distribution used in FF1 (solid line). 
I I ticre is a n  error in the captions to fig. 6 and fig. 7a in FF1. The ep data from Daken et  al. has 
h . c n  averaged over the two Q2 bins 1.0 < Q2 < 2.0 GeV2 and 2.0 < Q2 < 3.0 GeV2 with 
I 2  < s < 30 GeV2.) o zN(e+e--+ hi); 0 zN(ep --f h’); + zN(vp + h*). 

such that each quark flavor, “a”, carries ea and each antiquark Z contributes -ea. 
Then if we weigh each primary meson, a6, by its charge ea - eb ,  we obtain the net 
mean charge distribution of a quark jet. Namely, 

(2.38) 

is the charge of a “mean” quark. Thus the hadrons in each jet carry a total mean 
charge, eq - qq), equal to the charge on the quark producing the jet plus a constant 
error, - e ~ ) ,  proportional to the deviation of the probability of production of new 
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Table 2 
Fraction of the total momentum of a u-, d- and squark carried by the primary mesons (before 
decay, called direct) resulting from our jet model with a = 0.88, aps = 1.0, and ay = 0.0. In addi- 
tion, the results are shown for the total mesons (direct + indirect) after the q and q’ are allowed 
to decay. For comparison, the values from table 2 of FF1 are also given (see also table 6). 

a = 0.88, aps = 1 results FF1 results 

U d S U d S 

+ n 0.23 0.12 0.12 
no 0.17 0.17 0.12 
n 0.12 0.23 0.12 
total R 0.51 0.51 0.35 

- direct 

r) + 7)’ 0.20 0.20 0.20 

n+ 
no 

total n 
n- 

direct 
+ indirect K+ 

KO 
K- 
K O  
total K 
Y 

0.26 0.15 0.15 0.27 0.15 0.15 
0.24 0.24 0.18 0.21 0.21 0.15 
0.15 0.26 0.15 0.15 0.27 0.15 
0.65 0.65 0.48 0.63 0.63 0.45 

0.11 0.06 0.06 0.13 0.08 0.08 
0.06 0.11 0.06 0.08 0.13 0.08 
0.06 0.06 0.17 0.08 0.08 0.19 
0.06 0.06 0.17 0.08 0.08 0.19 
0.29 0.29 0.45 0.37 0.37 0.54 
0.06 0.06 0.06 

pairs from the SU(3) value of 3 .  For the case of electric charge, we have e(,) = y - $ 
and thus the mean total charge of a quark jet is 

(2.39) 

(2.40) 

(2.4 1) 

(QU) = 1 - y = 0.60 , 
( Q d )  = -7 = -0.40 , 
(Q,) = -7 = -0.40 , 

which is in close agreement with the empirically fitted values of 0.59, -0.40, and 
-0.39, respectively, found in FF1. The mean total Z3 is just the I3  of the quark, 
independent of y since 13 of the mean quark is zero (u and d coming with equal 
weight). Hypercharge, Y is 2(Q - Z3), so its mean for u- and dquark jets is 0.2 and 
for s-quark jets is -0.8. 

The charge on the jet of a “mean” quark is C, y, (es - ecq)) = 0 so that the sec- 
ond and higher hierarchy primary mesons carry no charge on the average. Thus, 
were it not for complications from secondary disintegrations, which we discuss 
later, the experimental determination of the net mean charge, &, ehDh, (z) ,  where 
eh is the charge of the hadron h ,  would give a direct measure of the distribution of 
the first-rank primary meson,f(l - z ) .  
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At first sight one might wonder why the total average charge of the hadrons is 
not that of the original quark, because after all, the new quark pairs qS are each 
neutral. However, as pointed out by Rosner and Farrar [ 111 and by Cahn and Col- 
elasier [ 121, for a jet starting from a quark, each new pair has its antiquark going 
into a hadron of one lower rank in the hierarchy than does its quark. The new anti- 
quark has, on the average, the higher momentum. Thus, when we consider all the 
tlddrons higher than some very small momentum zo (small enough to ensure that 
tile mean number of positive and negative hadrons in dz are practically the same), 
tkne are  counting more antiquarks than quarks. This makes no difference for isospin, 
since we have U and d antiquarks equally likely, but the average electric charge of 
antiquarks is not zero but is given by e ( i )  = (-1 + 3 ) ~  + i ( 1  - 27). The Cquarks 
are  not in their full number, 5 ,  needed to cancel the average ij t d charge. Since, in 
counting charge, only mesons (we leave out the complication and slight numerical 
nlodification due to baryon production) are counted, the total number of quarks 
; ~ n d  antiquarks counted must be exactly the same. Therefore, we must succeed in 
c o u n t i n g  an excess of exactly one antiquark over quarks from the new pairs, to 
compensate the extra quark from which the jet started. Thus, the charges of all 
tiadrons above zo exceed that of the original quark eq by the charge of one mean 
antiquark q;) = -e(q) (about -A charge units). For this reason, the net charge of 
;I “mean” quark jet is zero. This last result can also be seen in the following way. 
I r i  3 “mean” quark jet, all the mesons are formed out of pairs of “mean” quarks 
; i n d  “mean” antiquarks. Any tendency of the antiquark of one new pair to combine 
iv t i l i  a quark of lower rank to make a meson has no effect, for that lower-rank quark 
is also a “mean” quark with the same probability of flavors as the antiquark. In the 
general case, charge imbalance can be seen, in the mean, only in the hadron contain- 
ing the original quark as indicated by (2.37). 

to include the effects of correlations in flavor. We define 

L 

We now turn to the problem of generalizing the double-decay function in (2.12) 

P:b,Cd(~l, z2) dz, dz2 = probability of finding a primary meson of flavor 
“a6” at z 1  and one of flavor “cd“ at z2 in a jet 
originated by a quark of flavor q when the primary 
meson at z2 has a larger rank in hierarchy than the 
one at z l .  (2.42) 

This probability is the sum of the following four pieces. 

meson at z2 is of rank 2 ;  given by 
(i) The probability that the primary meson at z 1  is of rank 1 and the primary 

(2.43a) 

For this term q = a and b is arbitrary with probability Yb,  but then c = b and d 
comes with probability Yd.  The probability that z 1  is rank-1 isf(1 - z l )  d z l ,  and 



780 

18 R.D. Field, R.P. Feynman / A  parameterization of the properties of quark jets 

then since 1 - z 1  momentum is left, the probability that z2 is second-rank (i.e., 
rank-1 in the remaininghierarchy)isfll -z2 / ( l  -zl))dz2/(l  - z l ) .  

(ii) The probability that z1 is of rank one, but z2 is of rank higher than 2: 

(2.43 b) 

For this case, the chance to get cd is now independent of q, a, and b and is YcYd. 

but the primary meson at z2 is directly of next rank to the one at z1  : 
(iii) The probability that the primary meson at z 1  is not first in rank but higher, 

where the early primary mesons leave momentum 77 (with probability g(r)) dr)) and 
the next two primary mesons come as rank one and two. Here the flavor of q has 
no affect, a and b come with probability Y a Y b ,  but c must equal b. We must, of 
course, integrate over all remaining momenta 77. 

(iv) Neither the primary meson at z 1  or z2 is first in rank, nor are they adjacent: 

The complete double-fragmentation function for producing two hadrons of flavor 
h ,  = a6 and h2 = cd is given by symmetrizing (2.43a-d) with respect to z 1  and z2 .  
Namely, 

F;6,c"z1, z2)=P;6J"z1, z*) tfJ$,ab(z, ,  Zl) . (2.44) 

2.6. me production of resonances 

Finally, we must decide in what nonet a primary meson is formed. We suppose 
that the pair of quarks qij is in the low pseudoscalar 0- configuration with the pro- 
bability aps, that it is a vector meson 1- with probability av, a tensor meson 2' 
with probability at ,  etc. Then these objects are allowed to disintegrate as we know 
they should from the particle tables. 

on the flavor. Although attempts have been made to determine from hadron exper- 
iments the production rate of, say, po compared to no at larger p l ,  the experiments 
are difficult to interpret. Indications are that po is roughly as likely as no at high p l  
(see references in table 16) and that higher resonances are less likely [ 131. For 
definiteness for the present, we shall choose 

We suppose that the choices of the probabilities a are dynamic and do not depend 

aps = av = 0.5 , (2.45) 
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with no higher resonances * (at = 0, etc.), which yields D ~ o ( z ) / D ~ o ( z )  -+ 1 as z + 1 .  
Future experiments may, however, indicate a better choice. 

2.7. The Monte Carlo method 

27.1. Recursive scheme 
The method of Monte Carlo generation of a complete quark cascade is clear. 

Suppose one starts with a quark of flavor q and momentum W o .  Then 
(i) One generates a value of 7); = 1 - z1 at random with probability given by 

f(q) as in eq. (2.21). 
(ii) One generates a quark pair uU, dd, or SS with probability y, y, and (1 - 27) 

(i.e., 0.4,0.4, and 0.2), respectively. The first primary meson state is then of type 
qc, qd, or qS depending on the pair chosen. 

(iii) One decides on the spin-parity of the primary meson, according to  (2.45), 
(i.e., pseudoscalar or vector with equal probabilities. 

The first primary meson is now of momentum (1 - v1)W0 and of type qii, qd 
or qS depending on the choice made in (ii) and of spin depending on the choice 
made in (iii). This leaves, for the next step, a quark of type qz = u, d, or s (depend- 
ing on the first quark pair chosen) with momentum W 1  = v1 Wo . The cycle beginning 
with (i)-(iii) is then repeated for this quark qz with momentum W1. Another r )  

value is found and a new quark pair produced. This procedure is then repeated over 
and over until a desired point, to be discussed later (sect. 3 below), is reached. 

Finally, we add transverse momentum according to subsect. 2.7.2 and then let 
the vector mesons decay, each with its known characteristic kinematics and branch- 
ing ratios, as given in the particle tables. In addition, we allow the r )  and r)' mesons 
to decay. 

AS discussed earlier, in choosing the spin-parity of the primary mesons (iii), we 
assume that aps and a,, are independent of flavor. For example, a uU primary meson 
state is a no with probability Laps an r) with probability !aps sin' O p s ,  an r)' with 

a, sin2 0, and a @' with probability a, cos2 O v  in agreement with table 1. The 
probability :aps cosz Ops, a p 20 with .' probability ;av, a w b with probability 

pseudoscalar and vector mixing angles Ops and 0, are chosen to be 45' and 90°, 
respectively . 
2.7.2. Including transverse momentum 

The hadrons arising from the cascade or fragmentation of a quark do not travel 
in precisely the same direction as the initiating quark (i.e., z direction). We expect 
that the transverse momentum of these hadrons remains limited as the quark's mo- 
mentum becomes large; however, we really have no knowledge as to the precise 
manner in which the various hadrons share the transverse momentum. One can 
imagine several ways to distribute transverse momentum among the primary mesons 

The theoretical idea that the quark spins combine randomly would recommend, rather, that 
a, = 3aps. 
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in our jets. We will choose a particular w3y, not because we are sure it is nature’s 
way, but for definiteness. Very few of the results in this paper depend on this par- 
ticular choice. 

We will incorporate transverse momentum into our model by assuming that the 
quark-antiquark pairs q& which are produced to discharge the color field conserve 
transverse momentum in a pairwise fashion and have no net transverse momentum. 
The quark qi in the ith pair is assigned a transverse momentum ql i  and the antiquark 
the balancing momentum -q4. The ql,  are distributed according to the Gaussian 
distribution 

exp(9:i/2(73 d2q l  . (2.46) 

Except for the first-rank primary meson, all primary mesons are given a transverse 
momentum that is the vector sum of the transverse momenta of the two quarks 
which form it. The first-rank primary meson is assigned a transverse momentum 
given by 

kl(1) = 41, - 410 9 

the second-rank primary meson 

kl(2) = Ql, - Qll  > 

and the rth-rank primary meson 

kl@) = Ql, - q1&-1 : 

(2.4 7 a) 

(2.47b) 

(2 .47~)  

The initial QL, is also generated according to (2.46). This is to insure that the first 
primary meson has the same mean square transverse momentum as the others. 

The net result is to produce a cascade of primary mesons all of which have the 
same distribution of transverse momentum at futed z, a Gaussian with a mean 
(k:)= 20’ and 

(kl’prirnary mesons =&&, 
with 

(2.48a) 

o = & o q ,  (2.48b) 

since two quarks contribute to each primary meson. This method introduces a cor- 
relation between primary mesons of adjacent rank, so that they tend to go oppo- 
sitely, the mean of (k l l  
mesons whose rank is not adjacent. The physical ideas are reasonable enough, but 
the particular choice of ((kl,  k l , ) )  = -u2 is a pure guess. It is made so that the 
total perpendicular momentum of the jet kljet = k l l  + k12 t ... t kl,  has a mean 
square which does not rise with N .  

In general, we could also contemplate another parameter giving the center of 
mass of the new pairs a Gaussian distribution. This has the affect of decreasing the 
negative correlation coefficient (kl I * kl,)/d=) between adjacent-rank 

k ~ , )  is -4,. There is no correlation between primary 
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primary mesons from the value -; to any value minus or plus up to +; depending 
on parameters. In this case, extra rules would have to be added to keep the sum 
kljet within bounds, and rather than risk complications, we do not do this. 

Our main aim for adding transverse momentum is t o  study the differences 
between the true rapidity Y and Y ,  = -In z and to investigate the effect of reso- 
nance decays on the distributions of transverse momentum. In addition, it will be 
interesting to see if there is any experimental indication that primary mesons adja- 
cent in rank have negative transverse momentum correlations. Unfortunately, as 
we will discover in sect. 5, although the correlation is close in hierarchy, it is spread 
over a wide range in rapidity due to the mixing of rank in hierarchy and order in 
rapidity, and is further obscured by correlations between mesons coming from the 
decay of the same primary. 

The value of the deviation u in (2.48a) is chosen so that the finally observed 
charged pions (those produced directly as primary mesons plus those resulting from 
secondary decays of primary vector mesons) have a mean kl of 

(kl)mk = 323 MeV . (2.49a) 

This requires a choice of 

u = 350 MeV (2.49b) 

arid results in 

= 439 MeV. (kl’primary mesons (2 .49~)  

The difference between the mean transverse momentum of the primary mesons and 
h e  resulting observed pions is due to resonance decay and the significance of this 
will be discussed in detail in sect. 5. 

2. 7.3. Finite-momentum jets 
When discussing the Monte Carlo method of generating jets, (i)-(iii) in subsect. 

2 .7 .1 ,  we avoided mentioning at what point one terminates the iterations. The pro- 
cedure,  as outlined, would produce a jet of infinite momentum, an infinite number 
of particles, and an infinitely long rapidity plateau. For a jet of very large momentum 
P in the z direction, there is no problem. One merely continues to produce particles 
until  all the available momentum P is used up. For large P, for any z not too small, 
p2 = zP is lar e enough that questions such as the difference between energy 
E =  + p z  + m2 t Pf and p ,  are not important. But what shall we do for real jets of 
finite momentum P? Even if P is a few GeV so that we can take it equal to the 
energy, for smaller z (say, z < 0.2), one has ambiguities. In the plateau, we know how 
to resolve such ambiguities. The dz/z = dpz/pz behavior in the plateau comes from 
relativistic phase-space factors multiplying matrix elements which are slowly varying 
so that the dz/z should be replaced by dp,/E. But this is exactly d(E t p, ) / (E + p , ) .  
We shall thus resolve all ambiguities by interpreting all variables t ,  W, etc., to refer 
not to momentum but rather to the quantity E + p z  = p z  td-. The 
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variable z in F(z) andf(1 - z) in eqs. (2.23) and (2.21) with 71 = 1 - z and similarly 
in all our equations refers to 

z = (E + P Z ) / ( E O  +PZ0) Y (2.50) 

where Eo + p z o  is for the initial quark. Since the initial quark will always have fairly 
large momenta, we can replace Eo +pzo by Po, where Po is the initial quark mo- 
mentum. Eq. (2.23) should be reasonable as long as p z  is not too large negative. 

For energies large enough that a plateau region is developed, experience with 
inelastic hadron collisions shows us that scaling and limiting fragmentation hold 
approximately. This implies that a plot of hadron distributions versus rapidity 

Y = f ln((E + pz)/(E - p z ) )  = ln(E + p z )  - In ml , (2.51a) 

where 

m f = m 2  + P f ,  (2.5 1 b) 

has a simple property. The distribution of particles moving to the right in, say, the 
c.m.s., are the same for different energy collisions if only the origin of the rapidity 
Y axis is shifted by Yo, the rapidity of the original right-moving beam. This is equiv- 
alent to the principle that the distribution of particles moving near one end and into 
the plateau, but not near the other end of the distribution, for one energy can be 
obtained from that of another energy simply by a Lorentz transformation in the i 
direction. This is because such a Lorentz transformation by a velocity u simply mul- 
tiplies all E + p z  by a common factor, d ( 1  - u)/(l + u ) ,  and does not affect rapidity 
differences or E f p z  ratios. We shall assume that the same is true of our quark jets. 

Jets of finite momentum are produced by first generating “master” jets of very 
large momentum Po. Each primary meson has a mass mi, a perpendicular momen- 
tum P L ~  generated according to subsect. 2.7.2, and an Ei + p z i  determined from 

Ei + Pzi = zi(E0 + Po> , (2.52) 

where zi is generated by the procedures of subsect. 2.7.1. The primary mesons are 
then allowed to decay according to the rates in the particle tables and jets of finite 
quark momentum Pq are produced by computing a new or scaled (E + pz)new by 

(2.5 3 a) 

and keeping all final mesons such that 

C.z)new 2 0 * (2.53b) 

Resonance decays are relatively simple to handle under this scheme. The primary 
mesons determined according to (2.52) are allowed to decay and the Lorentz trans- 
formations of zi are easy as already mentioned. The sum of the z’s of the decay 
products are equal to the z of the parent. However, occasionally parents with 
pzi Q 0 will produce a decay product with p z  2 0. We are defining our jets to have 
only forward-moving particles and thus include such decay products with p z  2 0 
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Table 3 
Mean multiplicity of all particles ( N ) ,  charged partdez LV,~ ) .  positive particles ( N + )  and nega- 
tive particles (N- )  for uquark jets of  various energies fq resulting from the jet model with 
a = 0.77 and aPs = aV = 0.5. Also shown in the “correlation momcnt”f2 = (N(N - 1)) - ( N ) 2 .  

4.6 

-1.3 

2.1 

-0.8 

1.6 

-0.8 

1.1 
-0.4 

8.2 

2.2 

4.8 

0.2 

2.1 

-1 .1  

2.1 

-0.6 

even though the parent was moving backward. Likewise, we ~ x d i b c  hackward- 
moving secondaries even if the parent was moving forward. 

4 tree quarh of 
definite mass *. However, it must be remembered that all quarh tci\ ~ ~ L U I  in pairs 
In e+e- collisions, two jets result from the qq pair produced. I n  8 11 rcJciitins. one 
jet results from the quark “knocked out” of the proton by the neutririu and the 
other from the “hole” that was left behind. In hadron-hadron collisions a t  high p I ,  
according to the model in FFl, we may think of a quark as being knocked o u t  of 
the proton by another quark and “generating” a color field as the quark pulls away 
from the “hole” it left behind. This results in a four-jet structure as discussed in 

ref. [5] (hereafter called FFF). Energy and momentum are conserved in the two- 
jet system not for the single jet. Hence, any quantity like energy or kl that is not 
conserved in the single jet is balanced by its oppositely moving partner. 

Our quark jets do not precisely conserve energy or momentum. For example, 
a Pq = 10 GeV quark jet produced in the above manner has mean values (Etot) = 9.8 
GeV and (pz!ot) = 8.6 GeV, where Etot and pztot are the total energy and p z  of all 
the hadrons in the jet. The mean value of Etot t pZtot does approach 2Pq at high 
momentum. Rather than compensate for the fact that our cut-off procedure yields 
Etot t pztot less than 2p, at finite Pq , we can interpret our jets as having an energy 
equal to Pq since this comes out closely the same without any adjustment. For all 
Pq, the mean value of Etot - pZ!,, is about 1.2 GeV, and (kl,) is about 610 MeV, 
where kljet is the total perpendicular momentum of all the hadrons in the jet. 

Finally, in table 3,  we show the particle multiplicities resulting using the above 

If one selects E + p z  of all hadrons in the jet to equal the E + p z  of a large momentum initial 
quark, then E - p z  is equal to the mean density of particles in the plateau times the r n l  of 
the particles. See the discussion on p. 246 of ref. [ 141. 

Real quark jets cannot have both the energy and momentuln 
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cut-off prescription. The table gives the mean multiplicity of all particles, charged 
particles, positive particles, and negative particles for a u-quark with energy 
Ps = 3.5 ,  10.0, 50.0, and 500.0 GeV, arrived at with CI = 0.77 and aps = a, = 0.5. 

2.8. The analytic approximation 

Although the Monte Carlo method is straightforward, some jet observables 
require the generation of a large number of typical jets in order to get sufficient 
statistical accuracy. In addition, it is very handy to have analytic formulas for easy 
analysis and understanding and so the reader can, without writing a Monte Carlo 
program, reproduce most of our results. For these reasons, we present approximate 
analytic solutions for those observables where analytic methods are not too diffi- 
cult. Details of individual resonance decay are too tedious to handle exactly ana- 
lytically. What we have done is to assume all products of vector meson decay are 
distributed as they would be in a two-body isotropic decay of massless products; 
that is spread uniformly in z from 0 to the z of the parent. Thus for all vector 
decays, we assume the daughter-parent relationship 

1 

& I =  2 J G(Z/Y) dulu 9 (2.54) 

where 6 ( z )  is the distribution in z of a daughter of parents distributed in G(z). The 
integral of (2.54) is easy for C(z)  = F(z) or C(z) = f(l  - z), since if C(z)  = z" then 
G(z) = 2( 1 - z")/n for n # 0 and -2 In z for n = 0. 

Z 

The total distribution of hadrons is 

Ftotal (z)  = apsF(z) 4- ol,&) > (2.55) 

and the distribution of the first-rank meson is 

ftotal(1 - z>=  a p s f ( l  - z )  t avfil - z )  J (2.56) 

where we assign all the decay products the rank in hierarchy of their parent primary 
meson and where aps and a,, given by (2.45), are the relative strengths of the pseudo- 
scalar F d  vector meson component. The values of apszF(z), a,,f(l - z ) ,  a,z@(z), 
and %f(l - z )  are given in fig. 2b with a = 0.77. As can be seen in fig. 3,  the choice 
a = 0.77, aps = a, = 0.5 produces a good fit to the lepton data on the charged par- 
ticle z distribution and compares well with the F F l  result. 

The distribution of hadrons of flavor h from a quark q is given by 

q (z)  = aps [A; f( 1 - z )  t BhF(z)] t a, [$g( 1 - z )  t B^h+(Z)] , (2.57) 

where F(z) is the probability that the meson at z has any rank greater than one and 
is defined by (2.29b). (Similarly, &) = &z) - f(l  - z) . )  The constants 2; and Bh 
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are given by 
9 

(2.5 8 a) 

(2.58 b) 

wliere the sum is over all nine vector mesons and Oi+h is the probability that one 
a daughter of type h as a decay product of a parent of type i. The constants 

..I: and Bh are as in (2.30) and are given in table 1 (for vector production one uses 
0, = 0" and for pseudoscalar production one uses eM = ePs). The p and K' reso- 
1I;IIiCes decay 100% of the time to nn and Kn, respectively, and the 0i-h are easily 
calculable from isospin symmetry. The values used for 0i-h for w and @ are given 
in table 4,  where we approximate three-body decays by the two-body decay for- 
riiula (2.54) but with &+.h adjusted to give the correct frequency into the various 
mesons. For example, we take w -+ n+n-no and w -+ noy with a 90% and 10% rate, 
rcspectively, so that /3,+,* = i(0.90) and f l w - t n ~  = i(0.90) + i(O.10). 

In addition, to agree better with the Monte Carlo results, we have also allowed 
(lie Q and 77' to decay. These decays are handled in the same manner (2.54) as the 
vector meson w decay but with the &+.h given in table 4. 

Fig. 4 shows a comparison of the analytic approximation and the more precise 
Monte Carlo method. Agreement is good except for the pions resulting from the wo 
decay (similarly for three body 77 and 77' decay modes) which have been approxi- 
mated by the two-body decay formula. The approximation for K*O -+ K+ does not 
agree as well as po + n+ due to the heavier mass of the K. 

The inclusion of rejo_nance decays into the analytic formula for the double- 
decay distribution P,abcd(zl, zz) given by (2.42) and (2.43) is straightforward. One 

'I able 4 
I'robability Pi+, to find a daughter meson of type h among all the decay products of a parent 
meson of type i 

Parent rl rl' W 9 
Daughter 

n+ 0.09 0.27 0.30 0.06 
no 0.40 0.24 0.35 0.06 
n- 0.09 0.27 0.30 0.06 
K+ 0 0 0 0.24 
KO 0 0 0 0.17 
K- 0 0 0 0.24 
EO 0 0 0 0.17 

For i = p and K*, Pf-rh is given by isospin symmetry assuming p +. ~ T T  and K* + K n  100% of 
the time. 
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f (a>  
+ 3 

lo-' 

10-2 

10-3 

1 o-2 

10-3 

1.0-4 
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 4. Comparison of the Monte Carlo results (a = 0 . 7 7 ,  aps = av = 0.5) for some of the quark- 
decay functions, D$z), with the analytic approximation (solid curve). The number of p o ,  wo, 
$, and K*O from a uquark are shown together with the number of s+ that have decayed from 
p o  and wo and the number K+ from $J and K*O. (a) + zD(u + PO); x zD(u -+ p o  + n+); (b) + 
zD(u-+ wo);xzD(p-+  wo-rn+); (c)  +zD(u-r$J);xzD(u+$J-+K+);(d) + z D ( u +  K*o); 
x zD(u -+ K+O -+ K+). 

merely replaces the F(z) andf(1 - 2 )  functions in (2.43) by the Ftotd(z) and 
ftOt,l(l - z )  functions in (2.55) and (2.56). From this D;lh2(z1, z 2 )  is computed in 
a manner analogous to (2.57). In addition, however, one must add the contribution 
from the case where both the mesons at z1 and z2 came from the decay of the 
same resonance (type h,) given by 

Bh,-+hl, h&(Zl ' zZ)/(zl ' 22)  9 (2.59) 

whereD?(z) is the single-particle distribution of the parent hv and &,+h,,h2 in its 
branching ratio into h l  = a6 and h2 = cd. 
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Table 5 
Description of the parameters used in the model of quark jets and an explanation of how they 
are determined 

Parameter Description Determination 

a 

r 

Parameter used to describe the func- 
tion f(q) = 1 - a  + 3aq2, which is the 
probability that the first-rank primary 
meson leaves a fraction of momentum 
q to the remaining cascade. 

Thc probability of  producing a uc, dd; 
and sspair is given by ~ , - y ,  and (1 - 2y), 
respectively . 

aps. 4 Relative probability of producing a 
pseudoscalar meson or a vector meson 
(aps + a” = 1). 

U Determines the (kl) of the produced 
primary mesons. 

eps* ev Pseudoscalar and vector nonet mixing 
angles where q ( w )  = S cos 0 + N sin 0,  
q‘(@) = -S sin e + N cos 0 ,  with S = sS, 
N = ~ ( u U  t dd). 

Probability to find a daughter meson 
of type h among all the decay prod- 
ucts of a parent vector meson of type 
i .  

0i-h 

Require that  resulting charged 
distribution Do*(z) fit the data 
shown in fg. 3. 

Use the fact that a t  large p i  in pp 
collisions K+/n+ = 1. Requiring 
Dt<+(z)/DB+(z) = as z --* 1 then 
implies y = 0.4. 

Experiments indicate that po/no 
1 1 at  large p l  in pp collisions so 
we choose aps = a, = 0.5. 

Require ( k l ) n  near 330.  Means 

Use Ops = 45” and ev = 90” as 
simple numbers close to experi- 
ment. 

(kl)primary = 439 = G o .  

Use branching ratios in particle 
tables. 

Our model of quark jets is thus completeIy determined by the functionf(v), 
which we have parametrized by a parabola with one parameter,a, and the three addi- 
tional parameters; the degree that SU(3) is broken in the formation of new qqpairs 
(7 in (2.24)), the spin-parity nature of the primary mesons (aps, a, in (2.45)) and 
the mean transverse momentum of the primary mesons (u in (2.48a)). From this, all 
the properties of quark jets follow. The parameters of the model together with a 
review of how they were determined is given in table 5. We now proceed to examine 
the results of the model in detail. 

3. Properties of the “end” of the quark jet 

3.1. Single-particle distribution D: (z) 

Figs. 5 , 6 ,  and 7 show the single-particle quark-decay functions, @(z), resulting 
from our new jet model with u = 0.77 and aps = cr, = 0.5 together with the analytic 
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1 oQ 

lo-' 

lo+ 

lo-' 

10-2 

10-3 
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 5 .  The quarkdecay functions (a) zD(u -f h+ + h-, z ) ;  (b) zD(u-+ hi, z ) ,  + zD(U --* h'), 
x zD(u - h-); (c) zD(u -t n', z), + zD(u --* n+), x zD(u -+ n-);  and (d) zD(u -+ K', z), 
+ zD(u -+ K'), x zD(u + K-), resulting from the quark-jet model with u = 0.77 and aPs = aV 
= 0.5 (points). Also shown is the analytic approximation (dotted curve) and the results ob- 
tained in FF1 (solid curves). 

approximation (dotted curve). For comparison, the results arrived at in FFl are also 
displayed (solid curves). The differences between the analytic calculations and the 
Monte Carlo results are because in the analytic approximation, we have considered 
all decays as massless two-body decays. For instance, as seen in fig. 4 the w -+ 3.rr 
decay is not treated correctly in the analytic approximation. Nevertheless, the two 
methods agree quite closely. 

The decay functions in figs. 5 , 6 ,  and 7 agree well for the most part with the 
results from FF1. There are, however, the following notable differences. 

(i) The new decay functions have 

D,K+(z)/D;'(z) --f 0.2 , (3.1) 
Z+O 
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loo  

10-2 

1 o - ~  

29 

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 6 .  Same as f ~ .  5 but for a dquark. 

wlicreas the FF1 results yield a value of 0.8. Both have 

D ~ ' ( z ) / D ~ '  ( z )  + 0.5, (3 -2) 
2' 1 

tly construction, since y = 0.4. m e  difference at small z is due to the many K' reso- 
fiafices that decay into kaons and pions. The new results are probably more reason- 
ahlc than the FFI values. 

(11) The new approach yields 

DdK+(Z) > o:-(z) , (3.3) 
whereas in FFI we assumed equality for simplicity. However, as discussed in FF1, 
(3.3) is expected. 

Table 6 gives the total fraction of momentum carried by the direct (primary) 
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101 

1 oo 

d 
10-2 

1 o-2 

10-3 
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 7 .  Same as fig. 5 but for an squark. 

mesons and by the final hadrons (direct t decay) for a u-, d-, and s-quark. These 
results can be compared to the FF1 values shown in table 2. 

they are not very different for large z (z 2 0.6). Since the large-p, single-particle 
predictions made in FF l  and most of the two-particle correlation results obtained 
in FFF (ref. [5]) are only sensitive to the large-z region of the quark decay func- 
tions, most of the predictions made in FFl  and FFF remain unchanged. Changes 
and improvements of the results of FF1 and FFF will be discussed in sect. 6. 

In spite of the differences at small z between our new results and the F F l  results, 

3.2. Approach to the rapidity plateau 

Figs. 8,9,  and 10 show the number of hadrons, charged hadrons, positive hadrons 
and negative hadrons per 0.1 unit of Y,  for a u-, d- and s-quark, respectively. We 
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0.29 
0.26 
0.19 

~ ;+ 0.08 
KO 0.06 
K- 0.04 

Y 0.04 

I n+ 
no - 

K O  O .04 

S.ibIc 6 
I r . l L  t lL ,n  of total momentum carried by the direct-primary (before decay) mesons and the 
, I ,  jc.L r-pl~~s-indirect (from a decay) mesons resulting from a u-, d- and squark in our jet model 
., . ; i l  = 0.77 and aps  = av = 0.5 

Particle U d 5 

_c_ 

I ) l : L , L  i 

0.12 
0.09 
0.06 
0.06 
0.03 
0.03 
0.03 
0.05 
0.05 
0.09 
0.01 

0.06 
0.09 
0.12 
0.03 
0.06 
0.03 
0.03 
0.05 
0.05 
0.09 
0.01 

0.19 
0.26 
0.29 
0.06 
0.08 
0.04 
0.04 
0.04 

0.06 
0.06 
0.06 
0.03 
0.03 
0.09 
0.09 
0.05 
0.05 
0.06 
0.04 

0.19 
0.20 
0.19 
0.06 
0.06 
0.13 
0.13 
0.04 

total n 0.74 0.74 0.58 
total K 0.22 0.22 0.38 

1 2 3 4 5 6 

0 1 2 3 4 5 6 
yz 

I.%. 8. The number of particles, charged particles, positive particles and negative particles Per 
YZ = 0.1 resulting from a uquark jet with a = 0.77 and aps = aY '= 0.5, where Y z  = -In Z. 

( a )  + all particles; x charged particles; (b) +positive particles, x negative particles. 
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1 2 3 4 5 6 

0 1 2 3 4 5 6 
yz 

Fig. 9. Same as fig. 8 but for a dquark  jet. 

1 2 3 4  5 6 
._ n i ~ I  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

O.,,k 0.00 c ,  I . . . , I . . . . I . . . . I . . . .  

0 1 2 3 4  5 6 
y* 

Fig. 10. Same as fig. 8 but for an squark jet. 
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0 1 2 3 4 5 6 
Y 

1 ~p I I .  Comparison of the number of charged particles per AY,  = 0.1 versus Y ,  with the num- 
IKI o f  charged particles per A Y  = 0.1 versus Yend - Y for a uquarkjet, where Y ,  = -In z and 
)' I\ i l i c  true rapidity (2.51)  and Yend is given by (3.6b) with mi0 = 380 MeV. a = 0.77 ,  aps  

, I ,  0.5, o y  = Yend  - Y, X y  = Y,.  

~I.I\c' defined the "z rapidity", Y, ,  by 

Y ,  = -In z = -In(@ + p , ) / 2 P q )  . (3.4) 

I h i \  I S  a convenient variable for us since it does not depend on the generated value 
01 the perpendicular mass, ml, in equation (2.51b). The usual rapidity, Y ,  is given 
I ) )  (1.5 l a )  and hence 

Y = - Y, t ln(2Pq/ml) , (3 .5)  
\ ( I  11i . i t  particles at the same Y, may be found spread a bit in Y because of differ- 
C I I ~ C ' \  o f  mass and transverse momenta. It is usual to measure Y from some rend at 
r l i c  high-momentum end of the jet. For this one might expect to take ln(2Pq/mq), 
uficre rnq is the mass of the original quark, but this has no clear meaning. Alter- 
rulively, data could be plotted using 

Ymax = wx+bl) (3.6a) 

f o r  Y e n d  since this is the maximum rapidity a pion of the jet could have. These dif- 
ferences are, of course, only shifts of scale of Y for convenience in plotting. In fig. 
1 1 ,  we compare the Yend - Y and Y ,  distributions, where we have chosen 

Yend = Y,,  - ln(mlo/m,) , (3.6b) 

wth mlo  an arbitrary number chosen in an attempt to make the two distributions 
agree. The distributions are nearly identical with ml, = 380 MeV, the r e n d  - Y dis- 
tribution being slightly steeper. (This value is close to the mean ml.) 

The model yields about 2.2 charged particles per unit rapidity in the plateau with 
equal numbers of positive and negative particles. (Some multiplicities are given in 
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table 3.) Towards the “end” of the quark jet (Y ,  5 3), on the other hand, the num- 
ber of positive and negative hadrons is not the same and one can hope to discrim- 
inate among the quark flavors by observations in this region of Y,  . 

3.3. Distribution of charge 

Any single-quark jet has an integral number of hadrons and an integral charge. 
The average total charge of a u-, d- and squark jet of infinite momentum is nearly 
the charge of the quark (for y = 0.4 we have 0.6,-0.4, and -0.4 as shown in (2.39)). 
Table 7 shows the number of times various total jet charges Q occur for 10 000 jets 
with energy P, = 10 GeV. Jets initiated by uquarks are more likely to have 
positive total charge than those initiated by dquarks. For example, at P, = 10 GeV, 
Q = t2 jets occur =4 times more often for u-jets than for d-jets and Q = t4 jets occur 

Table 7 
Number of times various total quark-jet charge Q occurred for 10 000 quark jets with energy 
Pq = 10 GeV 

Charge Q U d S 
__ 

-4 
-3 
-2 
-1 

0 
1 
2 
3 
4 
(0, a) 

I 
42 

307 
1291 
3118 
3460 
1398 
299 
64 

0.54 

39 
23 1 

1094 
2972 
3675 
1576 
340 
62 

6 
-0.36 

__ 
4 2  

227  
1115 
3009 
366 1 
1483 
390 
60 

7 
-0.36 

Same as above but observe only those hadrons with z 2 0.1 

Charge Q U d S 

-4 
-3 
-2 
-1 

0 
1 
2 
3 
4 

(0) 

2 
20 

25 8 
1442 
3560 
3639 

967 
106 

6 
0.39 

0 
88 

710 
2969 
4123 
1742 
342 

23 
3 

-0.21 

6 
74 

781 
3172 
409 1 
1606 
255 

15 
0 

-0.28 

a) For infinite momentum quark jets, the mean charge, (Q), is 0.60, -0.40, -0.40 for a u-, d- and 
s-jet, respectively. 
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about 10 times more frequently. The average total charge, (Q), for a Pq = 10 GeV u- 
and d-jet is 0.54 and -0.36, respectively. Because of the finite total momentum 
available (Pq = 10 GeV) summing only z > 0 does not yet yield the full total mean 
charge 0.6 and -0.4 expected. There is some overlap of charge into negative z. An 
interesting point is that the mean total jet charge (Q) is nor precisely the same for 
each futed multiplicity. As table 8a shows, the odd charged multiplicity jets (Nch = 1, 
3, etc.) have a mean charge ( Q )  that is somewhat larger than the jets of even charge 
multiplicity (Nch = 2 , 4 ,  etc.). For an extreme example, for uquark jets having only 
one charged particle (Nch = l), that particle is positive about 13 times more often 
than it is negative ((Q) = 0.86). 

Unfortunately, total jet charge is often a difficult quantity to measure experimen- 

-0.02b 

w 
n -0.025 

0.00 

-0.02 1 
-0.04 

0 1 2 3 4 5 6  
1:' Ig. 12. Distribution of (a) charge Q, total Q = 0.6, (b) third component of isosph 13, total I 3  
= 0.5, and (c) strangeness S ,  total S = 0.2, along the Y, (Y, = -In z) axis for a uquark jet. Also 
shown are the analytic results (solid curves). a = 0.77, aps = av = 0.5. 
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Table 8a 
Number of times various total qt alk-jet charge Q occurred for 10 000 jets with momentum 
P, = 10 GeV, where Nch is the charged multiplicity 

U d S 
~- 

Q > O  5232 1984 1941 
al l  Q < O  1650 434 1 4398 
jets Q = O  3118 3675 3661 

( Q )  a) 0.54 -0.36 -0.36 

Q > O  420 102 81 
Nch = 1 Q < O  31 281 34 1 
jets (Q) 0.86 -0.48 -0.62 

Q > O  175 25 37 
Nch = 2 Q < O  13 118 147 
jets Q = O  59 1 799 839 

( Q )  0.42 -0.20 -0.22 

Q > O  1029 423 427 
Q < O  266 883 937 
( Q )  0.64 -0.38 -0.41 

Q > O  1462 346 397 
Nch = even Q < O  314 1133 1157 
jets (Nch # 0) Q = O  3052 3535 3512 

Nch = 3 
jets 

(Q) 0.50 -0.33 -0.3 1 

Q > O  3770 1638 1543 
Q < O  1336 3208 3241 

Nch = odd 

( Q )  0.58 -0.40 -0.43 
jets 

a) For infinite-momentum jets CQ) = 0.60, -0.40 and -0.40 for a u-, d- and squark, respec- 
tively. 

tally. One can never be sure that all the jet particles have been included and that one 
has not included extra background particles. A more tractable quantity experimentally 
is the total charge of all those hadrons in a jet whose z value exceeds some threshold. 
As shown in tables 7 and 8b, charges defined for Pq = 10 GeV and z 2 0.1 have the 
same characteristics as the complete jet but the magnitudes are smaller. The average 
total charges (z 2 0.1) are 0.39 and -0.21 for a u- and d-jet, respectively. 

1 3 ,  and strangeness S (of course, S = 2(Q - I 3 ) )  along the Y,  axis for a u-, d- and s- 
quark, respectively. As discussed in subsect. 2.5 and given by (2.37), these quantities 
are related to the distribution of the Fist-rank primary meson,f(l -z), and the inte- 
grated values are given by (2.39), (2.40), and (2.41) (with S =  Y since we have no 
baryons among the resulting hadrons). Also shown in these figures is the analytic 
approximation. As can be seen, the charge, isospin, and strangeness are distributed 

Figs. 12, 13, and 14 show the distribution of charge Q, third component of isospin 
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Table 8b 
Same as table 8a except only hadrons with z > 0.1 are observed 

U d S 

all 
jets 

Nch = 1 
jets 

Nch = 2 
jets 

Nch = 3 
jets 

Nch = odd 
jets 

4718 
1722 
3560 

0.39 

2624 
936 

0.47 

87 1 
229 

2383 
0.37 

1101 
512 

0.47 

9 73 
260 

2607 
0.37 

3745 
1462 

0.47 

21 10 
3767 
4123 

-0.21 

1205 
2120 

-0.28 

309 
65 1 

2557 
-0.19 

55 1 
918 
-0.33 

345 
710 

2792 
-0.19 

1765 
3057 

-0.29 

1876 
4033 
409 1 

-0.28 

1090 
2272 

-0.35 

240 
713 

2402 
-0.28 

522 
949 
-0.37 

255 
787 

2643 
-0.29 

1621 
3246 

-0.36 

over a considerable range in Y, .  The quark quantum numbers are spread over almost 
4 units of Y,, which will make it difficult to determine them experimentally. 

One of the most important experimental questions about high-pl hadron colli- 
sions is whether the jets really come from quark cascades as we have supposed in FF1 
and FFF, or possibly from other types of objects such as gluons or diquarks. We have 
calculated the flavor of the quarks to be expected under various circumstances (see 
fig. 25 of FFF). When the characteristics of the quark jets of definite flavor in lepton 
experiments are known, the details can be checked against the jets observed in hadron 
experiments. But what should we measure to most readily identify the flavor of a 
quark jet: the total charge, the charge of the fastest hadron, of the fastest two? We 
have used our model for a “standard” jet as a kind of laboratory of typical jets to 
test various ideas. The following sections on the flavor properties of the jets, there- 
fore, contain very detailed information from these studies on various quantities 
which have been selected because they are easy to measure experimentally or because 
they are expected to differ as much as possible for u- and d-flavor jets. 
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0.021 

0.00 

-0.02 

0.02 1 

Fig .  13.  Same as fig. 12 but for a dquark jet. (a) Total Q = -0.4, (b) total13 = -0.5, (c) total 
s = 0.2. 

3.4. Fastest-particle analysis 

It is interesting to ask about the fraction of momentum, z, carried by the fastest 
hadron (largest z) when a quark fragments into hadrons in an unbiased fashion. Figs. 
15 and 16 show the z distributions of various hadrons fragmenting from a u-quark 
of energy 10 GeV resulting from the model where, by first and second, we 
mean fastest (largest z )  and second-fastest (next-largest 2). These figures and table 9 
show that for a uquark jet, the fastest hadron carries on the average only 39% of 
the quark momentum and the fastest charged hadron only 30%. Fig. 17 and table 10 
show that for a uquark, the fastest charged hadron carries 54% of the total charged 
momentum with the second fastest charged particle taking about 21%. (All charged 
particles carry on the average about 57% of the u-quark momentum.) The fastest two 
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a-0.77 a,.-ap0.5 
0 . 0 4 t . . . . i . . . . i . . . . i . . . . i . . . .  1 . .  . 

0.02 1 

-0.02 

-0.04 
0 1 2 3 4 5 6  

I !c 14 Same as fig. 12 but  for an s q u a r k j e t .  (a) Total Q = -0.4, (b) total13 = 0.0, ( c )  total 
. S -  0 8 .  

I JblC 9 
Mean values of z for hadrons fragmenting from a u-, d- and s q u a r k  of energy Pq = 10 GeV 

U d S 

fastest hadron 0.39 0.39 0.38 
2nd-fastest hadron 0.18 0.18 0.19 
3rd-fastest hadron 0.1 1 0.1 1 0.1 1 
fa  $1 L: st charged 0.30 0.28 0.21 
2nd-fastest charged 0.12 0.12 0.12 

fastest positive 0.25 0.17 0.15 

3rd-fastest positive 0.02 0.01 0.01 
fastest negative 0.15 0.22 0.22 

3rd-fastest negative 0.01 0.02 0.02 

3rd-fastest charged 0.06 0.06 0.06 
all charged 0.57 0.54 0.52 

2nd-fastest positive 0.07 0.04 0.04 

2nd-fastest negative 0.04 0.06 0.06 
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0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0 
Fig. 15. The predicted z distributions of various hadrons in a uquark jet with Pq = 10 GeV, 
where first and second refer to the fastest (largest-z) and second fastest (next largest-z), not 
to rank in hierarchy. a = 0.77, aps = av = 0.5. (a) + First particle ( (2)  = 0.39), X second particle 
((z) = 0.18); (b) +first charged ( (2 )  = 0.30), Xsecond charged ( (2 )  = 0.121, (c) f i s t  two particles 
((z) = 0.57), (d) fust two charged ( (2)  = 0.42). 

Table 10 
Mean values of ZR for hadrons fragmenting from a u-, d- and s-quark of energy Ps = 10 GeV, 
where ZR = z/zch and Zch is the sum of the z of all charged hadrons 

U d S 

Fraction ofjets with at 
least one charged particle 0.993 0.986 0.985 

fastest charged 0.54 0.53 0.53 
2nd-fastest charged 0.21 0.22 0.22 

Fraction of jets with at 
least one positive particle 0.988 0.943 0.932 

fastest positive 0.45 0.31 0.30 
2nd-fastest positive 0.12 0.08 0.08 

Fraction of jets with at 
least one negative particle 0.929 0.973 0.972 

fastest negative 0.27 0.4 1 0.42 
2nd-fastest negative 0.07 0.11 0.1 1 
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I.ig. 16. Same as fig. 15,  continued. (a) + First positive ( ( z )  = 0.25), X second positive ( ( z )  = 0.07); 
(b) + First negative ( ( z )  = 0.151, X second negative ( ( z )  = 0.041, (c) all charged ( ( z )  = 0.571, 
(d) + First two positive ( ( z )  = 0.32), Xfirst two negative ((2) = 0.19). 

charged hadrons in a u-quark jet carry about 75% of the total charged momentum. 
[toughly, the fastest charged hadron takes, on the average, half the charged momen- 
tu rn :  the second fastest charged hadron takes half the remaining charged momentum, 
~ [ c .  This feature of the model is in agreement with experimental observations of jets 
Produced in vp interactions [IS] as seen in fig. 19. 

We might have expected, from the point of view from which we began, that the 
primary meson containing the original quark would be likely to have a large fraction 
of that quark’s momentum. Yet the functionA1 - z) in eq. (2.21) shows this pri- 
mary meson to be more likely to have less than half of the initial quark’s momentum. 
In fact, from (2.36) the average is less than a third of the jet momentum (for a = 0.77). 
Because of this, there is a considerable difference between rank in hierarchy and order 
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Fig. 17. The predicted ZR distributions of various hadrons in a uquark jet with Pq = 10 GeV, 
where ZR is the relative fraction of charged momentum defined by ZR = z/z ,h where Zch is the 
sum of the z's of all charged particles in the jet. As in figs. 15 and 16, first and second refer to  
order in z nor to rank in hierarchy. a = 0.77, aPs = ay = 0.5. (a) + first charged ( ( 2 ~ )  = 0.54), 
X second charged ((zR) = 0.21), (b) first positive ((zR) = 0.45), X first negative ((zR) = 0.27), 
(c) first two charged ((zR) = 0.75), (d) + first two positive ((zR) = 0.57), X fust two negative 
((zR) = 0.34). 

Table 11 
Number of times the fastest (largest-z) hadron occurred with rank r ( r  = 1 ,  ..., 5) for 10 000 
uquark jets 

Rank r Unbiased z > 0.5 z > 0.75 

4267 1345 340 
2566 564 97 
1506 197 23 
795 56 3 
436 17 0 

Mean rank 2.3 1.7 1.4 

All the decay products of a particular primary meson are assigned the rank of that meson. 
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I 

Fig. 18. Same as fig. 17  but for a dquark jet. (a) + first charged ((zR) = 0.53), X second charged 
( ( z R )  = 0.22), (b) +first positive ( ( z R )  = 0.31), Xfirst negative ((zR) = 0.411, (c) first two 
charged ((zR) = 0.75), (d) + first two positive ( ( z R )  = 0.39), X first two negative ((zR) = 0.52). 

in rapidity (or z). It is relatively easy for the first-rank primary meson to leave the 
remaining cascade with a large momentum and thus to end up with a momentum less 
than some subsequent (higher-rank) meson. Table 11 shows that the fastest hadron 
from an unbiased uquark jet is the first-rank meson only 43% of the time. However, 
as one selects on events where the z of the fastest hadron is large, it becomes more 
likely that it is of rank-one in hierarchy. For z > 0.75 ,  this probability increases to 
73% becoming 100% at z = 1. 

An interesting property of a jet, that has not yet been tested experimentally, is 
how the fraction of momentum carried by the fastest hadron in a jet depends 
on the charge of that hadron. In our model, for a uquark,  the first-rank primary 
meson can be positive or neutral, not negative. A negative hadron can arise only 
further down the hierarchy chain (rank greater than one) or from the decay of a 
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81....1 , . . . I  . . ’  . . ’  
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ZR 
Fig. 19. Comparison of the predicted distributions of ZR for the fastest, second-fastest and 
fastest two charged hadrons in a uquark jet (points) with data from vp --t p -  +je t  + X (ref. 
[ 151, solid curve), where ZR is the relative fraction of charged momentum as in fig. 17. (Note 
that in this figure, the theory are the points with errors and the data are represented by the 
solid curves. ) a = 0.77, cyps = cyv = 0.5, Pq = 10 GeV. x first charged, 0 second charged, +first 
two charged, - neutrino data. 

rank-one neutral resonance. Because of this, the fastest positive hadron in a u-quark 
jet carries, on the average, a larger portion of the total momentum (45%) than does 
the fastest negative hadron (27%). Results of this type are tabulated in table 10 and 
illustrated in figs. 17 and 18. The fastest two positives in a uquark jet carry 57% of 
the charged momentum, whereas only 34% is carried by the fastest two negatives, 
For a dquark jet, the situation is reversed (see fig. 18); the fastest two negatives 
carry 52% of the charged momentum compared to 39% for the fastest two positives. 
These predictions should be easy to check by comparing the jets produced in 
vp + p- t jet which are predominantly u-quark jets to those produced in Fp + p+ 
t jet which are predominantly d-quark jets. 

A similar interesting and easily measured observable is the flavor of the fastest 
(largest-z) hadron. As table 12 shows, for a u-quark jet the fastest hadron is posi- 
tive 42% of the time and negative only 20% of the time; the rest of the time, it is 
neutral. For a d-quark, on the other hand, the fastest hadron is positive 24% of the 
time and negative 34% of the time. The average charge of the fastest hadron in a u- 
and dquark jet is about 0.23 and -0.10, respectively. The fastest hadron does 
“remember” to some extent the flavor of the quark that initiated the jet. Table 12 
also shows the relatively large portion of strange particles predicted in our jets. For 
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Table 12 
Number of times the various hadrons occured as the fastest (largests) particle for 10 000 
quark jets with energy Pq = 10 GeV. Also shown are the average charge Q, third compo- 
nent 13, and strangeness S of the fastest hadron 

Fastest hadron U d S 

11+ 

llo 

K+ 
KO 
K- 
EO 
r 
h + 

h- 
ho 
h+/h- 

ave Q 
ave 1 3  
ave S 

- 
ll 

3194 
2411 
1511 
1055 
600 
466 
45 8 
305 

4249 
1977 
3774 

2.15 

0.227 
0.191 
0.073 

1645 
2462 
2888 

707 
1062 
413 

45 8 
305 

2352 
336 1 
4287 

0.70 

-0.101 
-0.143 

0.084 

1447 
1536 
1356 
528 
517 

2165 
2174 

217 

1975 
3521 
4504 

0.56 

-0.155 
0.010 

-0.329 

a uquark jet, the fastest hadron is a strange particle (K’, KO, K-, KO) about 26% 
of the time. 

3.5. Correlations between the fastest two charged hadrons 

Although there is a considerable difference between rank in hierarchy and order 
in rapidity (or z), the hadrons in our jets do not completely “forget” the underlying 
hierarchy structure shown in fig. 1. The charge correlations between the fastest two 
charged hadrons, where h, is the fastest charged hadron and h2 is the second fastest 
charged hadron and where neutrals are ignored, shown in tables 13a and 13b are a 
result of the underlying hierarchy structure and resonance decay effects. The combi- 
nation h, = +, h2 = - occurs more often than h ,  = +, h2 = + and h,  = -, h2 = + 
occurs more often than h,  = -, h2 = -. In fact, for a u-quark jet, the unlike sign 
configuration occurs almost twice as frequently as the like sign configuration. It is 
very unlikely for two negatives (positives) to occur as the fastest two charged par- 
ticles in a uquark (d-quark) jet (-- = 7% for a uquark and ++ = 10% for a d-quark). 

3.6. Determining the flavor of the quark 

As we have seen, there are differences in the distribution of charge, total charge, 
fastest hadron, and correlations between the two fastest charged hadrons depending 
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Table 13a 
Number of times various charge combinations occurred for the fastest (largest-z) two-charged 
hadron h1, h2 (hl = fastest charged hadron, h2 = second fastest charged hadron) that frag- 
mented from 10 000 quark jets with Pq = 10 GeV 

h l  h2 U d S 

+ + 2594 965 845 
+ - 3608 3024 2743 
+ none 420 102 81 
+ arbitrary 6622 4091 3669 
- + 2550 3515 3648 
- - 731 1967 2193 
- none 31 287 34 1 
- arbitrary 3312 5769 6182 

none none 66 140 149 
Same as above but Zhl > 0.5 

hl h2 U d S 

+ + 395 61 48 
+ - 588 368 233 
+ none 151 11 4 
+ arbitrary 1134 440 285 
- -+ 264 520 4 74 
- - 36 226 264 
- none 4 99 84 
- arbitrary 304 845 822 
none none 8562 8715 8893 

__-___ 

on whether the jet is initiated by a u-, d- or squark. The differences in the hadron 
charge distributions can only be seen if one has a large statistical sample of jets of 
one particular quark type. I t  is interesting to see if a criterion exists that allows one 
to determine the flavor of the quark jet on an event-byevent basis. Clearly, any cri- 
terion for finite-momentum jets will not work perfectly, so in order to compare the 
usefulness of various criteria, we define a reliability by 

reliability (NT - NF)/(NT + N F )  , (3 *7) 
where NT refers to the number of times the criterion correctly identifies the flavor 
of the jet from a sample containing an equal mixture of u- and dquark  jets and NF 
is the number of times it is incorrect. If the criterion succeeds as often as it fails, 
the reliability is zero. The criterion may only apply to a sub-sample of the jets so 
we define an efficiency by 

efficiency (NT tNF)/(total number of jets) . (3 -8) 
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I . i P I T  I .3h , .:115 .,, i.~ble 13a except that only hadrons with z > 0.1 are observed 

h2 U d 
‘1 I S 

. _ - ~  - 

+ 1421 560 432 
- 2006 1833 16 10 
none 2624 1205 1090 
arbitrary 605 1 3598 3132 

+ 1618 1891 1978 
- 442 1060 1170 
none 936 2120 2212 
arbitrary 2996 5071 5420 

’:, < l l C  none 95 3 1331 1448 

\ $ 1 1 1 ~ ’  .I\ above but Z h l  > 0.5 

!, I h2 U d S 

+ 158 33 12 
253 225 140 

none 723 182 133 
arbitrary 1134 440 285 

+ 174 217 220 
14 98 111 

none 116 530 49 1 
arbitrary 3 04 845 822 

11 I2111’ none 8562 8715 8893 

- 

- 

I o r  csample, if we say that all jets where the fastest charged hadron is positive are 
u-quark jets and all jets where it is negative are d-quark jets, then for Pq = 10 GeV 
llic reliability is about 0.25 and the efficiency is 99% (only 1% of the jets contain 
1 1 0  charged particles). One can increase the reliability by lowering efficiency. Using 
thc same criterion but applying it only to those jets that have one charged particle 
u.1111 z 2 0.5 yields a reliability of0.45 but an efficiency of only 14% *. In table 15, 
K C  list other criteria together with the reliability and efficiency for an equal mixture 
of  11- and d-quark jets withP, = 10 GeV. 

One disadvantage of the criterion which only can be applied to  a small fraction of jets (low 
cfflciency) is, of course, lower counting rate. But a much more serious difficulty is the bias 
lnlroduced by not knowing experimentally the difference between a u j e t  and a d-jet in the 
fraction of times the criterion can be applied. We could, of course, calculate these efficiency 
differences for our “standard” jet but we would not know whether they were right experi- 
mentally. The uncertainties are least if the efficiency is high. 
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Table 14 
Number of times various weighted quark charge Qw@) occured for 10 000 quark jets with 
energy Pq = 10 GeV, where Qw@) = zpqi with qi  and zi the  charge and z value of the ith 
hadron in a quark je t  with N charged hadrons. Results are given for p = 0.2 and 0.5 and urms is 
the root-mean-square deviation from the mean. 

Weighted charge U d S 

Q w > o  7197 3499 3322 
Q w < o  2737 6361 6529 

‘Jrms 0.68 0.66 0.67 
(Qw) 0.39 -0.25 -0.27 p = 0.2 

‘Jrrns 

7172 3601 3320 
2762 6259 6531 

0.26 -0.15 -0.18 
0.43 0.42 0.4 1 

Same as above but observe only hadrons with z 2 0.1 

6172 3482 3045 
2875 5187 5507 

0.34 -0.19 -0.26 
0.76 0.77 0.75 

Q w > o  6168 3486 3039 
2879 5 183 5513 

( Qw) 0.24 -0.14 -0.18 
p = 0.5 Q w < o  

Orms 0.52 0.53 0.5 1 
_-__ 

From table 15, one sees that none of the first fourteen criteria listed gives a very 
high reliability while still maintaining a reasonable efficiency. This is because the rank 
in hierarchy and the order in momentum are considerably mixed up as discussed 
earlier and witnessed by table 11. The highest reliability with a large efficiency is 
obtained by assigning jets with total charge Q > 0 as uquark jets and jets with Q < 0 
as d-quark jets. The reliability is 0.45 with a 66% efficiency. Unfortunately, the total 
charge on a quark jet is not easily measured since it depends on including all the for- 
ward moving low-momentum hadrons which are difficult to measure without also 
including background from other sources. A quantity easy to measure experimentally 
is the total charge of all those hadrons in the jet which have z 2 0.1. The reliability, 
however, now decreases to 0.38. If one wants to apply this criterion to all the events 
with Q = 0 jets assigned as d type, then the reliability decreases even further to 0.26 
(number 8 in table 15). 

The mean total charge of a large momentum u-jet is 0.60 and a d-jet is -0.40 
differing by 1.0. This would seem to permit a clear separation of these jets. However, 
even with a jet of extreme momentum, the total charge Q of all hadrons ofP, > 0 
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Table 15 
Various criterion for determining the flavor of the quark initiating the jet for an equal mixture 
of Pq = 10 GeV u- and dquark jets together with the reliability =(true-false)/(true+false), 
where “true” refers to the number of times the criterion succeeded in selecting the correct 
flavor and “false” to  the number of times the criterion failed. The efficiency is the number of 
jets (true+false) to which the criterion can be applied divided by the total number of jets gen- 
erated. 

Criterion 

1. fastest hadron positive =. u-jet 
fastest hadron negative =, d-jet 

2. fastest charged hadron positive u-jet 
fastest charged hadron negative =, d-jet 

3. charged hadron with z b 0.5 is positive - u-jet 
charged hadron with z > 0.5 is negative - d-jet 

4. fastest two charged hadrons are both positive =5 u-jet 
fastest two charged hadrons are both negative - d-jet 

5 .  total charge of jet Q > 0 - u-jet 
total charge of jet Q < 0 - d-jet 

6. same as 5 but only observe hadrons with z b 0.1 
7. total charge of jet Q > 0 - u-jet 

total charge of jet Q < 0 - d-jet 
8. same as 7 but only observe those hadrons withz b 0.1 
9.  for Nch = 1 jets Q > 0 =, u-jet 

forNch = 1 jets Q < 0 =) d-jet 
10. for Nch = 3 jets Q > 0 - u-jet 

for Nch = 3 jets Q < 0 - d-jet 
11. for Nch = odd jets Q > 0 - u-jet 

for Nch = odd jets Q < 0 - d-jet 
12. same as 9 but only observe hadrons with z > 0.1 
13. same as 10 but only observe hadrons with z > 0.1 
14. same as 11 but only observe hadrons with z > 0.1 
15. “weighted” charge Qw@ = 0.2) b 0 =. u-jet 

“weighted” charge Qw@ = 0.2) < 0 - d-jet 
(see eq. (3.9)) 

16. “weighted” charge Qw@ = 0.5) > 0 - u-jet 
“weighted” charge Qw@ = 0.5) < 0 =5 d-jet 

17. same as 15 but only observe hadrons with z > 0.1 
18. same as 16 but only observe hadrons with z > 0.1 
19. “weighted” charge Qw@ = 0.2) b 0.4 - u-jet 

“weighted” charge Qw@ = 0.2) < -0.3 - d-jet 
20. “weighted” charge Qw@ = 0.5) b 0.4 - u-jet 

“weighted” charge Qw@ = 0.5) < -0.3 =) d-jet 
21. same as 19 but only observe hadrons with z > 0.1 
22. same as 20 but only observe hadrons with z b 0.1 

Reliability Efficiency 

0.27 

0.25 

0.45 

0.46 

0.45 

0.38 
0.33 

0.26 
0.68 

0.47 

0.40 

0.38 
0.31 
0.36 
0.37 

0.36 

0.28 
0.28 
0.5 1 

0.58 

0.38 
0.40 

6 0% 

99% 

14% 

3 1% 

66% 

62% 
100% 

100% 
4% 

13% 

5 0% 

34% 
15% 
5 0% 
99% 

99% 

89% 
89% 
63% 

46% 

6 2% 
5 5 %  
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must be an integer and thus a random variable. There is an unavoidable noise depend- 
ing on whether a particular charged particle in the plateau happens to have P, greater 
or less than zero. Even though the plateau is neutral and all the difference of u- and d- 
quark jets lies far away at higher z, one is trying to sum a long series like +1-1t1+1-1 
t1-1-l... not knowing where to stop, but knowing only that t 1  and -1 become 
more and more equally likely to occur as we go further down the series (to lower z). 
The proper thing to do is, of course, the analogue of Abel summation, weigh the 
terms with a gradually decreasing weight as we go down the series. If the weight falls 
gradually enough from unity at the beginning, the excess charge there will be accu- 
rately picked up. However, the random t l  far down where the weight has fallen 
toward zero will produce no fluctuations. That is, if particle i has “z rapidity” Yzi 
and charge qi ,  we form the “weighted” charge 

where p is a small number. This quantity will have a mean (close to  (Q) a s p  -+ 0) 
distinct for u- and d-quark jets. Furthermore, the “noise” or fluctuations expected 
from having to stop the sum below some finite zmin is *zgin which can be made 
small as long as zmin can be made small enough. 

For a given experimental circumstance, however, zmin is fixed and the criteria 
that p be small and that zLin also be small are opposed. For sufficiently small z,in 
there is no problem, but because of the wide fluctuations in rapidity that the par- 
ticles in our model suffer, we have found that in practice the method does not work 
as well as we hoped. For zmin = 0.1, wi thp  = 0.5, for example, the fluctuating un- 
certainty zLin is 0.3 times less than the gross sum Q = E 4i ; but such a large p means 
that Q(P) does not average as large as (Q). Even worse is that for such a large p the 
contributions of high-z particles depend so strongly on the precise z value they 
actually have. 

for a u- and dquark jet of energy Pq = 10 GeV (including all hadrons with 
P, > 0). The p = 0.2 distributions are considerably broader than the p = 0.5 case; 
however, the former has mean values (Qw) that are more widely separated 
((Qw), - (&)d = 0.64 fo rp  = 0.2 and only 0.41 f o r p  = 0.5). In both cases, there 
is a clear separation of the u- and d-jets. By the use of table 14, we find a reliability 
of 0.37 if we assign jets with & 2 0 as u-quark type and those jets with QW < 0 as 
dquark type with p = 0.2. The efficiency of this criterion is excellent (99% since we 
include only those jets with at least one charged hadron). One can obtain a higher 
reliability (but lower efficiency) by excluding from consideration those jets with Qw 
values occurring in the overlap region of the u- and dquark jet distributions. For 
example, table 15 shows that if we assign jets with Qw > 0.4 as u-type and those 
with Qw < -0.3 as d-type, then for p = 0.5 we get a 58% reliability with 46% effi- 
ciency. This “weighted” charge technique gives us better reliability factors than the 

Figs. 20 and 21 show the distribution of Qw@) with p = 0.2 and 0.5, respectively, 
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I ip.  20. Prrdicted distribution of weighted quark charge Qw@) for a u- (+) and d q u a r k  (X) j e t  
U I I I I  P, = 10 GeV, where Qw@) = ZKl z y q i  with zi  and qi  being the z value and charge of the 
1 1 1 1  Ii;idron and where the sum is over all hadrons in the jet with p r  > 0. The value of the  power 
11 I\ t.iken to be 0.2. u = 0.77, crps = a, = 0.5. dquark ,  C&) = -0 .25;uquark,  CQw) = 0.39. 

oIticr criterion in table 15. Nevertheless, even a reliability of 58% (about 4 out of 5 
correct) is not too impressive. 

In practice, for hadron-induced jets, it might be possible to go to lower z,in, 
prhaps even to p r  somewhat negative, allowing a smaller p value. The many “back- 
w i u n d ”  particles from the longitudinal jets may perhaps not contribute to much 
fioise. But  data from lepton jets should ultimately determine the best parameterp, 

1 1 1  view of the small reliability factors in table 15, we must conclude that our 
c l for t s  to find a method of determining the quark flavor of a jet on an event-by- 
event basis have failed for jets of energy Pq 5 10 GeV. The criterion can be 
made more reliable only with much higher momentum jets. (The method of 
“weighted” charge becomes an exact separation at very high momenta.) Neverthe- 
less, table 15 is useful in summarizing the differences between u- and dquark jets. 

and criterion to use. 
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Fig. 21. Same as fig. 20 but where the powerp is taken t o  be 0.5.  dquark, C&) = -0.15, 
uquark, (&I) = 0.26. 

4. Properties of the quark rapidity plateau 

4.1. Rapidity correlations 

4.1.1. Correlations between adjacent-rank mesons 

lation among secondary particles that are the decay products of the same primary 
meson. In addition, however, the primary mesons are not formed at random in 
rapidity. Primary mesons adjacent in rank are correlated in both flavor and rapidity 
since they each contain a quark (or antiquark) that came from the same qq pair. 
The two primary mesons of adjacent rank tend to occur near each other in rapidity, 
Y,, as shown in fig. 22. The mean lAY,l between mesons adjacent in rank is about 
1.8 units, where all the decay products of a particular primary meson are assigned 
the rank of that meson (see fig. 1). Fig. 22 also shows the distribution of iAY,l 
between mesons with the same rank ((IAY,l) = 0.9). All flavor correlations in the 
quark jets occur between primary mesons of adjacent rank. The flavor of a meson 

There are two sources of correlations in our model. Naturally, there is the corre- 
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Fig. 22. The distribution of distances A Y z  between the hadrons coming from one primary and 
those corning from another primary next in rank X, ( I  Y,  I )  = 1.8. The distribution AY, 
among the secondary hadrons which come from the decay of a single primary 0, (I Y ,  I) = 0.9. 
a = 0.77, aps = a, = 0.5. 

of rank r t 2 is independent of the flavor of the meson of rank r .  Rank is not a 
physical observable; however, the correlations shown in fig. 22 do  produce effects 
in certain physical observables which we now proceed to examine. 

4.1.2. Rapidity-gap distn'butions [ 161 

particles, and positive particles (equals negative particles) before and after decay in 
the rapidity plateau * . Because two primary mesons of adjacent rank have net 
charge either t 1 or zero, small AY,  gaps occur more frequently between charge 

Figs. 23 and 24 show the distribution of Y,  gaps between all particles, charged 

In order to avoid biasing against large Yz gaps, the distributions in figs. 23,24 and 25 are cal- 
culated by first ordering all particles in Yz with Yzi+l > Yzi and then considering all Yzi in 
the range 3.0 6 Yzi 6 6.0 but when forming thegap length AYzi= lYzi - Yzi+l l ,  Yzi+l is 
allowed the range 3.0 < Y,i+l 6 9.0. Then only gaps AYzi < 3.0 are displayed. This method 
requires a rapidity interval twice as large as the maximum gap one decides to plot. 
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Fig. 23. Predicted number of times various Y ,  gaps occur between all primary mesons, between 
charged primaries and between positive primaries (the same as for negative primaries) in the 
rapidity plateau of a uquarkjet before the primary mesons are allowed to decay.a = 0.77, 
aPs = av = 0.5. all, 0 charged, + positives, x negatives. 

mesons (due to +-) than between negative mesons. For large Y, gaps, the situation 
is reversed and there are more large Y, gaps between the negatives than between the 
charged mesons. (Note that a gap between negatives can contain positives or neutrals 
whereas a gap between charged particles can only contain neutrals.) 

The distribution of Y, gaps carrying a specific charge is shown in fig. 25, where 
k 

is the charge carried by the k th  Y, gap and qi is the charge of the ithmeson (ordered 
in Y,). The quantity qo is the charge of the quark that initiated the jet (u-quark in 
fig. 25) .  If the mesons were ordered in hierarchy, only the net charge, Zf=l 4i, equal 
to one or zero could be obtained for a uquark jet; Qk must be the charge of an anti- 
quark. For ordering in Y,, other values of ZF=l qi can occur, but only by mixing up 
hierarchy order and Y, order. Because of this, for a u-jet, gaps of charge -23 and !J 
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Fig. 24. The same as fig. 23 but after the vector mesons (and the r) and Q’) have decayed 
according to the particle tables. 

dominate at large gaps over the other gap charges *. (The distribution of Q = -3 and 
Q = i gaps are equal, as are gaps of charge Q = 

4.1.3. Charged particle correlations 

liquid, one defines a correlation function (see, for exzmple, ref. [17]) 

and Q = -i, etc.) 

In analogy with the statistical-mechanical description of density fluctuations in a 

The “correlation moment”,f2, is related to it by 

fi =J dY1 dY2 C(Yl, Y 2 )  = WyV- 1)) - W2 . (4.3) 
In an exchange picture like that discussed by Pirila, Thomas and Quigg in ref. [ 161, large 
gaps with charge -3 and 5 correspond to  the (allowed) exchange of a <-and dquark, respec- 
tively, whereas the other gap charges correspond to lower-lying (exotic-type) exchanges. Hence 
the former, with a higher intercept (i), is expected to dominate at  large gaps as i t  does. 
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Y, GAP 
Fig. 25. Predicted number of times various charged Y, gaps occur for a uquark jet (after decay) 
where the charge of the kth gap is given by Q k  = C i = l  qi - 4 0 ,  where qi is the charge of the ith 
hadron (ordered in Y,) and qo is the charge of the initiating quark (in this case q o  = 5). (I = 0.77, 

k 
2 

a p s =  ay = 0.5.0 Q = -2,+ Q = 1 x Q =2, Q = -$, * Q = -4. 3 3’ 3 

In addition, one can define a “normalized” correlation function by 

In the absence of any dynamical correlations, the probability to observe in a single 
jet one hadron at rapidity Y1 and a second hadron at rapidity Y 2 ,  together with 
anything else, would be equal to the product of the probabilities to find hadrons at 
rapidity Y ,  and Y2 in different jets and (4.2) would vanish. Figs. 26 and 27 show 
the value of C(Yzl, Yz2) and R(Y,,, Yz2), respectively, for a negative hadron at 
Yz, = 4.0 and a positive (upper) and negative (lower) hadron at Yz2 versus AY, 
= Yzl - Yz2. The region -2 G AY, < 2 is the plateau region and 2 Q AYz G 4 is 
the “end of the quark” region as can be seen from fig. 8. Also shown are the analy- 
tic results for the case where no particles decay (in this case, the analytic method is 
exact). Resonance decay clearly plays an important role in correlations; however, in 
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u 

u 

Fig. 26. Predicted behavior of the two-particle correlation function C(Yzl, Y z 2 )  defined by (4.2) 
where Yz l  = 4.0 and we have plotted versus A Y ,  = Y f l  - Y z 2 .  Results are given for h l  negative 
and h2 positive (upper) and h1 negative and h2 negative (lower) and are generated using Monte 
Carlo (points). The dashed curves are the results for C(Yzl, Y z 2 )  before the primary mesons are 
allowed to decay. The dotted curve (to guide the eye) is 0.36 e ~ p ( - ! j ( A Y ~ ) ~ ) .  a = 0.77, ups = a, 
= 0.5, Y,, = (4.0,4.4). 

our model there is some clustering of the primary mesons before decay. The final 
correlation function (after decay) C(Yl ,  Y 2 )  For oppositely charged hadrons shows 
the characteristic short-range correlation behavior [ 16-19] roughly like 
e~p(-(AY,)~/46’) with a correlation length, 26, of about 1.4. The correlation 
between two negatives is, on the other hand, quite small. The “correlation moment” 
f2 in (4.3) after decay is given in table 3 and for tt nnd -- it is negative. 

4.1.4. Mass distribution 
The distribution of two-particle mass for uquark jets of Pq = 10 GeV resulting 

from the model is shown in figs. 28 and 29. One can see the p o  and K*+ in the 7r+7rIT- 

and K+nO combinations (our resonances have zero mass width). If our estimate of 
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Fig. 27. Same as fig. 26 but for the “normalized” correlation function defined in (4.4). The 
dotted curve (to guide the eye) is 0.34 exp(-gAYz)2). 

the resonance contributions is roughly correct, then one would expect to see such 
resonances in the jets produced in lepton- or hadron-initiated processes. 

4.2. Comparison with pp collisions 

Many of the features predicted by our model for the behavior of the quark rapi- 
dity plateau are similar to those observed for the low-pl rapidity plateau generated 
in proton-proton collisions. The rapidity gap distributions, +- charged correlations, 
mass distributions, and charged multiplicities are quite similar to that seen in pp 
interactions. Similarities between the plateau behavior in lepton and low-pL hadron 
experiments have often been noted [20]. It  will be interesting to see experimentally 
if they are really very much alike and to study theoretically why this may (or may 
not) be so. 

In making this comparison, one must be careful of the contributions from diffrac- 
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Fig. 28. Plot of the two-particle mass of (a) n+n-, (b) K+no, and (c) n+n+ from a u-quark jet with 
Pq = 10 GeV from our jet model with a = 0.77, aPs = aY = 0.5. (Note that our resonances have zero 
width.) 

tive events in pp collisions which have no counterpart in the quark jets. The compar- 
ison should properly be made only with the inelastic non-diffractive part of pp col- 
lisions (if that can actually be defingd and separated out). One place where this dif- 
fractive component plays an important role is in the behavior offF. In pp collisions, 
fc becomes positive as the negative particle multiplicity (N-) increases (i.e., as the 
energy of the collision is increased). On the other hand, our model for quark jets 
predicts a negative fc for Pq 5 500 GeV (see table 3) and recent data on vp inter- 
actions, where the model should apply, indicate that it is indeed negative [21]. For 
those pp annihilation events which contain no final baryons so diffraction plays no 
role fg is also negative. 
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Fig. 29. Same as fig. 28 but for (a) h+h-, (b) h+h+, and ( c )  h-h-, where h = n + K. 

4.3. Problems with the model 

There is, of course, the obvious problem that the model contains no protons or 
other baryons and is thus incomplete. They might be included in the same frame- 
work if we were to consider that the field which makes the quark-antiquark pairs 
could, from time to time, make pairs of diquarks (two quarks whose color is in a 3 
representation) and anti-diquarks. To implement this idea, however, requires invent- 
ing a few new functions and parameters which we have too little information at 
present to guess. Since baryons are probably not produced with great frequency in 
quark jets, neglecting them probably causes no serious modifications of the meson 
distributions. Of course, we cannot predict baryon distributions at all. 

In addition, we have not included quantum effects. We have dealt solely with 
probabilities and not amplitudes. It would be interesting to imagine the recursive 
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principles to apply to amplitudes instead of probabilities. Instead of (2.3), one 
would write 

as the amplitude to find primary mesons with a set of flavors and momenta, where 
~ ( 1 7 )  is a (possibly complex) amplitude whose absolute square isf(7). By adding 
amplitudes in the appropriate manner, allowance would then be made for the Bose 
nature of indistinguishable primary mesons. 

The most serious problem with the model is that it suffers from a defect in prin- 
ciple. As Casher, Kogut and Susskind have pointed out [ lo], the correct way to 
look at the development of these jets is from the center out, not from each end in 
toward the center. That is, as the original quarks’ rapidities separate in, say, an e’e- 
experiment, the first new quark pairs are made at relatively small momenta, then 
the quarks leaving the new pair generate a new pair between them, etc. We have not 
been able to develop a simple ansatz for both flavor and momentum distributions in 
accord with this idea. Instead, our ansatz thinks of the first pair forming near one 
end of the momentum chain, and then further ones follow generally down the mo- 
mentum scale. This mechanism has been well refuted by Bjorken and Kogut and 
Susskind. Our first surprise from the “chain-decay” point of view is that the func- 
tion, zf(1 - z ) ,  in (2.21) giving the momentum distribution of the first primary 
meson must be so peaked toward low momentum, z ,  to agree with experiment. It 
is not clear how the leading quark manages to find itself so far down in momentum. 

We can also see that something is wrong in principle with the chain-decay ansatz 
by considering the nature of the plateau region for an energetic qq pair produced in 
an e’e- colliding beam experiment. We have argued that this plateau region could 
be analyzed by going far down in rapidity in the jet from the quark q ;  even so far 
down that the hadrons are, in fact, moving slightly backwards (i.e., in the direction 
of 3. If this is true, then all properties of this region would have to be the same if 
analyzed (in reverse order) as a property of the q-jet. Measvre rapidities in the c.m.s. 
so the quark q has rapidity Yo and the antiquark -Yo. We first ask in the q-system, 
what is the probability that three primary mesons adjacent in hierarchy are located 
at rapidities Y1, Y2, and Y3 (per dY1, dY2, dY,). This function K(Yo - Y 1 ,  
Yo - Y2,  Yo - Y, )  deep in the plateau region depends only on rapidity differences, 
and not on Yo (i.e., it equals a function L(Y2 - Y1, Y3 - Y2) ) .  Now seen in the 
other direction as a S jet, the three primary mesons are in rank 3 , 2 ,  1 and the rapi- 
dity distance from the end of ?j are Yo + Y3, Yo t Y2, and Yo + Y1. Calculating in 
this way, we have K(Yo t Y3, Yo t Y,, Yo t Y1) and, therefore, L(Y3 - Y,, 
Y2 - Y l ) .  Choosing Yz = 0, Y 1  = In [, and Y3 = -In 17 so that the three particles 
are in the E t p z  ratio [, 1, 1/17 (or seen in the reverse order E - p r  ratio 17, 1, 1/[), 
we should have 

L(-ln [, -In 17) = L(-ln 17, -In [) , (4 4 
if the theory were truly symmetrical, 
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Fig. 30. Illustration of the asymmetry in our model of functions R ( [ ,  n) describing correlations 
among three primaries adjacent in rank in the plateau (discussed in subsect. 4.3). The curves are 
R ( l ,  E )  (solid) andR(C, 1) (dashed) versus In [. They were calculated using f ( q )  = 3q2. Theoret- 
ically, R(F, q) should be a symmetric function. 

Direct calculation of the function L(-ln C;, -In g), which we write as .$qR(.$, q) 
so R is the number of particles per dC; dg, shows it is nor symmetrical. The differ- 
ence between R(C;, q) and R(g, C;) is not great, yet that there is any difference at all 
shows our physical view is not entirely sound. The difference is illustrated in fig. 30, 
where we choose q = 1 and compare I?([, 1) and R(1, l )  calculated for the simple 
case f(q) = 3g2. The differences for other values of g are similar or not as large. 
Since rank in hierarchy is not physically observable, neither is R(.$, g). However, 
any amount of asymmetry of I?(.$, g)  will result in an observable (in principle) 
asymmetry in the rapidity plateau for three hadrons whose flavors are such that 
they could occur adjacent in rank (e.g., K’, K-, n’). These asymmetries are quite 
small. None the less, they represent a defect of the model. 
We have found the “chain-decay” ansatz so simple to formulate and to analyze 

arithmetically and analytically that we wanted to study it as a possible approxima- 
tion by which we might get a rough idea of the general behavior of quark jets. It is 
important to have such a scheme to make some suggestions for the planning and 
design of “jet” experiments. It is delightful that so few assumptions will yield a jet 
model which is so complete in being able to describe a jet. (Only the transverse 
momentum correlation questions are unanswered.) 
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5. Transverse-momentum results 

5.1. Transverse-momentum distributions versus z ,  Y,  and M2 

The mean distribution of transverse momentum depends in no way on our 
assumed correlations between primary mesons. None of the details of our recursive 
scheme are of much concern; just the distribution in z,  F(z), of primary mesons and 
the assumption that all the primary mesons are distributed in transverse momentuni 
in the same way (which we take to be a Gaussian as eq. (2.46) independent of z, 
flavor or spin). In our previous work (FFF), we assumed that all the final mesons 
(direct plus indirect) were distributed the same, independent of z. Our newer view, 
that it is the primary mesons which have the universal distribution in transverse mo- 
mentum, produces a number of interesting effects which we will now discuss. 

The transverse momentum of the final mesons has two components: the original 
momentum P, of the primary mesons plus the additional Ql received by the prod- 
ucts of those primary mesons that decay. Assuming that half of the primary mesons 
are vectors that decay and letting the 77 and a' also decay, we can easily calculate the 
mean transverse momentum expected for various particles in the jet. As discussed in 
subsect. 2.7.2, we find that using u = 350 MeV in (2.48) produces a mean transverse 
momentum of charged pions of ( k l ) ,  = 323 MeV. The mean transverse momentum 
of the primaries (2.48) is then 439 MeV, considerably larger than that of the secon- 
daries . 

The reason for this can be seen in the coordinate system boosted so that the z 
component of the primary meson is zero. It does have ap l ,  however. If it is of mass 
M and disintegrates into two mesons each of mass ih! (so that the Q value is zero), 
then these decay products have only $p l .  Thus disintegrations considerably reduce 
the effect ofp,. The mean value of Ql generated by a spherical distribution of maxi- 
mum momentum Q if pl = 0 is $nQ, but the values of Q from the particle tables are 
not so large as 400 MeV on the average. Of course, there are mutual effects when 
both p ,  and Q are non-zero but the qualitative effect is clear; the large (p l )  of the 
primaries is decreased by observing the mean ( k l )  of the final mesons. Even though 
some primaries do not decay and thus contribute directly to (k l ) ,  in averaging over 
all particles the indirect mesons (decay products) have more weight for they occur 
more frequently. In addition, because more of the decay products of the vector 
mesons (and 77 + a') are pions than kaons, the transverse-momentum distribution of 
kaons resembles more closely the distribution of primaries than does the pion distri- 
bution. The latter distribution is more sharply peaked at small kl, as shown in fig. 
3 1. The mean kl for final pions is 

(5.la) 

whereas for final kaons, it is 

* This has been pointed out  by Seiden in ref. [ 131. 
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Fig. 31. Distribution of transverse momentum, dN/d2kl versus k l  for n' and K' resulting from 
a uquark jet in our model with a = 0.77,  aps = a, = 0.5 and u = 350 MeV. The dotted straight 
line is exp(G6kl). 

(kl)K* = 384 MeV . (5.lb) 

Almost all the rho mesons are direct so that 

(kl$ = 439 MeV, (5.lc) 

which is the same as the distribution of primary mesons. The mean kl of al l  the 
final particles is very close to that for pions since 75% of the final particles are 
pions. The exact shapes of the transverse-momentum distributions shown in fig. 3 1 
depend on our arbitrary assumption of a Gaussian distribution for the primaries 
(2.46). The tendency for higher-mass particles like the K or p to have a flatter 
distribution in kl and a larger ( k l )  than the lighter n mesons is observed in the 
plateau region of ordinary pp collisions. In our model, the reason is not directly 
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i ( I ik , r c  Y,,d is as in fig. 11. 



66 R.D. Field. R.P. Feynman 1 A parameterization of the properties of quark jets 

due to the K and p being more massive than the 'IT, but because a smaller fraction 
of them are due to resonance decays than for the 'IT. 

How is the transverse momentum distributed in rapidity Y and in z? We see 
from fig. 32 that ( k l )  for particles of a given rapidity Y ,  in the plateau region, and 
well toward the forward direction where the number of particles begins to fall off, 
have the mean kl of 323 MeV as in (5.la). Only the few particles in the large-Y 
region (near Yend) have ( k l )  smaller than 323 MeV. On the other hand, particles 
with a given z have a mean kl  which depends on z as shown in fig. 33. For z 2 0.1 , 
(kl) is larger than 323 MeV and approaches the mean of the primary mesons, 439 
MeV, as z approaches one. 

This latter behavior is obvious since only primary mesons can obtain a z value 
very near one. However, the reason (kl)  for particles with z in the range 0.2-0.6 
is so large requires further discussion. Consider a primary meson generated at some 
zo (and true rapidity Yo), but look at it in the frame for which it has zero longitu- 
dinal momentum p , .  First, suppose its original perpendicular momentum, p l ,  is 
zero and suppose it decays into two mesons. Then the secondaries acquire with 
equal likelihood both positive and negative z component of momentum Q,; that is, 
both positive and negative rapidity. Thus, back in the lab system (just add a con- 
stant Y), the secondaries are found symmetrically spread in rapidity about the 
original rapidity Yo of the parent. It is otherwise with z,  the secondaries are widely 
spread in z but only over values below zo (uniformly from 0 to  zo for massless 
products, for example). 

Now to see what happens if the parent meson has non-zero pl, imagine this pl 
to arise from a very small rotation of the original large p z  (by an angle p l / p , ) .  It is 
clear that if a product ends up at a momentum p , ,  , its share of the parent pl is 
only (pzl/pz)pl, or fractionally z/zo of the original. That is, daughter particles 
carry a fraction z/zo of the originally large parent perpendicular momentum. Those 
that obtain a z near zo have a larger share than those which obtain a smaller z. It is 
this effect (combined with the fact that higher-z particles are more likely themselves 
to be primaries) which means that the higher-z particles (z 2 0.1) have a mean kl 
considerably larger than the average. (It is true that decay products with the very 
highest z/zo have received so much Q, that the mean transverse decay momentum 
Ql must be smaller. But this depends on Q, (or z/zo) via a curve with a vertical 
tangent, an ellipse in fact, and the effect is not great and is overwhelmed by the 
( z / zo)p l  effect .) 

The mean kl of all final particles is not much affected by the region z 2 0.1 
because there are so many more particles of low z. Hence, the region z 2 0.1 can 
have a considerably higher (k l )  than the (kl)  of all particles. Far in the plateau of 
Y,, one ultimately gets the same low mean of all particles. But, where the curve of 
the number of particles versus Y,  first begins to fall, the (kl) begins to  rise rapidly 
since each decay particle is sent to larger Y,.  For the true rapidity Y ,  however, 
decay sends particles equally up and down in Y so even a linear fall-off of the Y dis- 



829 

R.D. Field, R.P. Feynman 1 A parameterization of the properties of quark jets 61  

< k l >  VERSUS MASS M 

TWO PARTICLES 

f l  <kl>PRIMARY = 621 MeV i - - - - - - - - - - - - - - - . 

-- 1 ' A  <kl>F,NAL = 457 MeV 

Pq = 50 GeV 

300 I I I I 
0.0 1.0 2.0 3.0 4.0 5.0 

MASS M (GeV) 

I IV 74 The mean value of the transverse momentum, ( k l ) ,  of two particles versus the two- 
1 1  I I I K  Ic mass M. The results are for a uquark of energy Pq = 50 GeV. Also shown, by 
I! !\lied lines, is J2 times the (k l )  of primaries (621 MeV) and 4 2  times the t k l )  of the final 
: : i c u , n \  (457 MeV). 

tribution would not distort the mean kl . More radical variations, as those near the 

rllally low ml so the mean kL here is lower (see fig. 32). 

w h s e  mass M is given by 

rend  do, however. The very highest Y values come from particles having abnor- 

Finally, for completeness, we show in fig. 34 the mean total k l  of fwo particles 

(5.2a) 

k2 = ( P x ,  + P X 2 I 2  + by, + P y 2 l 2  9 
(5.2b) 

where E l  and E2 are the energies of the two particles, respectively. As a function of 
h e  mass M, the two-particle (kl) increases from a value of about 350 MeV at small 
mass M to a value equal to ,/2 times ( J C ~ ) ~ " , , , ~  or about 621 MeV for M greater 
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than about 5 .O GeV. This sharp rise of ( k l )  with mass M has also been observed in 
the plateau region of ordinary pp collisions [22]. 

We feel that the description of transverse momentum presented here is more 
satisfactory than the one used by us in FFF, in which all the final mesons in a quark 
jet had the same (k1)q-h = 330 MeV independent of z. We must change this to read 
that all primary mesons have the same (k l )  = 439 MeV independent of z .  Because 
the large-pl hadron experiments which we analyzed in FFF are sensitive predomi- 
nantly to the large-z region of the quark decay functions so that (k1)q-h 439  MeV, 
a number of our predictions in FFF will be changed . For example, the mean values 
of Pout appearing in table 3 of FFF are all increased coming closer to the experimen- 
tal findings. Also predictions made for experiments with small aperture acceptance 
will have to be reduced because of the wider spread in angle of the large-z particles. 
We are now computing corrections to FFF based on our new jet model. The results 
will be discussed elsewhere. 

5.2. Correlations in transverse momentum 

Our assumptions in subsect. 2.7.2 that each produced quark-antiquark pair con- 
serves transverse momentum with no net kl and that the transverse momentum of 
a primary meson is the sum of the kl of two quarks leads to correlations in trans- 
verse momentum of the hadrons in the quark jet. As discussed in that subsection, 
primary mesons of adjacent rank tend to go oppositely with ( k l ,  * k12>= -u2. How- 
ever, as we have already learned from fig. 2 2 ,  adjacent-rank mesons can find them- 
selves considerably spread apart in rapidity Y, so that these correlations are of long 
range. Fig. 35 shows the behavior of the asymmetry 

x(yl 9 y2) = [ND (Y2) - N U  (y2 11 /[NU (y2) -k N D  (Y2)l~ (5.3) 
where Nu (Y2)  and ND (Y2)  are the number of hadrons at Y2 with 1@12 I < $ R  and 
l@,21 > in, respectively, and where Q 1 2  is the angle between k l ,  and k l Z .  This 

After the completion of FFF, in which we assumed (kl)q-.h = 330 MeV independent of z ,  
several people pointed out to us that there were indications that (kl) was, in fact, larger than 
330 MeV for large z both from hadron and lepton experiments. They further noted that we 
would improve our predictions of large-pl correlations in pp collisions if we took a larger 
(kl)q-rh. In particular, we would predict a largerP+ut in better agreement with experiment. 
It is now clear from the analysis of Seiden. [ 131 and from data on vp collisions [21,23] 
that ( k l ) e  is considerably larger than 330 MeV at large z .  We have previously been 
reluctant.to change (stubborn) because we did not want to “fiddle” our h ighpl  model in order 
to agree with the very experiments we were trying to predict. Now that we have added the p h P  
ically natural assumption that some of the pions are secondary to resonances, we feel it is 
natural to  replace the naive simple rule that the pions have a constant (with z )  mean transverse 
momentum by the equally naive and simple rule that it is the primaries that have the constant 
transverse momenta. This, without further complication, leads to a natural explanation of man!’ 
of the experimental observations. We shall adopt it hereafter. We are grateful to  J. Vander Veldt 
and Knud Hansen for discussions concerning this point. 
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Fig. 35.  Predicted behavior of the asymmetry Z(Y1, Y2) = ( h ' [ ~ ( Y z )  - I V U ( Y ~ ) ) / (  'u(Y2) + N D ( Y 2 ) )  
before (upper) and after (lower) decay of the primary mesons. The C ~ O S K ' S  (diamonds) are for 
the unlike (like) charge combinations and where NU and N D  are the number of hadrons at Y ,  
with la121 < in and l@l2 l  > ir, respectively, a n d e l 2  is the angle between the transverse rno- 
rnentum vectors kl and k12. The results are for particle h l  a t  Yzl = 4.0 and are plotted versus 
AY, = Yzl - Y z 2 .  a = 0.77, aps = a, = 0.5, Yzl = (4.0,4.4). 

1 

figure shows C ( Y 1 ,  Y,) for like and unlike charge combinations both before and 
after decay where particle one is at Y,  = 4.0 versus AY, = Yzl - Yr2 .  (With this 
definition, Z is positive for kll - k12 negative.) Before decay, we see no correla- 
tion between same-sign mesons (since they cannot occur adjacent in rank) and a 
strong wide-range correlation between oppositely charged hadrons. Resonance decay 
plays a large role in determining the behavior of C. After decay, C is reduced for 
oppositely charged pairs and becomes non-zero and positive for same-sign hadrons. 
Similar transverse-momentum correlations have been observed in low-pl hadron- 
hadron collisions [24]. 
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6 .  Some applications in large-pl hadron-hadron collisions 

6.1. Large-pL particle ratios: comparison with FFl 

Fig. 36 shows particle ratios for O,, = 90' pp collisions at large p l  predicted 
using the quark-scattering model presented in FF1 but with our new quark-decay 
functions (analytic approximation). The quark-scattering model predicts that, 
except for the small smearing effects discussed in FFF, these ratios are functions 
only o f x l =  2 p l / 4 s  at fvred O,, . The new results are almost identical t o  those in 
FFI except for the K+/K- ratio which is now somewhat larger (a factor of =l.8 
a tx l  = 0.6) due in part to (3.3). The new model, however, also allows us to inves- 
tigate resonance production at large pl. In fig. 37 predictions for po (equal to wo) 
K*O, 
approach one at largexl by our assumption that aps = av.) In addition, we calcu- 

and @ production are presented. (The polno ratio was constructed to 

I I I I I I 1 

i ---- 
0. I 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

XI 

Fig. 36. Particle ratios versus XI = 2pl/,/s for ecm = 90" pp collisions at large p i  predicted from 
the quarkxattering model of FF1 but using our new quarkdecay functions. 
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RESONANCE PRODUCTION Ocm = 90" 

0 01 1 1 1  
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

XI 

I y 3 7 Predicted ratios of resonance to no production for B,, = 90" pp collisions versus 
. I ,  = 2 p l / J s  from tlic quark-scattering model of FF1 but  using our  new quarkdecay functions. 

Table 16 
Comparison of largcpl  particle ratios in pp collisions at ecm = 90" with the quark-scattering 
model of I T 1  [ 4 ]  using our new quarkdecay functions, Dh(z). Also shown are the contribu- 
tions to the total n signal from p production and the contr%utions to  the total K +  signal from 
K * o  and @ production 

Ratio Experimental X I  = 2PLIJS Data Predictions 
- 

I P U P  

n+/n - C-P [28]  0.6 13.0 3.2 
K+/n+ c-P 0.55 =0.5 0.46 
vlnO CCRS [29] 0.15 3 . 5  0.40 
K+/K- c-P 0.5 1 r l 8  10.3 

Potno R412 (301 0.2 1 1  .o 0.7 
@In0 C-F [31] 0.2 G0.06 0.06 

PO -b n+/n+ R410113 [2,32] 0.1 3 . 0 5  0.08 
pf -b no/no R 4 1 2  0.1-0.2 0.16 0.16 
K*O-bK+/K+ R410/13 0.1 -0.2 3.05 0.06 
@ -* K+/K+ R 4  10/13 0.1 -0.2 0.005 0.01 
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RESONANCE CONTRIBUTIONS B,, 190" 

" O n  

Fig. 38. Predicted contribution to the total large-pl meson signals for ecm = 90" pp collisions 
from resonance decays. The symbol V refers to the sum over all nine vector mesons and K*O 4 

K+/K+ means the ratio of K+'s due 10 K*O decay to the totai K+ signal, etc. 

late the fraction of the total large-pl signal that arises from the decay of various 
resonances. For example, fig. 38 shows that at ISR (xl = 0.1) 27% of the total 71' 
and 11% of the total K+ signal comes from resonance decays. As p i  increases, the 
contributions from resonance decays decrease. Table 16 gives a comparison of the 
expected values of various ratios with existing experimental data. 

6.2. Same-side two-particle correlations: comparison with FFF ansatz 

A distinctive feature of the quark-scattering model of FF1 is that high-pl par- 
ticles in hadron-hadron collisions are not isolated but members of a cluster (jet) of 
particles representing the fragmentation of the quark. In FFF, we estimated the 
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number of particles to be found in the same direction as a large-pl trigger (“same- 
side” correlations) by assuming that the two-particle decay functions could be 
approximated in terms of the single-particle decay function by (FFF ansatz) 

D;lh2(z,, z,)= D;l(z1)Dq;(z2/(1 h - 

where h ,  is the trigger hadron so that z1 >> z2 .  The flavor of the quark q2 was 
determined in the following manner. For what we called the “unambiguous” case 
where h ,  = c% contains the quark q,  say q = c, then q2 was taken to have the flavor 
“a”. For example, if q is a u-quark and h ,  = 7~’ or hl  = K’, then q2 = d or qz = s, 
respectively. For this case, we find the FFF ansatz to agree reasonably well with the 
results of our new jet model (a = 0.77 aPs = or, = 0.5). 

On the other hand, we stated in FFF that (6.1) was not appropriate for the 
“ambiguous” case where h ,  does not contain the quark q as a valence quark. We 
fmd that indeed our new jet model disagrees quite substantially with the FFF 
ansatz for the “ambiguous” case. Since the predictions in FFF are dominated by 
the unambiguous case, we feel that they are reliable. 

produced in association with a large-pl K- trigger in pp collisions, which we did not 
attempt in FFF because this is dominated by the “ambiguous” case, and to improve 
the other same side correlation estimates in FFF. Before this is done, however, we 
must also change our handling of the transverse momentum of the particles within 
the quark jet to agree with the results of subsect. 5.1. We expect to discuss this 
elsewhere. 

However, we can now use the new jet model to estimate the number of Kt’s 

7. Summary and conclusions 

In summary, we have found that the recursive model gives a convenient and easy 
way to compute properties of a quark jet in terms of only a few parameters. Although 
the model does not include the possibility of baryon emission and cannot represent a 
true physical theory ofjets; the resulting structure seems very reasonable and gener- 
ally consistent with observations available SO far. We recommend it as a “standard” 
jet to help design experiments and to which experiments may be compared and con- 
trasted. 

Aside from the mean number of particles (versus z), to which the model is fitted 
anyway, the main interesting feature is the distribution of charge, D:+(z) - D:-(z), 
or of any other property by which jets originating from uquarks can be distinguished 
from those from d-quarks. We can describe this as the distribution of the hadron con- 
taining the original quark. In the model, this is widely distributed. It is far from true 
that in an average (unbiased) jet the hadron of largest momentum always contains the 
original quark (see table 11). For jets of limited momentum, individual d-quark jet 
events can often look just like u-quark events and a reliable way to distinguish them 
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event-byevent seems unavailable. They can, of course, be distinguished by their aver- 
age properties. But our model, just like experiment, finds large statistical variations 
from event to event so that good averages require many events. (This can be seen 
most clearly on many of the Monte Carlo plots. Even for 40 000 jets, there are un- 
comfortably wide fluctuations for many quantities of interest.) One of the first 
things to determine experimentally is whether D!+(z) - D!-(z) is really as widely 
distributed (see figs. 5 , 8 ,  and 12) as our model (or the previous parametrization of 
FF1) suggests. Preliminary experimental indications are that it is [ 15,2 1,231. 

The hadrons observed in quark jets can be secondaries from the decay of higher 
resonances (we have included only the 1- vector resonances). Although the model 
makes interesting special predictions for how these primaries may be correlated, we 
find the correlations are spread widely in rapidity, and are further considerably 
obscured by the correlations induced by resonance decay. This makes it hard to 
check the specifies of the recursive idea, but it helps us in our original purpose; to 
generate a standard jet that ought to look much like nature. 

From our experience, we think that different jet models which have the right 
mean distributions of the various hadrons and which include the production of 
resonances in a way roughly consistent with experiment (our precise choice cu, = aps 
= 0.5 may require later modification) will be very difficult to distinguish experi- 
mentally. The recursive scheme is as good as any for our purpose . 

variations which have been observed (versus z or the two-particle mass M) in lepton 
and hadron experiments appear to be merely consequences of the fact that hadrons 
are often secondaries of primaries with much simpler properties. In fact, the prima- 
ries might all have a uniform transverse-momentum distribution. 

For these reasons, we think of our jet model, not as an interesting theory to be 
checked by experiment, but rather as a possibly reliable guide as to what general 
properties might be expected experimentally. In particular, it can assist in the pro- 
gram of comparing hadron high-pl jets to lepton-generated jets. 

On the other hand, quark jets are often investigated not just to be used as a tool 
to investigate hadron collisions, but rather as a subject of interest in itself. How are 
quark jets actually generated? From what we have learned, we think it will tax the 
ingenuity of experimenters to see behind those properties which are overshadowed 
by the effects of resonance decay in order t o  study effects more intrinsically related 
to the process of jet formation. 

In this connection, the most fundamental experimental question is whether lep- 
ton-induced jets really have a quark origin at all. Even here we find difficulties. Prop- 
erties averaged over many jets are unconvincing, for a mean charge, say, of $ can be 
achieved by averaging over events each of which is associated with an integral charge. 
The most promising method would seem to be the momentum weighted charge 
&@) in (3.9). In principle, at least, for a jet of sufficiently large momentum, tiiis 

This is well illustrated by transverse-momentum distributions. Many interesting 

For examples of other jet  models see refs. [ 13,25-27J. 
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is a characteristic of the object generating the jet and one which can be checked for 
each event separately. Unfortunately, in practice, it will be difficult to use for even 
10 GeV jets (see fig. 21), if the charge is spread as widely as in our model. The 
method improves, but only slowly, as the jet energy increases. 

We are grateful to C. Bromberg, G. Fox, and C. Quigg for numerous informative 
discussions. Also, we thank T. Ferbel, K. Hanson and J.  Vander Velde for useful 
correspondence. 

Note added in proof 

It has been suggested to us that perhaps the simple form for f(v) in (2.21) that 
we have used results in a distribution of quark charge, D;+(z) - Dt-(z), that is 
broader than actually implied by the fit to Dh,'(z) + Dh, (z) in fig. 3 .  For example, 
a form like f(q) = A( 1 - ~ 7 ) ~  (1 - a + 3av2) (normalized properly) would produce 
a quark charge that is isolated more toward the end of the quark (high z).  Such a 
form produces a zF(z) that tends to dip at small z, but this possibility cannot be 
ruled out since the data in fig. 3 cannot be used for z I; 0.3. Hence one can view 
our jet model as a bit pessimistic. It results in a widely distributed quark charge and 
an order in rapidity and hierarchy that is quite mixed up. We must ultimately resort 
to experiment to see if D:+(z) - D!-(z) is as widely distributed as our model sug- 
gests. 
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VI. Quantum Gravity 

Feynman worked seriously on the quantum theory of gravity for about a decade, beginning in 
the early 1950s.’ In the introduction to paper [57] he wrote that his interest was “primarily 
in the relation of one part of nature to another,” rather than in explaining phenomena or 
fitting data. In working out (absurdly small) one-loop quantum radiative corrections, he 
hoped that he would not be criticized “for the fact that there is no possible, practical reason 
for making these calculations.”2 

The first, purely pedagogi- 
cal, is embodied in the Feynman Lectures on Gravitation (publication [123]). In those lec- 
tures, Feynman develops the quantum field theory of a neutral massless spin 2 particle (the 
gruviton), emphasizing the special features that arise, in comparison to theories of spin 0 and 
spin 1 particles, as well as the complications that result for a zerc-mass particle in trying 
to create a self-consistent theory. As in the case of spin 1, masslessness results in redun- 
dant degrees of freedom, since Lorentz invariance requires that a massless particle can spin 
only along or opposite to its direction of momentum (positive or negative chirality), while a 
massive spin 2 particle may take up five different orientations relative to any arbitrary quan- 
tization direction. Eliminating the unwanted degrees of freedom is achieved by imposing 
certain “gauge conditions,” which in the gravitational case brings about nonlinearity in the 
form of graviton-graviton interaction. Feynman shows that the classical limit of a properly 
gauged massless spin 2 theory is described by the Einstein gravitational field  equation^.^ 

The second result of Feynman’s labors on gravitation is also pedagogical in part, with 
Feynman himself being one of the main students that he had in mind. For besides the elim- 
ination of unwanted degrees of freedom via the gauge conditions, a proof of self-consistency 
requires the quantum field theory to predict finite physical effects and satisfy certain conser- 
vation laws. For an interaction as weak as gravity, quantum predictions should be obtainable 
by a perturbation method, i.e. by expanding amplitudes for physical processes in a power se- 
ries in the gravitational coupling constant (essentially the square root of Newton’s constant). 
Then one must show that the successive terms in the series are finite, using the method of 
renormalization as r e q ~ i r e d . ~  

The papers included here, namely [57], [85], and [86], address the question of renormal- 
izing quantum gravity. Feynman begins in [57] by considering the quantum field theory 
of a massless spin 2 field in the “tree diagram” approximation, i.e. with neglect of graphs 
containing one or more closed loops. This is the theory that leads in the classical limit to the 
Einstein equations. Next he considers the class of diagrams with only one closed loop and 
develops a method for renormalizing such graphs (or, rather, the set of such graphs corre- 
sponding to a physical process, since individual graphs are not, in general, gauge-invariant.) 

In fact, his work led to two sets of very useful results. 

‘Murray Gell-Mann recalled discussing the subject with Feynman in November 1954, and later suggesting to 
him that “he try the analogous problem in Yang-Mills theory.” See Murray Gell-Mann, “Dick Feynman - 
the guy in the office down the hall,” in Most of the Good Stuff, edited by L.M. Brown and J.S. Rigden (New 
York: American Institute of Physics, 1993), pp. 82-83. 
2Paper [57], p. 697. 
3This development is contained in publication [123]. A more complete description of Feynman’s program, 
including citation of historical precedents, is contained in the preface to [123], written by John Preskill and 
Kip S. Thorne. 
4See, e.g., Renormalization, edited by L.M. Brown (New York: Springer-Verlag, 1993). 
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His procedure involves two innovations. One is to show how loop diagrams can be written as 
the sum (integral) of tree diagrams. The second innovation is the use of a “ghost particle” 
(a fictitious vector particle) that must appear in a diagram added in the renormalization 
process in order to insure that the physical amplitude satisfies the principle of unitarity (i.e. 
conservation of probability). These two new procedures are described in paper [57], pub- 
lished in 1964, and are fully derived in Feynman’s two contributions in the 1972 Festschrift 
to John Wheeler’s sixtieth birthday. 

Feynman’s two innovations are probably even more important methodologically than as 
contributions to quantum gravity itself, insofar as they have been applied in treating the 
gauge theory of vector particles, the so-called Yang-Mills the01-y.~ Feynman described how 
this came about: 

The algebraic complexity of the gravitational field equations is so great that it is not 
easy to do exploratory mathematical investigations and checks. Gell-Mann suggested 
to me that the Yang-Mills theory of vector particles with zero mass also is a non- 
linear theory with a gauge group and might show the same difficulties, and yet be 
easier to handle algebraically. This proved to be the case, and thereafter, all the work 
was done first with the Yang-Mills theory and then the corresponding expressions 
for gravitation were worked out. The connection is exceedingly close. Each difficulty 
and its resolution in one theory has its corresponding difficulty and resolution in the 
other. It becomes obvious that to find a completely satisfactory quantization of the 
zero-mass Yang-Mills field, is to find a completely satisfactory quantization of 
the general theory of relativity.6 

The last sentence is probably an exaggeration, because while a satisfactory renormalizable 
theory of the Yang-Mills field does now exist, the same is not true for quantum gravity. It 
is also somewhat ironic that the Yang-Mills theory, regarded as a model theory for learning 
about how to quantize gravity, has achieved a status as a physical theory on the same level 
as general relativity itself. That is because the current Standard Model of strong, weak, and 
electromagnetic elementary particle interactions consists of leptons and quarks exchanging 
Yang-Mills fields, and full renormalizabilty has been proven. While Feynman did not succeed 
in going beyond the level of one-loop diagrams, his methods, including “ghost-particle” loops 
and path integrals, were the indispensable keys to the eventual success of this endeavor. 

Selected Papers 
[57] The quantum theory of gravitation. Acta Physica Polonica 24 (1963): 697-722. 
[85] Closed loop and tree diagrams, in Magic Without Magic: John Archibald Wheeler, edited 
by John R. Klauder (New York: 1971). 
[86] Problems in quantizing the gravitational field and the massless Yang-Mills field, in Magic 
Without Magic: John Archibald Wheeler, edited by John R. Klauder (New York: 1971). 

5C.N. Yang and R. Mills, “Conservation of isotopic spin and a generalized gauge invariance,” Phys. Rev. 96 

‘Paper [86], p. 378. 
(1954): 191-195. 
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QUANTUM THEORY OF GRAVITATION* 

BY R. P. FEYNXAN 

(Received July 3, 1963) 

My subject is the quantum theory of gravitation. My interest in it is primarily in the 
relatioil of one part of nature to another. There’s a certain irrationality to any work in gravi- 
tation, so it’s hard to explain why you do any of it; for example, as far as quantum effects 
are concerned let us consider the effect of the gravitational attraction between an electron 
and a proton in a hydrogen atom; it changes the energy a little bit. Changing the energy 
of a quantum system means that the phase of the wave function is slowly shifted relative 
to what it would have been were no perturbation present. The effect of gravitation on the 
hydrogen atom is to shift the phase by 43 seconds of phase in every hundred times the 
lifetime of the universe ! An atom made purely by gravitation, let us say two neutrons held 
together by gravitation, has a Bohr orbit of lo8 light years. The energy of this system is 

rydbergs. I wish to cliscuss here the possibility of calculating the Lamb correction to 
this thins, an energy, of the order This irrationality is shown also in the strange 
gadgets of Prof. Weber, in the absurd creations of Prof. Wheeler and other such things, 
because the dimensions are so peculiar. It is therefore clear that the pioblem we are working 
on is not the correct problem; the correct problem is what determines the size of gravita- 
tion? But since I am among equally irrational men I won’t be criticized I hope for the fact 
that there is no possible, practical reason for making these calculations. 

I am limiting myself to not discussing the questions of quantum geometry nor what 
happens when the fields are of very short wave length. I am not trying to discuss any prob- 
lems which we don’t already have in present quantum field theory of other fields, not that 
I believe that gravitation is incapable of solving the problems that we have in the present 
theory, but because I wish to limit my subject. I suppose that no wave lengths are shorter 
than one-millionth of the Compton wave length of a proton, and therefore it is legitimate to 
analyze everything in perturbation approximation; and I will carry out the perturbation 
approximation as far as I can in every direction, so that we can have as many terms as we 
want, which means that w e  can go to ten to the minus two-hundred and something ryd- 
bergs. 

I am investigating this subject despite the real difficulty that there are no experiments. 
Therefore there is so real challenge to compute true, physical situations. And so I made 

~ ~~ ~ ~~ 

* Based on a tape-recording of Professor Feynman’s lecture at the Conference on Relativistic Theories 
of Gravitation, Jablonna, July, 1962. - Ed. 
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believe that there were experiments; 1 imagined that there were a lot of experinlellts 
that the gravitational constant was more like the electrical constant and that they were cominw 

with data on the various gravitating atoms, and so forth; and that it was a challenge to 
calc&e whether the theory agreed with the data. So that in each case I gave myselfa specific 
physical problem; not a question, what happens in a quantized geometry, how do you define 
an energy tensor etc., unless that question was necessary to the solution of the pllysical 
problem, so please appreciate that the plan of the attack is a succession of increasingly 
complex physical problems; if I could do one, then I was finished, and, I went to a llarder 
one imagining the experimenters were getting into more and more complicated situations. 
&o I decided not to investigate what I would call familiar difficulties. The quantum electro- 
d.ynamics &verges; if this theory d.iverges, it’s not something to be investigated unless it 
produces any specific difficulties associated with gravitation. In short, I was looking entirely 
for iinfamiliar (that is, unfamiliar to meson physics) difficulties. For example, it’s imme- 
diately remarked that the theory is non-linear. This is not at all an unfamiliar difficulty; 
tile theory, for example, of the spin 1/2 particles interacting with the electromagnetic fielcl 
has a coupling term FAY which involves three fields and is therefore non-linear; that’s 
not a new thing at all. NOW, I thought that this would be very easy and I’cl jnst go ahead 
and do it, and here’s what I planned.. I started with the Lagrangian of Einstein for the inter- 
acting field of gravity and I had to make some definition for the matter since I’m dealing 
wit11 real bodies and make up my mind. what the matter was made of; and then later I would 
check whether the resuits that I have depend on the specific choice or they are more powerful. 
1 Can only do one example at a time; I took spin zero matter; then, since I’m going to make 
a perturbation theory, just as we do in quantum electrodynamics, where it is allowed (it is 
especially more allowed in gravity where the coupling constant is smaller), gpv ;s written 
as flat space as if there were no gravity plus x times hltY, where x is the square root of the 
gravitational constant. Then, if this is substituted in the Lagrangian, oce gets a big mess, 
which is outlined here. 

0 

g,,t* = B l ‘ V  +%h,”. 

Substituting and expanding, and simplifying the results by a notation (a bar over a tensor 
means 

- 1  
2 XV” = - ( X p ” + X ” p - B / l Y X u u ) ;  

notice that if xpv is symmetric, gPy = xpv) we get 

First, there are terms which are quadratic in h ;  then there are terms which are quadratic 
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in 9, the spin zero meson field variable; then there are terms which are more complicated 
than quadratic; for example, here is a term with two p 7 s  and one h, which I will write hpp, 
(1 have written that one out, in particular); there are terms with three h’s; then there are 
terms which involve two h’s and two p’s; and so on and so on with more and mole compli- 
cated terms. The first two terms are considered as the free Lagrangian of the gravitational 
field and of the matter. 

Now we look first at what we would want to solve problem classically, we take the 
variation of this with respect to h, from the first term we produce a certain combination of 
second derivatives, and on the other side a mess involving higher orders than first. And the 
same with the p, of course. 

V’,ua--m2P = %(% 4. (4) 

We will speak in the following way: (3) is a wave equation, of which Spy  is the source, just 
like (4) is the wave equation of which x is the source. The problem is to solve those equa- 
tions in succession, and to use the usual methods of calculation of the quantum theory. 
Inasmuch as I wanted to get into the minimum of difficulties, I just took a guess that I use 
the same plan as I do in electricity; and the plan in electricity leads to the following sug- 
gestion here: that if you have a source, you divide by the operator on the left side of (3) 
in momentum space to get the propagator field. So I have to solve this equation ( 3 ) .  But 
as you all know it is singular; the entire Lagrangian in the beginning was invariant under 
a complicated transformation of g,  which in the form of h is the following; if you add to h 
a gradient plus more, the entire system is invariant: 

where 6, is arbitrary, and p and v should be made symmetric in all these equations. As 
a consequence of this same invariance in the complet Lagrangian one can show that the 
source S,, must have zero divergence S,, = 0. In fact equations (3)  would not be consistent 
without this condition as can be seen by barring both sides and taking the divergence - the 
left side vanishes identically. Now, because of the invariance of the equations, in the same 
way that the Maxwell equations cannot be solved to get a unique vector potential - so 
these can’t be solved and we can’t get a unique propagator. But because of the invariance 
under the transformation some arbitrary choice of a condition on h,, can be made, analogous 
to the Lorentz condition AP,, =0 in quantum electrodynamics. Making the simplest choice 
which I know, I make choice h,,,, = 0. This is four conditions and I have free the four 
variables Eji that I can adjust to make the condition satisfied by hl,. Then this equation (3) 
is very simple, because two terms in (3 )  fall away and. all we have is that the d‘Alemberian 
of h is equal to S. Therefore the generating field from a source S,, will equal the S,” times 
l /k2 in Fourier series, where k 2  is the square of the frequency, wave vector; the time bart 
might be called the frequency o, the space part k. This is the analogue of the equation in 
electricity that says that the field is l / k 2  times the current. In the method of quantum field 

- 

- 
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theory, you have a souice which generates something, and that may interact later with some- 
thing else; the iteraction, of course, is S,, hpv; so that, I say, one source may create a potential 
which acts on another source. so,  to take the very simplest example of two interacting sys. 
tems, let's say S and S',  the result would be the following: h would be generated by spV, 
and then i t  would interact with S;,, so w e  would get for the interaction of two systems, of 
two particles, the fundamental interaction that we investigate 

- 1  
k 2  x";: - s,:,. 

This represents the law of gravitational interaction expressed by means of an interchange 
of a virtual graviton. To understand the theory better and to see how far we already arrived 
we expand it out in components. Let index 4 represent the time, and 3 the direction of k, 
SO that 1 and 2 are transverse. The conclition k,,S,, = 0 becomes wS4v = kS,, where k is 
the magnituc1.e of k. Using this, many of the terms involving number 3 component of S call 
be replaced by terms in number 4 components. After some rearranging there results 

There is a singular point in the last term when w =r k, and to be precise we put in the + iE 
as is well-known from electrodynamics. You note that in the first two terms instead of one 
over a four-dimensionalo2-k2 we have here just l/k2, the momentum itself. S,, is the 
energy d.ensity, so this first term represents the two energy densities interacting with no w 
dependence which means, in the Fourier transform an interaction instantaneous in time; 
and l /k2 means l / r  in space, so there's an instantaneous l / r  interaction between masses, 
Newton's law. In the next term there's another instantaneous term which says that New- 
ton's mws law should be corrected by some other components analogous to a kind. of magnetic 
intera,,tion (not quite analogous because the magnetic interaction in electricity already 
involves a k2-02 f i e  propagator rather than just k2. But the k2-02+i t  in gravitation 
comes even later and is a much smallei term which involves velocities to the fourth). SO 
if we really wanted to do problems with atoms that were held together gravitationally it 
would be very easy; we would take the first term, and possibly even the second as the inter- 
action. Being instantaneous, it can be put directly into a Schriidinger equation, analogous 
to the e2/r term for electrical interaction. And that take care of gravitation to a very high 
accuracy, without a quantized field theory at all. However, for still higher accuracy we 
have to do the radiative corrections, which come from the last term. 

Radiation of free gravitons corresponds to the situation that there is a pole in the propa- 
gator. There is a pole in the last term when o = k, of course, which means that the wave 
number and the frequency are related as for a mass zero particle. The residue of the pole, 
we see, is the product of two terms; which means that there are two kinds of waves, one 
generated. by S11-S2, and the other generated by S12, and so we have two kin& of trans- 
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verse polarized waves, that is there are two polarization states for the graviton. The linear 
combination Sll- S2, i  2iSI2vary with angle @of rotation in the 1-2 plane as e*2ie SO the 
P oravitaton has spin 2, component 5 2  along direction of polarization. Everything is clear 
clirectly from the expression (7); I just wanted. to illustrate that the propagator (6) of quantum 
mechanics and all that we know about the classical situation are in evident coincidence. 

In order to proceed to make specific caIculations by means of diagrams, beside the 
propagator we need to know just what the junctions are, in other words just what the S’s 
are for a particular problem; and I shall just illustrate how that’s done in one example. 
It is done by looking at the non-quadratic terms in the Lagrangian I’ve written one out 
completely. This one has an h and. two y’s in the Lagrangian (2). The rules of the quantum 
mechanics for writting this thing are to look at the h and two ~1’s: one ‘p each refers to the 
in and out particle, and the one h corresponds to the graviton; so we immediately see in 
that term a two particle interaction through a graviton (see Fig. 1). And we can immediately 

Fig. 1 

read off the answer for the interaction this way: if thep ,  andpz are the momenta of the 
particles and q the momentum of the graviton; and e,? is the polarization tensor of the 
plane wave representing the graviton, that is hub= eaP e z 4 ‘ x ,  the Fourier expansion of this 
term gives the amplitude for the coupling of two particles to a graviton 

(8) 
1 
2 

1 2 -  p p  p v  epv- - rn2eo0. 

So this is a coupling of matter to gravity ; it is first order, and then there are higher terms; 
but  the point I’m trying to make is that there is no mystery about what to write down - 
everything is perfectly clear, from the Lagrangian. We have the propagator, we have the 
couplings, we can write everything. A term like hhh implies a definite formula for the 
interaction of three gravitons; it is very complicated, and I won’t write it down, but you 
can read it right off directly by substituting momenta for the gradients. That such a term 
exists is, of course, natural, because gravity interacts with any kind of energy, including 
its own, so if it interacts with an object-particles it will interact with gravitons; so this is 
the scattering of a graviton in a gravitational field, which must exist. So that everything 
is directly readable and all we have to do is proceed to find out if we get a sensible physics. 
I’ve already indicated that the physics of direct interactions is sensible; and I go ahead 
now to compute a number of other things. 

To take just one example, we compute the Compton effect, or the analogue rather, 
of the Compton effect, in which a graviton comes in and out on a particle. The amplitude 
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for this is a sum of terms corresponding to the diagrams of Fig. 2. The ampliclute for 
the first diagram of Fig. 2 is the coupling (8) times the propagator for the interm,:diate 
meson which reads (pz-m2)-I,  which is the Fourier transform of the equation (4) which 
is the propagation of the spin zero paiticle. Then there is another coupling of the Same 
form as (8). We multiply these together, to get the amplitude for that cliagram 

where we should substitute p = p 2  +q* = p l  fq". Then you must add similar contributions 
from the other diagrams. 

A 8 C D 

Fig. 2 

The third one comes in because there are terms with two h's and two v 7 s  in the Lagrangian. 
One adds the four diagrams together and gets an answer for the Compton effect. It is rather 
simple, and quite interesting; that it is simple is what is interesting, because the labour is 
fantastic in all these things. 

But the thing I would like to emphasize is this; in this problem we used a certain wave 
ezo for the incoming graviton number "a" say; the question is could we use a different one? 
According to the theory, it should really be invariant under coordinate transformations 
and so on, but what it corresponds to here is the analogue of gauge invariance, that you can 
add to the potential a gradient (see (5)). And therefore it should be that if I changed e,,? of 
a particular graviton to eaP +qatB where 6 is arbitrary, and qa is the momentum of the grari- 
ton, there should be no change in the physics. In short, the amplitude should be unchanged; 
and it is. The amplitude for this particular process is what I call gauge-invariant, or coor- 
dinate-transforming invariant. At first sight this is somewhat puzzling, because you would 
have expected that the invariance law of the whole thing is more complicated, including 
the last two terms in (5), which I seem to have omitted. But those terms have been included; 
you see asymptotically all you have to do is worry about the second term, the last two in 
h's times F s  are in fact generated by the last diagram, Fig. 2 0 ;  when I put a gradient in hc.re 
for this one, what this means is if I put for the incoming wave a pure gradient, I should get 
zero. If I put the gradient qEto in for ezo on this term D,'I get a coupling between 
and the other field ez9 because of the three graviton coupling. The result, as far as the 
matter line is concerned is that it is acted on in first order by a resultant field e i u  &, q: + 
+ - q: epy t,, which is just the last two terms in (5). The rule is that the field which acts on the 1 

2 
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matter itself must be invariant the way described by (5); but here in Fig. 2 I’ve already cal- 
culated all the corrections, the generator and all the necessary non-linear modifications if I 
take all the diagrams into account. In short, asymptotically far away if I include all kinds 
of diagrams such as D,  the invariance need be checked only for a pure gradient added to 
an incoming wave. It takes care of the non-linearities by calculating them through the in- 
t eraction. 

I would like, now, to emphasize one more point that is very important for our later 
discussion. If I add a gradient, I said, the result was zero. Let’s call a the one graviton coming 
in and b the other one in every diagram. The result is zero if I use a gradient for a ,  only  
if b is a f r e e  g r a v i t o n  wi th  n o  s o u r c e ;  that is if it is either really an honest graviton 
with (qb)2 = 0, or a pure potential, which is a solution of the free wave equation. That is 
unlike electrodynamics, where the field b could have been a n y  potential at all and adding 
a gradient to a would have made no difference. But in gravity, it must be that b is a pure 
wave; the reason is very simple. There is no waj to avoid this-by changing any propagators; 
this is not a disease - there is a physical reason. The reason can be seen as follows: If this 
b had a source let me modify my diagrams to show the source of 6 ,  suppose some other 
matter particle made the b, so we add onto each b line a matter line at the end, like Fig. 3a. 
(E.g. Fig. 2a becomes Fig. 3b etc.) 

a b 
Fig. 3 

C 

Now, if b isn’t a free wave, but it had a source, the situation is this. If this ”a” field is taken 
as a gradient field which o p e r a t e s  e v e r y w h e r e  on e v e r y t h i n g  i n  t h e  d i a g r a m  
it should give zero. But we forgot something; there’s another type of diagram, if the ”a” 
is supposed to act on everything, one of which looks like Fig. 342, in which the ”a” itself 
acts on the source of b and then b comes over to interact with the original matter. In other 
words, among all the diagrams where there is a source, there’s also these of type 3c. The 
sum of all diagrams is zero; but the sum of those like Fig. 2 without those of type 3c is not 
zero, and therefore if I were to just calculate the diagrams of Fig. 2 and forget about the 
source of b and then put a gradient in for ”a” the result cannot be zero, but must be get- 
ting ready to cancel the terms from the likes of 3c when I do it right. That will turn out 
to be an important point to emphasize. I have done a lot of problems like this, without 
closed loops but I won’t bore you with all the problems and answers; there’s nothing new, 
I mean nothing interesting, in the sense that no apparent difficulties arise. 

However, the next step is to take situations in which we have what we call closed loops, 
or rings, or circuits, in which not all momenta of the problem are defined. Let me just men- 
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tion something. I’ve analyzed this method both by doing a number of problems, and by 
a mathematical high-class elegant technique - I can do high class mathematics too, but 
I don’t believe in it, that’s the difference. I have to check it in a problem. I can prove that 
no matter how complicated the problem is, if you take it in  the order in which there are 
no rings, in which every momentum is determined, the invariance is satisfied, the system 
is independent of what choice I made of gauge and of the propagator I made in the begin- 
ning; and everything is all right, there are no difficulties. I emphasize that this contains all 
the classical case?, and so I ’m really saying there are no difficulties in the classical gravita- 
tion theory. This is not meant as a grand discovery, because after all, you’ve been worrying 
about all these difficulties that I say don’t exist, but only for you to get an idea of the cali- 
bration - what I mean by difficulties ! If we take the next case, let’s say the interaction of 
two particles in a higher order, then you get diagrams of which I’ll only begin to write 
a few of them. One that looks like this in which two gravitons are exchanged, 

a b 
Fig. 4 

C 

or, for instance, a graviton gets split into two gravitons and then come back - these are 
only the beginning of a whole series of frightening-looking pictures, which correspond to 
the problem of calculating the Lamb shift, or the radiative corrections to the hydrogen 
atom. When I tried to do this, I did it in a straightforward way, following all the rules, putting 
in the propagator l /k2,  and so on. I had some difficulties, the thing didn’t look gauge in- 
variant but that had to do with the way I was making the cutoffs, because the stuff is infinite. 
Shortage of.tirne does’nt permit me to explain the way I got around all those things, because 
in spite of getting around all those things the result is nevertheless definitely incorrect. 
It’s gauge-invariant, it’s perfectly O.K. looking, but it is definitely incorrect. The reason 
I knew it was incorrect is the following. In order to get it gauge-invariant, I had to do a lot 
of pushing and pulling, and I got the feeling that the thing might not be unique. I figured 
that maybe somebody else could do it another way or something, and I was rather suspicious, 
so I tried to get more tests for it;  and a student of mine, by the name of Yura, tested to see 
if it was unitary ; and what that means is the following: Let me take instead of this scattering 
problem, a problem of Fig. 4 in which time runs vertically, a problem which gives the same 
diagrams but in which time is running horizontally, which is the annihilation of a pair, to 
produce another pair, and we are calculating second order corrections to that problem. 
Let’s suppose for simplicity that in the final state the pair is in the same state as before. 
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Then, adding all these diagrams gives the amplituc!e that if you Iiave a pair, particle and 
antiparticle, they annihilate and recreate themselves; in other words it’s the amplitude 
that the pair is still in the same state as a function of time. The amplitude to remain in the 
same state for a time T in general is of the form 

-i( . .- i$) T 
e 

-- Y T  
you see that the imaginary part of the phase goes as e ; which means that the probability 
of being in a state must decrease with time. Why does the probability decrease in time? 
Because there’s another possibility, namely, these two objects could come together, annihilate, 
and produce a real pair of gravitons. Therefore, it is necessary that this decay rate of the 
closed loop diagrams in Fig. 4 that I obtain by directly find.ing the imaginary part of the sum 
agrees with another thing I can calculate independently, without looking at the closed loop 
cliagrams. Namely, what is the rate at which a particle and antiparticle annihilate into two 
gravitons? And this is very easy to calculate (same set of diagrams as Fig. 2, only turned on 
its side). I calculated this rate from Fig. 2, checked whether this rate agrees with the rate 
at which the probability of the two particles staying the same decreases (imaginary part of 
Fig. 4), and. it does not check. Somethin’gs the matter. 

This made me investigate the entire subject in great detail to find out what the trouble 
is. 1 discovered in the process two things. First, I discovered a number of theorems, which as 
far as I know are new, which relate closed loop diagrams and diagrams without closed loop 
diagrams (I shall call the latter diagrams ”trees”). The unitarity relation which I have just 
been describing, is one connection between a closed loop diagram and a tree; but I founcl 
a whole lot of other ones, and this gives me more tests on my machinery. So let me just tell 
you a little bit about this theorem, which gives other rules. It is rather interesting. As a matter 
of fact, I proved that if you have a diagram with rings in it there are enough theorems 
altogether, so that you can express any diagram with circuits completely in  terms of diagrams 
with trees and with all momenta for tree diagrams in physically attainable regions and on 
the mass shell. The demonstration is remarkably easy. There are several ways of demonstra- 
ting i t ;  I’ll only chose one. Things propagate from one place to another, as I said, with 
amplitude l /k2 .  When translated into space, that’s a certain propagation function which 
you might call K+(l, 2), a function of two positions, 1, 2, in space-time. It represents, in the 
past, incoming waves and in the future, it represents outgoing waves; so you have 
waves come in and out; and that’s the conventional propagator, with the is and so on, 
as usually represented. However, this is only a solution of the propagators’s equation, 
the wave equation I mean; it is a special solution, as you all know. There are other solutions; 
for instance there is a solution which is purely retarded, which I’ll call K,,, and which esists 
only inside the future light-cone. Now, if you have two Green’s functions for the same 
equation they must differ by some solution of the homogeneous equation, say K,. That 
means K, is a solution of the free wave equation and K+ = K,,, + K,. In a ring like Fig. 4a 
we have a whole product of these K+’s. For example, for four points 1 , 2 , 3 , 4  in a ring 
we have a product like this: K+(l, 2)K+(2, 3)&(3, 4)K+(4, 1) (all K’Y are not the same, 
some of them belong to the gravitons and some are propagators for the particles and so on). 
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But now let us see what happens if we were to  replace one (or more) of these K+ K,, 
say K+(l, 2) is KJl, 2)? Then between 1, 2 we have just free particles, you’ve broken the 
ring; you’ve got an open diagram, because K, is free wave solution, and this means it’s 
an integral over all real momenta of free particles, on the mass shell and perfectly honest. 
Therefore if we replace one of K+ by K, then that particular line is opened; and the process 
is changed to one in which there is a forward scattering of an extra particle; there’s a fake 
particle that belongs to this propagator that has to be integrated over, but it’s a free diagram - 
it is now a tree, and therefore perfectly definite and unique to calculate. But I said that I 
could open every diagram; the reason is this. First I note that if I put Kret for every K in 
a ring, I get zero 

Kret(1, ‘IKret(2, 3)Kret(3,4)Kret(4, 1) = 0 (9) 
for to be non zero t ,  must be greater than t,, t ,  > t,, t ,  :> t ,  and. t ,  > t ,  which is impossible. 
Now make the substitution Kret = K+-K, in (9). You get either all K+ in each factor, 
which is the closed loop we want; or at least one K,, which are represented by tree diagrams. 
Since the sum is zero, closed loops can be represented. as integrals over tree diagrams. I was 
surprised I had never noticed this thing before. 

Well, then I checked whether these diagrams of Fig. 4 when opened into trees agreed 
with the theorem. I mean I hoped that the theorem proved for other meson theories would 
agree in principle for the gravity case, such that on opening a virtual graviton line the 
tree would correspond to forward scattering of free graviton waves. And it does not work 
in the gravity case. But, you say, how could it fail, after you just demonstrated that it ought 
to work? The reason it fails is the following: This argument has to do with the position of 
the poles in the propagators; a typical propagator is a factor l / ( k 2 - - m 2 + i ~ ) ,  the + i s  due 
to the poles, and all I’m doing here is changing the rule about the poles and picking up an  
extra delta function B(k2-m2) as a consequence, which is the free wave coming in and 
out. What I want these free waves to represent in  the gravity case are physical gravitons 
and not something wrong. They do represent waves of q2 = 0 of course, but, as it turns 
out, not with the correct polarization to be free gravitons. I’d like to show it. It has to do 
with the numerator, not the denominator. YOU see the propagator that I wrote before, which 
was S,, times l / (k2 +ie) times Sly, is being replaced. by S,,, B(q2)SL,,. Now when I make 
q2 = 0 I have a free wave instead of arbitiary momentum. This s h o u l d  be a real graviton 
or else there’s going to be physical trouble. It ins’t; although it is of zero momentum, it 
is not transverse. It does not make any difference in understanding the point so forget one 
index in S,, - it’s a lot of extra work to carry the other index so just imagine there’s one 
index: S, S, B(q2) .  This combination S,Si, is S,Si-S,Si -S,S; -S2SL, where 4 is the 
time and 3 is the direction, say, of momentum of the four-vector q. Then 1 and 2 are trans- 
verse, and those are the only two we want. (Please appreciate I iemoved one index - I can 
make it more elaborate, but it is the same idea.) That is we want only -SiSi-S2Si instead 
of the sum over four. Now what about this extra term S,SL-S3Si? Well, it is S4-S3 times 
Si + Si plus S, -t- S, times Si-Si. But S,-S, is proprtional to q,S, (suppressing one index) 
because q4 in this notation is the frequency and equals q3, if we assume the 3-direction is 
the direction of the momentum. So S4-S3 is the response of the system to a gradient 

- - 
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potential, which we proved was zero in our in>ariance diicussion. Therefore, we have illown 
(s4-S3)/($+S;) = 0 and this should be accounted for by purely transverse wave contri- 
butions. But it ins’t, and it isn’t because the proof that the response to a gradient potential 
i s  zero required that the other particle that was interacting was an  honest fres  graviton. 
Alld four plus three in Si +S; is not honest - it’s not transverse, it is not a correct kind 
of graviton. You see, the only way you can get a polarization 4+5 going in the 4-3 direction is 
to have what I call longitudinal response; it’s not a transverse wave. Such a wave could only 
])e generated by an artificial source here of some silly kind; it is not a free wave. When 
there’s an artificial source for one graviton, even the another is a pule gradient, the sum 
of all the diagrams does not give zero. If the beam is not exactly that of a free wave, perfectly 
transverse and everything, the argument that the gradient has to be zero must fail, for the 
reason outlined previously. 

Although this gradient for S4-S3 is what I want and I hoped it was going to be zero 
I forgot that the other end of it - .S+$ is a funny wave which is not a gradient, and 
which is not a free wave - and therefore you do not get zero and should riot get zero, and 
something is fundamentally wrong. 

Incidentally I investigated further and discovered another very interesting point. 
There is another theory, more well-known to meson physicists, called the Yang-Mills theory, 
and I take the one with zero mass; it is a special theory that has never been investigated. 
in great detail. It is very analogous to gravitation; instead of the coordinate transformation 
group being the source of everything, it’s the isotopic spin rotation group that’s the source 
of everything. I t  is a non-linear theory, that’s like the gravitation theory, and so forth. At 
the suggestion of Gell-Mann I looked at the theory of Yang-Mills with zero mass, which has 
a kind of gauge group and everything the same; and found exactly the same difficulty. And 
therefore in meson theory it was not strictly unknowx difficulty, because it should have 
been noticed by meson physicists who had been fooling around the Yang-Mills theory. They 
had not noticed it because they’re practical, and the Yang-Mills theory with zero mass 
obviously does not exist, because a zero mass field would be obvious; it would come out 
of nuclei right away. So they didn’t take the case of zero mass and investigate it carefully. 
But this disease which I discovered here is a disease which exist in other theories. So at 
least there is one good thing: gravity isn’t alone in this difficulty. This observation that 
Yatlg-Mills was also in trouble was of very great advantage to me; it made everything much 
easier in trying to straighten out the troubles of the preceding paragraph, for several reasons 
The main reason is if you have two examples of the same disease, then there are many things 
you don’t worry about. You see, if there is something different in  the two theories it is not 
caused by that. For example, for gravity, in front of the second derivatives of gvv in the 
Lagrangian there are other g’s, the field itself. I kept worrying something was going to happen 
from that. In the Yang-Mills theory this is not so, that’s not the cause of the trouble, and so 
on. That’s one advantage - it limits the number of possibilities. And the second great 
advantage was that the Yang-Mills theory is enormously easier to compute with than the 
gravity theory, and therefore I continued most of my investigations on the Yang-Mills 
theory, with the idea, if I ever cure that one, I’ll turn around and cure the other. Because 
I can demonstrate one thing; line for line it’s a translation like music transcribed to a different 
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score; everything has its analogue precisely, so it is a very good example to work with. 
Incidentally, to give you some idea of the difference in order to calculate this diagram Fig, 4b 
the Yang-Mills case took me about a day; to calculate the diagram in the case of gravitation 
I tried again and again and was never able to do it; and it was finally put on a computing 
machine-I don’t mean the arithmetic, I mean the algebra of all the terms coming in, just the 
algebra; I did the integrals myself later, but the algebra of the thing was done on a machine 
by John Matthews, so I couldn’t have done it by hand. In  fact, I think it’s historically 
interesting that it’s the first problem in algebra that I know of that was done on a machine 
that has not been done by hand. 

Well, what then, now you have the difficulty; how do YOU cure i t? Well I tried the 
following idea: I assumed the tree theorem to be true, and used it in reverse. If every closed 
ring diagram can be expressed as trees, and if trees produce no trouble and can be computed, 
then all you have to do is to say that the closed loop diagram is the sum of the corresponding 
tree diagrams, that it should be. Finally in each tree diagram for which a graviton line has 
been opened, take only real transverse graviton to represent that term. This then serves 
as the definition of how to calculate closed-loop diagrams; the old rules, involving a propagator 
l /kZ+is etc. being superseded. The advantage of this is, first, that it will be gauge invariant, 
second, it will be unitary, because unitarity is a relation between a closed diagram arid an 
open one, and is one of the class of relations I was talking about, so there’s no difficulty. 
And third, it’s completely unique as to what the answer is; there’s no arbitrary fiddling 
around with different gauges and so forth, in the inside ring as there was before. So that’s 
the plan. 

Now, the plan requires, however, one more point. It’s true that we proved here that 
every ring diagram can be broken up into a whole lot of trees; but, a g i v e n  t r e e  i s  n o t  
g a u g e  i n v a r i a n t .  For instance the tree diagram of Fig. 2A is not. Each one of the four 
diagrams of Fig. 2 is not gauge-invariant, nor is any combination of them except the sum of 
all four. SO the thing is the following. Suppose I take a l l  the processes, a l l  of them that 
belong together in a given order; for example, all the diagrams of fourth order, of which 
Fig. 4 illustrates three; I break the whole mess into trees, lots of trees. Then I must gather 

Fig. 5 

the trees into baskets again, so that each basket contains the total of a l l  of the diagranls of 
some specific p r o c e s s  (for example the four diagrams of Fig. 2), you see, not just some 
particular tree diagram but the complet set for some process. The business of gathering the 
tree diagrams together in bunches representing all diagrams for complet processes is impor- 
tant, for only such a complet set is gauge invariant. The question is: Will any odd tree dia- 
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grams be left out or can they all be gathered into proceses? The question is: Can we express 
the closed ring diagrams for some process into a sum over various other processes of tree 
cfiagrams for these processes? 

Well, in the case with one ring only, I am sure it can be done, I proved it can be done 
alld I have done it  and it’s all fine. And therefore the problem with one ring is fundamentally 
solved; because we say, you express it in terms of open parts, you find the processes that 
they correspond to, compute each process and add them together. 

You might be interested in what the rule is for one ring; it’s the sum of several pieces: 
first it is the sum of all the processes which you get in the lower order, in which you scatter 
one extra particle from the system. For instance, in Fig. 4 we have the rings for two particles 
scattering. There is no external graviton but there are two internal ones; now we compute 
in the same order a new problem in which there are two particles scattering, but while 
that’s happening another particle, for example a graviton scatters forward. Some of the 
diagrams for this are illustrated in Fig. 5. State f the same state as g ;  so another graviton 
comes in and is scattered forward. In other words we do the forward scattering of an extra 
graviton. In addition, from breaking matter lines we have terms for the forward scattering 
of an extra positron, plus the forward scattering of an estra electron, and so on; one adds 
the forward scattering of every possible extra particle together. That is the first contribution. 
But when you break up the trees, you also sometimes break two lines, and then you get 
diagrams like Fig. 6 with two extra particles scattering (here a graviton and electron) so it 
turns out you must now subtract all the diagrams with two estra particles of all kinds 
scattering. Then add all diagrams with 3 extra particles scattering and so on. It’s a nice rule, 
its’s quite beautiful; it took me quite a while to  find; I have other proofs for orther cases 
that are easy to understand. 

Now, the next thing that anybody would ask which is a natural, interesting thing to 
ask, is this. Is it possible to go back and to find the rule by which you could have integrated 
the closed rings directly? In other words, change the rule for integrating the closed rings, 
so that when you integrate them in a more natural fashion, kith the new method, it will 

Fig. 6 

give the same answer as this unique, absolute, definite thing of the trees. It’s not necessary 
to do this, because, of course, I’ve defined everything; but it’s of great interest to do  this, 
because maybe 1’11 understand what I did wrong before. So I investigated that in detail. 
It turns out there are two changes that have to be made - it’s a little hard to explain in 
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terms of the gravitation of which I’ll only tell about one. Well, I’ll try to explain the other, 
but it might cause some confusion. Because I have to explain in general what I’rn doing 
when I do a ring. Most what it corresponds to is this: first you subtract from the Lagrangian 
this 

v i  @v;vHz;o d t .  

In that way the equation of motion that results is non-singular any more. Let nie write 
what it really is so that there’s no trouble. You say to me what is this, there’s a g in it and 
an H in i t? Yes. In doing a ring, there’s a field variation over which you’re integrating, 
which I call H ;  and there’s a g - which is the representative of all the outside disturbances 
which can be summarized as being an effective external field g. And so you add to the 
complicated Lagrangian that you get in the ordinary way an extra term, which makes 
i t  no longer singular. That’s the first thing; I found it out by trial and error before, 
when I made it gauge invariant. But then secondly, you must subtract from the answer, 
the result that you get by imagining that in the ring which involves only a gravitoii 
going around, instead you calculate with a different particle g0in.g around, an artificial, 
dopey particle is coupled to it. It’s a vector particle, artificially coupled to the external 
field, so designed as to correct the error in this one. The forms are evidently invariant, 
as far as your g-space is concerned; these are like tensors in the g world; and therefore 
it’s clear that my answers are gauge invariant or coordinate transformable, and all that’s 
necessary. But are also quantum-mechanically satisfactory in the sense that they are unitary. 

Now, the next question is, what happens when there are two or more loops? Since 
I only got this completely straightened out a week before I came here, I haven’t had time 
to inwestigate the caFe of 2 or more loops to my own satisfaction. The preliminary 
investigations that I have made do not indicate that it’s going to be possible so easily 
gather the things into the right barrels. It’s surprising, I can’t understand it; when you 
gather the trees into processes, there seems to be some loose trees, extra trees. I don’t 
understand them at the moment, and I therefore do not claim that this method of 
quantization can be obviously and evidently carried on to the next order. In  short, 
therefore, we are still not sure, of the radiative corrections to the radiative corrections to 
the Lamb shift, the uncertainty lies in energies of the order of magnitude of 
rydbergs. I can therefore relax from the problem, and say: for all practical purposes 
everything is all right. In the meantime, unfortunately, although I could retire from 
the field and leave you experts who are used to working in gravitation to worry about 
this matter, I can’t retire on the claim that the number is so small and that the thing is 
now rea l ly  irrational, if it was not irrational before. Because, unfortunately, I also discov- 
ered in  the process that the trouble is present in the Yang-Mills theory; and secondly 
I have incidentally discovered a tree-ring connection which is of very great interest and 
importance in the meson theories and so on. And so I’m stuck to have to continue this 
investigation, and of course you all appreciate that this is the secret reason for doing any 
work, no matter how absurd and irrational and academic it looks; we all realize that no 
matter how small a thing is, if it has physical interest and is thought about carefully enough, 
you’re bound to think of something that’s good for something else. 
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DISCUSSION 

Mnl le r :  May I, as a non-expert, ask you a very simple and perhaps foolish question. 
lS this theory really Einstein’s theory of gravitation in the sense that if you woulrl have 
here many gravitons the equations would go over into the usual field equations of Einstein? 

F e y  n man:  Absolutely. 
Mnl le r :  You are quite sure about it? 
F e y n m a n :  Yes, in fact when I work out the fields and I don’t say in what order I’m 

lk-orking, I have to do it in  an abstract manner which includes any number of gravitons; 
and then the formulas are definitely related to the general theory’s formulas; and the in- 
variance is the same; things like this that you see labelled as loops are very typical quantum- 
-mechanical things; but even here you see a tendency to write things with the right deriva- 
tives, gauge invariant and everything. No, there’s no question that the thing is the Ein- 
steinian theory. The classical limit of this theory that I’m working on now is a non-linear 
theory exactly the same as the Einsteinian equations. One thing is to prove it by equations; 
the other is to check it by calculations. I have mathematically proven to myself so many 
things that aren’t true. I’m lousy at proving things - I always make a mistake. I don’t 
notice when I’m doing a path integral over an infinite number of variables that the Lagrang- 
ian does not depend upon one of them, the integral is infinite and I’ve got a ratio of two 
infinities and I could get a different answer. And I don’t notice in  the morass of things that 
something, a little limit or sign, goes wrong. So I always have to check with calculations; 
and I’m very poor at calculations - I always get the wrong answer. So it’s a lot of work 
in  these things. But I’ve done two things. I checked it by the mathmatics, that the forms 
of the mathematical equations are the same; and then I checked it by doing a consid- 
erable number of problems in quantum mechanics, such as the rate of radiation 
from a d.ouble star held together by quantum-mechanical force, in several orders and 
so on, and. it gives the same answer in the limit as the corresponding classical prohlem. 
Or the gravitational radiation when two stars - excuse me, two particles - go by each 
other, to any order you want (not for stars, then they have to be particles of specified prop- 
erties; because obviously the rate of radiation of the gravity depends on the give of the 
starstides are produced). If you do a real problem with real physical things in in then I’m 
sure we have the right method that belongs to the gravity theory. There’s no question 
about that. It can’t take care of the cosmological problem, in which you have matter out 
to infinity, or that the space is curved at infinity. It could be done I‘m sure, but I haven’t 
investigated it. I used as a background a flat one way out at infinity. 

Mel le r :  Rut you say you are not sure it is renormalizable. 
F e y n m a n :  I’m not sure, no. 
Mclller: In the limit of large number of gravitons this would not matter? 
F e y n m a n :  Well, no; you see, there is still a classical electrodynamics; and it’s not 

got to do with the renormalizability of quantum electrodynamics. The infinities come in 
different places. It’s not a related problem. 

Rosen:  I’m not sure of this, not being one of the experts; but I have the impression 
that because of the non-linearity of the Einstein equations there exists a difficulty of the 
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following kind. If the linear equations have a solution in the form of an infinite plane mono. 
chromatic wave, there does not seem to correspond to that a more exact solution; because 
you get piling up of energies in space and the solution then diverges at infinity. Coiild that. 
have any bearing on the accuracy of this kind of calculation? 

F e y n m a n :  No, I take that into account by a series of corrections. A single graviton 
is not the same thing as an infinite gravitational wave, because there’s a limited energy 
in it. There’s only one ho. 

Rosen:  But you’re using a momentum expansion which involves infinite waves, 
F e y n m a n :  Yes, there are corrections. You see what happens if one calculates the cor- 

rections. If you have here a graviton coming in this way, then there are corrections for such 
a ring as this and so on. And these produce first, a divergence as usual; but second, a 
term in the logarithm of q2;  which means that if this thing is absolutely a free plane 

wave, there’s no meaning to the correction. So it must be understood in this way, that 
the thing was emitted some time far in the past, and is going to be absorbed some time 
in the future; and has not absolutely been going on forever. Then there’s a very small 
coefficient in front of the logarithm and then for any reasonable q2, like the diameter of 
the universe or something, I can still get a sensible answer; this is the shadow of the 
phenomenon you’re talking about, that the corrections to the propagation of a graviton, 
dependent on the logarithm of the momentum squared carried by the graviton and which 
would be infinite if it were really a zero momentum graviton exactly. And so a free 
graviton just like that does not quite exist. And this is the correction for that. Strictly we 
would have to work with wave packets, but they can be of very large extent compared to 
the wave length of the gravitons. 

Anderson:  I’d like to ask if you get the same difficulty in the electromagnetic‘ case 
that you did in the Yang-Mills and gravitational cases? 

Feynman:  No, sir, you do not. Gauge invariance of diagrams such as Fig. 2 (there 
is no 20) is satisfied whether b is a free wave or not. That is because photons are not the 
source of photons; they are uncharged. 

A n d e r s o n :  The other thing I would like to suggest is that in putting of things into 
baskets, you might be able to get easily by always only starting out with vacuum &a- 
grams and opening those successively. 

Feynmal l ;  1 tried that and it didn’t go successfully. 
Ivanenko:  If I understood you correctly, you had used in  the initial presentation the 

transmutation of two particles into gravitons. Yes? 
F e y n m a n :  It was one of the examples. 
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I v a n  e n k o : Yes. This process was considered, perhaps in a preliminary manner, by 
ourselves and by Prof. Weber and Brill. I ask you two questions. Do you possess the effective 
cross-section? Can you indicate the effects for which high-energy processes play an impor- 
tant role? 

F e y n m a n :  I never went to energies more than one billion-billion BeV. And then the 
cross-sections of any of these processes are infinitesimal. 

I v a n e n k o :  They increase very, very sharply with energy. Yes, because the radiation 
is quadrupole, so it increases sharply in contrast to the electromagnetic transmutation of 
an electron-positron pair. 

F e y n m a n :  It increases very sharply indeed. On the other hand, it starts out so low that 
one has to go pretty far to get anywhere. And the distance that you have to go is involved. 
in this thing - the thing that’s the analogue of e2/hc in electricity, which is 1/137 is non- 
-existent in gravitation; it depends on the problem; this is so because of the dimensions of 
G. So if E is the energy of some process, then if you take GE21hc you get an equivalent to  
this e2/hc. It may be less than that, but at least it can’t be any bigger than this. So in order 
to make this thing to be of the order of 1%, in which case the rate is similar to the rate of 
photon annihilation, at ordinary energies, we need the GE2 to be of the order of hc, and 
as has been pointed out many times, that’s an energy of the order lop5 grams, which is 
l0lE BeV. You can figure out the answer right away; just take the energy that you are interes- 
ted in, square, multiply by G and divide by he; if that becomes something, then you’re 
getting somewhere. You still might not get somewhere, because the cross-section might 
not go up that fast, but at least it can’t get up any worse than that. So I think that in order 
to get an appreciable effect, you’ve got to go to ridiculous energies. So you either have 
a ridiculously small effect or a ridiculous energy. 

W e b e r :  I have a cross-section which may be a partial answer to Ivanenko’s question. 
Could I write i t  on the board? We have carried out a canonical quantization, which is not 
as fancy as the one you have just heard about; but considering the interaction of photons 
and gravitons; and it turns out that even in the linear approximation that one has the 
possibility of the graviton production by scattering of photons in a Coulomb field. And the 
scattering cross-section for this case turns out to be an2 times the constant of gravitation 
times the energy of the scatterer times the thickness of the scatterer in the direction of 
propagation of the photon through it divided by c4. This assumes that all of the dimensions 
of the scatterer are large in comparison with the wave length of the photon. We obtained 
this result by quantization, and noticed that it didn’t have Planck’s constant in it, so we 
turned around and calculated it classically. Now, if one puts numbers in this, one finds 
that the scattering cross-section of a galaxy due to a uniform magnetic field through it is 
10Bcm2, a much larger number than the object that you talked about. This represents 
a conversion of photons into gravitons of about 1 part in 10ls. This is of course too small 
to measure. Also, we considered the possibility of using this cross-section for a laboratory 
experiment in which one had a scatterer consisting, say of a million gauss magnetic field 
over something like a cubic meter. This turned out to be entirely impossible, a result in 
total contradiction to what has appeared in the Russian literature. In fact, the theory of 
fluctuations shows that for a laboratory experiment involving the production of gravitons 
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by scattering of photons in a Coulomb field, the scattered power has to be greater thiin twice 
the square root of kT times the photon power divided by the averaging time of the experi. 
ment. I believe that the incorrect results that have appeared in the literature have been 
due to the statement that LIP has to be greater than kT over Z; dimensionally these things 
are the same, but order of magnitude-wise this kind of experiment for the scatterer of which 
I spoke requires something like 1050 watts. Maybe I can say something abollt this 
afternoon; I don’t want to take any more time. 

De  W i t t :  I should like to ask Prof. Feynman the following questions. First, to give us 
a careful statement of the tree theorem; and then outline, if he can to a brief extent, the 
nature of the proof of the theorem for the one-loop case, whish I understand cloes work. 
And then, to also show in a little bit more detail the structure and nature of the fictitious 
particle needed if you want to renormalize everything directly with the loops. And if you 
like, do it for the Yang-Mills, if things are prettier that way. 

F e y n m a n :  I usually don’t find that to go into the mathematical details of proofs 
in a large company is a very effective way to do anything; so, although that’s the question 
that you asked me - I’d be glad to do it - I could instead of that give a more physical 
explanation of why there is such a theorem; how I thought of the theorem in the first place, 
and things of this nature; although I do have a proof - I’m not trying to cover up. 

D e  W i t t :  May we have a statement of the theorem first? 
F e y n m a n :  That I do not have. I only have it for one loop, and for one loop the careful 

statement of the theorem is.. . - look, let me do it my way. First - let me tell you how I 
thought of this crazy thing. I was invited to Brussels to give a talk on electrodynamics - 
the 50th anniversary of the 1911 Solvay Conference on radiation. And I said I’d make 
believe I’m coming back, and I’m telling an imaginary audience of Einstein, Lorentz and 
so on what the answer was. In other words, there are going to be intelligent guys, and I’ll 
tell them the answer. So I tried to explain quantum electroclyn.amics in a very elementary 
way, and started out to explain the self-energy, like the hydrogen Lamb shift. How can 
you explain the hydrogen Lamb shift easily? It turns out you can’t at all - they didn’t 
even know there was an atomic nucleus. But, never mind.. I thought of the following. I would 
explain to Lorentz that his idea that he mentioned in the conference, that classically the 
electromagnetic field could be represented by a lot of oscillators WE. correct. And that 
Planck’s idea that the oscillators are quantized was correct, and that Lorentz’s suggestion, 
which is also in that thing, that Planck should quantize the oscillators that the field is equi- 
valent to, was right. And it was really amusing to discover that all that was in 1911. And 
that the paper in which Planck concludes that the energy of each oscillator was not nho 
but (n+l/2)ho which was also in that, was also right; and that this produced a difficulty, 
because each of the harmonic oscillators of Lorentz in each of the modes had a frequency 
of h0 /2  which is an infinite amount of energy, because there are an infinite number of modes. 
And that that’s a serious problem in quantum electrodynamics and the first one we have 
to remove. And the method we use to remove it is to simply redefine the energy so that 
we start from a different zero, because, of course, absolute energy doesn’t mean anything. 
(In this gravitational context, absolute energy does mean something, but it’s one of the 
technical points I can’t discu~s, which did require a certain skill to get rid of, in making 
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aravity theory; but never mind.) NOW look - I make a little hole in the box and I let in 
little bit of hydrogen gas from a reservoir; such a small amount of hydrogen gas, that 

tile density is low enough that the index of refraction in space differs from one by an amouilt 
proportional to A ,  the number of atoms. With the index being somewhat changed, the 
frequency of all the normal modes is altered. Each normal mode has the same wavelknght 
as before, because it must fit into the box: but the frequencies are all altered. And there- 
fore the he's should all be shifted a trifle, because of the shift of index, and therefore there’s 
3 slight shift of the energy. Although we subtract hw/2 for the vacuum, there’s a correction 
when Tve put the gas in; and this correction is proportional to the number of atoms, and 
can be associated with an erierm for each atom. If you say, yes, but you had that energy 
&eady when you had the gas in back in the reservoir, I say, but let us only compare the 
difference in energy between the 2s and 2P state. When we change the excitation of the 
hydrogen gas from 2s to 2P then it changes its index lvithout removing anything; and the 
energy d.ifference that is needed to change the energy from 2 s  to the 2P for all these atoms 
is not only the energy that you calculate with disregard of the zero point energy; but the 
fact is that the zero point energy is changed very slightly. And this very slight difference 
should be the Lamb eKect. So I thought, it’s a nice argument; the only question is, is it 
true. In the first place it’s interesting, because as you well itnow the index differs from one 
by an amount which is proportional to the forward scattering for y rays of momentum b 
and therefore that shift in energy is essentially the sum over all momentum states of the 
forward scattering for y rays of momeritum k. So I looked at the forward scattering and 
compared i t  with the right formula for the Lamb shift, and it was not true, of course; it’s 
too simple an  argument. But then I said, wait, I forgot something. Dirac, explained to UP 

that there are negative energy states for the electron but that the whole sea of negative 
energy states is filled. And, of course, if I put the hydrogen atoms in here all those electrons 
in negative energy states are also ascattering off the hydrogen atoms; and. theiefore their 
states are all shifted; and therefore the energy levels of all those are shifted a tiny bit. And 
therefore there’s shift in the eneigy due to those. And so there must be an additional term 
which is the forward scattering of positrons, which is the same as scattering of negative 
energy electrons. Actually, for the symmetry of things it is better to take half the case where you 
make the positrons the holes and the other half where you make the electrons the holes; 
SO it should be 1/2 forward scattering by electrons, l j2  scattering by positrons and scattering 
by y rays - the sum of all those forward scattering amplitudes ought to equal the self- 
-energy of the hydrogen atom. And thats’ right. And it’s simple, and it’s very peculiar. 
The reason it’s peculiar is that these forward scatterings are real processes. At last I had 
discovered a formula I had always wanted, which is a formula for energy differences (which 
are defined in terms of virtual fields) in terms of actual measurable quantities, no matter 
how difficult the experiment may be-I mean I have to be able to scatter these things. Many 
times in studying the energy difference due to electricity (I suppose) between the proton 
and the neutron, I had hoped for a theorem which would go something like this - this energy 
difference between proton and neutron must be equal to the following sum of a bunch of 
cross-sections for a number of processes, but all real physical processes, I don’t care how 
hard they are to measure. So this is the beginning of such a formula. It’s rather surprising. 

a ,  
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It’s riot the same as the usual formula - it’s equal t o  it but it’s not the same. I ]lave llo 

formulation of the laws of quantum gravidynamics; 1 have a proposal on how to malce the 
calculations. When I make the proposal on how to do the closed loops, the obvious proposal 
does not work; it gives non-unitarity and stuff like that. So the obvious proposal is no goocl; 
it  works O.K. for trees; so how am I going to define the answer for would correspond to 
a ring? The one I happen to have chosen is the following: I take the ring in general for any 
meson theory, one closed ring can be written as equivalent to a whole lot of processes each 
one of which is trees. I then define, as my belief as to what the ling ought to be in the grand 
theory, that it’s going to be also equal to the corresponding physical set of trees. When I said 
this is equal to this. I clidn’t worry about gauge or anything else; what I means was, if these 
weren’t gravitons but photons or any other neutral object - it doesn’t make any difference 
what they are - this theoiem is right. So I suppose it’s right also for real gravitons, and 
I suppose also that what’s being scattered is only transverse and is only a real free graviton 
with q2 = 0. Therefore, I say let this ring equal this set of trees. Every one of these terms 
can be completely computed - it’s a tree. And it’s gauge invariant; that is, if I adrlecl an 
estra potential on the whole thing, another outside disturbance of a type which is nothing 
but a coordinate transformation - in short a pure gradient wave - to the whole diagram 
then it comes on to all of these processes; but it makes no effect on any of them, and therefore 
makes no effect on the sum; and therefore I know my definition of this ring is gauge-invariant. 
Second, unitarity is a property of the breaking of this diagram; the imaginary part of this 
equals something; if you take the imaginary part of this side, it’s already broken up, in fact, 
and you can prove immediately that it’s the correct unitarity rule. Therefore it’s going to 
be unitarity and so on and so on. And so I therefore define gravity with one ring in this 
way. Now what prevents me from doing it with two rings? The lack of a complet statement 
of what two rings is equal to in terms of processes; that is I can open the ring all right; but 
I can’t put the pieces - the broken diagrams - back together again into complete sets 
that each one is a complete physical process. In  other words some of them correspond to 
the scattering of a graviton, but leaving out some diagrams. But the scattering of a graviton 
leaving out diagrams is no longer gauge invariant, I mean, not evidently gauge invariant, 
and so the power of the whole thing collapses. I don’t know what to do with it. So that’s 
the situation; that’s why it is crucial to the particular plan. There’s always, of course, another 
way out. And that’s the following (and that’s what I tried to describe at the end of the talk - 
maybe I talked too fast) : After all now I’ve defined what this results is equal to -by definition 
not that you should do a loop some way and get this, but that a loop is equal to this by 
defition, and I’m not going to do a loop any other way. But, of course, from a practical 
point of view or from the point of view purely of interest, the question is, can you come 
back now and calculate the ring directly by some particular mathematical shenanigans, 
and get the same answer as you get by adding the trees. And I found the way to do that. 
I have another way, in other words, to do the ring integral directly. I have to subtract 
something from a vector particle going around the instead of a graviton to get the answer 
right. So I known the rule, and I know why the rule is, and I have a proof of the rule for 
one loop. I have two ways of extending. I can either brealc this two loop diagram open and 
get it back into the processes, like I clid nith the one ring - where so far I’m stuck. Or, 
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I call take the rule which I found here and try to guess the generalization for any number 
of rings. Also stuck. But I’ve only had a week, gentlemen; I’ve only been able to straighten 
OUt the difficulty of a single ring a week ago when I got everything cleaned up. It’s mart 

tllan a week - I had to take a lot of time checking and checking; but I was only finished 
cllecking to make sure of everything for this conference. And of course you’re always 
asking me about the thing I haven’t had time to make sure about yet, and I’m sorry; I worked 
hard to be sure of something, and now you ask me about those things I haven’t had time. 
I hoped that I would be able to get it. I still have a few irons to try; I’m not completely stuck- 
maybe. 

DeWit t :  Because of the interest of the tricky extra particle that you mentioned at the 
end, and its possible connection, perhaps, with some work of Dr Bialynicki-Birula ,  
have you got far enough on that so that you could repeat it with just a little more detail? 
The structure of it and what sort of an equation it satisfies, and what is its propagator? 
These are technical points, but they have an interest. 

F e y n m a n :  Give me ten minutes. And let me show how the analysis of these tree 
diagrams, loop diagrams and all this other stuff is done mathematical way. Now I will show 
you that I too can write equations that nobody can understand. Before I do that I should 
like to say that there are a few properties that this result has that are interesting. First of 
all in the Yang-Mills case there also exists a theory which violates the original idea of symmetry 
of the isotopic spin (from which was originally invented) by the simple assumption that 
the particle has a mass. That means to add to the Lagrangian a term -p2u,d where a, 
is an isotopic vector. You add this to the Lagrangian. This destroys the gauge invariance 
of the theory - it’s just like electrodynamics with a mass, it’s no longer gauge-invariant, 
it’s just a ciirty theory. Knowing that there is no such field with zero mass people say : ,,let’s 
put the mass term on7,. Now when you put a mass term on it is no longer gauge invariant. 
But then it is also no longer singular. The Lagrangian is no longer singular for the same 
reason that it is not invariant. And therefore everything can be solved precisely. The propa- 
gator instead of being 6,” between two currents is 

where qIt is the momentum of propagating particle. The factor l / (q2 -pz )  is typical for mass p 
but the part -qpqy/p2 is an important term which can be taken to be zero in electrodynamics 
but i t  is not obvious whether it can be taken to be zero in the case of Yang-Mills theory. 
In fact it has been proved it cannot be taken to be zero; this propagator is used between two 
currents. I am using the Yang-Mills example instead of the gravity example. I really want 
only the case p2 = 0, and am asking whether I can get there by first calculating finite p2, 
then taking the limit p2 = 0. 

Now, with p2 # O  this is a definite propagator and there are no ambiguities at the 
closed rings, the closed loops. I have no freedom, I must compute this propagator. I mean 
there is no reason €or trouble, and there is no trouble. There is no gauge invariance either. 

And of course I checked. I broke the rings and I computed by the broken ring theorem 
method a closed loop problem of fair complexity (which in fact was the interaction of two 
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electrons). I computed it by the open ring method and by the closed ring method, and 
of course it agreed, there is no reason that it shouldn’t. It turned out that for tree dizgrams 
you don’t have to worry about this qrqy/p2 term, you can drop it - but not for the closed 
ring - only for tree. Therefore the tree diagrams have the definite limit as p2 goes to zero. 
And yet I have the closed ring diagram which is equal to the tree diagram when the mass 
is anything but zero, and therefore it ought to be true that the limit as p2 goes to zero of the 
ring is equal to  the case when p = 0. It sounds like a great idea why don’t you define the 
desired p2 = 0 theory that way? Answer: You can’t put ,u2 equal zero in the form (lo). 
YOU can’t do it because of the q,,qy/p2. So it was necessary next to see if there is a way to 
re-express the ring diagrams, for the case with p2 # 0, in a new form with a propagator 
different from (lo), that didn’t have a p2 in it, in such a form that you can take the limits 
as pz goes to zero. Then that would be a new way to do the p equal zero case; and that’s 
the way I found the formula. I’ll try to explain how to find that theory. 

We start with a definite theory, the Yang-Mills theory with a mass (the reason I do that 
is that there’s no ambiguity about what I am trying to do) and later on I take the mass to zero, 
then the theory works something like this. You have the Lagrangian E(A, 9) which involves 
the vector potential of this field and the fields representing the matter with which this 
object is interacting for zero mass, to which, for finite mass we add the term p2A,A,‘. This 
is the Lagrangian that has to be integrated and the idea is that you integrate this over all 
fields A and cp; and that is the answer for the amplitude of the problem 

But wait, what about the initial and final conditions? You have certain particles coming 
in and going out. To simplify things (this is not essential) I’ll just study the case that corres- 
ponds only to gravitons in and out. I’ll call them gravitons and mesons even though they 
are vector particles. The question is first, what is the right answer if you have gravitons 
represented by plane waves, A,, A,, A ,  ... going in (positive frequency in A,) or out (nega- 
tive frequency). You make the following field up. Let Aasym be defined as a times the w’ave 
function A ,  that represents the first graviton coming in a plane wave, plus ,!I times A ,  plus y 
times A ,  and so on. 

A,,, = aA,+,!IA,+lp3 ..., A +A,,. 

Then you calculate this integral (11) subject to the condition that A approaches Aasym 
at infinity. The result of this is of course a function of a, /?, y ... and so on. Then what YOU 

want for X is just the term first order in a, ,!I, y ... That means just one of each these gravi- 
tons coming in and out. That’s the right formula for a regular theory, for meson theocy, 
You calculate the integral subject to the asymptotic condition, when you imagine all these 
waves, but you take the first order perturbation with respect to each one of the incoming 
waves. You never let the same photon operate twice; a photon operating twice is not a photon, 
it is a classical wave. So you take the derivative of this with respect to a, /?, y and so on, 
then setting them all equal to zero. That’s problem. (In general there’s y asymptotic 
too.) 
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Now the way I happened to do this is the following: Let us call A,  the A which satisfies 
the classical eqatiuons of motion, which in this particular case will be 

I solve this subject to the condition that A,  equals Aasym. In other words, I find what is the 
maximum or minimum - whatever it is - of the action in (ll), subject to the asymptotic 
condition. That's the beginning of analysing this. 

The next thing is to make the simple substitution A = A ,  +B and p u t  it back in  equa- 
tion (11). Then if you take 2 od A,+B (if B is negligible you get 2 of A ,  and so forth) 
SO you get something like this 

DB. (14) 
e i [ ~ ( A , ) + ~ * ~ & , I J  e[~L7(Ao++B)-~(Ao))1+/r*BB+2/r*AB 

The integral is over all B, and B must go to zero asymptotically. This business can be expanded 
in powers of B. 

&(A +B)--&'(A) +pzBB+2p2AB = Quad (B)  +Cubic (B) +... +p2BB. (15) 

The zeroth power B is evidently zero. The first power of B is also zero because A ,  minimized 
the original thing. So this starts out quadratic in B plus cubic in B plus etc., that's what 
this is here. These quadratic forms Quad (B) and so on of course depend on A,, the cubic 
form involves A ,  in some complex, maybe very complicated, locked-up mess, but as far 
as B is concerned it is second power and higher powers. 

Now I would like to point something out. First - it turns out if you analyze it, that the 
contribution of the first factor here alone (if you had forgotten the intergal and called it one) 
is exactly the contribution of all trees to the problem. So that's like the cIassical theories 
related to trees. Next, if you drop the term cubic in B in the exponent completely and just 
integrated the result over DB, that corresponds to the contribution from one ring, or from 
two isolated rings, or three isolated rings, but not interlocked rings. If you start to include 
the cubic term is has to come in a second power to do anything, because of the evenness 
and oddness of function. And as soon as it comes in second power, the cubic term, having 
three of these things come together twice, makes a terrible thing like 00 which is a double 
ring. So you don't get to a double ring until you bring a cubic term down to the second 
order. So if I disregard that and just work with this second order term Quad (B) +pZBB, 
I'm studying the contribution from one ring. If I study this I am working from the trees. 
And now you see I have in my hands an expression for the contribution of a ring correct 
in all orders no matter how many lines come in. I also have expressions for the contributions 
from trees and so on. I can compare them in different mathematical circumstances, and 
it's on this basis that I have been able to prove everything I have been able to prove relating 
one ring to trees. 

Now, let me explain how the theorem was obtained that takes the case for the mass 
and for a ring. Now we have to discuss a ring, which is a formula like this 
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Tile quadratic form involves A,  so the answer depends on A,, - it’s some Complicated 
functional of A,. Anyway I won’t say that all the time, I’ll just remember that. We have 
to integrate over all B. And the difficulty is - not difficulty, but the point is - that this 
quadratic form in l3 is singular, because it came from the piece of the action that has an 
invariance and this invariance keeps chasing us along. And there are certain transformations 
of B which leave this Quard B part unchanged in first order. That transformation in the 
Yang-Mills theory is 

where the vectors are in isotopic spin space and a is considered as first order. This trans- 
formation leaves the quadratic form invariant so the Quad (B) thing by itself is singular. 
But it doesn’t make any difference, because of the addition of the p2BB. If p2 #O,  there 
is no problem, but if p2 - to ,  I’d be in trouble. 

I discovered that if I make this change (16) in the actual Lagrangian and carry everything 
up to second order it is exact, in fact because it’s only second order. If I do it with the 
exact change, the thing isn’t invariant, it is only invariant to first order in a. But if I make 
the substitution exactly, then I get a certain addition to the Lagrangian, in other words the 
Lagrangian of B’(this includes the p2, the Lagrangian plus the p2 term in B) is the Lagrnngian 
plus the p2 term in B plus something like this 

I have to explain that the semicolon is analogous to the semicolon in gravity. The semicolon 
derivative X; ,  means the ordinary derivative of X minus A cross X and that’s the analogue 
of the Christoffel symbols. Anyway, I find out what happens to L when I make this trans- 
formation. Now comes the idea, the trick, the nonsense: you start with the following thing; 
you, say, suppose instead of writing the original terms down, instead of writing the original 
Lagrangian I were to write the following: 

Now I say that the integral over a is some constant or other. So all I have done is to multiply 
my original integral by h! of B (by E of B I mean the whole thing, I mean this whole thing 
is going to b e 2  of B). If I can claim that when I integrate a I get something which is inde- 
pendent of B, which is not self-evident. If I integrate over all a it does not look as if it is 
independent of B - but after a moment’s consideration you see that it is. Because if I can 
solve a certain equation, which is ayu -p2a = BZ, I can shift the value of a by that amount, 
and then this term would disappear. In other words if I can solve this, and call this solution a0 
and change a to a,, then the B would cancel and it would only be 01’ here. I did it a little 
abstractly which is a little easier to explain, therefore, this term that I’ve added can be 
thought of as an integral of the following nature: Integral of some B, plus an operator actirlg 
on a (this complicated operator is the second derivative and so on) squared Qa. And then 
by that substitution I’ve juFt mentioned, this becomes equal to 1/2 the operator on A 
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times a’ squared Qa, wllicli is equal to the integral e to the one half of a times A ,  the 
A ,  times the operator A times a integrated over primed a. Now when you inte- 

crrate a quadratic form, which is a quadratic with an operator like this you get one Over 
tile square root of the determinant of the operator. SO this thing is one over the square root 
of the determinant of the operator AA. The determinant of the operator A times A is 
sqL1are of the determinant of A. So this is one over the determinant of the operator A,  or 
better it is one over square root of the determinant of the operator A squared, you’ll see 

a minute why I like to write it in this way. In other words, when I’ve written this thing 
~101nvll I’ve written the answer that I want. Let’s call X the unknown answer that I want. 
Then this is equal to X divided by this d.eterminant’s square root squared. Now comes the 
trick - I now make the change from B to B’. We notice that B changed to B‘ is simply.. . 
oh!, this is wrong, that’s what’s wrong, it should be just this. Now I’ve got it. The change 
from B’ to B is to add something to B. Therefore to the differential of B it adds nothing, 
it’s just shifting the B to a new value. So I make the transformation from B to B’ everywhere. 
So then I have da and dB, and now I have a new thing up here where I make use of the 
formula for 2 of B’: 

-5 

1 
P(B‘)  = 2 ( B )  + p2B,, a,, + 2 p2a,,la;p 

You see there is a certain cross term generated here and another cross term coming from 
expanding this out and the net result, with a little algebra here, is that becomes 2 of B, but 
the quadratic term doesn’t cancel out and. is left; there’s one half of Bp,p squared; that’s 
from this term; the cross term here cancels the cross term in there; and then we have only 
the quaclratic - I mean the a terms 

And the problem is now to do this integral on a ;  well, another miraculous thing happens. 
I have the operator A,  but that this dowi thing is a h ,  and therefore its result is just determi- 
nant once; or the square of this integral is equal to this determinant, or something like 
that. Therefore, when you get all the factors right, X, the unknown, is equal to 

Sachs :  I want to ask a question about long-range hopes. Perhaps for irrational reasons 
people are particularly interested in those parts of the theory where is a possibility of real 
qualitative differences: what do the coordinates or topology mean in a quantized theory, 
ancl this kind of junk. Now I wonder if you think that this perturbation theory can eventually 
be jazzed up to cover also this kind of questions? 

F e y n m a n :  The present theory is not a theory as it is incomplete. I do not give a rule 
on how to do all problems. I expect of course that if I spend more time on figuring out how 
to untangle the pretzels I shall be able to make it into such a theory. So let’s suppose I clid. 
Now you can ask the question would the completed job, assuming i t  exists, be of any interest 
to esoteric question about the quantization of gravity. Of course it would be, because it 
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would be the expression of the quantum theory; there is today no expression of the quantum 
theory which is consistent. YOU say: but it’s perturbation theory. But it isn’t. I worked 
011 the thing analyzing it in the series of increasing accuracy, but that’s only, obviously, when 
1 am doing problems and checking, or doing things like I just did. But even there I haven’t 
said how many times the vector potential A ,  is attacking the diagram, there is no limit to 
what order of external lines are involved in the calculation of A , ,  for example. And SO if 
I get my general theorem for all orders, I’ll have some kind of a formulation. The fact is, 
that in such things as electrodynamics and other theories, it  has not been possible to figure 
Out the consequences of the quantum field theory in the case of strong interactions, because 
of technical difficulties which are not technical difficulties just of the gravitation theory, 
but exist all over the quantum field theory. I do not expect that the gravitational problems 
will be any easier in that region than they are in any other field theory, so I can say very 
little there. But at least one should certainly formulate the theory that you’re trying to 
calculate first, and then find out what the consequences are, before trying to do it the other 
way round. So I think that you’ll be frustrated by the difficulties that do appear whenever 
any theory diverges. On other hand, if you ask about the physical significance of the quaxti- 
zation of geometry, in other words about the philosophy behind it; what happens to the 
metric, and all such questions, those I believe will be answerable, yes. I think you would 
be able to figure out the physics of i t  afterwards, but I won’t to think about that until I have 
it completely formulated, I don’t want to start to work out the anser to something unless 
I know what the equation is I am trying to analyze. But I dont’ have the doubt that you 
will be able to do something, because after all you are describing the phenomena that you 
would expect, and if you deseribe the phenomena then you expect you can then find some 
kind of framework in which to talk to hell) to understand the phenomena. 
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Closed Loop and Tree Diagrams 

INTRODUCTION 

It is the purpose of this paper to discuss some connections between the mathe- 
matical formulas for the amplitude of various processes in field theory when 
calculated in perturbation theory. The diagrams representing such amplitudes 
are generally of two forms; either the lines are interconnected so that a number 
of closed loops are formed, or there are no such loops. In the latter case we call 
the diagram a tree diagram. Examples of each type are given in Figure 1 .  For 
the moment we shall not be concerned with exactly what particles form the loops 
and the external lines; there is to be no implication that all parts of the loop 
represent propagation of the same particle. 

In a tree diagram (Figure la), all the four-momenta of propagation of the 
internal lines are determined by the four-momenta of the external lines. Such a 
diagram can be directly evaluated (for incoming and outgoing states of given 
momenta) without any integration. 

A diagram containing one closed loop (Figure 1 b) represents a mathematical 
term involving an integration over a single four momentum which is not 
determined by the external momentum. It is, for example, the momentum of one 
of the propagators in the loop. If there are other loops, the term represented has 
further four momentum integrals; if the diagram has n independent loops, there 
is a 4n-fold integral over the four components of each of n independent 
momentum variables. 

We shall show that any diagram with closed loops can be expressed in terms 
of sums (actually integrals) of tree diagrams. In each of these tree diagrams 
there is, in addition to the external particles of the original closed loop diagram, 
certain particles in the initial and in the final state of the tree diagram. These 
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FIGURE 1 .  
(a) Tree diagram. 
(b) Diagram involving a single closed loop. 
(c) Diagram containing three independent closed loops. 

additional particles are of the physical kind that appeared in the closed loop. 
For example, if an electron line appears, the tree diagrams into which the loop is 
converted may contain an extra external line entering and leaving, representing 
a positron of three-momentum P, and of energy dm: + P . P  on the electron 
mass shell me. The incoming and outgoing positron state is the same. That is, 
these diagrams are diagrams appearing in the forward scattering amplitude for 
the extra particles, scattering in the presence of the external particles. The sum 
on the tree diagrams is the sum for the two spin states of the extra positron and 
the integral over all momenta P of that positron. 

If each individual closed loop diagram can be so expressed as tree diagrams, 
it is clear that the sum of all of the diagrams for a given process in any order can 
also be expressed in tree diagrams. But an interesting question arises as to 
whether the resulting multitude of tree diagrams can be represented as a sum of 
sets of tree diagrams, each set representing the complete set of tree diagrams 
expected for some given physical process. (In many cases it can be done and we 
will discuss these matters in the latter part of this paper.) In this way we obtain 
relations among the diagrams for various processes. As a special example of such 
a relation, we are all familiar with the unitarity relation which, for example, 
relates the imaginary part of a forward scattering to the integral over the square 
of certain particle production amplitudes. Our relations are more general. 

These theorems are very close to those developed by Cutkosky. We are not 
sure whether they may be of any practical use in understanding field theory or 
strong interactions, but they have helped the author to resolve some ambiguities 
in the quantum theory of gravitation and of Yang-Mills vector mesons of zero 
mass. This application appears in the following paper. 

REDUCTION OF A SINGLE LOOP TO TREES 

A typical single closed loop diagram, like that of Figure lb, will lead to an 
integral of the form 
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where N(k),  the numerator, is some polynomial in the components of the four 
vector k,, and Iy)(k) is a factor for the i-th virtual line of the form 

in the limit 7 -+ +0, where mi is the mass of the i-th particle and p i  is some 
momentum, being the sum of the momenta brought in by the external lines 
starting from some point on the loop and adding up to line i (that is, pi  + = p i  + 
the momentum brought into the loop by the external line at the junction of 
propagator i and i + 1). Any spin 3 particles have had their usual propagator 

- m)-l rationalized to ( p  + rn)(pa - ma)>-l. The character of the poles of )i"I is defined in the usual way by the iq. It insures that positive frequencies are 
propagated forward in time, and negative frequencies backward. We shall 
suppose the integral converges; there are enough powers of k in the denom- 
inator D to offset those in N ( k )  and d4k.  If they do not converge, the physical 
difficulties are offset by one or another convergence techniques (such as differ- 
entiating with respect to some of the mt and integrating back again) which 
relate the integral to others of the same type which do converge. These things 
can also be done with our theorems but we will not discuss them here. 

If we write k, = (w,  k), p i  = (Ei,  pi), our factor (2) is 

- 1 (3) 
='[ 1 

2ei (w - Ei) - ei + i7 (w - Ei) + ei - iv 

where Ei is written for + d ( k  - pi)a + mf and we have written a new i7 to 
explain the position of the poles of W ,  viz. at E1 + Ei just below the real axis, and 
at Ei - just above. Thus, there are poles both above and below the real axis in 
w ,  the integral (from d4k = dw d3K) along the real axis. By changing the location 
of the pole in the last term, we can also write 

where 

- 1 Z:)(k) = - 
(W - Ei) - E1 + i7 (w - Ei) + ei + iq 

and we have used 

= - S(W - Ei + €1). (6) I "  - 1 
(W - EJ + ei + iq (w - Et) + E1 - iq ct 

If each It in the integral A of equation (1) is replaced by the sum (4), we shall 
have an integral A', like A,  but all the I ,  replaced by ZR plus a residual in which 
one or more of the factors replacing Z Y )  has a 6 function. This integral A' is 
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evidently zero, for all the poles are below the real axis of w, so the contour can be 
closed in w by a large semicircle above the real axis yielding zero for the integral 
(if the original integral on w converges, the integral on the semi-circle approaches 
zero for large enough radius). Thus, the integral A is expressible by a sum of 
terms each of which contains at  least one 6 function. But such terms are related 
to tree diagrams. 

If a term has just one 6 function, as in (6) ,  the integral over w can of course be 
done immediately ; contributions appear only for 

w - E. = -1/ (K - Pi)’ + m:, (7) 

that is, for such w that particle i is on its mass shell (as an antiparticle). That is, 
this equation (7) can be used to  substitute for w.  The integrand, if all the other 
factors are IR’s is just like the amplitude for a tree diagram for the same external 
lines but with one extra antiparticle of the type i of momentum K’ = K - P,, 
energy 1/(K’)2 + m:’ entering and leaving (for example, see Figure 2b). The 
remaining integral over d3K (or equivalently over d3K’) is an integral over all 
momenta of the extra antiparticle. It is not precisely the amplitude for a tree 
diagram because the propagator in the remaining lines of the loop still present is 
Z, instead of I,. But that we shall remedy in just a moment. 

A term with 6 functions arising from two of the factors, with the rest of the 
factors replaced by ZR, becomes a disjoint diagram (if there is just one closed 
loop) consisting of the product of two separate pieces (see Figure 2c). One kind 
of antiparticle comes in with momentum K’, say, and another goes out with 
momentum Q, which is entirely determined by K’ and the external lines. In the 
other factor the antiparticle Q goes in and K’ comes out. We sum all polariza- 
tions and integrate over all momenta K’. Another way of expressing this, 
disregarding the fact that the diagram is disjoint, is to say we have a diagram 
with two antiparticles K’, Q coming in, and two going out. All the couplings of 
the various particles must be exactly as prescribed by the connections in the 
original closed loop. More 6 functions correspond to more extra antiparticles in 
and out. 

The fact that the propagators in these tree diagrams is Z, instead of I ,  may be 
an annoyance, but it is easily remedied by substituting in these tree diagrams for 
IR via equation (4) reversed: 

S(w + d K 2  + m’) 7r I,(k’) = I , (k2)  - 
d K 2  + m2 

where 

Z+(k2) = (k2 - m2 + i ~ ) - l .  

The result is, algebraically, best seen by writing, first, in place of equation (11, 
the relation A’ = 0, valid because all the poles are on one side of the axis: 
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and substituting (8) in this 

x S(W - Ef + d ( K  - Pf)2 + mf)] = 0. 

On expanding the product (lo), the term with all Z, is the closed loop ( A ,  
equation 1) desired, whereas all the other terms are the diagrams with various 
numbers of extra antiparticles scattering forward (each times - 1 for each extra 
antiparticle), and this time all the remaining propagators are the standard I , .  
Since the sum vanishes, we have expressed the closed loop in terms of tree 
diagrams. 

THE PROCESS OF OPENING LOOPS 

Let us call this process, using the principle of equation (10) to express the loop 
in terms of diagrams with extra particles (that is, integrals with at least one 6 
function), “opening the loop.” Evidently we could have shifted the first pole in 
the expression (3) and obtained a different opening formula, in which particle 
scattering tree diagrams replace antiparticle scattering. It corresponds to con- 
sidering the loop as going around in the opposite direction. 

If there is more than one loop in the original diagram, the loops may be 
opened in succession. Choose any one loop; that is, integration over any one 
virtual momentum k,  leaving the others to integrate later. Then this loop can be 
opened. What results is a diagram sum and integral over diagrams with extra 
particles, but which still has loops remaining in it. However, there is now one 
less loop, and in each remaining loop all the propagators are Z, (if equation 10 
is used). Therefore, a remaining loop may be treated in the same way, thus 
reducing the number of loops still further, until there are none left. 

We can understand things very nicely if we look at what we have been doing 
in coordinate space. A single closed loop (without external propagators) can be 
written in the form (the symbol 1 stands for the space-time positions xfll of the 
point 1 ,  etc.) : 

where Z + ( 2 ,  1) as a function of the four vector x2 - x1 is the Fourier transform 
of the propagator Z + ( p )  for the particle going from 1 to 2 (all these Z’s are not 
identical, because each should correspond to the mass of the appropriate 
particle, but we leave out the superscript i for the sake of simplicity). The 
various x’s are potentials or operators (derivatives, isopin operators, etc.) ; each 
is, however, local, depending on the one space-time point or a few of its 
derivatives. 
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Thus, Z+(2, 1) is defined as the solution of 

(0, - rn2)Z+(2, 1) = i a4(2, 1) (12) 

where the d'Alembertian operates on variable 2 and 64(2, 1) is the four- 
dimensional S function s(?, - t l)  6(x2 - x,) 6(y2 - yl) S(z2 - z,), which has 
only positive frequencies for t ,  > tl and negative frequencies for t, < t,. That is, 

where Ep = + d m .  

I&, 1) is the retarded solution, zero for t ,  < t,, thus 
We could also solve (12) with a different boundary condition, say that 

= o  for t ,  < tl. 

Then, since I+  and I R  satisfy the same inhomogeneous linear equation the 
difference between them, Ic( =I+ - IR), satisfies the homogeneous equation for 
a free particle 

(El2 - rn,)I,(2, 1) = 0 
and 

for both t ,  > t ,  and tz  < t , .  
Now it is evident that the expression in equation (1 1) vanishes if all the I +  are 
replaced by IR. That is because I&?, 1) vanishes unless t ,  > t l ,  so that if all the 
I+ were I R  we would get zero unless tz  > t , ,  t3 > t,, ' t ,  > t,-,, tl > t,, which 
is impossible. We cannot go around a closed ring with time always increasing 
and get back to our starting point. 

If we substitute now I R  = I, - I, in this expression, equation (11) with all 
I ,  replaced by IR, we get a relation between the term with all I, (which is the 
loop L we want) and a number of terms with I,. Each term with I, is evidently the 
scattering by an extra free antiparticle. 

The sign is determined by what direction we choose to go around the loop in 
writing I&, 1). That is, draw an arrow around the loop in the direction of 
increasing time used in the original expressions with IR. The labelling of a 
particle as electron or positron, say, is in accordance with this arrow and the 
proper quantum numbers in the diagram. Thus, for electron-electron brems- 
strahlung scattering in Figure 2a, drawing the arrow in the direction 1 ,  2, 3, 4, 
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(a) (b) (C) 
FIGURE 2. 
A closed loop diagram (a) and some of the tree diagrams (b),  (c) into which 
it can be broken up. 

we see that the line 1, 2 corresponds to an electron; when opened, it means an 
extra positron coupled at 1,2,  as in Figure 2b. On the other hand, the arrow sees 
the particle from 3 to 4 as a positron and opening this section means an extra 
electron coupled there (Figure 3a). In the case of a particle identical to its anti- 
particle, we still have something to decide for the particular diagram and way of 
opening. Tn the case above, opening 2, 3 we have the tree 2c to add to 2b and 3a, 
but not the tree 3b (in this way of opening). That is, we want the photon coupled 
at 2 to bring in positive energy wg,  and at  3 to remove energy wQ, as in 2c and 
not the other way around 3b. This is for opening a particular diagram. What 
happens when we open all the diagrams for a given process we shall discuss later. 

In order to put our equation in a little neater general mathematical form, 
consider first the case of a closed loop formed by a charged scalar meson mass 
m field + coupled to a neutral meson field x via a termJ +*(1)~(1)+(1) in the 
Lagrangian. Let it be a loop with n external lines corresponding to neutral 
mesons of momentum qa, qb, etc., and we wish the sum as all the lines change their 
order around the loop (see Figure 4). By choosing this simple example, we will 
clear our minds of complications. 

From what we have said, the loop with IB inside, which is zero, can be written 
as a sum of terms. The first term is the loop L. The next term with one Z, has one 
line or another open and a positive meson coming in. This is a scattering am- 
plitude in the n potentials for a positive meson of momentum P. Let us call 
(P’/T(P) the scattering amplitude of such a meson from P to P’ in the potential 
x (in this case, to n-th order); (P’ITIP) does not contain the Spp, corresponding 
to the positive meson going right through without interaction. Then if L was the 
sum of the loops with the various xa, xi in any order, it is seen that the first term 

FIGURE 3. 
See text. 
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a B FIGURE 4. 
See text. 

has them in every order also. We are to integrate over all momenta P, of 
the incident positive meson, symbolized by C,. We shall end up by proving 
that 

The first two terms are now clear. The third term is that coming from two I,  
factors. Between these two factors, the various xa are distributed in various ways 
(for example, xa, x,, X d  to the first, and Xb, say, to the second). That is, in 
(PITIQ)(QIT/P) we imagine the first scattering to be in a field such as xa, x,, X d ,  
and the second in Xb. That is, the product of two scatterings in a potential cal- 
culated so that the product is of the requisite order in the potentials. The factor + is because putting, say xa, xc, X d  in the first factor and Xb in the second factor, 
is equivalent to putting xa, xc, xd in the second and X b  in the first. 

This relation (15) is the general relation for any loop. If there are quantum 
numbers like isotope spin on the virtual particle, of course these are to be sum- 
med over in the C,. If a loop consists of several different particles in different 
propagator sections, such as electron 1 + 2, photon 2 --f 3, this is abstractly 
equivalent to some single particle which can change its type from electron to 
photon, etc., under the influence of the external lines. Therefore, if the & 
includes a sum also over the types of particle in the ring and the external 
potentials x carry “quantum numbers,” which determine how they change the 
virtual particles “quantum numbers,” the formula can be used directly. 

RULES FOR COMPLETE PROCESSES 

We should like to develop some rules for complete processes. That is, we wish 
to add all diagrams for a given process and, if it contains closed loops, try to 
express it in terms of the sum of tree diagrams for other processes. 

We start, for example, with our charged scalar mesons in an external scalar 
potential x. Suppose now that x is a fixed external potential. We know how to 
express the amplitude for scattering with external lines xa, xb, etc., in terms ofthe 
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scattering amplitude S [x( l)] in an arbitrary potential by functional derivatives. 
Viz., the amplitude with three external scalar mesons in and out, xa, xb, xc, is 

Therefore, we begin by calculating in a general external potential. 
Evidently (15) is then valid where L is the loop in the external potential, and 

all the amplitudes (PITIQ) are scattering in this potential. But L is not the 
diagram for a complete process. On the other hand, eL is. It is the amplitude that 
an initial vacuum (that is, no charged scalar meson) will still be a vacuum in the 
final state in spite of the action of the potentials (it is C, in reference [l]). To 
study it, we take the exponential of both sides of (1 5) and expand it out to obtain: 

1 = eL 

- Cp(P(TIP)eL 

+ ~ ~ P , Q [ ( P I  TIPXQITIQ) + <QITIP)O'I TI Q)kL 
-&&,Q,d(PJ TIP)<QI TIQXRJ TIR) 

+ 3(PI TI QXQ I TIP)<RI TIR) 

+ 2(PI~JQ>(Ql~IR>(RITJP)leL +, etc. (17) 

Each term on the right side is the complete amplitude for some definite process 

eL = amp vac to vac. 

(PITIP)eL = amplitude that an initial state with one positive meson ends in the 
same state (forward scattering of one meson in the potential), assuming it 
interacts. (Remember, (P'ITIP) does not contain the direct SPp, term). We sum 
over all values of P. 

[(PITIP)(QITIQ) + (QITIP)(PITIQ)]eL is the amplitude that two positive 
mesons in the initial state, P, Q, are both scattered forward correctly, including 
exchange for the Bose particles (so the final state is (Pl(Q1 + (Ql(P1). The 
factor 3 normalizes the states or, put another way, the 3 connects the sum on 
both P and Q to the sums over each pair P, Q counted once. 

The next term is an analogous forward scattering from the state of three 
positive mesons with momenta P, Q, R to the same state, again including 
exchange. 

Thus we have for charged bosom in an external potential: 

1 = (no mesonlno meson) - C (forward scattering of one positive meson) 

+ 2 (forward simultaneous scattering two positive mesons) 

- X (forward scattering three mesons) +, etc. (18) 

This is an interesting relationship between amplitudes for various real physical 
processes. How general is it? Obviously it applies as well to scalar external 
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potentials, like x, as to vector external potentials, as in the electrodynamics of 
charged scalar mesons. And the charged mesons could be other spin than zero 
also, if you like. It will not work directly if the mesons of the loop are neutral, a 
case to be discussed below. It will work if the mesons of the loop are not all the 
same kind and the propagators are successively of different masses and spins. 
But what is essential is that in every state the particle is distinct from the anti- 
particle-otherwise the equation is meaningless unless the phrase “positive 
extra meson scattering forward” has content. For if we have two such mesons in 
the third term, say, we do not wish them to be able to annihilate each other. 

There is a corresponding theorem for Fermi particles. Consider electrons in an 
external potential (for example, electrodynamics). Equation (1 5) ,  which opens a 
loop, is general and does not depend in any way on statistics. It works for spin 
4 as well as any other; it even works when parts of the loop are spin 3 and other 
parts have other spin (as we have seen). It is therefore valid for electrons in an 
external potential. 

The amplitude to go from a state with no electrons or positrons to the same 
state is, however, e-L for Fermi statistics, rather than e + L  for Bose. Let us 
expand the exponential of the negative of each side of (15). We get 

It is evident that the terms represent scatterings, with exchange, into anti- 
symmetric states, just as expected for the Fermi statistics. We have then, in the 
Fermi case, 

1 = (no positron I no positron> 

+ & (forward scattering of one positron) 

+ C (forward scattering of two positrons) 

+ C (forward scattering of three positrons), etc. (20) 

Since with Fermi particles we can always distinguish particle and antiparticle, 
(1 9) is valid for any Fermi particles, charged or neutral, or having other indices 
such as the octet of nucleons (since the antiparticles, called positrons here, 
would be the distinct octet of antinucleons) in scalar or vector meson external 
fields, etc. 

Equation (19) is easy to demonstrate directly. We take the case of electrons 
and positrons. Consider a state with no electrons in either the positron energy 
states, and in the old view of Dirac, none in the negative energy sea either. There 
being no electrons with which to interact, the external potentials would have no 
effect-the amplitude to remain in this same state is unity. Put in more modern 
language, consider an initial state which I will call “Dirac vacuum,” which con- 
sists of no electrons present, but every possible positron state occupied. Then a 
little consideration will show that an external potential can do nothing. It 
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cannot scatter an electron-there are none. It cannot scatter a positron to another 
state-they are all full. I t  cannot annihilate a positron, for no electrons are 
present to annihilate-and it cannot create a pair, for all the positron states are 
already occupied. Thus, the Dirac vacuum remains undisturbed, the amplitude 
for it to do so being 1, the left side of equation (19). 

But we can calculate this same amplitude another way, for it is well known 
that we can disregard the exclusion principle in intermediate states, as long as we 
are careful to make either the initial or final state antisymmetric. 

Now, this amplitude, that the Dirac vacuum remains so in a potential, can be 
analyzed in the following way (following the conventions of reference [l]). 
There is some amplitude that none of the positrons interact with the potential 
and all go right through; this is just e - L .  Or one positron, say of momentum P, 
may be scattered by the potential, the rest not. If the others are not, the final 
state of this positron must be the same in spin and momentum. The amplitude 
for this is (PITIP)e-L, but we must sum over all the positrons which can do this 
(sum over two spins and all three-momentum). Again, perhaps only two of the 
positrons interact, the others not. If they are of momentum P, Q, they must 
either have these same momenta or else they interchange states. This leads to the 
third term, etc. 

We could have started with this simple derivation of (20) and then taken 
logarithms to obtain (15), and finally argue that (15) is valid without respect to 
statistics in view of its nature involving only one loop. But this close connection 
no longer surprises us when we realize that the propagator appropriate to the old 
Dirac view of electrons in negative energy states is just Z,. That is, in each case 
we compare an amplitude calculated with Z, to one calculated with I,. 

I have not found a derivation for the Bose equation (18) as simple as the one 
just presented (using the Dirac vacuum) in the Fermi case. 

I t  is evident, of course, that although we have used extra positrons in writing 
equation (20), we could just as well have used extra electrons and obtained 
another formula with electron scattering. It is not easy to find a simple expression 
in which the C, can mean sum over electron and over positron states both. Just 
adding + of equation (20) with positrons to 3 of equation (20) with electrons will 
not do. The term in the scattering of two particles will not include the scattering 
of one electron and one positron. 

Thus, I have not found a simple expression for processes in the case of neutral 
Bose particles (I mean a particle equivalent to its own antiparticle, like photons). 
It is to be remarked that the vacuum to vacuum amplitude is e(112)L because in the 
expression L in equation (15) I mean the loop calculated considering an order 
of potential interactions a, b, c, . . . , d to be distinct from the order d, . . . , c, b, a 
(as for charged bosons), while for neutral bosons there is no distinction of going 
around the loop one way or the other, and the contribution is 3 of the expression 
used in (15). In any perturbation expansion it is possible, if artificial quantum 
numbers are put on the particles, to keep track. An expression for processes with 
neutral particles would be very useful. (We emphasize equation (15) is valid in 
any case-we are discussing the extensions to processes, analogous to equation 
(19) or (17).) Such an expression could (like (1 5)) be immediately generalized 
to any situation at  all, with loops containing particles of different kinds. 
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How much more general can we make (19)? First of all, we can differentiate 
both sides with respect to the external field to any order to obtain relations 
valid in perturbation theory-but all such results are probably obtained more 
easily and in greater generality directly from (1 5) .  

But (18) and (20) apply also to interacting particles. For example, the ampli- 
tude Te2[A] for a process with particles mutually interacting via electromagnetic 
fields can be obtained from the amplitude TOIA] for the same process in an 
external potential by suitably summing over various functions A .  Explicitly, 

Te2[A] = To[A + B]eiS(B) 9 B  s 
where S ( B )  is the action of the electromagnetic field [2]. Hence, performing this 
operation on both sides of equation (20), or (18), we find the relation valid for 
interacting particles. An expression such as (19) is no longer valid, because the 
two-particle scattering can no longer be written in the form of independent 
products (PITIP)(QITIQ) - (PITIQ)(QIT/P) when there is interaction. 

In the expressions found in this way, closed loops of interacting fermions (or 
charged bosom) can be re-expressed in terms of scatterings without such loops 
(that is, the diagrams associated with charge renormalization, photon-photon 
scattering, etc.). However, all closed loops are not thereby eliminated, as 
diagrams such as Figure 2a, or self-energy diagrams, etc., are not opened by this 
process. 

It is also clear from the argument for (20), starting from the Dirac vacuum, 
that the equation is equally valid if the particles mutually interact. 

We might ask if we can generalize (17) by aiming not for the vac vac amplitude 
(e") but for a specific amplitude for antiparticle (or particle) scattering, say for a 
particle to go from state x to state y .  The true amplitude for this is (ylx)eL. But 
if we calculate it by multiplying (ylx) by eL from (17), we get 

<YlX> = (ylx)eL - ~P(ylx>(PIP)e" +, etc. 

The left side is a simple tree diagram, but the right is not a sum of processes. 
The first term is satisfactory, being the amplitude for antiparticle scattering from 
x to y.  But the second term is not the scattering of an antiparticle at  x and at P 
to one at  y and P for the exchange (or annihilation, if x is a particle) term is 
missing. The expression for this scattering should be 

It  is possible to sum the correct series of processes, but the sum is not (ylx)-it 
is ( ~ I x ) ~ .  We mean by ( ~ I x ) ~  the scattering amplitude for antiparticles at  x to 
go to y calculated using the retarded propagator ZR. It  is therefore a tree diagram, 
for ZR permits no closed loops. That is, 
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(If x and y are particles, written Z , J ,  the new exchange terms are appropriately 
annihilations, etc.) Evidently the terms on the left are scatterings of one anti- 
particle from x to y ;  the scattering of two antiparticles at  x, P to y ,  P including 
exchange; the scattering of three antiparticles a t  x, P, Q to y ,  P, Q appropriately 
symmetrized, etc. 

Evidently the general law for charged bosons making a transition from any 
initial state I, including any number of negative and positive particles, to a final 
state F under the influence of any potentials, or of mutual interaction of any 
kind, is 

{FJI), = {FII )+ - W F ,  Plz, PI+ + C{F, P, QlZ, P, QI+ - etc. (22)  

where {FIZ}, is the amplitude calculated using the retarded operator for any 
propagation of a particle or antiparticle (hence there are no particle loops in 
{FIZ}E); {FIZ}, is the amplitude calculated in the usual way and therefore the 
one expected in the physical world (there are closed loops in {FIZ},). The 
quantity {F, PIZ, P}+ is the usual physical amplitude for scattering from a state 
IZ, P} with an extra antiparticle in a state of momentum P and some spin, and 
others as in I ,  to a corresponding state {F, PI with an antiparticle in the same 
spin and momentum state P; but there are other particles in F, except that part 
of the amplitude in which the particle P does not interact with anything is to be 
omitted. The states I ,  P and F, P are to be suitably symmetrized as required by 
Bose statistics. The sum C, is taken over all spin and momenta P of the extra 
antiparticle. 

The state \I, P, Q} is the state Z with two extra antiparticles and the sum here 
is on all the distinct possibilities-that is, 3 the sum over all states P and all 
states Q. 

For particles obeying Fermi statistics the states are antisymmetrized, of course, 
and the minus signs on the right side of (22) should all be plus. 

The scattering calculated via ZR involves only trees in the case of external 
potentials. The scattering of an electron, say in third order, appears as Figure 
5a, and is nonvanishing only if t ,  > tz  > tl (in fact, only if 2 is not outside the 
forward light cone of 1, 3 not outside that of 2, and therefore of 1 also, etc.). 
For positron scattering, the diagram appears as in Figure 5b; again, 1, 2, 3 are 
in time order, but the external positron connects a t  the time of the latest 
perturbation, the outgoing one at  the time of the earliest perturbation. 

Since all these terms represent forward scatterings, dispersion theory may be 
used in re-expressing them further. I do not know to what extent these formulas 
may be practical or useful in the study of strong interactions or in the simplifica- 
tion of calculations in electrodynamics. 

If we desire not expressions for trees in terms of real processes, but real 
processes in terms of trees, we may turn these equations around and write 

VIF)+ = {W'IE + W, PIE PIR + XU, P, QIF, P, QIE +, etc. (22)' 

for the Bose case, and alternating signs [( - 1)" for n extra particles] for the Fermi 
case. T have found these useful in developing the quantum theory of gravitation 
(and the Yang-Mills theory of vector meson of zero mass). There I had con- 
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\ 

FIGURE 5.  
Time relations of the retarded propagator in electron 
and in positron scattering. 

siderable difficulty in finding a prescription for keeping closed loop diagrams 
gauge invariant, but no difficulty whatever with tree diagrams. The relations such 
as (15) or (22)’ helped me to resolve this difficulty, at least for the case of dia- 
grams having one closed loop. The fact that I have not found the general 
expression analogous to (22)’ for neutral mesons (particle, antiparticle identity) 
has made this approach harder to handle in application to larger numbers of 
closed loops. This work will be published later. 

MATHEMATICAL EXPRESSION FOR TREE D I A G R A M S  

In this section we shall express in a more formal mathematical way just what the 
tree diagram for a given process is. We shall not be concerned with showing the 
relation of closed loop diagrams to a sum of tree diagrams. We shall limit 
ourselves to Bose fields for ease of representation; for tree diagrams this is no 
limitation. 

Let there be a number of fields in interaction and call them collectively A ,  so 
A is a vector (function of position) having components for electrons, scalar 
mesons, photons, or what have you. The Lagrangian for the system is written 
L(A), and is nonquadratic: 

L(A) = La(A) - I (A)  (23) 

where L,(A) is quadratic in A and describes all the propagators of the fields, and 
Z(A) is of higher than second order in the fields A and represents all the inter- 
actions. 

The full quantum field amplitude for a given process including trees and closed 
loops can be written, as usual, as an integral over all fields B:  

1 = amp with loops = (24) 

How in (24) do we represent the external particles? They are represented by a 
number of free particle waves A, ,  A,, . , . coming in and going out. We want 
each of them to act once. Thus, we form, with arbitrary coefficients a,, a,,. . ., 
the expression 

A ,  = &A% (25) 
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and perform the integral in (24) subject to the condition that asymptotically B 
(at +co and --a) equals A ,  (representing asymptotically waves coming in for 
t -+ -a and going out at t = + 00). Then the amp in (24) depends on al, a2, . . . 
The amplitude for the process with one particle coming in with wave Al,  one with 
wave A2,  etc., is just the first order action of each potential and is the coefficient 
of (111a2~3.  . . in this expression (24). If external potentials are acting, they are put 
into A ,  and not differentiated (p. 337). 

To be a little more explicit, let us define R(A)  as the first functional derivative 
of L(A), and &(A) likewise of L2(A), 

R2 is then simply a linear differential operator, the “free particle propagator” 
whose reciprocal we shall write as Rsl  and define precisely so that at t = +a 
only positive frequencies are propagated, and at t = -00 only negative fre- 
quencies. Thus, if R2 = n2 - m2, or q2 - m2, in momentum space, RT1 = 
(q2 - m2 + i~)-’ in the limit as 7 -+ +O. What happens when R2 has no inverse 
due to a gauge group, such as in gravitation, will not concern us here. It presents 
no serious problem for trees, but it does in (24). For details in this case, see my 
other contribution to this volume (p. 377). 

The asymptotic free particles each satisfy R,(A,) = 0 or in total R2(A,) = 0. 
Another useful mode of expression which resolves certain ambiguities of 

surface integrals at infinity is to suppose that Al,  etc., were not strictly free but 
came from certain classical sources sl, etc., at infinity, or else to suppose A l  to 
be arbitrarily cut off near infinity and define &(A,) = si. Thus, we write 

A,, = R ~ ’ s  (29) 

where s = 1 qs, is the effective source at infinity. The amplitude with all loops 
can also be stated as 

I = j  exp i j (L(B) - s ~ )  d7 QB. (30) 
Basvrn=O 

Now, s could be considered finite if there were external classical potentials 
acting, but if we have only quanta coming in and out we shall have to take only 
first order in all the a{ in s, thus s is infinitesimal. 

All this is standard field theory. 
We desire now to express, for the same problem, defined by the same A, ,  

equation (25), or better yet, by the same sources s, the amplitude for trees (no 
loops). It is 

T = amp with no loops = exp i (L(A) - As) d7 (31) s 
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where A satisfies the equation 

R(A) = s. (32) 

This equation (32) has the explicit solution 

A = RT1(K(A))  + A,. (33) 

If we wish to avoid speaking of sources s, we should say the amplitude with no 
loops is exp i l  @(A)  - AR(A))  dT where A makes s L(A) dT extremum subject 
to A,,,, = A,, and therefore given by (33). We should have to be very careful 
with ambiguous integrals like 1 AR,(A) dT, which must be interpreted as 

The result (31) may not be entirely obvious but we outline how it may be 
derived. If one considers how a connected tree diagram is formed with a set of 
lines A, ,  A,, . . . going in, and one extra F, coming out, it is clear that we are 
constructing an A” being the first order in a,, a,, . . , of A’ where A’ is a solution 
of 

1 ( A K ( 4  + ~ , R , ( A ) )  dT. 

A’ = R,,(K(A’)) + 2 aiA* (34) 

as can be seen by solving (34) by iteration and noticing term by term how the 
correct diagrams are formed by the equation, the final amplitude being 

t = FK(A”) dr. 

If we imply that the correct order (first in all ai) is to be taken, we may write this 

s 
t = FRz(A’) dr. s 

Using the method of sources, so we can integrate by parts, this is 

t = sFA’  dT s 
where sF is the source of F or sF = Rz(F).  

To get a more convenient and symmetrical form, we would like an expression 
not in terms of A’ but in terms of A,  which comes from (34) with the extra term 
q5F added to the 2 a,A,, and later take the derivative with respect to  q5 at q5 = 0. 
Since we now go to first order in 4, we can write 

t = + s ,Adr s (35) 

(the change from A’ to A brings only in a q5z term). That is, upon varying a 
source by a perturbation as, the change in t must be 

6t = (&)A dr. (36) J’ 
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This is solvedl by 

t = - j @(A)  - sA) d7 (37) 

because its first variation is 

6t  = - (6L/6A) - S) 6A d7 + 1 6sA d7 

where 6A is the change in A induced via equation (32) by the change 6s in s, 
and the first term vanishes by the equation (32) determining A. When it is 
considered that for the S matrix we want disjoint as well as connected diagrams 
the complete sum becomes the exponential (3 1). 

The analysis of tree diagrams is very close to classical field theory, for it 
involves only the solution of the classical equations of motion (32). This is done, 
however, via (33), with complex boundary conditions. As closed loops are 
expressible in terms of trees, this suggests another way to get from classical to 
quantum field theory without ambiguity. 

.r 

CONTRIBUTIONS FROM SINGLE LOOPS 

For formal analysis, the trees may now be separated from the diagrams with 
loops by substituting B = A + D in (30) to get (note, in the system with 
sources, A,,, = 0) 

I = 1 (exp i 1 (L(A + D) - s(A + 0)) d7 9 D  
Dasym = 0 1 (38) 

factoring out T, the amplitude for trees from equation (31) we find 

I = T J  (exp i J (L(A + 0) - L(A) - R(A)D) d7 9 D  1 
where the extra factor frepresents the contributions from loop diagrams only is 

where the field D goes vacuum to vacuum, all reference to sources or asymptotic 
fields is contained in the effective L,(D) Lagrangian for motion of D in an 
external field A ,  

L,(D) = L(A + 0) - D(8L(A)/SA) - L(A). (40) 

The Lagrangian L,(D) is purely of second order and higher in D. We define 

RA(D) = 6LA(D)/SD = R(A + D) - R(A), 

The connected diagram with a total of n lines in and out can also be written as: the first 
order in a ,  to a,, of (n - 1 ) - l  j L ( A )  d7. For if, in ( 3 9 ,  we consider F as the line A, ,  we get 
t = a ,  s l A  d+, likewise for A z ,  etc., so summing, nt = j sA d+. 
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an operator which has a linear part, coming from the quadratic part LA,(D) of 
L,(D), which we call RA2(D). Thus, R,, is a linear operator (depending upon the 
form of A )  having an inverse Ri: defined with the usual quantum boundary 
conditions. That is, we can formally study all problems of opening loops with 
external lines, by considering what happens when opening a loop without 
external lines, but with the mathematically more complex propagator R, 

Expanded only to second order, we get 

J 

which gives the usual closed loop expression, simply single loops with no 
external lines, propagator Ri:; that is, f 2  = eL, L = trace (In RA2). 

This propagator, say, (R;;) +, to be more explicit, can, by redefining its poles, 
be represented as in equation (4) as a retarded propagator ( R T ~ ) ~  plus a free 
particle part. That is, x = (Ri;)*s represents a solution of RA2x = s with no 
field asymptotically in the past, while (R,;)+s = y represents a solution of 
RA2y  = s with quantum boundary conditions. Their difference x - y ,  satisfying 
RA,(x - y )  = 0, is a solution of the homogeneous equation for antiparticle 
scattering (in the external potential, of course). We thus symbolize equation 

( R i ; ) +  = (RA;l), + free scatt. (41) 

by the diagrammatic symbolism 

f 

/ 

The retarded propagator is represented by a line with a double arrow in the 
direction of the latter terminal. The single arrows on the external lines indicate 
that they carry positive frequency in (at the lower terminal) or out (at the upper 
terminal). Therefore, for the first order perturbation of one closed loop, we have 
(the dot represents the perturbation) 

0.0 / (43) 
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The loop with the arrow representing the retarded propagator vanishes, for final 
termination time must exceed the initial time, and cannot be equal as the loop 
requires. Thus, one loop is equivalent to one extra particle scattering. 

Opening such a loop gives simply a straight line for a simple particle prop- 
agated from past to future under the influence of the potential A .  That is, the 
extra particle is in interaction with all the physically real external particles. In 
this case, the diagram when one loop is opened corresponds to a definite order of 
a complete physical problem, namely the forward scattering of one extra particle 
under the influence of all the others. When two connected loops are opened, the 
result is not always exactly the same as a definite physical problem as we shall 
see in the next section. 

OPENING TWC CONNECTED LOOPS 

As we have seen, we now need only to study loops with no external lines, but 
with propagator R;:. If we expand the operator L,(D) in (39) to still higher 
order, 

FIGURE 6.  
The contributions of second order 0 -+ am inLAI(D).  

we shall obtain in the next order the diagrams of Figure 6 .  We also obtain from 
LAC(D) a diagram in the form of a figure eight but when we deal with those in 
Figure 6 it is immediately obvious how to include the figure eight. Each junction 
in Figure 6 represents a coupling of three lines via LA3(D) and each line represents 
an action of a propagator Ri?. 

Using (42) we can transform the first diagram of Figure 6 as indicated in 
Figure 7. The closed ring of propagators in the second line of Figure 7 vanishes 
for it contains a closed ring of retarded commutators. In  Figure 7 xtra particles 
of different asymptotic momenta are indicated by different kinds of lines: dashed 

FIGURE 7. 
Opening a double ring. 
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FIGURE 8. 
Reduction of the Figure 6 diagrams to trees. 

or straight. Opening the second diagram of Figure 6 is direct via (43), so we have 
Figure 8. The last diagram in Figure 8 is an entirely disjoint diagram, consisting 
of two factors, one being two extra particles scattering into a third, and the other 
its inverse. 

Incidentally, we can check unitarity by noting that the imaginary part of the 
propagator ( R - l ) +  is 3 with retarded poles, 3 advanced, or 

We can then easily verify from the last line of Figure 8 that the imaginary part of 
the diagrams of Figure 8 is just 

as required by unitarity. 
The combination of the diagrams A ,  B, C, in Figure 8, namely +A + +B + +C 

is not what an ordinary process would give. If we simply draw all the diagrams to 
represent the scattering of two particles on each other in this order, we obtain 
diagrams A ,  B, C with equal weight, A + B + C .  It is true that if we imagined 
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the extra particles to carry certain quantum numbers or charges, then by making 
rules about what quantum numbers the intermediate propagator can carry the 
diagrams can be selected (for example, if the extra particles each carried a 
different charge and the intermediate must be neutral, only C survives). It is also 
true that in many cases such rules exist which lets the combination in Figure 8 
remain as a true process. However, for completely neutral objects like gravitons 
the combination of Figure 8, found on opening the diagrams of Figure 6, is not a 
true process. Therefore, an attempt to formulate quantum gravitational rules by 
first saying how trees work and then using them to calculate closed loops is not 
completely straightforward. That is because a property, like gauge invariance, 
which is not valid for each diagram alone, but is valid for each set of diagrams 
representing a complete process, may not be valid if the tree diagrams are 
assembled into closed loops carelessly. The application of the methods in this 
paper to the problem of the quantum theory of gravitation appears in the 
following paper. 

REFERENCES 

1. R. P. Feynman, Phys. Rev., 76, 749 (1949). 
2. R. P. Feynman, Phys. Rev., 80, 440 (1950), Eq. (46). 



888 

RICHARD P. FEYNMAN 

Problems in Quantizing the 
Gravitational Field, and the 

Massless Yang-Mills Field 

INTRODUCTION 

Some years ago I started extensive work on the quantum theory of gravitation, 
studying difficulties in formulating it, as well as detailed analysis of its divergence 
and renormalization characteristics. However, I became involved in other inter- 
ests and the work was never completed. Many people, including Professor 
Wheeler, have asked me what I found. I shall not discuss the renormalization 
work here, but I will take this opportunity to publish the material I have, incom- 
plete though it may be. Therefore, in this paper we shall discuss some problems 
which arise in attempting to formulate a quantum theory of gravitation. I have 
heard that these problems have been solved by others,l but I will report how 
the problem looked to me some years ago, correcting, however, some errors in 
the equations for the gravitational case which I discovered while preparing this 
manuscript. 

The questions about making a “quantum theory of geometry” or other con- 
ceptual questions are all evaded by considering the gravitational field as just 
a spin-2 field nonlinearly coupled to matter and itself (one way, for example, is 
by expanding g,, = S,, + h,, and considering h,, as the field variable) and 
attempting to quantize this by following the prescriptions of quantum field 
theory, as one expects to do with any other field. The central difficulty springs 
from the fact that the Lagrangian is invariant under a gauge group, and therefore 
the propagator is singular and generally undefined. In the classical theory and 
in quantum electrodynamics this problem may be evaded by starting with a 
modified Lagrangian which is no longer completely gauge invariant (for example, 

For related references, see note added in proof at the end of the article. 
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in electrodynamics add a term like (V,A,)z to the Lagrangian). This leads to a 
nonsingular propagator (for example, to 6,,g2 in electrodynamics) but because 
of conservation laws that the sources satisfy (a consequence of the original gauge 
group invariance) it can be shown that the extra term added to the Lagrangian 
has no final physical effect. In the quantum gravitational theory, adding to the 
Lagrangian a term of this kind permits a definite prescription for calculating all 
diagrams. It is found that all tree diagrams (diagrams which involve no closed 
loops) are, like the classical theory, completely satisfactory. However, diagrams 
with closed loops are affected. In particular, if a diagram with one closed loop 
is compared to its related tree diagrams by unitarity (or by the loop opening 
processes of reference 12) a discrepancy is found. This discrepancy can easily be 
removed by a further modifying rule-that for each closed ring of gravitons 
(calculated with the modified nonsingular Lagrangian) a special term must be 
subtracted. This special term is describable as the contribution of a correspond- 
ing closed loop around which, in place of the graviton, goes a special auxiliary 
vector particle (propagated in a definite manner and coupled to gravitation but 
not directly to matter). 

When a diagram contains two contiguous rings (like the letter 6) I have not 
been able to find the corresponding rule. Part of the difficulty here is to find an 
unambiguous definition of what the double ring should equal in a correct theory. 
The main purpose of this paper is to discuss various attempts to resolve these 
difficulties and to describe some incidental relations that have been found in 
attempting to do so. It is not even clear that the problems are serious, or are not 
easily solved, as I have fallen into calculational confusion. 

The algebraic complexity of the gravitational field equations is so great that 
it is not easy to do exploratory mathematical investigations and checks. Gell- 
Mann suggested to me that the Yang-Mills theory of vector particles with zero 
mass also is a nonlinear theory with a gauge group and might show the same 
difficulties, and yet be easier to handle algebraically. This proved to be the case, 
and thereafter, all the work was done first with the Yang-Mills theory and then 
the corresponding expressions for gravitation were worked out. The corres- 
pondence is exceedingly close. Each difficulty and its resolution in one theory 
has its corresponding difficulty and resolution in the other. It becomes obvious 
that to find a completely satisfactory quantization of the zero mass Yang-Mills 
field, is to find a completely satisfactory quantization of the general theory of 
relativity. 

For this reason, all the work in this paper will deal primarily with the Yang- 
Mills theory. The correspondence of the equations in the gravitation theory will 
be developed in an appendix. 

YANG-MILLS FIELD THEORY 

The source of gravitation is energy and momentum, quantities which are locally 
conserved. The gravitational field carries energy and momentum and hence must 

See the previous paper “Closed Loops and Tree Diagrams” by R. P. Feynman which 
hereafter we call I. 
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be coupled to itself. The source of the Yang-Mills field is isotopic spin current, 
a quantity locally conserved. The field carries isotopic spin and hence must be 
coupled to itself, to make a nonlinear field theory. 

We shall formulate the Yang-Mills theory in the special case that it is inter- 
acting with Dirac matter of spin + which carries half integral isospin (that is, 
is a representation of SU,). It is readily generalizable to matter of any spin, or 
of several kinds-but the problems we wish to deal with are not at all affected 
by that. In fact, we find that our problems arise entirely with the field acting 
upon itself alone, the addition of other matter as sources only making a small 
additional algebraic complication, and no new physical problems. Again, exten- 
sion into SU,, can be made immediately, merely by a reinterpretation of symbols, 
so to get to our real problems as quickly as possible we suppose matter repre- 
sented by an SU, spinor, Dirac spinor #, in interaction with an isospin vector 
and four-space vector field A, with Lagrangian 

L a t t e r  = $Y,(iVU - T.A,)* + m** (1) 

where T are the Pauli matrices for isospin. A rotation in the SU, space induces 
on # the transformation I/ + ei7*”# = (1 + i.r.a)# for infinitesimal rotation and, 
on T.A, the transformation eir.aT.A,e-iT*a = T-(A, - a X A,) for infinitesimal 
a, where we define the cross product X between two isovectors A, B, with com- 
ponents A,, Bi, 

(A X B)k = A k i j A i B j ,  

where the coefficients of the Lie group Akij are defined by 

T,Tj - 7jTi = ihijk7k. 

(For SU, in the three-dimensional isovector space, this is just the ordinary cross 
product of vector analysis in three dimensions.) Then [ T ~ A ,  T . B ]  = i ~ .  [A X B]. 

If we now ask that our expressions be invariant for local SU, transformations, 
the quantity a becomes a function of four-space position, and does not commute 
with iV,, but this changes to i V ,  - T-(V,a).  The expression (1) will be invariant 
if A,, changes by 

A, --f A, - V,a - a X A,. (2) 

Henceforth, our notation will be C , ,  for V,C and 

C ; ,  = V,C -- A, X C (3) 

is a “covariant differentiation” of any isovector C (which may carry other space 
indices, of course). This has the property that C ; ,  transforms as an isovector if 
C does. We call (2) a gauge transformation. 

Yang and Mills found an expression for a Lagrangian for the field A, that 
would be invariant under (2). The part that contains A, only is 

where 
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From (3) we find this antisymmetric E,, might also be defined in terms of 
covariant differentiation via 

C ; , ; ,  - C ; v ; ,  = -E,, X C .  (6) 

The variation of / LYM(A) dT with respect to A, we call R,(A). It is 

R,(N = -E,,,v (7) 

so that from (6) we can deduce directly that 

R,;,(A) = 0. ( 8 )  

This R, is a nonlinear operator, its linear part R,,(A) coming from the quadratic 
part of the YM Lagrangian 

The operator q2 6," - quqv is singular and does not have an inverse to serve as 
a natural propagator. 

We can write the full Lagrangian in interaction as a piece representing free 
matter $iy,V,# + m2$# and a part involving the fields 

L(A) = LyM(A) - J,*A,  (1 2) 

where J,, the current or sources for the field, comes from matter and is $~y ,# .  
It is then a consequence of the equations of motion of the matter (from varying * in [11> 

y,(iV, - T.Aj$ = m2$ 

(since they are SU, invariant) that this current is conserved : 

J,;, = 0. 

The field equations of motion upon varying A in (12) are 

R,(A) = J, .  (14) 

The operator R, is singular and the equation cannot hold for a general J , .  In 
view of the identity (81, this equation (14) can only hold if J, is conserved (13). 

and a, = T.A, .  Then the 
transformation of $ is to $' = u# and of an ordinary isovector C(=r.C) to 
C' is 

To study finite transformations, write u = 

C' = ucu-1 (1 5) 
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but the field a, transforms in a special way, with a gradient term, SU(2) 

where 

with 

a,’ = a(a, + t,)a-’ 

t ,  = iu-’(V,a) 

cUv = a,,vav,u - apav + a,a,, 

L = t Tr ( E U V E U J  

is an invariant. 

for commutators of 7. For example, equation (15) would become 
These expressions can be transformed to ordinary notation via the equation 

1 
3!  C‘ = C - a x C + +a X (a x C) - - a X (a X (a  X C)), (15’) 

or, in an obvious notation, C’ = e-(ax)C. The quantity t, is TST,, where 

T, = -a  .P - %a X a,, - &a X (a  X a,,) + . . .  (17’) 
or 

T, = (a X)-’(l - ecaX))a,,. 

We shall have to consider two other related theories with slightly modified 
Lagrangians which avoid the singularities of the propagator coming from (4), 
(9). The first we shall call Y M M ,  Yang-Mills with mass, and adds a term 
m2A,*A, to the Lagrangian: 

LyMM(A) = LYM(A) - +m2Au.A,. (19) 

The equations (1 4) now become 

R,(A) - m2Au = J, (20) 

which has solutions for any J,, for 

-m2A,;, = J,;,, (21) 

but if the sources are conserved we have (note A,; ,  = A,,,) 

A,., = 0. (22) 

As m2 -+ 0 the classical solution of (20) approaches solutions of the zero mass 
equation (14), solved with the subsidiary condition, equation (22). The second 
order operator Rz is now, in momentum space (see equation (11)) q2 6,, - 
quqv - m2 a,,, an operator which has the inverse “propagator,” 

(23) Prop = -(Suv - quqvm-2)/(q2 - m2). 

Thus, it leads to a definite quantum field theory without difficulties (we do not 
discuss divergence problems) if we proceed, in the usual way, by making dia- 
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grams with junctions determined by the nonquadratic part of the full Lagrangian 
and lines with the propagator (23) with m2 replaced by m2 - i~ for E +  +O. 
One possible way we shall try to define the theory with zero mass is as a limit 
of this theory with mass, as m2 -+ 0. The term quqv/m2 in the propagator makes 
it, at first sight, doubtful that such a limit exists, but for trees and single closed 
loops it does exist. 

The subsidiary condition (22) suggests, for m2 = 0, another modification 
which we shall call Y M D  (Yang-Mills plus divergence terms). It is obtained 
from the Yang-Mills Lagrangian with the divergence terms ( A , , J 2  left out, or 

so that, for conserved sources (13), we have 

A v , v u : ,  = 0. 

A v , v  = 0 
This, of course, has a solution 

and therefore (26) is equivalent to the unmodified equation (14) solved with the 
subsidiary condition (22). 

In quantum theory, Y M D  leads to a nonsingular propagator 

- 6 , , / ( q 2  - i.). (28) 

The couplings are given by the nonquadratic parts of L y M D  (or L Y M ,  for they 
are the same). This is a definite quantum theory, and agrees with the limit of 
Y M M  as m 2  -+ 0 for trees, but not for diagrams with closed loops. Further 
modifications are necessary. We discuss these later. 

Thus, in classical theory we can define things either by L y M  or by L Y M D ,  or 
by L y M M  as m2 -+ 0. Ail three give the same physical result. In quantum theory, 
L y M  has difficulty in definition because of the singular propagator, but L Y M D  

and L y M M  as m2 --f 0 agree for trees because the theory of trees is so close to 
classical theory. For diagrams with one closed loop, L Y M M  as m2 -+ 0 is satis- 
factory and the loop when opened by the methods of I gives the corresponding 
trees. However, as we shall see, for a closed loop L y M D  is not satisfactory; upon 
opening the loop the correct tree is not obtained, and unitarity suffers. It must 
be modified by subtracting a contribution equal to a corresponding closed loop 
in which a space-time scalar (spin 0) isovector particle propagates coupled to 
A ,  (but not to other matter). 

The difficulties will be discussed in detail below but some hint may be given 
here. It appears that we must arrange, for quantum mechanics, that the equation 
(27) must not be left as a consequence of a classical equation of motion, but 
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must dynamically come from a Lagrangian also. If P is a spin 0 isovector field, 
the Lagrangian 

L, = -+P;,.P,, (29) 

leads to the equation of motion 

H P ; u , u  + P,,;,) = p , u : u  - +A,,, x p = 0. (30) 

p = A u , u ,  (31) 
If we set 

equation (30) reduces to (27), so if P = A,,, is true initially, it will be always, 
and it appears that the addition of +(A,,J2 to L,, must be compensated by the 
subtraction of L,. 

QUANTUM THEORY 

There are many ways suggested to pass from classical to quantum theory. The 
one we shall use, to study the difficulties, is the path integral method which says 
the quantum mechanical amplitude for an event arises from the path integral 

over all fields subject to special boundary conditions, where L, is the total 
Lagrangian and the integral is over all fields, symbolized by 9 A 9 $ .  If the 
matter field is a Dirac field suitable modifications are made either by using 
operator calculus, or by changing certain signs in final diagram expressions or, 
if you prefer, using scalar matter for an example or no matter field at all. In 
this paper we are concentrating on the real difficulty, which lies in the properties 
of the Yang-Mills, or gravity Lagrangians, and a detailed study has shown that 
addition of matter makes no new problems, provided its Lagrangian is invariant 
under the correct transformation (2). Therefore, let us leave the matter field out, 
for later integration perhaps, and simply study (32) with (12) substituted for 
L,(A *) 

Expression (33) is meaningless, however. This is because there is a direction 
in which A can be changed which does not alter the integrand, namely the 
change (16) [in first order, ( 2 ) ] .  Thus, when moving A in this way, the integral 
is infinite. It is analogous to a multiple integral over many variables over an 
infinite range but the integrand does not depend on one of the variables. What 
the author did at first was try to ignore this difficulty and to proceed to compute 
a number of processes in detail (analogues of Compton effect, bremsstrahlung, 
radiationless scattering, vacuum polarization, and second-order scattering with 
scalar matter interacting with gravitational fields or Yang-Mills field quanta 
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instead of photons). The aim was to see if any difficulties arose, and to study the 
convergence problem, which will not concern us here. The difficulties which 
did arise having to do with the gauge invariance were then studied carefully by 
many tedious examples and finally by more formal and powerful methods. It is 
these latter results which will be described here; although they are more difficult 
to understand directly, they do permit a larger overview of the problem. The 
various theorems have all been checked by examples (in fact, in nearly all cases 
the examples suggested the theorems and guided the “more powerful methods” 
on what to prove). 

The expression (32) was immediately converted to rules for diagrams. To be 
explicit, a YM field quantum is represented by a polarization four-vector iso- 
vector e,. Its coupling with matter in the Dirac case is T.e,y , ,  while matter 
propagates with its usual propagator; for example, - m)-l. The term of 
third order in A in LYM, namely (A, x A,).A,,,, leads to an interaction where 
three field quanta come together. For such a junction with quanta of momenta 
q”, qb, qc, (so q” + qb + qc = 0) of polarizations a, b, c ,  the amplitude contribu- 
tion is 

(@ - G)b”+,, x c,) + (d - a%-(b, x a,> 

+ (4; - qYb)a”*(C, x b,). 

The fourth-order term $(A,  x A , ) . ( A ,  x A,)  results in junctions where four 
field quanta come together. 

A free quantum entering or leaving has a polarization a, satisfying (from 
equation 10) 

(q”)% - (q%)q,” = 0. (34) 

If it is physical (qa)2 = 0 and, further, it is transverse, 

q,”a,, = 0. (35) 

On the other hand, (34) has solutions even if (qa)2 # 0, namely a quantum 
polarized in the direction of its momentum, a pure divergence 

a,, = q;a. (3 6) 

Such an incoming field must have no physical effect. The result of substituting 
q; for a,, in the sums of all diagrams for a process always turns out to give zero. 
This is an expression of the gauge invariance condition. It also means that for a 
free photon, the polarization a, is not unique, a gauge change a, -+ a: + q,”a 
has no effect. Although equation (2) is nonlinear, in the quantum perturbation 
theory it becomes the condition that an extra perturbation of the form (36) 
acting to first order in all the diagrams in which it can act produces zero. 

For the Yang-Mills propagator of the field quanta in the case m2 = 0 ( Y M ) ,  
we replace e,, e ,  at the ends of a virtual quantum by equation (28), -S,,,/q2. 
This is not strictly the reciprocal of the singular R,,, for R, has no reciprocal, 
but in analogy with electrodynamics it was hoped that this propagator would 
be satisfactory since the sources were conserved, q,J, = 0, and an extra photon 
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coupled via a gradient, (36), had no effect. For example, it was expected that 
the -q,,qv/m2 term of the propagator with mass, equation (23), would vanish 
for this reason, and the limit m2 -+ 0 could be taken to lead Y M M  to this Y M D .  

All this was confirmed with tree diagrams, and with trees no difficulties arose. 
A difficulty arose with a closed loop. Its origin can be understood in the 

following way when considering the relation of the loop to the unitarity condi- 
tion or to trees if the loop is opened. Let the q of one propagator of the loop 
be in the z direction and write the - S,,/q2 as - eae,,/q2 or as 

(37) 
1 - (exex + eyey + (e, - eXe,  + 4. 
4= 

Thus, at the pole of q2 we have as necessary, and expected, free quanta entering 
and leaving with transverse polarizations x ,  y .  But we also have an extra quan- 
tum that we do not want, coupled as e, - e, entering, and e, + e, leaving. 

At first sight we might expect this extra quantum entering as it does via e, - e, 
(which in the direction of q, for q, = qL) to give zero. Does not gauge invariance, 
which we have maintained carefully, insure that the action of such a potential 
(as equation 36) gives zero, when diagrams are summed? But pure divergences 
of the type equation (36) give zero only for real physical circumstances when all 
the other quanta acting either have their sources explicit in the diagrams (so 
a,, = q,,a can act directly on these sources, too), or are genuine external free 
quanta satisfying equation (34), so that they are purely transverse equation (35) 
or else they are pure divergences themselves, as in equation (36). The trouble is 
that the quantum leaving upon opening (37) is polarized in the direction e, + e, 
or (x ,  y, z, t )  = (0, 0, - 1, l), which is neither transverse to q = (O,O, Q, Q) nor 
in the q direction, and has no apparent source. Thus, the last term in (37) does 
not give zero upon opening the loop but contributes a residual. This residual 
is easily calculated and is a rather simple expression, so it was easy to find a 
rule for subtracting a diagram to eliminate it. The rule is formulated in connec- 
tion with equation (29). In perturbation theory we subtract a term corresponding 
to a space-scalar isovector meson going around the loop. It propagates via l /q2 
and is coupled via ( A ,  X P).P,,. That is, the scalar meson is neither created nor 
destroyed but two meet at a junction with a vector quantum. With in and 
out momenta q1 and q2, isospin quality pl, p2, they couple to an isovector 
a,,($ = q1 + qa) via 

a,.(p, x Px4: + 8). (38) 
They appear only in closed loops, never as free mesons. Where a loop is 

opened, their contribution cancels the unwanted last terms of equation (37). 
For tree diagrams, the scalar mesons do not appear and there is no difficulty 

with the propagator of equation (37). This may be seen, for on opening a line 
for a propagator in a tree in (37) the e, - e, couples to a piece entirely disjoint 
from the e, + e, piece and, therefore, being a gradient coupling it gives zero on 
this piece. 

The questions can also be studied using YMM and the propagator (23), ex- 
pecting to take the limit as m2 + 0. The reader must be warned, however, in 
doing that the free wave external quanta must first not be taken to satisfy (34), 
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but rather that equation appropriate to the m2 # 0 case (namely, equation 34 
with 0 replaced by m2a, on the right-hand side). If he uses (34) unchanged, the 
limit for trees or one loop will exist, but it will not agree with the aforementioned 
ma = 0 theory. With the proper modified equation (34), the limit again exists 
but is different, and agrees with the aforementioned theory. 

We cannot here go further into these explanatory details via perturbation 
theory, which serves so admirably as a laboratory to learn about these matters, 
but will now go directly to a more general and abstract mathematical way of 
dealing with them. First we discuss the theory of trees, and can follow I directly, 
except to correct small details, for R, has no inverse. Next we discuss one loop, 
and prove a relation between Y M D  and Y M M  plus a scalar meson which 
verifies our statement about one such loop. Finally we say what we know about 
double loops. 

TREES 

In this section we discuss tree diagrams in the Y M  theory and show first that 
the obvious prescription for writing them down using the propagator -6,,/q2 
gives results which are completely satisfactory and gauge invariant. Next we 
show that the theory with mass, for which no ambiguities arise, yields as ma + 0, 
the same result as the previous - 6,,/q2 propagator. In the next section we will 
discuss problems connected with the trees expected from opening closed loop 
diagrams. We shall use the notations and ideas of I in our discussions. 

Let us formulate the theory of tree diagrams if we use the propagator 
-6,,/q2 which we symbolize as R;; to analyze the Lagrangian (12), (1). We 
separate &(A) into a second order (in A )  part &,(A) of equation ( 1 1 )  and a 
part of higher order in A ,  

and 
&(A) = Ra,(A) - &(A) 

M A )  = &,(A) - (Av,v),. 

(39) 

(40) 

This &,,(A) is just A,,,,, of course. Then the construction of trees with R& 
as the propagator means solving by iteration the equation 

where 

and an accompanying equation for matter 

$ = (iYUVU - m)-'{Y,(7*A,)$) + $O (43) 
where Ao and $O are appropriate (see I )  asymptotic functions representing the 
incoming and outgoing external lines, satisfying 

and 
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The resultant tree t ,  can then be expressed in terms of A ,  $. It is easiest to express 
the effect on it of one extra disturbing external line, say a field F, acts on it in 
first order as 

F,.(&(A) + J,)dr.  (45) 

Equation (43) means that $ satisfies the equation of motion for its field (just 
below equation 12) and hence, its current equation (42) satisfies (13). Multiplying 
the equation (41) by R,, and using (39), (40), and (44) shows that A satisfies 

R , ( 4  = J, + A,,,, - %v,. (46) 

This appears, at first sight, not to be the expected equation (14), but to carry a 
residual D,, where we write 

D = - A!,Y. (47) 

However, taking the covariant derivative of each side of (46), we find 

D,,;, = 0 = D,,,, - A, x D,, (48) 

which we are solving (as one readily finds by taking the divergence of equation 
(41)) by the iteration 

D = Ri;{A, X D,,}. (49) 

Now asymptotically A, = A;, so that asymptotically D = 0, so that (48) says 
D = 0 everywhere (it has no source), so equation (46) implies that A does satisfy 
the expected equation (14). It does so with the special condition A,,,, = A:,,. 
If, for example, A: were always chosen to satisfy A:,, = 0, then A,,, would be 
that solution of (14) satisfying the supplementary condition (22). (Of course, no 
restriction need be made on A:,,, so none exists on A,,,.) 

This is satisfactory but to be complete we must now show that the tree value 
does not depend on A,O if it is changed by a gauge transformation. We need only 
prove this for arbitrary first order changes A: -+ A: + V,a. That means only 
that we must show that a pure gradient external line (36) has zero coupling. 
This is easiest done by letting this line be the last line F, in (45) to get 

c 

St = V,a-(K,(A) + J,) d ~ .  J 
Integration by parts and noting that equations (8) and (13) imply (since 
R2u.u = 0) 

&,(A) + JU,, = A, x (-R,(A) + J,) 

so that in view of (46) and (47) we get 

S t  = a*(A, x D,,) d~ = 0 (51) s 
since D = 0. Therefore, the theory is invariant under gauge transformation, and 
pure divergence external lines have no influence. 
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The reader may be curious to know, when A,” is changed to A: + V,a, what 
happens to A,. We do not require this for our further studies, but it is interesting. 
It is simply changed by a gauge transformation ($ is also changed in the same 
transformation) and becomes A, + V,P - A, X (3 = A, + Pi,. The condition 
that D = 0 or A,,, = A:,, becomes P,,,, - a,,, - (A,  X P),, = 0 which is 
solved by iteration as 

P = Ri2{(A, X P),,} + a (52)  

since asymptotically P = a. This equation has a kernel adjoint to (60). 
Alternatively, we could define the trees as those calculated for Y M M  in the 

limit m2 --+ 0. For YMM we add -m2A,.A, to the Lagrangian so the propa- 
gator becomes unique. Thus, the expression for trees from (1) is unambiguous, 
we solve (43) and, instead of (41), 

A, = (RZD - m2)-’(S,, + m-2V,Vy)(Kv(A) + JJ + A,” (4 1 ‘1 
where A: now satisfies 

which implies that 
R,,(Ao) - m2A: = 0, 

A:,, = 0. 

(44’) 

(53) 

Now equation (41’) implies that A satisfies 

R,(A) = J, + m2A,, (46‘) 
which implies A,,, = 0. 

In view now of the relation preceding equation (51), whose left side vanishes 
from (46’), since A, X A, = 0, the gradient terms in (41’) vanish and we could 
have used instead 

A, = (RzD - ma)-l(Ky(A) + J,} + A:. (4 1 ”) 

This now has an evident limit as m 2 + 0  (in equation 41’ the limit was not 
evident because of the m-”.  This limit is (41) with the supplementary condition 
(53) and therefore (14). We have already seen this supplementary requirement 
does not destroy the gauge invariance. 

SINGLE CLOSED LOOP 

We have seen that the single closed loop calculated (for m2 = 0) with propagator 
R;: does not agree with expectations if the loop is opened. This is because the 
propagator generates some new unwanted terms according to (37). There 
(e, - et)(e, + et) can be represented as a scattering in which a particle of 
momentum q, (now q2 = 0) comes in polarized in the direction q, and goes out 
with the same momentum but polarized in the direction Nu where Nu is a four 
vector--(0 0 - 1, 1) in our case-of zero length such that q . N  # 0. We shall 
assume that the correct theory is what would come if you would just close the 
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tree diagram with transverse quanta. If we call this loop formed on closing 
trees with transverse quanta “closed loop YM,” we have 

Closed Loop YM = Closed Loop YMD - X (54) 

where X is the result of closing a tree with two extra quanta of momentum q, 
polarization q,a and N,a/(q.N).  Closing the tree would be equivalent to calcu- 
lating this extra tree and in place of a0S.a putting the propagator l / q2  (and 
taking the trace of the SU, indices). During all this, the other external lines are 
represented by Ao, etc., in the usual way, We calculate X now. We shall leave 
out the inessential complication of the matter field +, and take J,  = 0. 

Therefore, we are able to calculate the tree X with an external gradient F, = 
V,a and another external photon, say b,, where 

b,,, = a .  (55) 

To do this, we can use the formula equation (45) where the A, is to be calculated 
from (41) where A: contains properly all the physically external lines and also 
(in first order, of course) the field b,*. For that reason, equation (44) no longer 
holds but we have instead (defining S,) 

Since b, is a free wave, q2 = 0, but it is not transverse so R,,(b) = q2b, - 
quqvb, = +b,,,,, so that we have from (55 )  

S,  = a?,. 

The equation (41) now leads to a modification of equation (46), namely, 

&(A) = J, + A,,,, - A!,,, + s,, (57) 

but we recover our original equations if we now put 

D = A,,, - A!,, + a (58 )  

so that D asymptotically is a this time. Now our tree (50) becomes (following 
the steps to equation (51)) 

X = a*(Au X D,,) d ~ .  .c (59) 

We see from taking the covariant derivative of (57) that D satisfies (48) but that 
it is being solved by the iteration 

D = R&{A, X D,,} + a .  (60) 

It is evident from inspection of (59) and (60) that Xis simply the tree that would 
result from a closed loop diagram of a field P coming from the Lagrangian (29) 
or P,,P,, + P*(A,  % P,,), thus leading to the propagation equation (60) and 
the closed loop (59). This is most obvious if we choose the gauge A:,, = 0. 
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It is also readily seen that Y M M  leads to the same thing, as m2 -+ 0. The 
easiest way is first to calculate the closed loop via the propagator of YMMD,  
namely (q2 - m2)-l  6," and show that it exceeds that calculated by 

(q2 - m2)-1(8Uv - quqv/m2) 

by a term which is just what you would get if a scalar particle went around a 
loop with the Lagrangian 

L = -+(P;,.P,, - m2P.P); (61) 

therefore, with propagator (q2 - m2)-l and coupling P,,.(A,, X P). In all these 
new propagators, the limit as m2 -+ 0 may be taken. You can do all this arguing 
from tree closures just as before or by more formal methods. Because these 
latter methods may be interesting in further investigations, we describe them 
in the next section. 

FORMAL THEORY OF SIMPLE LOOPS 

We will prove in a more formal way that in diagrams containing up to one loop, 
if the propagator S,,, is used, we must subtract the action of a particle acting 
under the action from the Lagrangian (29). The easiest way to proceed is to 
prove the corresponding theorem for Y M M ,  the Yang-Mills theory with mass, 
and then to take the limit as m2 approaches zero (which limit exists for one loop 
diagrams). We shall write CL Y M M  to represent the expression for one closed 
loop, for Y M M ,  that is with propagator (23). We have shown, in the previous 
paper that the contribution for all closed loops is given by (see I, equation 39 
and 40) 

1 exp { i [L(A + 0) - D 6L(A)/6A - L(A)]  d7 9 D  1 
where L(A) is the appropriate Lagrangian and we integrate over all D such that 
asymptotically D,,,, -+ 0. To get the term corresponding to only simple closed 
loops, the expression in the exponent must be expanded to second order in D 
and higher terms dropped. This is evidently just the terms of second order in 
D in the expansion of L(A + 0) in powers of D. Call it L"(D), a quadratic func- 
tion of D containing A implicitly. For example, for the Lagrangian (19), a direct 
substitution of A,, + D,, for A,, and selection of the second order terms shows 
that in this case 

Here E,, is given by (5 ) ,  a function just of A, while 

F u v  = D,;v - Dv;, (64) 

with the definition of the covariant derivative being that appropriate to just the 
external field A given by (3). We here explicitly suppose that there is no matter 
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present in addition to the field in order to avoid inessential mathematical com- 
plications. The reader can reinstate the terms representing matter and its 
coupling to the field and verify that they have no effect on the sense of the 
relations we shall prove. Therefore, 

In the same way for the Yang-Mills theory with mass with divergence terms left 
out, so the propagator is aUv(q2 - m2)-2 ,  the closed loop expression is 

We shall show that leaving out the divergence terms does make a difference, (66) 
is not equal to (65). However, if we subtract from each loop of (66) the action 
of a scalar particle, they do become equal. That is, we shall prove 

CL Y M M  = CL YMMDICLSM (67) 
where CLSM is the closed loop from a scalar particle of mass m 2 ;  

Since the right-hand side of (67) evidently has a limit as m2 --f 0 (because all 
propagators are nonsingular), we have proven that the left side does have a 
limit even though the singular kernel makes that less than obvious. We may 
therefore take the right side substituting m2 = 0 (that is, CL YMDICSL) as the 
single closed loop action for the YM theory with zero mass. This is what we 
wished to prove. 

We do not really prove (67) but only that both sides are equal within a con- 
stant (independent of A )  normalizing factor (infinite as m2 -+ 0), but such a 
constant factor in path integrals can be included in their definitions and has no 
effect on the physics that results from them. We now proceed to a proof of (67). 
First, in (65), replace D, by Dk and then substitute 

D: = D, + a: ,  (69) 

for arbitrary a. Evidently, 9 D ’  = 9 D  and FLY = F, ,  - E,, % a in virtue of 
(6). Hence, 

G M M ( D ‘ )  = G M M ( D )  - +(E,y X a)*F,v  + (E,v*Dp X a ; , )  

+ W , V  x a>.(E,v x a) + +Euv*(a;, x a:v) 

When calculating LnyMM(D’) d7, however, the third and fifth terms containing 
a ; ,  can be integrated by parts, using (7) to produce 
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However, the external field A is such that R,(A) = m2A,, (equation (20), with 
J, = 0, for we are omitting matter terms) and this substitution tells us 

CLYMM = exp i [LFMM(D) - m2D,,a,, - +m2aa;, X a,,] dr B D  (71) s (s 1 
valid for any a. 

expression (65) with D called D’ by  the path integral (a functional of A) 
We use this transformation in the following way. First, multiply the original 

X = exp - (m2a’ s {is 
to get 

X-CLYMM = exp - [LFMM(D’) s (zs 
Now define the linear operator G: 

+ +(m2a’ + a:,,,,, d.r BD‘Ba‘. (73) ) I  1 
Ga‘ = a:,,, + m2a’ 

to substitute a’ by 
a‘ = a - G-lDL,, 

so Ga’ = Ga - DL,, and Ba‘ = B a ,  so that we get 

(74) 

(75) 

[LFMM(D’) + +(Di,, - maa - a;,,, 

Now substitute D’ via (69) and use the algebraic steps leading from (65) to (71) 
to get 

X.CL Y M M  = 1 exp (i [LGMM(D) - maD,,a,, - +maa,,a:, 

(76) 

The integral on D, a has again separated, that on D being just CLYMMD and 
that on a (putting a = P/m, and changing normalization constants, so 9 a - t  
9 P )  is just CLSM of (68) so that in (76) we have shown that 

X *  CL YMM = CL YMMD * CLSM. (77) 

To finish the proof of (67), we must merely show that X defined in (72) is 

x = (CLSM)S. (78) 
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This can be seen by noting, with the definition (74), 

while 

CLSM = exp {i f (PGP) d i b .  

(79) 

Gaussian integrals are proportional to the reciprocal square root of the deter- 
minant of the coefficient matrix in the quadratic exponent. Therefore, (80) is 
proportional to the - 1/2 power of the functional determinant of G ,  while for 
(79) it is G2. But the determinant of the square of a matrix is the square of the 
determinant of the matrix so that, except for an unimportant constant factor, 
as far as dependence on A is concerned, equation (78) holds, and equation (67) 
is established. 

We may now see what is going on if we attempt to calculate CL Y M  directly 
for m2 = 0. When we do, the integrals on D, usually have a convergent integral 
but now there is one “direction” into which we may move D,, namely, D, --f 
D, + a,;,, which does not affect the integrand (see equation 71 for m2 = 0) 
so the integral in this “direction” diverges. We attempt to put a convergence 
factor on it of the form m2D,D, and everything turns out to be all right as 
m2 -+ 0. But if instead we try +(D,,,)” as a convergence factor (CL YMD) ,  we are 
controlling the integral in a way that depends on A ,  and we shall have to divide 
by CLS to take out this dependence. 

As a final note, we give another way of dealing with things that appear to be 
simpler and to make the gauge invariance of the final result more obvious. On 
the other hand, however, it seems not to give the same result. Suppose, first, we 
form a different version of YMD,  say YMD’, by modifying LI;MD of (63) by 
adding the more obviously covariant +D;,D;,, instead of +D,,D,, as in (66). 
Next, suppose that in calculating CLYMM from (65), the external field A, is 
calculated for the case m2 = 0, and is not altered when we consider adding the 
mass term m2D,D, and later varying m2 toward its limit zero. Call this CL YMM’. 
This means that we use &(A) = 0 (rather than &(A) = m2A,) in the steps 
after (70). Then in (72) and (74) replace a;,,,  by a:,;,, and in (75) use DL;, for 
DL,,. What one finally finds is that 

where 
CL YMM’ = CL YMMD‘ICLSM’ (67’) 

CL YMMD’ = 1 exp { i I [LI;MM(D) + +(D,:,)2] d i b  (66‘) 

and 

The quantity CL YMM’ is calculated from an expression that looks exactly like 
(65) except A, is different. The A, is calculated with m2 = 0; it satisfies R,(A,) = 
0. Now the result on the right-hand side of (67’) has a limit for m2 + 0, namely 
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just put m2 = 0 in the Lagrangians. One is tempted to define this expression for 
m2 = 0 as the value for one closed loop for the YM theory; it is more evidently 
gauge invariant than our previous expression, the right side of (67) with m2 = 0. 
However, it is not evident that this limit of (67’) is the same as the limit (67). 
Direct calculations of examples indicate that they are not the same. Expression 
(67) seems more satisfactory because it comes from the trees argument, and it is 
the limit of a complete theory ( Y M M )  using the same rules for diagrams for all 
lines whether they be external or are on a loop. In the gravitational theory, in 
which the method of including a mass in the original equations is not completely 
obvious (although it is in the second order Lagrangian L”), it is much easier to 
find and define the analogue of (67‘) (see the Appendix). 

PROCESSES WITH MORE THAN ONE CLOSED LOOP 

Processes with more than one closed loop can probably be defined and calcu- 
lated in terms of lower order processes by using unitarity to obtain the imaginary 
part and a dispersion relation to obtain the real part. Since the lower order 
processes (even up to one loop) have been successfully defined, probably a 
complete theory now exists, at least in principle. However, I have tried to find 
an explicit formula for these higher processes in the massless case in terms of 
rules for diagrams so that an explicit expression for a diagram of any complexity 
can be written down. I have not yet succeeded in doing this, but should like to 
report in this section on a few observations and relations noticed in attempting 
to do this. 

The problem is to find a definition of closed loop diagrams for m2 = 0 (say 
for definiteness, one with two closed loops), so that the result is consistent with 
unitarity and also with gauge invariance. The latter condition takes the form of 
the condition that an additional perturbing potential that is a pure gradient, 
6A,  = V p ,  will have no effect in first order. 

We cannot define the answer directly as a path integral, for that integral is 
undefined because of the singular kernel (m2 = 0). We expect, by analogy to the 
one loop case, that we could give the answer in terms of the Y M D  theory, which 
is not singular, with some modification (like subtracting the contribution from 
a scalar particle) but I do not know what the modification must be in the general 
case. 

Alternatively, we could try to define the answer (for two loops, say) by putting 
together lower diagrams with one loop, according to the principles of [I]. How- 
ever, here the parts which must be assembled (see [I], last section) are not com- 
plete sets of diagrams for a complete process in lower order. For a set of 
diagrams which is not a complete process, the result of the gradient potential is 
not zero but is somewhat more complicated, so it becomes difficult to insure 
gauge invariance. I have not yet carried it through carefully to see where this 
leads. 

The attempt that I did try at first, and the only one for which the study is 
virtually complete, was to try to define the general result as the limit of Y M M  
as rn2 --f 0. First I explicitly calculated the result for two connected loops (as in 
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the Greek letter 0) in an external potential for the Yang-Mills field with m2 # 0 
using the propagator (23) or rather its analogue for propagation in an external 
field A,. I then compared the result to what one calculates with propagator 
analogous to 8Jq2 - rn2) - l  (that is, of YMMD in an external potential) and 
calculated the difference. The idea was to find an expression for the difference 
so I would know just how Y M M D  must be modified to get YMM.  If this 
modification had a limit as m2 + 0, I would find the natural modification of 
YMD needed to define and calculate YM.  

For two coupled loops there are three propagators, so the q,q,/m2 of equation 
(23) leads at first sight to terms of order m-6,  and having no limit, as m2 + 0. 
But we learned in the one loop case that the m - 2  term can be simplified, and in 
fact does have a limit. I have succeeded in simplifying the m W 6  terms and have 
gotten rid of terms of order m-6 and m - 4  but am still left with a term of order 
m - 2  which I am unable to simplify further. I conclude that for two coupled 
loops there is no limit as m2+0, and therefore, in general, the Yang-Mills 
theory as usually formulated and interpreted in diagrams in the usual way is a 
theory that does not have a limit as m2 --+ 0 and that such a limit cannot serve 
as a definition of YM.  (By Yang-Mills with mass, we mean to add simply 
-+m2A, .A, to the Lagrangian. This is arbitrary; perhaps other terms depending 
on m might be added to make a better definition, and one that does yield a 
limiting theory as m2 -+ 0.) 

I must therefore return to other methods of defining YM for m2 = 0; I have 
not yet done this. 

During the course of investigating these matters, I did find a way to express 
the m - 2  terms which I was able to generalize to all orders of closed loops in the 
complete theory. What I did first was to express the m - 2  terms in terms of the 
Y M M D  propagator so that limits could be easily studied, but I could not guess 
a t  the general form of this expression for loops of arbitrary complexity. How- 
ever, when I expressed these m - 2  terms in terms of the Y M M  propagator I was 
able to see the generalization. This relation, however, was no longer in a form 
that permits one to see that the limit surely does not exist, but it is nevertheless 
interesting, and we discuss it in the next section. 

RELATION OF Y M M D  TO Y M M  

Ideally we should like to express the complete YMM in terms of Y M M D  
with some modification, and study the modification as m2 + O .  The ex- 
pression may be difficult because in first order it says that to find Y M M  one 
should subtract from Y M M D  the result of a scalar particle loop. This subtraction 
process may be hard to define and find in higher order. I thought, therefore, 
that since this also says that in first order Y M M D  is equivalent to the action 
of a pure vector particle Y M M  plus a scalar particle, such a relation is physical 
and might be generalized. Therefore, although it is not what I really desired, I 
was led to see whether I could express Y M M D  as the action of a vector and a 
scalar particle (both acting nonlinearly, and in interaction). It is possible and 
the result is given here. 
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We shall no longer separate out tree diagrams and closed loop diagrams, but 
consider the theory as a whole in all orders as a path integral. 

To do this, we first express the amplitude for the Yang-Mills theory with 
m2 # 0 and with the divergence term added (omitting other matter for simplicity 
of exposition) as a path integral, as in equation (33), 

amp ( Y M M D )  = [LYM(A) + +(A,,,)2 - +m2A,.AS] dr 

We may multiply by the inessential constant 

where P is a space-scalar isospin-vector field, to get 

amp ( Y M M D )  = [L,,(A) + +(A,J - +m2A,.A, 

- 3m2P2] dr 9 A 9 P .  (83) 

We shall now make some transformations of the integrand in the exponent. 
First we substitute P 3 P - rn-'A,,, (this does not change 9 P )  and perform 
an integration by parts to convert this integrand to 

i 

LYM(A) - +rn2A,.A, - mA,.P,, - +n2P2. (84) 

Now we shall make a finite gauge transformation of A, to A:, using the notation 
of equation (16) with a, = T-A, with 

u = exp (-im-17.P). (85)  

This leaves the expression for LYM(A) unchanged, or LYM(A) = LYM(A'). The 
volume element in the path integral space remains unchanged in form, because 
the addition of T, does not change the differential B A  and the rotation of u 
among the isospin components at each space time point makes no change for 
we are integrating with respect to all of the components. The expressions A,.A, 
and A,.P,, are changed, however, and we are left in the integrand with 

LYM(A') - +m2A;.AL + m2Ah.u(T, - rn-'P,,)u-' 
- +m2T,.T, + mT,.P,, - +m2P2. (86) 

Next we expand T, explicitly as in (17') but with a = -m-lP.  The quantity 
aP,,a-l is similarly expanded just as in (15'). More strictly, we should have 
written the term A:.u(T, - m-lP,,)u-l as Tr(a;u(t, - m-lT.P,)u-l) but we 
hope the meaning was clear. We obtain, after a number of integrations by parts, 
the result that the integrand in the exponent of (83) may be replaced by (dropping 
the prime on A;) 

m2 
2 LYM(A) - +n2A,.AU - - P.P f P:,. 
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Here P;, = P, - A, X P and the series continues, with the n-th term being 

P;,.(((n + 2)n! mn)-l(P x>”P,,}. (88) 

The first two terms are the Lagrangian &,,(A) of the usual Yang-Mills theory 
with mass. The remaining terms are the nonlinear Lagrangian of a spin zero 
isospin vector particle of mass m2 coupled to the vector field A,, and to itself. 
The Lagrangian of this field is 

1 
LSC*LARM(P)  = -+rn2P.P + P:,. +P,v + G P  x P,, { 

1 + @ P x (P x P,J + * 

This is what we set out to prove in this section. 
The expression to third order (and partly to fourth) has been confirmed by 

actual calculations on double loops. In fact, it was from such calculations that 
the form of the third and higher terms were guessed, and the proof was only 
found after the form was known. 

When matter is present, no change in the scalar particle Lagrangian results; 
it couples purely to itself and A,. 

To second order in P, the Lagrangian is precisely equation (61). Thus, for a 
single loop, where this order is sufficient, we have that YMMD is YMM plus 
a scalar particle (61), or Y M M  is Y M M D  minus this particle, a result which we 
proved before in another way. To this order, we can take the limit m2 + 0. 

The theorem to all orders is not useful for the case m2 -+ 0, for the expression 
(87) is meaningless in this limit. Since Y M M D  does have a limit as m2 --f 0, this 
suggests (but perhaps does not directly prove) that Y M M  has no such limit. 

To answer such questions, it would be much more satisfactory to have an 
expression for Y M M  in terms of Y M M D  and modifications instead of the 
other way around, but this I have not derived. 

At least one can prove from (89) that terms in perturbation theory having 
just two closed loops in the form of a B do not have a limit in the Yang-Mills 
theory with mass as m2 --+ 0. Direct calculation of these terms have confirmed 
this result. 

APPENDIX 

The quantization of the gravitational field presents us with problems nearly 
completely analogous to those of the Yang-Mills theory of the text. We point 
out some of these analogies in outline in this appendix in which the gravitational 
field equations are developed following the text development for the Yang-Mills 
field. The equations will be numbered as (nu) where (n) is the analogous text 
equation. We shall formulate the gravitational field in the special case that it is 
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in interaction with a scalar matter field (our problems are independent of the 
kind of matter used3). 

where g,, is the metric tensor, g its determinant, and guy its reciprocal. The field 
Lagrangian is that of Einstein: 

LG = g(g) (4a) 

where W is the scalar curvature tensor density or 9 = 9?Mvguv with gUv = 
G ( R , ,  - +guvR:), where R,, = RE,, and REvD is the Riemann curvature tensor. 
This Lagrangian is invariant under a general coordinate transformation xu 3 

f"(x") in which transformation the field quantities g,, are transformed to 

gks = (g,".P*$Y,B)f* (164 

We must substitutef"(x) for xu in the functional form of guv. Commas denote 
ordinary differentiation. For infinitesimal transformations, f = xu + q'(x), 
this becomes 

g,, --f g u v  + rl'.uguv + rl",vguu + 7'g,v,u (2a) 
to first order in 7. We call (2a) a gauge transformation. We define the covariant 
derivative of a vector (which thereby becomes a tensor) as 

in the usual way (including its usual generalization to differentiating higher 
tensors). For example, if 9," is a tensor density, 

Here, 

The Riemann tensor can then be defined by 

A!& - A!& = RgVaAA. (6a) 

The variation of 1 L,(g) dT with respect to g,, is -W'"(g). The fact that 1 L G  d7 is invariant under the transformation (2a) implies that the tensor density 
.BUv satisfies 

This coupling is not unique. For a full discussion of this question and for discussions of 
coupling to other matter fields (for example, spin +), see Elisha Huggins, Ph.D. thesis, 
California Institute of Technology. 
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By integrating by parts, the Lagrangian may also be written as 

This 8,’ is a nonlinear operator. If g,, is expanded as a,, + h,,, the part Wgv 
of 9,” linear in h,, comes from the quadratic part of the Lagrangian 

L2dh) = + S ~ i ; U v . u ~ u v , u )  - ~uv,v~,u,u (94  

where we define the bar operation on a tensor (now, in the Minkowski sense, 
not a tensor in the fully covariant sense) by 

C i V  = HC,, + c,, - ~ U V C U , )  

(repeated, the bar operation on a symmetric tensor restores the original tensor). 
Thus - - - 

~ z , v ( h )  = h,,wJ - h,u*uv - hvu,,, 

or in momentum space 

This operation is singular and is without inverse because identically 

or 

The first variation with respect to g,, of Lmatter from (la) we shall call Ybv. 
The full equations for the gravitational field with matter present becomes then 

B y g )  = P”g ,  4). (144 

The equations for the motion of the field 4 obtained from variation of Lmattef 
with respect to 4, (namely, guv+9,,v + m24 = 0) imply that 

a condition without which (14a) could not make sense in view of the identity 

To make a quantum theory, we would expect at first to write exp i[ L dr and 
integrate over all 9 g 9 4  as a path integral in the usual way (the integral over 
g,, at a point is g - 5 ’ 2  times the product of the ten dg,,). But this leads to the 
difficulties described for the Y M  case in the text. One can easily convert it into 
rules for diagrams in various orders. One way is to substitute g,, = a,, + h,, 
and expand in powers of h,,. The second order in h leads to the singular propa- 
gator (lla), so if the other terms are called sources we have 

( W  
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Other terms are represented as interactions between matter and gravity in the 
usual way. For example, matter is coupled in first order to h,, via a term 
hur$,z$,u - +m2huu$2, which leads to a rule that matter, in going from momentum 
p1 to p 2 ,  is coupled to one graviton of tensor h,, by an amplitude 

p jp :  - 3 Suv(p1.p2 - m2). 

There are new coupling terms of every order; that is, of junctions of every 
number of lines. We have made many calculations in this way to study the nature 
of the divergences of this theory. Here, however, we do not discuss these, but 
only problems in formulating the theory which arises from the singular nature 
of the operator 92,v of (1 la). 

A free graviton entering or leaving has a symmetrical tensor polarization e,,, 
and a momentum qu satisfying 922fiv(h) = 0 or (see equation ( 1  la)) 

q 2 ~ , , v  - 4Y47GI - 4u4ze,, + ~uvqu97~u7 = 0. (344 

If it is physical q2 = 0 and (34a) says it is also transverse, 

q& = 0. (354 

On the other hand, (34a) has solutions even if q2 # 0, namely a quantum partly 
polarized in the direction qv, the gradient of a vector f , :  

err, = 4uEv + qvfw (364 

a form we shall call a pure gradient, and one which corresponds to a pure gauge 
transformation (compare equation 2a). Such a potential has no physical effect 
and always gives zero effect on running all diagrams containing it. 

To deal now with the second order propagator, %'2,v(h), we can discuss a 
theory in which we modify the second order terms in the original Lagrangian. 
The modification we shall consider is to add huv,vhfiu,u to the Lagrangian so that 
it becomes simply 

L 2 G D  = 3jillV.UhUV,O. (25a) 

In all these equations by this method, we no longer have complete general 
relativistic covariance. We adopt the convention that repeated indices on the 
same horizontal line are to be summed with the Minkowski metric SPv. Indices 
repeated one upper, one lower are summed in the conventional way. 

The field produced from a source is now simply 

huv = (l/q2)%v. (284 
Of course, if the source is divergenceless, (28a) implies 

6 l v * v  = 0, 
so in that case our system is equivalent to the unmodified equation (14a). Further 
discussion exactly parallels the YM case. 

It appears, to get the single closed loop diagrams to work out satisfactorily 
if we add huv,vhuu,u to the gravity Lagrangian so that we may use (28a) as a 
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propagator, we must add the effects of a vector particle, field vector 7f going 
around a loop and having the Lagrangian density 

- 
27Pv77u:v = f V ’ I P V  + ~ U * f d V  - 77r?7u[hYY,u - hUV.*l (294 

where we have used the condition (22a). It is interesting that only terms of first 
order in h,, appear here. 

The tree diagrams we dealt with in the following way. The Lagrangian is 

L = B ( g )  + yk, $1 
and the equation of motion resulting from it is 

W & U V  = 9 , d g )  + y ,v (g ,  d) = 0, 

SL/W = W(+, g )  = - [V$ig””,,l,, + m24V$i = 0. 

(We shall henceforth write second derivatives like ($,,),v as d,,,, etc.) We think 
of g,,, as a,, + h,, and split off the second order operator from the rest, calling 

9’””g) = 9Yk) - m g ) ,  

9 Y ( g )  = 9Gxg)  - g , u , o v  - gvu,,, + 4 L v g u t , u t .  

(39a) 

(404 

(We have written 9gv(h) as 9 t V ( g ) ,  for they are the same.) Note that 9;Yv = 0. 
We write W(4, g )  = - U2$ + m2$ + s(d, g ) .  Thus, 9;; is just 1/02 times the 
bar operation. We then construct trees by the iterative solution of 

guv = 9GV-”’(g)  + K%)) + g,”w 

4 = (U2 - m2)-1{S(d, g)> + do, 

9!iV(g0) = 9h%(g0) + E,”u,uv + E ; u * u ,  - 6,,g,O,,,, = 0. 

( 4 W  

(434 

where gg,, 6 O  represent appropriate asymptotic waves. 

(444 
If one of the asymptotic gravitons Ell, is left out of the asymptotic waves g,”, 
the final tree amplitude is 

& = !” E , , ( ~ ” ( g ,  6)  + K”V(g, +)) d7. (45a) 

Multiplying (41a) by shows that g,, satisfies 

where the last term is zero by (44a), and we have put 

Cv = Evu,u - i3a.a. (474 
Taking the covariant derivative of both sides of (46a) shows us that 
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We are solving this via (49a) as we show as follows: Taking the bar and then the 
divergence of both sides of (41a), replacing W v  via (39a), we can show 

c, = r J - Z { - % y  + 9-:; + 92g1;>, 

The last term vanishes, and the others may be re-expressed (since their covariant 

derivative vanishes) as - {U ’ 7}(F’z - 9P7) which by (46a) leads us to 

so C, is zero everywhere as it is zero asymptotically. 
To show that the tree result does not depend on g,”, if it is changed by a first 

order gauge transformation, g,”, -+g,”, + t,,, + t,,,, we show that a pure 
gradient for the last line E,, = t,,, + &,, has no effect in (45a). Integration by 
parts gives 

which can be re-expressed as 

6t  = 4 1 T}Cg,7 dr = 0 (514 

since C, vanishes. 
When g,”, is changed by to,, + t,,,, g,, is changed by a gauge transformation 

(2a) or g,, +g,, + xu,, + xV,& - 2{pa .}xa with 7, = gpaXa. The condition 

C, = 0, or &, = g,”,,, means that the x is related to the 6 via xu,vv = t,,,, + 
v}xa),v which is solved by iteration of 

an equation adjoint to (60a). 
For single closed loops, the BzD theory does not agree with expectations when 

the loop is opened just as for the analogous Y M  case. To deal with single closed 
loops by closing a tree, we shall have to close a tree with an external gradient 
(t”,, + &,) and another external graviton, say b,,, where 

L v  = lit,. (554 

Now, if g,”, contains all the physical external lines and also b,,, we have (note 
(72 = 0, so 9g&(b) = 0) 

92$’(gO) = W$V(b) = -&,. (564 
to put into (46a). We next define a new C,  by adding a term 45, to (47a). Now 
our tree is (51a) but C, solves by iteration the equation 
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If we choose guy,, = 0, then {u ’ u} = 0 and the bar can be left off of Co,,. 
It appears that this tree would be the tree coming from the closed loop dia- 

gram of a field coming from an action 

where we explicitly assume that g,,,, = 0 and where the u, T are summed co- 
variantly but the index v is summed by Minkowski’s metric. The first variation 
of the action with respect to is 

as required to generate equation (60a) with C, = 7”. The Lagrangian of this 
action can also be written 

L, = 2q:v?iz:v (29a) 

We now give the equations analogous to those in the section “Formal Theory 
of Simple Loops.’’ We imagine the tree fields as external fields g,,, and work out 
the contribution of one extra closed loop. That is, (see 62), we replace g,, by 
g,, + H,,, in the Lagrangian and expand to second order in H,, (we omit the 
matter field here). The second order Lagrangian which results is 

LL = 1 fi dT( - @J&g + +ggTflrlH,v;r - RUvH ur R“’ v 
+ R u ~ H ~ : R  ,:,,>. (63a) 

Here, g,, is a fixed external field, R,,,, is the curvature tensor of the field g,, 
and we define for any tensor Xu,, 

; P , v  = %(Xu, + X”, - guvx3 

and all raising and lowering of indices, and Christoffel symbols in the definition 
of the covariant derivative, is with the metric tensor g,,. This is the Lagrangian 
of a tensor field in curved space. For example, it would be the proper Lagrangian 
for discussing weak gravity wave propagation in an otherwise strong given field; 
that is to say, it would describe weak gravitational effects in a curved space. 

Now we should like to use the trick of adding a mass term to the original 
gravity Lagrangian and we need the analogue LOM of (19). There is no obvious 
and unique way to add the term in the gravitational case, but we have found the 
answer (corresponding to our particular way of modifying the gravity propa- 
gator) by the supposition that the term must be of such a form that the field 
condition 

g , v . v  = 0 (224 

should be a consequence of the equations of motion. This will occur if we take 

LDM = Lci - M2g,, ( 1 9 4  
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(so - M z J  g,, dT is added to the action), for then the equations of motion 
become 

92'""(g) + M2 8," = 9-""g). (204 

So that taking the covariant divergence of both sides, we find 

which implies (22a) since {o ' .} = guA(gAO,J This mass term is first order in 

g,, and does not affect the second order Lagrangian so that L:M = LG. This is 
not analogous to the Y M  case, but for uniformity of notation we continue to 
call it LLM, although it equals LG. 

The theory LGMD will add a divergence term to LLM so that the propagator is 
nonsingular, 

The closed loop contributions are taken as path integrals over these Lagrangians 
over the fields HUv with zero asymptotic value (vacuum to vacuum). The loop 
with the mass term will differ from that with the cancelled divergence terms by a 
factor equal to the action of a loop of a vector particle. We shall prove 

CLGM = CLGMDICLVM (674 

where CLVM is the closed loop of a vector particle of mass M a  of Lagrangian 

( 6 W  

The path integral on 9 7  means ~ times the product of the four differentials 
dTU at each space-time point. 

The right side of (67a) has a limit as M a  + 0. We take that limit, leaving out 
the mass terms in the Lagrangian, to define the closed loop theory for gravita- 
tion. Namely, find loops via the Lagrangian (63a), omitting the first term (the 
divergence term). Then correct it by subtracting the action of a massless vector 
particle with Lagrangian density 77',viju: ". 

(If matter were present, the extra term in the Lagrangian in second order in 
HUy is 

where 4 is the external matter field. To deal with the matter loops we need to 
substitute 4 = + + X and expand to second order in X .  The Lagrangian second 
order in Xi s  +! 6 g ( g u y X , , X , ,  - maXa) dr and the term linear in X and His 
J (- AUv+,,X,, - ( m a / 2 ) H : + X ] ~  dr.) 

Under an infinitesimal coordinate transformation, (2a), g,, + Hiv becomes 
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g,, + Huv + 7flugay + f v g a ,  + ~ ' g , v , a  to first order in H and 7. This can be 
taken as a change of H and of X, 

and 

Now if we make this substitution in the Lagrangian, we can show after a 
number of steps analogous to (70a) that the entire action is changed by 

- 2Ma?:a(RTu + iia;,). (7 1 4  
Since this is a rather complicated calculation and the result is not directly 
obvious by analogy to Y M ,  we outline a way it can be carried out abstractly 
(this method would, of course, work just as well for the YM case). Inclusion of 
matter terms only complicates the algebra and does not alter the result, so we 
omit matter. The Lagrangian density for the field will be written LG - M2gua to 
include the mass term. Putting g,, + g,, + H,, changes this by 

H U Y  &?/kl, - M2Haa 

Lz., = 3H,,Ha, S2LGIklV %a, 

in first order and by 

in second order. The first order vanishes if we assume that the external field g,, 
satisfies the gravitational equations of motion with mass, (20a) with 9-g" = 0, 
GLG/Sg,, = - 9 , " ( g )  = + M 2  a,,,. The second order is the Lagrangian we want. 
It is a property of LG that gauge transformations do not alter it for any g ,  so 

identically for any guv. If into this equation we substitute g,, --+ g,, + H,,, and 
carry to first order in H,,, we find 

( ( ~ 2 L / k I v  8gaI)HuT);v = -W' V D , U  f H V U , D  - HDU.V 

for any Huv. In our case, here 6L/6gaD = M 2  6,, so (90) becomes 

( ( ~ z L / k ,  ~gu1)Haz);v = - M2g'v~va ,a .  (91) 

Next the change in L;, produced by replacing HL, by H,, + rlU;, + T ~ ; ,  
(which is what we wish to calculate) is 

2Haz7,; v s2LISguv %a, + 27, ; "7,: a 2 L / k u v  %a,* 

This, by parts, is -2~u(62L/6g , ,  8gaT(HuT + 7u;T)) :v  which by the analysis of the 
last paragraph is 27UMz(Eau + +ja:u),a which by parts proves our contention 
(71a). 
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With this observation (71a), we can proceed to prove (67a) in a way exactly 
analogous to the YM case. First, multiply the path integral for CLGM (with 
H’ for H )  by the path integral (dependent on g,,) 

x = J’ exp { i J’ [ ~ a v :  + 2(7i~:,,),,la (72a) 

where by ( [ J a  we mean guV[,Ev. Define the linear operation G, 

so that the path integral now has for the exponent the integral of 

We now replace H:, by H,, + T,:, + vf l ; ,  and use our rule (71a) to find the 
change in Lk,(H’) to reduce this to 

-G,(W - 2MZ7:u(i70, + 77u:fl) + [ M 2 7 1 U  - ~us,ulgPY[M271v - ~ u v . c l 1  

which is (convert one term by parts) 

Lk,(H) + g ’ ~ ~ u u , u ~ v u , u  + M2(MaqU7, - 27:,j,;,). (see 76a) 

The fields H,, and 7, are now separated. The first two terms combine together 
to form the Lagrangian without the divergence, the one proper to CLGDM. 
The last terms redefining a new 7” as M times the old gives just the path integral 
of the Lagrangian I ( ~ ~ G q , ) f i  dT, or (Det G)-1’2,  whereas the quantity of X of 
(72a) was I ($‘GG7,,)di  d7 or (Det Ga)-ll2 = (Det G ) - l .  Therefore, we must 
subtract from the action of one closed loop with the divergence term left out 
(CLGMD) the action of a vector particle with Lagrangian density 

Since the limit of each term may be taken as M a  -+ 0 we can omit these M a  
terms, simply putting M a  = 0, and thus have a rule to make calculations for one 
closed loop with massless gravity. 

This formulation of gravitation is not unique. One could have started with 
some other nonlinear function of g,, (like gflv or G g u v )  and expanded that as 
6,” + k,, to begin the theory. We would presumably be led to other forms of 
conditions on g,,, such as ( G g ” ’ ) . ,  = 0 instead of guy,, = 0, other divergence 
terms to define L k D  or gZD and other vector Lagrangians to subtract. Presumably 
they would all give equivalent results. The method used here is very awkward 
with its mixture of Minkowski and covariant indices. I have not investigated 
other possibilities to see if a more obviously covariant formulation could be 
made. 
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There is, of course, one possible covariant definition, the analogue of (669, 
(687, but I do not believe the result is entirely satisfactory (see discussion in text). 
What we do here is this. Instead of adding a mass term to the Lagrangian L, 
from the beginning, we suppose the external field from trees is analyzed in any 
covariant way and that (in the absence of matter) gUv(g )  = 0. Then the loop 
field Huv is considered as an extra tensor meson in a curved space, but this time 
a tensor field with mass, to form the Lagrangian 

by adding the obvious and covariant (in g )  mass term. The technique explained 
above can be directly applied in an obvious way. For example, the change in 
LhM(H’) and replacing H‘ by H comes only from the mass terms, since (90) is 
0 as 6L/6guv = 0, and is (all indices covariant, raised by guv, etc.) 

-2M2;iu:”(HUv + q f i Z v ) 4 i .  

The rest of the analysis proceeds by adding 

1 4i g”’(G?l’>U(Grl’>A dr 
where now 

(Grl), = M2rlU + 2+7uZu;rgru. 
The result is that 

(thus cancelling the first term of 63a) and the vector particle to be subtracted 
has the Lagrangian 

LvMt = - ~ dT[2$u4G;rgur - Ma7)u’7u]. (see 68’a) 

This is evidently covariant, has a limit as M 2  + 0, but I believe the limit may 
not satisfactorily agree with the tree opening theorem. 

The analogy to Y M  is very close except the mass term (in 19a) is quite 
peculiar, and it does not affect the loop Lagrangian. This causes one to question 
whether it might not be easier in gravitation than in the Y M  theory to deal with 
closed loops of arbitrary complexity. I did not find the solution to the problem 
of how to deal with such loops in either theory. Formula (19a) was not known 
to  me then as I found it only when preparing this manuscript for publication, 
for some of my older formulas contained errors that I had not noticed. 

s 

Note added in proof: L. D. Faddeev and Bryce DeWitt have kindly prepared for 
me the following list of references to related work. 

I .  Yang- Mills and Gravitation 
1. B.  S .  DeWitt, Phys. Rev., 162, 1195, 1239 (1967). 
2.’ B. S .  DeWitt, Phys. Rev. Letters, 12, 742 (1964). 



919 

408 R. P. FEYNMAN 

3. V. N. Popov and L. D. Faddeev, “Perturbation Theory for Gauge In- 

4. S. Mandelstam, Phys. Rev., 175, 1580, 1604 (1968). 
5. S .  Mandelstam, Ann. Phys. (New York), 19, 25 (1962). 

1. L. D. Faddeev and V. N. Popov, Phys. Letters, 25B, 29 (1967). 
2. L. D. Faddeev, Theo. and Math. Phys., 1, 1 (1969). 

1 .  P. A. M. Dirac, Can. J .  Math., 2, 129 (1950). 
2. P. A. M. Dirac, Proc. Roy. SOC. (London), A246, 326, 333 (1958). 
3. P. A. M. Dirac, Phys. Rev., 114, 924 (1959). 
4. R. Arnowitt, S. Deser and C. W. Misner, “The Dynamics of General 

Relativity,” Gravitation, an Introduction to Current Research, L. Witten, 
ed. (New York: Wiley, 1962). 

5 .  B. S. DeWitt, Phys. Rev., 160, 1113 (1967). 
6. J. Schwinger, Phys. Rev., 152, 1219 (1966); 158, 1391 (1967); 173, 1264 

IV. Canonical Derivations of the Feynman-De Witt Rules 
1. I. B. Khryslovich, Yadernaya Fizika, 10, 409 (1968); English translation: 

2. A. M. Altukhov and I. B. Khryslovich, Yadernaya Fizika, 11, 902 (1970). 
3. E. S. Fradkin and I. V. Tyutin, Phys. Letters, 30B, 562 (1969); Phys. Rev., 

variant Fields,” preprint I.T.Ph., USSR, Kiev (1967). 

11. Yang-Mills only 

111. Canonical approach (Hamiltonian) 

(1968). 

Sou. J .  Nucl. Phys., 10, 235 (1970). 

D2, 2841 (1970). 





92 1 

VII. Computer Theory 

Feynman’s interest in numerical computation dated back to his wartime Los Alamos days, 
when Bethe put him in charge of a group doing calculations to model the plutonium implosion 
bomb. Feynman developed a system, using persons at mechanical calculators in a system 
analogous to what would much later, with digital computers, be called “parallel computing.” 
During the last ten years of his life he became fascinated by the theory and application of 
computers and he gave a joint course in computation at Caltech, together with his colleagues 
John Hopfield and Carver Mead, also using guest lecturers.’ Feynman also published three 
papers on computers. (Papers [110] and [115] are the same.) 

The most important of the three papers is probably [106], in which the idea of a quantum 
computer is suggested and in which the limitations on computers imposed by the laws of 
physics are discussed. In some of his ideas, Feynman had been paralleled (and sometimes 
anticipated) independently by others, especially Paul Benioff and Rolf Landauer. Paper [110] 
discusses reversible computers (first considered by C.H. Bennet) and limitations that could 
arise from the second law of thermodynamics (the increase of entropy with time). However, 
the paper concludes with the sentence “At any rate, it seems that the laws of physics present 
no barrier to reducing the size of computers until bits are the size of atoms, and quantum 
behavior holds dominant sway.” 

Paper [113] is a lecture delivered in Japan in 1985 as a memorial to Yoichiro Tomonaga, 
who shared the 1965 Nobel Prize in Physics with Feynman and Julian Schwinger. It is 
a “popular” presentation discussing parallel computation and the possibilities of reducing 
energy consumption and size.’ 

Selected Papers 
[lo61 Simulating physics with computers. Int. J. Theor. Phys. B2 (1982): 467-488. 
[110] Quantum mechanical computers. Opt. News 11 (1985): 11-46. 
[113] The computing machines in the future. Nishina Memorial Lecture (1985), Nishina 
Foundation and Gakushuin. 
[115] Quantum mechanical computers. Foundations of Physics 16 (1986): 507-531. 

‘See item [124] for the Feynman Lectures on Computation. See also Feynman and Computation, edited by 
Anthony J.G. Hey (Reading, Massachusetts: 1999). 
‘On the last topic, see also paper [44], “There’s plenty of room at the bottom.” “[This] paper is often credited 
with starting the field of nanotechnology.” Feynman and Computation, p. xii (note 1). 
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1. INTRODUCTION 

On the program it says this is a keynote speech-and I don’t know 
what a keynote speech is. I do not intend in any way to suggest what should 
be in this meeting as a keynote of the subjects or anything like that. I have 
my own things to say and to talk about and there’s no implication that 
anybody needs to talk about the same thng  or anything like it. So what I 
want to talk about is what Mike Dertouzos suggested that nobody would 
talk about. I want to talk about the problem of simulating physics with 
computers and I mean that in a specific way which I am going to explain. 
The reason for doing thls is something that I learned about from Ed 
Fredkin, and my entire interest in the subject has been inspired by him. It 
has to do with learning something about the possibilities of computers, and 
also somethng about possibilities in physics. If we suppose that we know all 
the physical laws perfectly, of course we don’t have to pay any attention to 
computers. It’s interesting anyway to entertain oneself with the idea that 
we’ve got something to learn about physical laws; and if I take a relaxed 
view here (after all I’m here and not at home) I’ll admit that we don’t 
understand every thing. 

The first question is, What lund of computer are we going to use to 
simulate physics? Computer theory has been developed to a point where it 
realizes that it doesn’t make any difference; when you get to a universal 
computer, it doem’t matter how it’s manufactured, how it’s actually made. 
Therefore my question is, Can physics be simulated by a universal com- 
puter? I would like to have the elements of thls computer locally intercon- 
nected, and therefore sort of thnk  about cellular automata as an example 
(but I don’t want to force it). But I do want somethng involved with the 
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locality of interaction. I would not like to thnk  of a very enormous 
computer with arbitrary interconnections throughout the entire thing. 

Now, what kind of physics are we going to imitate? First, I am going to 
describe the possibility of simulating physics in the classical approximation, 
a thng  whch is usually described by local differential equations. But the 
physical world is quantum mechanical, and therefore the proper problem is 
the simulation of quantum physics-whch is what I really want to talk 
about, but I’ll come to that later. So what kind of simulation do I mean? 
There is, of course, a lund of approximate simulation in whch you design 
numerical algorithms for differential equations, and then use the computer 
to compute these algorithms and get an approximate view of what physics 
ought to do. That’s an interesting subject, but is not what I want to talk 
about. I want to talk about the possibility that there is to be an exact 
simulation, that the computer will do exactly the same as nature. If t h s  is to 
be proved and the type of computer is as I’ve already explained, then it’s 
going to be necessary that everything that happens in a finite volume of 
space and time would have to be exactly analyzable with a finite number of 
logical operations. The present theory of physics is not that way, apparently. 
It allows space to go down into infinitesimal distances, wavelengths to get 
infinitely great, terms to be summed in infinite order, and so forth; and 
therefore, if this proposition is right, physical law is wrong. 

So good, we already have a suggestion of how we might modify 
physical law, and that is the kind of reason why I like to study t h s  sort of 
problem. To take an example, we might change the idea that space is 
continuous to the idea that space perhaps is a simple lattice and everything 
is discrete (so that we can put it into a finite number of digits) and that time 
jumps discontinuously. Now let’s see what kind of a physical world it would 
be or what kind of problem of computation we would have. For example, 
the first difficulty that would come out is that the speed of light would 
depend slightly on the direction, and there might be other anisotropies in 
the physics that we could detect experimentally. They might be very small 
anisotropies. Physical knowledge is of course always incomplete, and you 
can always say we’ll try to design somethng whch beats experiment at the 
present time, but which predicts anistropies on some scale to be found later. 
That’s fine. That would be good physics if you could predict somethng 
consistent with all the known facts and suggest some new fact that we didn’t 
explain, but I have no specific examples. So I’m not objecting to the fact 
that it’s anistropic in principle, it’s a question of how anistropic. If you tell 
me it’s so-and-so anistropic, I’ll tell you about the experiment with the 
lithium atom whch shows that the anistropy is less than that much, and 
that t h s  here theory of yours is impossible. 
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Another tlung that had been suggested early was that natural laws are 
reversible, but that computer rules are not. But this turned out to be false; 
the computer rules can be reversible, and it has been a very, very useful 
thmg to notice and to discover that. (Editors’ note: see papers by Bennett, 
Fredkin, and Toffoli, these Proceedings). This is a place where the relation- 
ship of physics and computation has turned itself the other way and told us 
something about the possibilities of computation. So this is an interesting 
subject because it tells us somethng about computer rules, and might tell us 
sometlung about physics. 

The rule of simulation that I would like to have is that the number of 
computer elements required to simulate a large physical system is only to be 
proportional to the space-time volume of the physical system. I don’t want 
to have an explosion. That is, if you say I want to explain thls much physics, 
I can do it exactly and I need a certain-sized computer. If doubling the 
volume of space and time means I’ll need an exponentially larger computer, 
I consider that against the rules (I make up the rules, I’m allowed to do 
that). Let’s start with a few interesting questions. 

2. SIMULATING TIME 

First I’d like to talk about simulating time. We’re going to assume it’s 
discrete. You know that we don’t have infinite accuracy in physical mea- 
surements so time might be discrete on a scale of less than lo-*’ sec. (You’d 
have to have it a t  least like to this to avoid clashes with experiment-but 
make it lop4’  sec. if you like, and then you’ve got us!) 

One way in which we simulate time-in cellular automata, for example 
-is to say that “the computer goes from state to state.” But really, that’s 
using intuition that involves the idea of time-you’re going from state to 
state. And therefore the time (by the way, like the space in the case of 
cellular automata) is not simulated at all, it’s imitated in the computer. 

An interesting question comes up: “Is there a way of simulating it, 
rather than imitating it?” Well, there’s a way of looking at the world that is 
called the space-time view, imagining that the points of space and time are 
all laid out, so to speak, ahead of time. And then we could say that a 
“computer” rule (now computer would be in quotes, because it’s not the 
standard kind of computer which operates in time) is: We have a state s, at 
each point i in space-time. (See Figure 1.) The state s, at the space time 
point i is a given function <(s,, s k , .  . .) of the state at the pointsj, k in some 
neighborhood of i :  

s, = Fl(s,,, S k , .  . .>  
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You’ll notice immediately that if t h s  particular function is such that the 
value of the function at i only involves the few points behmd in time, earlier 
than t h s  time i, all I’ve done is to redescribe the cellular automaton, 
because it means that you calculate a given point from points at earlier 
times, and I can compute the next one and so on, and I can go through this 
in that particular order. But just let’s us think of a more general kind of 
computer, because we might have a more general function. So let’s t hnk  
about whether we could have a wider case of generality of interconnections 
of points in space-time. If F depends on all the points both in the future and 
the past, what then? That could be the way physics works. I’ll mention how 
our theories go at the moment. It has turned out in many physical theories 
that the mathematical equations are quite a bit simplified by imagining such 
a thng-by imagining positrons as electrons going backwards in time, and 
other thngs that connect objects forward and backward. The important 
question would be, if t h s  computer were laid out, is there in fact an 
organized algorithm by which a solution could be laid out, that is, com- 
puted? Suppose you know this function I;; and it is a function of the 
variables in the future as well. How would you lay out numbers so that they 
automatically satisfy the above equation? It may not be possible. In the case 
of the cellular automaton it is, because from a given row you get the next 
row and then the next row, and there’s an organized way of doing it. It’s an 
interesting question whether there are circumstances where you get func- 
tions for whch you can’t thnk,  at least right away, of an organized way of 
laying it out. Maybe sort of shake it down from some approximation, or 
somethng, but it’s an interesting different type of computation. 

Question: “Doesn’t this reduce to the ordinary boundary value, as 
opposed to initial-value type of calculation?” 

Answer: “Yes, but remember t h s  is the computer itself that I’m 
describing.” 

It appears actually that classical physics is causal. You can, in terms of 
the information in the past, if you include both momentum and position, or 
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the position at two different times in the past (either way, you need two 
pieces of information at each point) calculate the future in principle. So 
classical physics is local, causal, and reversible, and therefore apparently 
quite adaptable (except for the discreteness and so on, which I already 
mentioned) to computer simulation. We have no difficulty, in principle, 
apparently, with that. 

3. SIMULATING PROBABILITY 

Turning to quantum mechanics, we know immediately that here we get 
only the ability, apparently, to predict probabilities. Might I say im- 
mediately, so that you know where I really intend to go, that we always have 
had (secret, secret, close the doors!) we always have had a great deal of 
difficulty in understanding the world view that quantum mechanics repre- 
sents. At least I do, because I’m an old enough man that I haven’t got to the 
point that t h s  stuff is obvious to me. Okay, I still get nervous with it. And 
therefore, some of the younger students ... you know how it always is, 
every new idea, i t  takes a generation or two until it becomes obvious that 
there’s no real problem. It has not yet become obvious to me that there’s no 
real problem. I cannot define the real problem, therefore I suspect there’s no 
real problem, but I’m note sure there’s no real problem. So that’s why I like 
to investigate things. Can I learn anything from asking this question about 
computers-about t h s  may or may not be mystery as to what the world 
view of quantum mechanics is? So I know that quantum mechanics seem to 
involve probability-and I therefore want to talk about simulating proba- 
bility. 

Well, one way that we could have a computer that simulates a prob- 
abilistic theory, somethmg that has a probability in it, would be to calculate 
the probability and then interpret this number to represent nature. For 
example, let’s suppose that a particle has a probability P ( x ,  t )  to be at x at a 
time t .  A typical example of such a probability might satisfy a differential 
equation, as, for example, if the particle is diffusing: 

Now we could discretize t and x and perhaps even the probability itself and 
solve t h s  differential equation like we solve any old field equation, and 
make an algorirhm for it, making it exact by discretization. First there’d be 
a problem about discretizing probability. If you are only going to take k 
digits it would mean that when the probability is less that 2 - &  of somethng 
happening, you say it doesn’t happen at all. In Practice we do that. If the 
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probability of something is lO-’O0, we say it isn’t going to happen, and 
we’re not caught out very often. So we could allow ourselves to do that. But 
the real difficulty is ths:  If we had many particles, we have R particles, for 
example, in a system, then we would have to describe the probability of a 
circumstance by giving the probability to find these particles at points 
x,,  x2,. . . , x R  at the time t. That would be a description of the probability of 
the system. And therefore, you’d need a k-digit number for every configura- 
tion of the system, for every arrangement of the R values of x .  And 
therefore if there are N points in space, we’d need N R  configurations. 
Actually, from our point of view that at each point in space there is 
information like electric fields and so on, R will be of the same order as N if 
the number of information bits is the same as the number of points in space, 
and therefore you’d have to have somethng like N N  configurations to be 
described to get the probability out, and that’s too big for our computer to 
hold if the size of the computer is of order N .  

We emphasize, if a description of an isolated part of nature with N 
variables requires a general function of N variables and if a computer 
stimulates this by actually computing or storing this function then doubling 
the size of nature ( N - 2 N )  would require an exponentially explosive 
growth in the size of the simulating computer. It is therefore impossible, 
according to the rules stated, to simulate by calculating the probability. 

Is there any other way? What lund of simulation can we have? We can’t 
expect to compute the probability of configurations for a probabilistic 
theory. But the other way to simulate a probabilistic nature, which I’ll call 
TL for the moment, might still be to simulate the probabilistic nature by a 
computer e wl-uch itself is probabilistic, in which you always randomize the 
last two digit’s of every number, or you do something terrible to it. So it 
becomes what I’ll call a probabilistic computer, in which the output is not a 
unique function of the input. And then you try to work it out so that it 
simulates nature in this sense: that e goes from some state-initial state if 
you like-to some final state with the same probability that 9, goes from 
the corresponding initial state to the corresponding final state. Of course 
when you set up the machne and let nature do it, the imitator will not do 
the same thing, it only does it with the same probability. Is that no good? 
No it’s O.K. How do you know what the probability is? You see, nature’s 
unpredictable; how do you expect to predict it with a computer? You can’t, 
-it’s unpredictable if it’s probabilistic. But what you really do in a 
probabilistic system is repeat the experiment in nature a large number of 
times. If you repeat the same experiment in the computer a large number of 
times (and that doesn’t take any more time than it does to do the same thng  
in nature of course), it will give the frequency of a given final state 
ProPortional to the number of times, with approximately the same rate (plus 
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or minus the square root of n and all that) as it happens in nature. In other 
words, we could imagine and be perfectly happy, I think, with a probabilis- 
tic simulator of a probabilistic nature, in whch the machne doesn’t exactly 
do what nature does, but if you repeated a particular type of experiment a 
sufficient number of times to determine nature’s probability, then you did 
the Corresponding experiment on the computer, you’d get the corresponding 
probability with the corresponding accuracy (with the same kind of accu- 
racy of statistics). 

So let us now think about the characteristics of a local probabilistic 
computer, because I’ll see if I can imitate nature with that (by “nature” I’m 
now going to mean quantum mechanics). One of the characteristics is that 
you can determine how it behaves in a local region by simply disregarding 
what it’s doing in all other regions. For example, suppose there are variables 
in the system that describe the whole world (x,,x,)-the variables x, 
you’re interested in, they’re “around here”; x B  are the whole result of the 
world. If you want to know the probability that somethng around here is 
happening, you would have to get that by integrating the total probability of 
all kinds of possibilities over x,. If we had computed this probability, we 
would still have to do the integration 

whch is a hard job! But if we have imirated the probability, it’s very simple 
to do it: you don’t have to do anything to do the integration, you simply 
disregard what the values of xB are, you just look at the region x,. And 
therefore it does have the characteristic of nature: if it’s local, you can find 
out what’s happening in a region not by integrating or doing an extra 
operation, but merely by disregarding what happens elsewhere, which is no 
operation, nothing at all. 

The other aspect that I want to emphasize is that the equations will 
have a form, no doubt, something like the following. Let each point 
i = 1,2,. . . , N in space be in a state s, chosen from a small state set (the size 
of this set should be reasonable, say, up to 25). And let the probability to 
find some configuration { s I }  (a set of values of the state s, at each point i )  
be some number P({s ,}) .  It satisfies an equation such that at each jump in 
time 

where rn(s,Is;,s; ...) is the probability that we move to state s, at point i 
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when the neighbors have values s;, s; ..., where j ,  k etc. are points in the 
neighborhood of i. As j moves far from i, m becomes ever less sensitive to 
s’,. At each change the state at a particular point i will move from what it 
was to a state s with a probability m that depends only upon the states of 
the neighborhood (whch may be so defined as to include the point i itself). 
Ths gives the probability of making a transition. It’s the same as in a 
cellular automaton; only, instead of its being definite, it’s a probability. Tell 
me the environment, and I’ll tell you the probability after a next moment of 
time that t h s  point is at states. And that’s the way it’s going to work, okay? 
So you get a mathematical equation of t h s  kind of form. 

Now I explicitly go to the question of how we can simulate with a 
computer-a universal automaton or something- the quantum-mechanical 
effects. (The usual formulation is that quantum mechanics has some sort of 
a differential equation for a function #.) If you have a single particle, I) is a 
function of x and t ,  and t h s  differential equation could be simulated just 
like my probabilistic equation was before. That would be all right and one 
has seen people make little computers whxh simulate the Schroedinger 
equation for a single particle. But the full description of quantum mechanics 
for a large system with R particles is given by a function I)(xl, x2,..  . , x R ,  t )  
whlch we call the amplitude to find the particles xl, . . . , x R ,  and therefore, 
because it has too many variables, it cannot be simulated with a normal 
computer with a number of elements proportional to R or proportional to 
N .  We had the same troubles with the probability in classical physics. And 
therefore, the problem is, how can we simulate the quantum mechanics? 
There are two ways that we can go about it. We can give up on our rule 
about what the computer was, we can say: Let the computer itself be built 
of quantum mechanical elements which obey quantum mechanical laws. Or 
we can turn the other way and say: Let the computer still be the same kind 
that we thought of before-a logical, universal automaton; can we imitate 
this situation? And I’m going to separate my talk here, for it branches into 
two parts. 

4. QUANTUM COMPUTERS-UNIVERSAL QUANTUM 
SIMULATORS 

The first branch, one you might call a side-remark, is, Can you do it 
with a new lund of computer-a quantum computer? (I’ll come back to the 
other branch in a moment.) Now it turns out, as far as I can tell, that you 
can simulate this with a quantum system, with quantum computer elements. 
It’s not a Turing machme, but a machne of a different kmd. If we disregard 
the continuity of space and make it discrete, and so on, as an approximation 
(the same way as we allowed ourselves in the classical case), it does seem to 
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be true that all the various field theories have the same kind of behavior, 
and can be simulated in every way, apparently, with little latticeworks of 
spins and other thngs. It’s been noted time and time again that the 
phenomena of field theory (if the world is made in a discrete lattice) are well 
imitated by many phenomena in solid state theory (which is simply the 
analysis of a latticework of crystal atoms, and in the case of the kind of 
solid state I mean each atom is just a point which has numbers associated 
with it, with quantum-mechanical rules). For example, the spin waves in a 
spin lattice imitating Bose-particles in the field theory. I therefore believe 
it’s true that with a suitable class of quantum machines you could imitate 
any quantum system, including the physical world. But I don’t know 
whether the general theory of t h s  intersimulation of quantum systems has 
ever been worked out, and so I present that as another interesting problem: 
to work out the classes of different kinds of quantum mechanical systems 
whch are really intersimulatable-which are equivalent-as has been done 
in the case of classical computers. It has been found that there is a kind of 
universal compilter that can do anythng, and it doesn’t make much 
difference specifically how it’s designed. The same way we should try to find 
out what kinds of quantum mechanical systems are mutually intersimulata- 
ble, and try to find a specific class, or a character of that class which will 
simulate everythng. What, in other words, is the universal quantum simula- 
tor? (assuming this discretization of space and time). If you had discrete 
quantum systems, what other discrete quantum systems are exact imitators 
of it, and is there a class against whch everything can be matched? I believe 
it’s rather simple to answer that question and to find the class, but I just 
haven’t done it. 

Suppose that we try the following guess: that every finite quantum 
mechanical system can be described exactly, imitated exactly, by supposing 
that we have another system such that at each point in space-time this 
system has only two possible base states. Either that point is occupied, or 
unoccupied-those are the two states. The mathematics of the quantum 
mechanical operators associated with that point would be very simple. 

a = ANNIHILATE = fi = + (ax - jay 

1 IDENTITY 
0 1  
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There would be an operator a which annihilates if the point is occupied 
-it changes it to unoccupied. There is a conjugate operator a* which does 
the opposite: if it’s unoccupied, it occupies it. There’s another operator n 
called the number to ask, Is something there? The little matrices tell you 
what they do. If it’s there, n gets a one and leaves it alone, if it’s not there, 
nothing happens. That’s mathematically equivalent to the product of the 
other two, as a matter of fact. And then there’s the identity, 1, whch we 
always have to put in there to complete our mathematics-it doesn’t do a 
damn thing! 

By the way, on the right-hand side of the above formulas the same 
operators are written in terms of matrices that most physicists find more 
convenient, because they are Hermitian, and that seems to make it easier for 
them. They have invented another set of matrices, the Pauli u matrices: 

And these are called spin -spin one-half-so sometimes people say you’re 
tallung about a spin-one-half lattice. 

The question is, if we wrote a Hamiltonian whch involved only these 
operators, locally coupled to corresponding operators on the other space-time 
points, could we imitate every quantum mechanical system which is discrete 
and has a finite number of degrees of freedom? I know, almost certainly, 
that we could do that for any quantum mechanical system whch involves 
Bose particles. I’m not sure whether Fermi particles could be described by 
such a system. So I leave that open. Well, that’s an example of what I meant 
by a general quantum mechanical simulator. I’m not sure that it’s sufficient, 
because I’m not sure that it takes care of Fermi particles. 

5. CAN QUANTUM SYSTEMS BE PROBABILISTICALLY 
SIMULATED BY A CLASSICAL COMPUTER? 

Now the next question that I would like to bring up is, of course, the 
interesting one, i.e., Can a quantum system be probabilistically simulated by 
a classical (probabilistic, I’d assume) universal computer? In other words, a 
computer whch will give the same probabilities as the quantum system 
does. If you take the computer to be the classical kind I’ve described so far, 
(not the quantum lund described in the last section) and there’re no changes 
in any laws, and there’s no hocus-pocus, the answer is certainly, No! This is 
called the hidden-variable problem: it is impossible to represent the results 
of quantum mechanics with a classical universal device. To learn a little bit 
about it, I say let us try to put the quantum equations in a form as close as 
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possible to classical equations so that we can see what the difficulty is and 
what happens. Well, first of all we can’t simulate + in the normal way. As 
I’ve explained already, there’re too many variables. Our only hope is that 
we’re going to simulate probabilities, that we’re going to have our computer 
do things with the same probability as we observe in nature, as calculated 
by the quantum mechanical system. Can you make a cellular automaton, or 
somethng, imitate with the same probability what nature does, where I’m 
going to suppose that quantum mechanics is correct, or at least after I 
discretize space and time it’s correct, and see if I can do it. I must point out 
that you must directly generate the probabilities, the results, with the correct 
quantum probability. Directly, because we have no way to store all the 
numbers, we have to just imitate the phenomenon directly. 

It turns out then that another thing, rather than the wave function, a 
t hng  called the density matrix, is much more useful for this. It’s not so 
useful as far as the mathematical equations are concerned, since it’s more 
complicated than the equations for 4, but I’m not going to worry about 
mathematical complications, or which is the easiest way to calculate, be- 
cause with computers we don’t have to be so careful to do it the very easiest 
way. And so with a slight increase in the complexity of the equations (and 
not very much increase) I turn to the density matrix, whch for a single 
particle of coordinate x in a pure state of wave function +(x) is 

T h s  has a special property that is a function of two coordinates x ,  x’. The 
presence of two quantities x and x‘ associated with each coordinate is 
analogous to the fact that in classical mechanics you have to have two 
variables to describe the state, x and 1. States are described by a second-order 
device, with two informations (“position” and “velocity”). So we have to 
have two pieces of information associated with a particle, analogous to the 
classical situation, in order to describe configurations. (I’ve written the 
density matrix for one particle, but of course there’s the analogous thng  for 
R particles, a function of 2 R variables). 

This quantity has many of the mathematical properties of a probability. 
For example if a state # ( x )  is not certain but is #a with the probability pa 
then the density matrix is the appropriate weighted sum of the matrix for 
each state a: 

A quantity which has properties even more similar to classical probabilities 
is the Wigner function, a simple reexpression of the density matrix; for a 
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single particle 

We shall be emphasizing their similarity and shall call it “probability” in 
quotes instead of Wigner function. Watch these quotes carefully, when they 
are absent we mean the real probability. If “probability” had all the 
mathematical properties of a probability we could remove the quotes and 
simulate it. W ( x ,  p )  is the “probability” that the particle has position x and 
momentum p (per dx and dp) .  What properties does it have that are 
analogous to an ordinary probability? 

It has the property that if there are many variables and you want to 
know the “probabilities” associated with a finite region, you simply disre- 
gard the other variables (by integration). Furthermore the probability of 
finding a particle at x is l W ( x ,  p ) d p .  If you can interpret W as a 
probability of finding x and p ,  this would be an expected equation. Likewise 
the probability of p would be expected to be l W ( x , p ) d x .  These two 
equations are correct, and therefore you would hope that maybe W ( x ,  p )  is 
the probability of finding x and p .  And the question then is can we make a 
device which simulates this W ?  Because then it would work fine. 

Since the quantum systems I noted were best represented by spin 
one-half (occupied versus unoccupied or spin one-half is the same thng), I 
tried to do the same thing for spin one-half objects, and it’s rather easy to 
do. Although before one object only had two states, occupied and unoc- 
cupied, the full description-in order to develop things as a function of time 
-requires twice as many variables, whch mean two slots at each point 
which are occupied or unoccupied (denoted by + and - in what follows), 
analogous to the x and i ,  or the x and p .  So you can find four numbers, 
four “probabilities” { f+ + , f+ - , f- + , f- - } which act just ldce, and I have 
to explain why they’re not exactly like, but they act just like, probabilities to 
find things in the state in which both symbols are up, one’s up and one’s 
down, and so on. For example, the sum f++ + f+- + f-+ + f-- of the 
four “probabilities” is 1. You’ll remember that one object now is going to 
have two indices, two plus/minus indices, or two ones and zeros at each 
point, although the quantum system had only one. For example, if you 
would llke to know whether the first index is positive, the probability of that 
would be 

i.e., you don’t care about the second index. The probability that the first 
index is negative is 

Prob(first index is+)  = f+ + + f+ - [spin z up] 

Prob(first index is - ) = f- + + f- - , [spin z down] 
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These two formulas are exactly correct in quantum mechanics. You see I’m 
hedging on whether or not “probability” f can really be a probability 
without quotes. But when I write probability without quotes on the left-hand 
side I’m not hedging; that really is the quantum mechanical probability. It’s 
interpreted perfectly fine here. Likewise the probability that the second 
index is positive can be obtained by finding 

Prob(second index is + ) = f+ + + f- + [spin x up] 

and likewise 

Prob(second index is -) = f+ - + f- - [spin x down] 

You could also ask other questions about the system. You might like to 
know, What is the probability that both indices are positive? You’ll get in 
trouble. But you could ask other questions that you won’t get in trouble 
with, and that get correct physical answers. You can ask, for example, what 
is the probabiiity that the two indices are the same? That would be 

Prob(match) = f+ + + f- - [spiny up] 

Or the probability that there’s no match between the indices, that they’re 
different, 

Prob(no match) = f+ - + f- + [spiny down] 

All perfectly all right. All these probabilities are correct and make sense, 
and have a precise meaning in the spin model, shown in the square brackets 
above. There are other “probability” combinations, other linear combina- 
tions of these f ’s which also make physically sensible probabilities, but I 
won’t go into those now. There are other linear combinations that you can 
ask questions about, but you don’t seem to be able to ask questions about 
an individual f. 

6. NEGATIVE PROBABILITIES 

Now, for many interacting spins on a lattice we can give a “probability” 
(the quotes remind us that there is still a question about whether it’s a 
probability) for correlated possibilities: 

q s , ,  sz,.  . . , S N )  (SiE { + +, + -, - +, - - } )  
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Next, if I look for the quantum mechanical equation which tells me what the 
changes of F are with time, they are exactly of the form that I wrote above 
for the classical theory: 

but now we have F instead of P. The M(s,/s; ,  s; ...) would appear to be 
interpreted as the “probability” per unit time, or per time jump, that the 
state at i turns into s, when the neighbors are in configuration s’. If you can 
invent a probability M like that, you write the equations for it according to 
normal logic, those are the correct equations, the real, correct, quantum 
mechanical equations for t h s  F,  and therefore you’d say, Okay, so I can 
imitate it with a probabilistic computer! 

There’s only one thing wrong. These equations unfortunately cannot be 
so interpreted on the basis of the so-called “probability”, or this probabilis- 
tic computer can’t simulate them, because the F is not necessarily positive. 
Sometimes it’s negative! The M ,  the “probability” (so-called) of moving 
from one condition to another is itself not positive; if I had gone all the way 
back to the f for a single object, it again is not necessarily positive. 

An example of possibilities here are 

f + + = 0 . 6  f + - = - O . l  f - + = O . 3  f - - = O . 2  

The sum f+ + + f+ is 0.5, that’s 50% chance of finding the first index 
positive. The probability of finding the first index negative is the sum 
f- + + f- + whch is also 50%. The probability of finding the second index 
positive is the sum f+ + + f- + which is nine tenths, the probability of 
finding it negative is f+ - + f- - which is one-tenth, perfectly alright, it’s 
either plus or minus. The probability that they match is eight-tenths, the 
probability that they mismatch is plus two-tenths; every physical probabil- 
ity comes out positive. But the original f ’s are not positive, and therein lies 
the great difficulty. The only difference between a probabilistic classical 
world and the equations of the quantum world is that somehow or other it 
appears as if the probabilities would have to go negative, and that we do not 
know, as far as I know, how to simulate. Okay, that’s the fundamental 
problem. I don’t know the answer to it, but I wanted to explain that if I try 
my best to make the equations look as near as possible to what would be 
imitable by a classical probabilistic computer, I get into trouble. 
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7. POLARIZATION OF PHOTONS-IWO-STATES SYSTEMS 

I would like to show you why such minus signs cannot be avoided, or 
at least that you have some sort of difficulty. You probably have all heard 
this example of the Einstein-Podolsky-Rosen paradox, but I will explain t h s  
little example of a physical experiment whch can be done, and which has 
been done, which does give the answers quantum theory predicts, and the 
answers are really right, there’s no mistake, if you do the experiment, i t  
actually comes out. And I’m going to use the example of polarizations of 
photons, which is an example of a two-state system. When a photon comes, 
you can say it’s either x polarized or y polarized. You can find that out by 
putting in a piece of calcite, and the photon goes through the calcite either 
out in one direction, or out in another-actually slightly separated, and 
then you put in some mirrors, that’s not important. You get two beams, two 
places out, where the photon can go. (See Figure 2.) 

If you put a polarized photon in, then it will go to one beam called the 
ordinary ray, cr another, the extraordinary one. If you put detectors there 
you find that each photon that you put in, it either comes out in one or the 
other 100% of the time, and not half and half. You either find a photon in 
one or the other. The probability of finding i t  in the ordinary ray plus the 
probability of finding it in the extraordinary ray is always I-you have to 
have that rule. That works. And further, it’s never found at both detectors. 
(If you might have put two photons in, you could get that, but you cut the 
intensity dowr.-it’s a technical thmg, you don’t find them in both detec- 
tors.) 

Now the next experiment: Separation into 4 polarized beams (see 
Figure 3). You put two calcites in a row so that their axes have a relative 
angle (p, I happen to have drawn the second calcite in two positions, but it  
doesn’t make a difference if you use the same piece or not, as you care. Take 
the ordinary ray from one and put it through another piece of calcite and 
look at its ordinary ray, whch I’ll call the ordinary-ordinary (0-0)  ray, or 
look at its extraordinary ray, I have the ordinary-extraordinary (0- E )  ray. 
And then the extraordinary ray from the first one comes out as the E - 0  
ray, and then there’s an E - E ray, alright. Now you can ask what happens. 

Fig. 2 
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Fig. 3. 

You'll find the following. When a photon comes in, you always find that only 
one of the four counters goes off. 

If the photon is 0 from the first calcite, then the second calcite gives 
0-0 with probability cos2 + or 0 - E  with the complementary probability 
1 -cos' + = sin2 cp. Likewise an E photon gives a E -0 with the probability 
sin2 $I or an E - E with the probability cos2 $I. 

8. TWO-PHOTON CORRELATION EXPERIMENT 

Let us turn now to the two photon correlation experiment (see 
Figure 4). 

What can happen is that an atom emits two photons in opposite 
direction (e.g., the 3s ---f 2 p  ---f 1s transition in the H atom). They are ob- 
served simultaneously (say, by you and by me) through two calcites set at 
and $I2 to the vertical. Quantum theory and experiment agree that the 
probability Po, that both of us detect an ordinary photon is 

The probability PEE that we both observe an extraordinary ray is the same 

The probability POE that I find 0 and you find E is 

Fig. 4. 
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and finally the probability PEo that I measure E and you measure 0 is 

Notice that you can always predict, from your own measurement, what I 
shall get, 0 or E .  For any axis that I chose, just set your axis G2 to G I ,  
then 

and I must gel whatever you get. 
Let us see now how it would have to be for a local probabilistic 

computer. Photon 1 must be in some condition a with the probabilityf,(@,), 
that determines it to go through as an ordinary ray [the probability it would 
pass as E is l-fa(@,)]. Likewise photon 2 will be in a condition with 
probability gp(@2) .  If pap is the conjoint probability to find the condition 
pair a ,  p, the probability Po, that both of us observe 0 rays is 

likewise 

The conditions (Y determine how the photons go, There’s some kind of 
correlation of the conditions. Such a formula cannot reproduce the quantum 
results above for any pap ,  f a ( + l ) ,  gp(+2)  if they are real probabilities-that 
is all positive, although it is easy if they are “probabilities”-negative for 
some conditions or angles. We now analyze why that is so. 

I don’t know what hnds  of conditions they are, but for any condition 
the probability f a ( @ )  of its being extraordinary or ordinary in any direction 
must be either one or zero. Otherwise you couldn’t predict it on the other 
side. You would be unable to predict with certainty what I was going to get, 
unless, every time the photon comes here, whch way it’s going to go is 
absolutely determined. Therefore, whatever condition the photon is in, there 
is some hidden inside variable that’s going to determine whether it’s going 
to be ordinary or extraordinary. This determination is done deterministi- 
cally, not probabilistically; otherwise we can’t explain the fact that you 
could predict what I was going to get exactb. So let us suppose that 
somethng llke this happens. Suppose we discuss results just for angles 
which are multiples of 30”. 
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On each diagram (Figure 5 )  are the angles 0", 30", 60", 90", 120", and 
150". A particle comes out to me, and it's in some sort of state, so what it's 
going to give for 0", for 30", etc. are all predicted-determined-by the 
state. Let us say that in a particular state that is set up the prediction for 0" 
is that it'll be extraordinary (black dot), for 30" it's also extraordinary, for 
60" it's ordinary (white dot), and so on (Figure 5a). By the way, the 
outcomes are complements of each other at right angles, because, remember, 
it's always either extraordinary or ordinary; so if you turn go", what used to 
be an ordinary ray becomes the extraordinary ray. Therefore, whatever 
condition it's in, it has some predictive pattern in which you either have a 
prediction of ordinary or of extraordinary-three and three-because at 
right angles they're not the same color. Likewise the particle that comes to 
you when they're separated must have the same pattern because you can 
determine what I'm going to get by measuring yours. Whatever circum- 
stances come out, the patterns must be the same. So, if I want to know, Am 
I going to get white at 60"? You just measure at 60°, and you'll find white, 
and therefore you'll predict white, or ordinary, for me. Now each time we 
do the experiment the pattern may not be the same. Every time we make a 
pair of photons, repeating this experiment again and again, it doesn't have 
to be the same as Figure 5a. Let's assume that the next time the experiment 
my photon will be 0 or E for each angle as in Figure 5c. Then your pattern 
looks like Figure 5d. But whatever it is, your pattern has to be my pattern 
exactly-otherwise you couldn't predict what I was going to get exactly by 
measuring the corresponding angle. And so on. Each time we do the 
experiment, we get different patterns; and it's easy: there are just six dots 
and three of them are white, and you chase them around different way-ev- 
erything can happen. If we measure at the same angle, we always find that 
with t h s  kind of arrangement we would get the same result. 

Now suppose we measure at $2 - 9 ,  = 30", and ask, With what proba- 
bility do we get the same result? Let's first try this example here (Figure 
5a,5b). With what probability would we get the same result, that they're 
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both white, or they’re both black? The thing comes out like ths :  suppose I 
say, After they come out, I’m going to choose a direction at random, I tell 
you to measure 30” to the right of that direction. Then whatever I get, you 
would get somethng different if the neighbors were different. (We would 
get the same if the neighbors were the same.) What is the chance that you 
get the same result as me? The chance is the number of times that the 
neighbor is the same color. If you’ll think a minute, you’ll find that two 
thirds of the time, in the case of Figure 5a, it’s the same color. The worst 
case would be hlack/whte/black/white/black/wlute, and there the proba- 
bility of a mafch would be zero (Figure 5c,d). If you look at all eight 
possible distinct cases, you’ll find that the biggest possible answer is 
two-thirds. You cannot arrange, in a classical h n d  of method like this, that 
the probability of agreement at 30” will be bigger than two-thrds. But the 
quantum mechanical formula predicts cos’ 30” (or 3/4)-and experiments 
agree with this--and therein lies the difficulty. 

That’s all. That’s the difficulty. That’s why quantum mechanics can’t 
seem to be imitable by a local classical computer. 

I’ve entertained myself always by squeezing the difficulty of quantum 
mechanics into a smaller and smaller place, so as to get more and more 
worried about this particular item. It seems to be almost ridiculous that you 
can squeeze it to a numerical question that one thing is bigger than another. 
But there you are-it is bigger than any logical argument can produce, if 
you have this kind of logic. Now, we say “this kind of logic;” what other 
possibilities are there? Perhaps there may be no possibilities, but perhaps 
there are. Its interesting to try to discuss the possibilities. I mentioned 
something about the possibility of time-of thngs being affected not just 
by the past, but also by the future, and therefore that our probabilities are 
in some sense “illusory.” We only have the information from the past, and 
we try to predict the next step, but in reality it depends upon the near future 
which we can’t get at, or something like that. A very interesting question is 
the origin of the probabilities in quantum mechanics. Another way of 
puttings things is ths :  we have an illusion that we can do any experiment 
that we want. We all, however, come from the same universe, have evolved 
with it, and don’t really have any “real” freedom. For we obey certain laws 
and have come from a certain past. Is it somehow that we are correlated to 
the experiments that we do, so that the apparent probabilities don’t look 
like they ought to look if you assume that they are random. There are all 
kinds of questions like this, and what I’m trying to do is to get you people 
who think about computer-simulation possibilities to pay a great deal of 
attention to this, to digest as well as possible the real answers of quantum 
mechanics, and see if you can’t invent a different point of view than the 
physicists have had to invent to describe this. In fact the physicists have no 
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good point of view. Somebody mumbled somethng about a many-world 
picture, and that many-world picture says that the wave function 4 is what’s 
real, and damn the torpedos if there are so many variables, N R .  All these 
different worlds and every arrangement of configurations are all there just 
like our arrangement of configurations, we just happen to be sitting in this 
one. It’s possible, but I’m not very happy with it. 

So, I would like to see if there’s some other way out, and I want to 
emphasize, or bring the question here, because the discovery of computers 
and the thnlung about computers has turned out to be extremely useful in 
many branches of human reasoning. For instance, we never really under- 
stood how lousy our understanding of languages was, the theory of gram- 
mar and all that stuff, until we tried to make a computer which would be 
able to understand language. We tried to learn a great deal about psychol- 
ogy by trying to understand how computers work. There are interesting 
phlosophical questions about reasoning, and relationship, observation, and 
measurement and so on, whch computers have stimulated us to think about 
anew, with new types of thnlung. And all I was doing was hoping that the 
computer-type of thinking would give us some new ideas, if any are really 
needed. I don’t know, maybe physics is absolutely OK the way it is. The 
program that Fredkin is always pushng, about trying to find a computer 
simulation of physics, seem to me to be an excellent program to follow out. 
He and I have had wonderful, intense, and interminable arguments, and my 
argument is always that the real use of it would be with quantum mechanics, 
and therefore full attention and acceptance of the quantum mechanical 
phenomena- the challenge of explaining quantum mechanical phenomena 
-has to be put into the argument, and therefore these phenomena have to 
be understood very well in analyzing the situation. And I’m not happy with 
all the analyses that go with just the classical theory, because nature isn’t 
classical, dammit, and if you want to make a simulation of nature, you’d 
better make it  quantum mechanical, and by golly it’s a wonderful problem, 
because it doesn’t look so easy. Thank you. 

9. DISCUSSION 

Question: Just to interpret, you spoke first of the probability of A given 
B, versus the probability of A and B jointly-that’s the probability of one 
observer seeing the result, assigning a probability to the other; and then you 
brought up the paradox of the quantum mechanical result being 3/4, and 
t h s  being 2/3. Are those really the same probabilities? Isn’t one a joint 
probability, and the other a conditional one? 

Answer: No, they are the same. Poo is the joint probability that both you 
and I observe an ordinary ray, and PEE is the joint probability for two 
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extraordinary rays. The probability that our observations match is 

Poo + PEE =cos2 30” = 3/4 

Question: Does it in some sense depend upon an assumption as to how 
much information is accessible from the photon, or from the particle? And 
second, to take your question of prediction, your comment about predicting, 
is in some sense reminiscent of the philosophxal question, Is there any 
meaning to the question of whether there is free will or predestination? 
namely, the correlation between the observer and the experiment, and the 
question there is, Is it possible to construct a test in whch the prediction 
could be reported to the observer, or instead, has the ability to represent 
information already been used up? And I suspect that you may have already 
used up all the information so that prediction lies outside the range of the 
theory. 

Answer: .411 these thngs I don’t understand; deep questions, profound 
questions. However physicists have a kind of a dopy way of avoiding all of 
these things. They simply say, now look, friend, you take a pair of counters 
and you put them on the side of your calcite and you count how many times 
you get this stuff, and it comes out 75% of the time. Then you go and you 
say, Now can I imitate that with a device which is going to produce the 
same results, and whch will operate locally, and you try to invent some 
kind of way of doing that, and if you do it in the ordinary way of thinking, 
you find that you can’t get there with the same probability. Therefore some 
new kind of thnlung is necessary, but physicists, being kind of dull minded, 
only look at nature, and don’t know how to think in these new ways. 

Questiott: At the beginning of your talk, you talked about discretizing 
various things in order to go about doing a real computation of physics. 
And yet it seems to me that there are some differences between thmgs like 
space and time, and probability that might exist at some place, or energy, or 
some field value. Do you see any reason to distinguish between quantization 
or discretizing of space and time, versus discretizing any of the specific 
parameters or values that might exist? 

Answer: I would llke to make a few comments. You said quantizing or 
discretizing. That’s very dangerous. Quantum theory and quantizing is a 
very specific type of theory. Discretizing is the right word. Quantizing is a 
different kind of mathematics. If we talk about discretizing.. . of course I 
pointed out that we’re going to have to change the laws of physics. Because 
the laws of physics as written now have, in the classical limit, a continuous 
variable everywhere, space and time. If, for example, in your theory you 
were going to have an electric field, then the electric field could not have (if 
it’s going to be imitable, computable by a finite number of elements) an 
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infinite number of possible values, it’d have to be digitized. You might be 
able to get away with a theory by redescribing thngs without an electric 
field, but supposing for a moment that you’ve discovered that you can’t do 
that and you want to describe it with an electric field, then you would have 
to say that, for example, when fields are smaller than a certain amount, they 
aren’t there at all, or something. And those are very interesting problems, 
but unfortunately they’re not good problems for classical physics because if 
you take the example of a star a hundred light years away, and i t  makes a 
wave wluch comes to us, and it gets weaker, and weaker, and weaker, and 
weaker, the electric field’s going down, down, down, how low can we 
measure? You put a counter out there and you find “clunk,” and nothing 
happens for a while, “clunk,” and nothmg happens for a whle. It’s not 
discretized at all, you never can measure such a tiny field, you don’t find a 
tiny field, you don’t have to imitate such a tiny field, because the world that 
you’re trying to imitate, the physical world, is not the classical world, and it 
behaves differently. So the particular example of discretizing the electric 
field, is a problem whch I would not see, as a physicist, as fundamentally 
difficult, because it will just mean that your field has gotten so small that I 
had better be using quantum mechanics anyway, and so you’ve got the 
wrong equations, and so you did the wrong problem! That’s how I would 
answer that. Because you see, if you would imagine that the electric field is 
coming out of some ‘ones’ or something, the lowest you could get would be 
a full one, but that’s what we see, you get a full photon. All these tl-ungs 
suggest that it’s really true, somehow, that the physical world i s  represent- 
able in a discretized way, because every time you get into a bind like tl-us, 
you discover that the experiment does just what’s necessary to escape the 
trouble that would come if the electric field went to zero, or you’d never be 
able to see a star beyond a certain distance, because the field would have 
gotten below the number of digits that your world can carry. 
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The Computing Machines in the Future 

Nishina Memorial Lecture 
given at Gakushuin, Tokyo, August 9, 1985 

Richard P. Feynman 
California Institute of Technology, Pasadena, California, U.S.A. 

It's a great pleasure and an honor to be here as a speaker in 
memorial for a scientist that I have respected and admired as much as 
Prof. Nishina. To come to Japan and talk about computers is like 
giving a sermon to Buddha. But I have been thinking about computers 
and this is the only subject I could think of when invited to talk. 

The first thing I would like to say is what I am not going to 

talk about. I want to talk about the future computing machines. But 
the most important possible developments in the future, are things 
that I will not speak about. For example, there is a great deal of 
work to try to develop smarter machines, machines which have a better 
relationship with the humans so that input and output can be made with 
less effort than the complex programing that's necessary today. This 
goes under the name often of artificial intelligence, but I don't like 
that name. Perhaps the unintelligent machines can do even better than 
the intelligent ones. Another problem is the standardization of 
programing languages. There are too many languages today, and it 
would be a good idea to choose just one. (I hesitate to mention that 
in Japan, for what will happen will be that there will simply be more 
standard languages: you already have four ways of writing now and 
attempts to standardize anything here result apparently in more 
standards and not fewer.) Another interesting future problem that is 
worth working on but I will not talk about, is automatic debugging 
programs; debugging means to fix errors in a program or in a machine. 
It is surprisingly difficult to debug programs as they get more 



948 

2 

complicated. Another direction of improvement is to make physical 
machines three dimensional instead of all on a surface of a chip. 

That can be done in stages instead of all at once; you can have 

several layers and then many more layers as the time goes on. Another 

important device would be a way of detecting automatically defective 

elements on a chip, then this chip itself automatically rewiring 

itself so as to avoid the defective elements. At the present time 

when we try to make big chips there are flaws, bad spots in the chips, 

and we throw the whole chip away. But of course if we could make it 

so that we could use the part of the chip that was effective, it would 

be much more efficient. I mention these things to try to tell you 
that I am aware of what the real problems are for future machines. 
But what I want to talk about is simple, just some small technical, 

physically good things that can be done in principle according to the 

physical laws; I would like in other words to discuss the machinery 

and not the way we use the machines. 

I will talk about some technical possibilities for making 

machines. There will be three topics really. One is parallel 

processing machines which is something of the very near future, almost 
present, that is being developed now. Further in the future are 

questions of the energy consumption of machines which seems at the 

moment to be a limitation, but really isn't. Finally I will talk 
about the size; it is always better to make the machines smaller, and 

the question is how much smaller is it still possible to make machines 
according to the laws of Nature, in principle. I will not discuss 
which and what of these things will actually appear in the future. 

That depends on economic problems and social problems and I am not 
going to try to guess at those. 

1. Parallel Computers 

First about parallel programing, parallel computers, rather. 

Almost all the present computers, conventional computers, work on a 
layout or an architecture invented by von Neumann, in which there is a 
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very large memory that stores all the information, and one central 
location that does simple calculations. We take a number from this 
place in the memory and a number from that place in the memory, send 
the two to the central arithmetical unit to add them and then send the 
answer to - some other place in the memory. There is, therefore, 
effectively one central processor which is working very very fast and 
very hard while the whole memory sits out there like a vast filing 
cabinet of cards which are very rarely used. It is obvious that if 
there were more processors working at the same time we ought to be 
able to do calculations faster. But the problem is that some one who 
might be using one processor may be using some information from the 
memory that another one needs, and it gets very confusing. And so it 
has been said that it is very difficult to work many processors in 
parallel. Some steps in that direction have been taken in the larger 

conventional machines, what they call "vector processors". When 
sometimes you want to do exactly the same step on many different items 
you can do that perhaps at the same time. The ordinary hope is that 
the regular program can be written, and then an interpreter will 
discover automatically when it is useful to use this vector 
possibility. That idea is used in the Cray and in the super-computers 
in Japan. Another plan is to take what is effectively a large number 
of relatively simple (but not very simple) computers, and connect them 
all together in some pattern. Then they can all work on a part of the 
problem. Each one is really an independent computer, and they will 
transfer information to each other as one or another needs it. This 
kind of a scheme is in a machine for example called Cosmic Cube, and 
is one of the possibilities; many people are making such machines. 
Another plan is to distribute very large numbers of very simple 
central processors all over the memory. Each one deals with just a 
small part of the memory and there is an elaborate system of 

interconnections between them. An example of such a machine is the 
Connection Machine made at M.I.T. It has 64,000 processors and a 
system of routing in which every 16 can talk to any other 16 and thus 
4000 routing connection possibilities. It would appear that 

scientific questions like the propagation of waves in some material 



might be very easily handled by parallel processing, because what 
happens in this part of space at a moment can be worked out locally 
and only the pressures and the stresses from the neighbor needs to be 
known for each section can be worked out at the same time, and 
communicate boundary conditions across. That's why this type of design 
is built for such a thing. But it has turned out that very large 
number of problems of all kinds can be dealt with in parallel. As 

long as the problem is big enough so that a lot of calculating has to 

be done, it turns out that a parallel computation can speed this up 

enormously, not just scientific problems. 
And what happened to the prejudice of 2 years ago, which was that 

the parallel programing is difficult? It turns out that what was 
difficult, and almost impossible, is to take an ordinary program and 
automatically figure out how to use the parallel computation 
effectively on that program. Instead, one must start all over again 
wi.th the problem, appreciating that we have parallel possibility of 
calculation, and rewrite the program completely with a new attitude to 
what is inside the machine. It is not possible to effectively use the 
old programs. They must be rewritten. That is a great disadvantage 
to most industrial applications and has met with considerable 
resistance. But, the big programs belong usually to scientists or 
others, unofficial intelligent programmers who love computer science 
and are willing to start all over again and rewrite the program if 
they can make it more efficient. So what's going to happen is that the 
hard programs, vast big ones, will first be programed by experts in 
the new way, and then gradually everybody will have to come around, 
and more and more programs will be programed that way, and programmers 
will just have to learn how to do it. 

2 .  Reducing the Energy Loss 

The second topic I want to talk about is energy loss  in 
computers. The fact that they must be cooled is the limitation 

apparently to the largest computers; a good deal of the effort is 
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spent in cooling the machine. I would like to explain that this is 
simply a result of very poor engineering and is nothing fundamental at 
all. Inside the computer a bit of information i s  controlled by a wire 
which either has a voltage of one value or another value. It is 
called "one bit", and we have to change the voltage of the wire from 
one value to the other and have to put charge on or take charge off. 
I make an analogy with water: We have to fill a vessel with water and 

get one level or to empty it to get to the other level. It's just an 
analogy. If you like electricity better you can think more accurately 
electrically. What we do now is analogous, in the water case, to 
filling the vessel by pouring water in from a top level (Fig.l), and 
lowering the level by opening the valve at the bottom and letting it 
all run out. In both cases there is a loss of energy because of the 
drop of the water, suddenly, through a height say from top level where 
it comes in to the low bottom level when you start pouring it in to 
fill it up again. In the cases of voltage and charge, there occurs the 
same thing. 

It's like, as Mr. Bennett has explained, operating an automobile 
which has to start and stop by turning on the engine and putting on 
the brakes, turning on the engine and putting on the brakes; each time 
you lose power. Another way with a car would be to connect the wheels 
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to flywheels. Stop the car and speed up the flywheel saving the 
energy, which can then be reconnected to start the car again. The 
analogy electrically or in the water would be to have a U-shaped tube 

with a valve at the bottom in the center connecting the two arms of 
the U (Fig.2). When it is full here on the right but empty on the 
left with the valve closed, if we open that valve the water will slip 
out to the other side, and we close it just in time to catch it. Then 

when we want to go the other way we open the valve again and it slips 
to the other side and we catch it. There is some loss and it doesn't 
climb as high as it did before, but all we have to do is to put a 
little water in to correct the little loss, a much smaller energy loss 
than the direct fill method. But such a thing uses the inertia of the 
water and the analogue in the electricity, is inductance. However it 
is very difficult with the silicon transistors that we use today to 
make up inductance on the chips. So this is not particularly 
practical with the present technology. 

Another way would be to fill the tank by a supply which stays 
only a little bit above the level lifting the water supply in time as 
we fill it up (Fig.31, because then the dropping of water is always 
small during the entire effort. In the same way, we could use an 
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outlet to lower it but just taking off the top and lowering the tube, 
so that the heat loss would not appear at the position of the 

transistor, or would be small; it will depend on how high the distance 
is between the supply and the surface as we fill it up. This method 
corresponds to changing the voltage supply with time (Fig.4). S o  if 
we would use a time varying voltage supply, we could use this method. 
Of course, there is energy loss in the voltage supply, but that 
is all located in one place, that is simple, and there we can make 
one big inductance. This scheme is called "hot clocking", because the 
voltage supply operates also as the clock which times everything. And 
we don't need an extra clock signal to time the circuits as we do in 

conventional designs. 
Both of these last two devices use less energy if they go slower. 

If I try to move the water supply level too fast, the water in the 
tube doesn't keep up with it and I have a big drop. So to work I must 
go slowly. Again, the U-tube scheme will not work unless that central 
valve can open and close faster than the time it takes for the water 
in the U-tube to slip back and forth. SO my devices are slower. I've 

saved an energy loss but I've made the devices slower. The energy 
loss multiplied by the time it takes for the circuit to operate is 
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constant. But nevertheless, this turns out to be very practical 

because the clock time is usually much larger than the circuit time 

for the transistors, and we can use that to decrease the energy. A l s o  

if we went, let us say, three times slower with our calculations, we 

could use one third the energy over three times the time, which is 

nine times less power that has to be dissipated. Maybe it is worth 

it. Maybe by redesigning using parallel computations or other 

devices, we can spend a little longer than we could do at maximum 

circuit speed, in order to make a larger machine that is practical and 

from which we could still get the energy out. 

For a transistor, the energy loss multiplied by the time it takes 

to operate is a product of several factors (Fig.5): ( 1 )  the thermal 

energy propotional to temperature, kT; ( 2 )  the length of the 

transistor between source and drain, divided by the velocity of the 
electrons inside (the thermal velocity dm ) ;  ( 3 )  the length of the 
transistor in units of the mean free path for collisions of electrons 

in the transistor: and finally ( 4 )  the total number of the electrons 
that are inside the transistor when it operates. A l l  of these numbers 

come out to tell us that the energy used in the transistor today is 

somewhere around a billion or ten billions or more times the thermal 
energy kT. When it switches we use that much energy. It is very 

large amount of energy. It is obviously a good idea to decrease the 

size of the transistor. We decrease the length between source and 

drain, and we can decrease the number of the electrons, and use much 

Fig. 5 
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less energy. It also turns out that a smaller transistor is much 

faster, because the electrons can cross it and make their decisions to 

switch faster. For every reason, it is a good idea to make the 

transistor smaller, and everybody is always trying to do that. 

But suppose we come to a circumstance in which the mean free path 

is longer than the size of the transistor, then we discover that the 

transistor doesn't work right any more. It does not behave the way we 

expected. This reminds me, years ago there was something called the 

sound barrier. Airplanes cannot go faster than the speed of sound 

because, if you design them normally and try to put them in that 

speed, the propeller wouldn't work and the wings don't lift and 

nothing works correctly. Nevertheless, airplanes can go faster than 

the speed of sound. You just have to know what the right laws are 

under the right circumstances, and design the device with the correct 

laws. You cannot expect old designs to work in new circumstances. 

But new designs can work in new circumstances, and I assert that it is 
perfectly possible to make transistor systems, that is to say more 

correctly, switching systems, computing devices in which the 

dimensions are smaller than the mean free path. I speak of course in 
principle and I am not speaking about actual manufacture. Therefore, 

let us discuss what happens if we try to make the devices as small as 

possible. 

3 .  Reducing the Size 

So, my third topic is the size of computing elements and now I 
speak entirely theoretically. The first thing that you would worry 

about when things get very small, is Brownian motion: everything is 

shaking and nothing stays in place, and how can you control the 

circuits then? And if the circuits did work, it has a chance of 
accidentally jumping back. But, if we use two volts for the energy of 
this electric system which is what we ordinarily use, that is eighty 
times the thermal energy (kT=1/40 volt) and the chance that something 

jumps backward against 80 times thermal energy is el the base of the 
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natural logarithm, to minus eighty power, or lo-? What does that 

mean? If we had a billion transistors in a computer (which we don't 

have, don't have that many at all), working all of them lo1' times 
a second, that is, tenth of a nanosecond switching perpetually, 

operating for l o 9  seconds, which is 30 years, the total number of 

switching operations in that machine is and the chance of one of 
them going backward is only there will be no error produced by 

thermal oscillations whatsoever in 30 years. If you don't like that, 

use 2 . 5  volts and then it gets smaller. Long before that, the real 

failure will come when a cosmic ray accidentally goes through the 

transistor, and we don't have to be more perfect than that. 

we 

However, much more is in fact possible and I would like to refer 

you to an article in a most recent Scientific American by Bennett and 
Landauer. It is possible to make a computer in which each element, 

each transistor, can go forward and accidentally reverse and still the 

computer will operate. All the operation in succession in the 

computer go forward or backward. The computation proceeds for a while 

this way and then it undoes itself, uncalculates, and then goes 

forward again and so on. If we just pull it along a little, we can 

make it go through and finish the calculation by making it just a 

little bit more likely that it goes forward than backward. 

It is known that all the computations can be made by putting 

together some simple elements like transistors; or, if we be more 

logically abstract, a thing for instance called NAND gate (NAND means 
NOT-AND). It has two "wires" in and one out (Fig.6). Forget the NOT 
first. What is AND? AND is: The output is 1 only if both input wires 
are 1, otherwise the output is 0. NOT-AND means the opposite. The 
output wire reads 1 (i.e. has the voltage level corresponding to 1) 

unless both input wires read 1, if both input wires read 1 then the 
output wire reads 0 (i.e. has the voltage level corresponding to 0 ) .  
Here is a little table of inputs and outputs. A and B are inputs and 

C is the output. Unless A and B are both 1, the output is 1 otherwise 
0. But such a device is irreversible. Information is lost. If I 

only know the output, I cannot recover the input. The device can't 

be expected to flip forward and then come back and compute 



957 

11 

NOT A N D = N A N D  

1 
1 0  

Not Reversible 
Information Lost 

Fig. 6 

correctly anymore. Because if we know for instance that the output is 

now 1, we don't know whether it came from A=O, B=l or A-1, B=O or A=O, 
B=O and it cannot go back. Such a device is an irreversible gate. 

The great discovery of Bennett and, independently, of Fredkin is that 

it is possible to do computation with a diffferent kind of fundamental 

gate unit, a reversible gate unit. I have illustrated their idea -- 
with this unit which I could call a reversible NAND or whatever. It 

has three inputs and three outputs (Fig.7). Of the outputs, two, A '  

and B', are the same as two of the inputs, A and B, but the third 
input works this way: C '  is the same as C unless A and B are both 1. 
Then it changes whatever C is. For instance, if C is 1 it is 

changed to 0, if C is 0 it is changed to 1 only if both A and B are 
1. If you put two in succession, you see A and B will go 

through, and if C is not changed in both it stays the same or if C 

is changed twice it stays the same. So this gate reverses itself. 

No information has been lost. It is possible to discover what 



958 

12 

Reversihle Gate 

A A' 

B B 

C C '  

Fig. 7 

A ' =  A 

B ' =  B 
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unless A = 1 and U =  1 

= N O T C .  i f  A =  l a n d  R =  1 

No Information Lost 

Some Force Needed to Push Calculation 
Predominantly Forward 

Energy Loss . Time Used =Constant 

went in if you know what went out. 
A device made entirely with such gates will make calculations if 

everything moves forward, but if things go back and forth for a while 
and then eventually go forward enough it still operates correctly. If 
the things flip back and then go forward later it is still all right. 
It's very much the same as a particle in a gas which is bombarded by 
the atoms around it, usually goes nowhere, but with just a little 
pull, a little prejudice that makes a chance to move one way a little 
higher than the other way, the thing will slowly drift forward and 
reach from one end to the other, in spite of the Brownian motion that 
is made. So our computer will compute provided we apply a force of 
drift to pull the thing more likely across the calculation. Although 
it is not doing the calculation in a smooth way, but calculating like 
this, forward and backward, it eventually finishes the job. As with 
the particle in the gas, if we pull it very slightly, we lose very 
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little energy, but it takes a long time +.o get to one side from the 

other. If we are in a hurry, and we pull hard, then we loose a lot of 

energy. And the same with this computer. If we are patient and go 
slowly, we can make the computer operate with practically no energy, 

even less than kT per step, any amount as small as you like if you 

have enough time. But if you are in a hurry, you must dissipate 

energy, and again it's true that the energy lost to pull the 

calculation forward to complete it multiplied by the time you are 

allowed to make the calculation is a constant. 

With these possibilities how small can we make a computer? How 

big must a number be? We all know we can write numbers in base 2 
as strings of "bits" each a one or a zero. But how small can I write? 
Surely only one atom is needed to be in one state or another to 

determine if it represents a one or a zero. And the next atom could 

be a one or a zero, so a little string of atoms are enough to hold a 

number, one atom for each bit. (Actually since an atom can be in more 

states than just two we could use even fewer atoms, but enough is 

little enough!) 

So now for intellectual entertainment we consider whether we 

could make a computer in which the bits writing is of atomic size, in 

which a bit is for example whether the spin in the atom is up for 1 or 
down for 0. And then our transistor changing the bits in different 

places would correspond to some interaction between some atoms, which 

will change their states. The simplest would be a kind of 3-atom 

interaction to be the fundamental element or gate in such a device. 
But again, it won't work right if we design it with the laws 

appropriate for large objects. We must use the new laws of physics, 

quantum mechanical laws, the laws that they are appropriate to atomic 

motion. And so we have to ask whether the principles of quantum 

mechanics permit an arrangements of atoms s o  small in number as a few 

times the number of gates in a computer that could still be put 

together and operate as a computer. This has been studied in 

principle, and such an arrangement has been found. The laws of quantum 

mechanics are reversible and therefore we must use the invention of 

reversible gates, that principle, that idea of Bennett and Fredkin, 
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but we know that's alright now. When the quantum mechanical situation 
is studied it is found that quantum mechanics adds no further 

limitations to anything that Mr. Bennet has said from thermodynamic 
considerations. Of course there is a limitation, the practical 

limitation anyway, that the bits must be of the size of an atom and a 
transistor 3 or 4 atoms; the quantum mechanical gate I used has 3 
atoms. (I would not try to write my bits on to nuclei, I'll wait till 

the technological development reaches the atoms before I need to go 
any further!) That leads us just with (a) the limitations in size to 
the size of atoms, (b) the energy requirements depending on the time 

as worked out by Bennett, (c) and the feature that I did not mention 
concerning the speed of light; we can't send the signals any faster 

than the speed of light. Those are the only physical limitations that 

I know on computers. 

If we make an atomic size computer, somehow, it would mean that 

the dimension, the linear dimension is a thousand to ten thousands 

times smaller than those very tiny chips that we have now. It means 

that the volume of the computer is 100 billionth, of the present 
volume, because the transistor is that much smaller 10 , than the 

transistors that we make today. The energy requirement for a single 

switch is also about eleven orders of magnitude smaller than the 

energy required to switch the transistor today, and the time to make 
the transisions will be at least ten thousands times faster per step 

of calculation. So there is plenty of room for improvement in the 
computer and I leave you, practical people who work on computers, this 

as an aim to get to. I underestimated how long it would take for Mr. 

Ezawa to translate what I said, and I have no more to say that I have 
prepared for today. Thank you! 

-11 

I will answer questions if you'd like. 
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Questions and Answers 

Q: You mentioned that one bit of information can be stored in one 
atom, and I wonder if you can store the same amount of information in 
one quark. 

A: Yes. But we don't have control of the quarks and that becomes a 
really impractical way to deal with things. You might think that what 
I am talking about is impractical, but I don't believe so. When I am 
talking about atoms, I believe that someday we will be able to handle 
and control them individually. There would be so much energy involved 
in the quark interactions it would be very dangerous to handle because 
of the radioactivity and so on. But the atomic energies that I am 
talking about are very familiar to us in chemical energies, electrical 
energies, and those, that I am speaking of, are numbers that are 
within the realm of reality, I believe, however absurd it may seem at 
the moment. 

Q: You said that the smaller the computing element is the better. 
But, I think equipments have to be larger, because.... 

A :  You mean that your finger is too big to push the buttons? Is 

that what you mean? 
Q: Yes, it is. 

A:  Of course, you are right. I am talking about internal computers 
perhaps for robots or other devices. The input and output is 
something that I didn't discuss, whether the input comes from looking 
at pictures, hearing voices, or buttons being pushed. I am discussing 
how the computation is done in principle, and not what form the output 
should take. It is certainly true that the input and the output 
cannot be reduced in most cases effectively beyond human dimension. 
It is already too difficult to push the buttons on some of the 
computers with our big fingers. But with elaborate computing problems 
that take hours and hours, they could be done very rapidly on the very 

small machines with low energy consumption. That's the kind of 
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machine I was thinking of. Not the simple applications of adding two 
numbers but the elaborate calculations. 

Q: I would like to know your method to transform the information 
from one atomic scale element to another atomic scale element. If you 
will use a quantum mechanical or natural interaction between the two 
elements then such a device will become very close to Nature itself. 

For example, if we make a computer simulation, a Monte Carlo 
simulation of a magnet to study critical phenomena, then your atomic 
scale computer will be very close to the magnet itself. What are your 
thoughts about that? 
A: Yes. All things that we make are Nature. We arrange it in a way 
to suit our purpose, to make a calculation for a purpose. In a magnet 
there is some kind of relation, if you wish, there are some kind of 
computations going on just like there is in the solar system in a way 
of thinking. But, that might not be the calculation we want to make 
at the moment. What we need to make is a device for which we can 
change the programs and let it compute the problem that we want to 
solve, not just its own magnet problem that it likes to solve for 
itself. I can't use the solar system for a computer unless it just 
happens that the problem that someone gave me was to find the motion 
of the planets, in which case all I have to do is to watch. 

There was an amusing article as a joke. Far in the future the 
"article" appears discussing a new method of making aerodynamical 
calculations: Instead of using the elaborate computers of the day, the 
author invents a simple device to blow air past the wing. (He 
reinvents the wind tunnel.) 

Q: I have recently read in an newspaper article that operations of 
the nerve system in a brain are much slower than present day computers 
and the unit in the nerve system is much smaller. Do you think that 
the computers you have talked about today have something in common 
with the nerve system in the brain? 

A: There is an analogy between the brain and the computer in that 
there are apparently elements that can switch under the control of 
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others. Nerve impulses controling or exciting other nerves, in a way 
that often depends upon whether more than one impulse comes in; 

something like an AND or its generalization. The amount of energy 

used in the brain cell for one of these transitions? I don't know the 
number. The time it takes to make a switching in the brain is very 

much longer than it is in our computers even today, never mind the 

fancy business of some atomic computer. But, interconnection system 

is much more elaborate. Each nerve is connected to thousand other 

nerves, whereas we connect transistors to two or three others. 
Some people look at the activity of the brain in action and see 

that in many respects it surpasses the computer of today, and in many 

other respects the computer surpasses ourselves. This inspires people 

to design machines that can do more. What often happens is that an 

engineer makes up how the brain works in his opinion, and then designs 

a machine that behaves that way. This new machine may in fact work 

very well. But, I must warn you that that does not tell us anything 
about how the brain actually works, nor is it necessary to ever really 

know that in order to make a computer very capable. It is not 

necessary to understand the way birds flap their wings and how the 

feathers are designed in order to make a flying machine. It is not 

necessary to understand the lever system in the legs of a cheetah, 

that is an animal that runs fast, in order to make an automobile with 

wheels that goes very fast. It is therefore not necessary to imitate 

the behavior of Nature in detail in order to engineer a device which 

can in many respects surpass Nature's abilities. 

It is an interesting subject and I like to talk about it. Your 

brain is very weak compared to a computer. I will give you a series 

of numbers, one, three, seven, oh yes, ichi, san, shichi, san, ni, go, 

ni, go, ichi, hachi, ichi, ni, ku, san, go. I want you to repeat them 
back. But, a computer can take ten thousands numbers and give 

me them back in reverse every other one, or sum them or lots of things 
that we cannot do. On the other hand, if I look at a face, in a 
glance I can tell you who it is if I know that person, OK that I don't 
know that person. But, we do not know how to make a computer system 

so that if we give it a pattern of a face it can tell us who he is, 
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even if it has seen many faces and you try to teach it. We do not know 
how to make computers do that, yet. 

Another interesting example is chess playing machines. It is 

quite a surprise that we can make machines that play chess better than 

almost everybody in the room. But, they do it by trying many many 
possibilities. If he moves here, then I could move here and he can 

move there and so forth. They look at each alternative and choose the 

best. Now, millions of alternatives are looked at. But, a master 

chess player, a human, does it differently. He recognizes patterns. 

He looks at only thirty or forty positions before deciding what move 

to make. Therefore, although the rules are simpler in Go, machines 

that play Go are not very good, because in each position there are too 

many possibilities to move and there are too many things to check and 

the machines cannot look deeply. Therefore the problem of recognizing 

patterns and what to do under the circumstances is the thing that the 

computer engineers (they like to call themselves computer scientists) 

still find very difficult, and it is certainly one of the important 

things for future computers, perhaps more important than the things I 
spoke about. Make a machine to play Go effectively. 

Q: I think that any method of computation would not be fruitful 

unless it would give a kind of provision on how to compose such 
devices or programs. I thought the Fredkin paper on conservative 

logic was very intriguing, but once I came to think of making a simple 
program using such devices I came to a halt because thinking out such 

a program is far more complex than the program itself. I think we 
could easily get into a kind of infinite regression because the 

process of making out a certain program would be much more complex 

than the program itself and in trying to automate the process the 

automating program would be more complex and so on. Especially in 

this case where the program is hard wired rather than being separated 

as a software, I think it is fundamental to think of the ways of 

composition. 

A: We have some different experiences. There is no infinite 
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regression; it stops at a certain level of complexity. The machine 
that Fredkin ultimately is talking about and the one that I was 
talking about in the quantum mechanical case are both universal 

computers in the sense that they can be programed to do various jobs: 

this is not a hard-wired program; they are no more hard-wired than an 

ordinary computer that you can put information in, that the program is 

a part of the input, and the machine does the problem that it is 

assigned to do. It is hard-wired but it is universal like an ordinary 

computer. These things are very uncertain but I found a minimum. If 
you have a program written for an irreversible machine, the ordinary 

program, then I can convert it to a reversible machine program by a 

direct translation scheme, which is very inefficient and uses many 

more steps. Then in real situations, the number of steps can be much 

less. least I know that I can take a program with a 2n steps 

where it is irreversible, convert it to 3 steps of a reversible 

machine. That is many more steps. I did it very inefficiently; I did 
not try to find the minimum. Just a way. I don't really think that 

we'll find this regression that you speak of, but you might be right. 

I am uncertain. 

But at 
n 

Q: Won't we be sacrificing many of the merits we were expecting of 
such devices, because those reversible machines run so slow? I am very 

pessimistic about this point. 

A:  They run slower, but they are very much smaller. I don't make it 
reversible unless I need to. There is no point in making the machine 

reversible unless you are trying very hard to decrease the energy 

enormously, rather ridiculously, because with only 80 times kT the 

irreversible machine functions perfectly. That 80 is much less than 

the present day lo9 or l o l o ,  so I have at least l o 7  improvement in 

energy to make, and can still do it with irreversible machines! 
That's true. That's the right way to go, for the present. I 

entertain myself intellectually for fun, to ask how far could we go 

principle, not in practice, and then I discover that I can go to a 
fraction of a kT of energy and make the machines microscopic, 

atomically microscopic. But to do s o ,  I must use the reversible 



966 

20 

physical laws. Irreversibility comes because the heat is spread over 

a large number of atoms and can't be gathered back again. When I make 

the machine very small, unless I allow a cooling element which is lots 

of atoms, I have to work reversibly. In practice there probably will 

never come a time when we will be unwilling to tie a little computer 

to a big piece of lead which contains 10'' atoms (which is still very 

small indeed), making it effectively irreversible. Therefore I agree 

with you that in practice, for a very long time and perhaps forever, 

we will use irreversible gates. On the other hand it is a part of the 

adventure of science to try to find a limitations in all directions 

and to stretch a human imagination as far as possible everywhere. 

Although at every stage it has looked as if such an activity was 
absurd and useless, it often turns out at least not to be useless. 

Q: Are there any limitations from the uncertainty principle? Are 

there any fundamental limitations on the energy and the clock time in 

your reversible machine scheme? 

A: That was my exact point. There is no further limitation due to 

quantum mechanics. One must distinguish carefully between the energy 

lost or consumed irreversibly, the heat generated in the operation of 

the machine, and the energy content of the moving parts which might be 

extracted again. There is a relationship between the time and the 

energy which might be extracted again. But that energy which can be 

extracted again is not of any importance or concern. It would be like 

asking whether we should add the mc2, rest energy, of all the atoms 

which are in the device. I only speak of the energy lost times the 

time, and then there is no limitation. However it is true that if you 
want to make a calculation at a certain extremely high speed, you have 

to supply to the machine parts which move fast and have energy but 
that energy is not necessarily lost at each step of the calculation; 

it coasts through by inertia. 

A (to no 0): Could I just say with regard to the question of useless 
ideas? I'd like to add one more. I waited, if you would ask me, but 

you didn't. So I answer it anyway. How would we make a machine of 



967 

21 

such small dimension where we have to put the atoms in special places? 
Today we have no machinery with moving parts whose dimension is 

extremely small or atomic or hundreds of atoms even, but there is no 

physical limitation in that direction either. And there is no reason 

why, when we lay down the silicon even today, the pieces cannot be 

made into little islands so that they are movable. And we could 

arrange small jets so we could squirt the different chemicals on 

certain locations. We can make machinery which is extremely small. 

Such machinery will be easy to control by the same kind of compucer 

circuits that we make. Ultimately, €or fun again and intellectual 

pleasure, we could imagine machines tiny like few microns across with 

wheels and cables all interconnected by wires, silicon connections, so 
that the thing as a whole, a very large device, moves not like the 

awkward motion of our present stiff machines but in a smooth way of 
the neck of a swan, which after all is a lot of little machines, the 

cells all interconnected and all controlled in a smooth way. Why 
can’t we do that ourselves? 
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The physical limitations, due io quanium mechanics, on the functioning of com- 
puters are analyzed. 

1. INTRODUCTION 

This work is a part of an effort to analyze the physical limitations of com- 
puters due to the laws of physics. For example, Bennett'') has made a 
careful study of the free energy dissipation that must accompany com- 
putation. He found it to be virtually zero. He suggested to me the question 
of the limitations due to quantum mechanics and the uncertainty principle. 
I have found that, aside from the obvious limitation to size if the working 
parts are to be made of atoms, there is no fundamental limit from these 
sources either. 

We are here considering ideal machines; the effects of small imperfec- 
tions will be considered later. This study is one of principle; our aim is to 
exhibit some Hamiltonian for a system which could serve as a computer. 
We are not concerned with whether we have the most efficient system, nor 
how we could best implement it. 

Since the laws of quantum physics are reversible in time, we shall have 
to consider computing engines which obey such reversible laws. This 
problem already occurred to Bennett,") and to Fredkin and T~f fo l l , (~ )  and 
a great deal of thought has been given to it. Since it may not be familiar to 

' Editorh note: This article, which is based on the author's plenary talk presented at the 
CLEQDQEC Meeting in 1984, originally appeared in the February 1985 issue of Opiics 
News. I t  is here reprinted with kind permission of Professor Feynman and Opiics News. 

* Department of Physics, California Institute of Technology, Pasadena, California 9 1125. 
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you here, I shall review this, and in doing so, take the opportunity to 
review, very briefly, the conclusions of Bennett,”) for we shall confirm them 
all when we analyze our quantum system. 

It is a result of computer science that a universal computer can be 
made by a suitably complex network of interconnected primitive elements. 
Following the usual classical analysis we can imagine the interconnections 
to be ideal wires carrying one of two standard voltages representing the 
local 1 and 0. We can take the primitive elements to be just two, NOT and 
AND (actually just the one element NAND = N O T  AND suffices, for if 
one input is set at 1 the output is the NOT of the other input). They are 
symbolized in Fig. 1, with the logical values resulting on the outgoing 
wires, resulting from different combinations of input wires. 

From a logical point of view, we must consider the wires in detail, for 
in other systems, and our quantum system in particular, we may not have 
wires as such. We see we really have two more logical primitives, FAN 
OUT when two wires are connected to one, and EXCHANGE, when wires 
are crossed. In the usual computer the NOT and NAND primitives are 
implemented by transistors, possibly as in Fig. 2. 

What is the minimum free energy that must be expended to operate an 
ideal computer made of such primitives? Since, for example, when the 
AND operates the output line, c’ is being determined to be one of two 
values, no matter what it was before, the entropy change is In 2 units. This 
represents a heat generation of kT In 2 at temperature T. For many years it 
was thought that this represented an absolute minimum to the quantity of 
heat per primitive step that had to be dissipated in making a calculation. 

The question is academic at this time. In actual machines we are quite 
concerned with the heat dissipation question, but the transistor system 
used actually dissipates about lO’*kT! As Bennett‘3’ has pointed out, this 
arises because to change a wire’s voltage we dump it to ground through a 
resistance; and to build it up again we feed charge, again through a 
resistance, to the wire. It could be greatly reduced if energy could be stored 
in an inductance, or other reactive element. 

NOT AND FAN OUT EXCHANGE 

a -+a, ;>c# 

0 1  
110 

o b ! c ‘  a b a‘b’ 

Fig. 1. Primitive elements. 
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NOT NAND 

I- - 
Fig. 2. Transistor circuits for NOT and NAND 

However, i t  is apparently very difficult to make inductive elements on 
silicon wafers with present techniques. Even Nature, in her DNA copying 
machine, dissipates about lOOkT per bit copkd. Being, at present, so very 
far from this kT In 2 figure, it seems ridiculous to argue that even this is 
too high and the minimum is really essentially zero. But, we are going to be 
even more ridiculous later and consider bits written on one atom instead of 
the present 10" atoms. Such nonsense is very entertaining to professors 
like me. I hope you will find it  interesting and entertaining also. 

What Bennett pointed out was that this former limit was wrong 
because it is not necessary to use irreversible primitives. Calculations can 
be done with reversible machines containing only reversible primitives. If 
this is done the minimum free energy required is independent of the com- 
plexity or number of logical steps in the calculation. If anything, it is kT 
per bit of the output answer. 

But even this, which might be considered the free energy needed to 
clear the computer for further use, might also be considered as part of what 
you are going to do with the answer-the information in the result if you 
transmit i t  to another point. This is a limit only achieved ideally if you 
compute with a reversible computer at infinitesimal speed. 

2. COMPUTATION WITH A REVERSIBLE MACHINE 

We will now describe three reversible primitives that could be used to 
make a universal machine (Tof f~ l i (~ ) ) .  The first is the NOT which evidently 
loses no information, and is reversible, being reversed by acting again with 
NOT. Because the conventional symbol is not symmetrical we shall use an 
X on the wire instead (see Fig. 3a). 
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(a )  NOT (b) CONTROLLED NOT 

FAN OUT 
a’ 

EXCHANGE a -iT!- :: 
b 

( c )  CONTROLLED CONTROLLED NOT 

b S e e  Table I 

Fig. 3. Reversible primitives. 

Next is what we shall call the CONTROLLED NOT (see Fig. 3b). 
There are two entering lines, a and 6 ,  and two exiting lines, a’ and 6’. The 
a’ is always the same as a, which is the control line. If the control is 
activated a= 1 then the out b’ is the NOT of b. Otherwise b is unchanged, 
6‘= 6. The table of values for input and output is given in Fig. 3. The 
action is reversed by simply repeating it. 

The quantity 6‘ is really a symmetric function of a and b called XOR, 
the exclusive or; a or b but not both. It is likewise the sum modulo 2 of a 
and b, and can be used to compare a and b, giving a 1 as a signal that they 
are different. Please notice that this function XOR is itself not reversible. 
For example, if the value is zero we cannot tell whether it came from 
(a, b )  = (0,O) or from (1, 1 )  but we keep the other line a’ = a to resolve the 
ambiguity. 

We will represent the CONTROLLED NOT by putting a 0 on the 
control wire, connected with a vertical line to an X on the wire which is 
controlled. 

This element can also supply us with FAN OUT, for if b = 0 we see 
that a is copied onto line b’. This COPY function will be important later 
on. It also supplies us with EXCHANGE, for three of them used 

0 CARRY 

Fig. 4. Adder. 
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Fig. 5. Full adder. 

successively on a pair of lines, but with alternate choice for control line, 
accomplishes an exchange of the information on the lines (Fig. 3b). 

It turns out that combinations of just these two elements alone 
are insufficient to accomplish arbitrary logical functions. Some element 
involving three lines is necessary. We have chosen what we can call the 
CONTROLLED CONTROLLED NOT. Here (see Fig. 3c) we have two 
control lines a, b, which appear unchanged in the output and which change 
the third line c to NOT c only if both lines are activated (a  = 1 and b = 1). 
Otherwise c '=c .  If the third line input c is set to 0, then evidently it 
becomes 1(c'= 1 )  only if both a and b are 1 and therefore supplies us with 
the AND function (see Table I). 

Three combinations for (a, b) ,  namely (0, 0), (0 ,  l), and (1, 0), all give 
the same value, 0, to the AND (a, b )  function so the ambiguity requires 
two bits to resolve it. These are kept in the lines a, b in the output so the 
function can be reversed (by itself, in fact). The AND function is the carry 
bit for the sum of a and b. 

From these elements it is known that any logical circuit can be put 
together by using them in combination, and in fact, computer science 

Table I. 

a b c  a' b' c' 

0 0 0  0 0 0  
0 0 1  0 0 1  
0 1 0  0 1 0  
0 1 1  0 1 1  
1 0 0  1 0 0  
1 0 1  1 0 1  
1 1 0  1 1 1  
1 1 1  1 1 0  
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shows that a universal computer can be made. We will illustrate this by a 
little example. First, of course, as you see in Fig. 4, we can make an adder, 
by first using the CONTROLLED CONTROLLED NOT and then the 
CONTROLLED NOT in succession, to produce from a and b and 0, as 
input lines, the original a on one line, the sum on the second line, and the 
carry on the third. 

A more elaborate circuit is a full adder (see Fig. 5), which takes a 
carry c (from some previous addition) and adds it to the two lines a and b 
and has an additional line d with a 0 input. It requires four primitive 
elements to be put together. Besides this total sum, the total of the three, 
a, 6, and c and the carry, we obtain on the other two lines two pieces of 
information. One is the a that we started with, and the other is some inter- 
mediary quantity that we calculated on route. 

This is typical of these reversible systems; they produce not only what 
you want in output, but also a certain amount of garbage. In this par- 
ticular case, and as it  turns out in all cases, the garbage can be arranged to 
be, in fact, just the input, if we would just add the extra CONTROLLED 
NOT on the first two lines, as indicated by the dotted lines in Fig. 5; we 
see that the garbage would become a and 6, which were the inputs of at 
least two of the lines. (We know this circuit can be simplified but we do it 
this way for illustrative purposes.) 

In this way, we can by various combinations produce a general logic 
unit  that transforms n bits to n bits in a reversible manner. If the problem 
you are trying to do is itself reversible, then there might be no extra gar- 
bage, but in general, there are some extra lines needed to store up the 
information which you would need to be able to reverse the operation. In 
other words, we can make any function that the conventional system can, 
plus garbage. The garbage contains the information you need to reverse the 
process. 

And how much garbage? I t  turns out in general that if the output data 
that you are looking for has k bits, then starting with an input and k bits 
containing 0, we can produce, as a result, just the input and the output and 
no further garbage. This is reversible because knowing the output and the 
input permits you, of course, to undo everything. This proposition is 
always reversible. The argument for this is illustrated in Fig. 6. 

Suppose we began with a machine M ,  which, starting with an input, 
and some large number of O’s, produces the desired outut plus a certain 
amount of extra data which we call garbage. Now we have seen that the 
copy operation which can be done by a sequence of CONTROLLED 
NOT’S is possible, so if we have originally an empty register, with the k bits 
ready for the output, we can, after the processor M has operated, copy the 
output from the M onto this new register. 
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TIME - 

[ 0 

0 
0 

OUT PUT j!i- 
MACHINE COPY 

+ /I M 

R 
B 

0 
0 
0 I =  NEW OVERALL 

MACH I NE 
(ZEROS NEEDED FOR M _1 

REVERSE CAN BE CONSIDERED 
MACH I NE INTERNAL TO NEW MACH) 
Fig. 6.  Clearing garbage. 

After that, we can build the opposite machine, the M in reverse, the 
reverse machine, which would take this output of M and garbage and turn 
it into the input and 0's. Thus, seen as an overall machine, we would have 
started with the k 0's of the register for the output, and the input, and 
ended up with those k 0 s  occupied by the output data, and repeat the inut 
as a final product. The number of 0's that was originally needed in the M 
machine in order to hold the garbage is restored again to 0, and can be 
considered as internal wires inside the new complete machine ( M ,  I%? and 

Overall, then, we have accomplished what we set out to do, and 
therefore garbage need never be any greater than a repetition of the input 
data. 

COPY 1. 

3. A QUANTUM MECHANICAL COMPUTER 

We now go on to consider how such a computer can also be built 
using the laws of quantum mechanics. We are going to write a 
Hamiltonian, for a system of interacting parts, which will behave in the 
same way as a large system in serving as a universal computer. Of course 
the large system also obeys quantum mechanics, but it is in interaction 
with the heat baths and other things that could make it effectively irrever- 
sible. 

What we would like to do is make the computer as small and as 
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simple as possible. Our Hamiltonian will describe in detail all the internal 
computing actions, but not, of course, those interactions with the exterior 
involved in entering the input (preparing the initial state) and reading the 
output. 

How small can such a computer be? How small, for instance, can a 
number be? Of course a number can be represented by bits of 1’s and 0’s. 
What we are going to do is imagine that we have two-state systems, which 
we will call “atoms.” An n bit number is then represented by a state of a 
“register,” a set of n two-state systems. 

Depending upon whether or not each atom is in one or another of its 
two states, which we call 11) and lo), we can of course, represent any 
number. And the number can be read out of such a register by determining, 
or measuring, in which state each of the atoms are at a given moment. 
Therefore one bit will be represented by a single atom being in one of two 
states, the states we will call 11 ) and 10). 

What we will have to do then can be understood by considering an 
example; the example of a CONTROLLED CONTROLLED NOT. Let G 
be some sort of an operation on three atoms a, b, and c, which converts 
the original state of a, 6 ,  and c into a nex appropriate state, a‘, b’, c’, so 
that the connection between a’, b’, and c’ and a, b, c, are just what we 
would have expected if a, b, and c represented wires, and the a’, b’, and c’ 
were the output wires of a CONTROLLED CONTROLLED NOT. 

It must be appreciated here that at the moment we are not trying to 
move the data from one position to another; we are just going to change i t .  
Unlike the situation in the actual wired computer in which the voltages on 
one wire then go over to voltages on another, what we are specifically 
making is something simpler, that the three atoms are in some particular 
state, and that an operation is performed, which changes the state to new 
values, a’, b‘, c‘. 

What we would have then is that the state, in the mathematical form 
la‘, b’, c’), is simply some operation G operating on la, 6 ,  c ) .  In quantum 
mechanics, state changing operators are linear operators, and so we’ll sup- 
pose that G is linear. Therefore, G is a matrix, and the matrix elements of 
G,  Ga,,ht,c,,o,h,r are all 0 except those in Table I, which are of course 1. 

This table is the same table that represents the truth value table for the 
CONTROLLED CONTROLLED NOT. It is apparent that the operation 
is reversible, and that can be represented by saving that G*G = 1, where the 
* means Hermitian adjoint. That is to say, G is a unitary matrix. (In fact G 
is also a real matrix G * = G ,  but that’s only a special case.) To be more 
specific, we are going to write A o b , c  for this special G. We shall use the same 
matrix A with different numbers of subscripts to represent the other 
primitive elements. 
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To take a simple example, the NOT, which would be represented by 
A , ,  is the simple matrix 

This is a 2 x 2  matrix and can be represented in many ways, in different 
notations, but the particular one we will use to define these is by the 
method of creation and annihilation operators. Consider operating in this 
case, on a single line a. In order to save alphabets, let us call g the matrix 

which annihilates the 1 on atom a and converts it to 0; g is an operator 
which converts the state 11) to 10). But, if the state of the atom were 
originally lo), the operator g produces the number 0. That is, it doesn’t 
change the state, it simply produces the numerical value zero when 
operating on that state. The conjugate of this thing, of course, is 

a * = [  0 0  ] 
1 0  - 

which creates, in the sense that operating on the 0 state, it turns it to the 1 
state. In other words, it moves from 10) to 11 ). When operating on the 11 ) 
state there is no further state above that which you can create, and 
therefore i t  gives it the number zero. Every other operator 2 x 2 matrix can 
be represented in terms of these g and &. For example, the product g*g is 
equal to the matrix 

1 0  
- a * a = [ o  01  

which you might call N , .  It is 1 when the state is 11 ) and 0 when the state 
is 10). It gives the number that the state of the atom represents. Likewise 
the product 

is 1 -Nu, and gives 0 for the up-state and 1 for the down-state. We’ll use 1 
to represent the diagonal matrix, 

As a consequence of all this, aa* +g*g = 1. 
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It is evident then that our matrix for NOT, the operator that produces 
NOT, is A,  = g +a* and further of course, that's reversible, A,*A,  = 1, A ,  
is unitary. 

In the same way the matrix A , ,  for the CONTROLLED NOT can be 
worked out. If you look at the table of values for CONTROLLED NOT 
you see that it can be written this way: 

- a*g(b + b * )  + "* 
In the first term, the g*g selects the condition that the line a= 1, in which 
case we want b + b* the NOT to apply to 6. The second term selects the 
condition that the line a is 0, in which case we want nothing to happen to b 
and the unit matrix on the operators of b is implied. This can also be writ- 
ten as 1 + g*g(b + b* - 1 ), the 1 representing all the lines coming through 
directly, but in the case that a is 1, we would like to correct that by putting 
in a NOT instead of leaving the line b unchanged. 

The matrix for the CONTROLLED CONTROLLED NOT is 

1 +g*&*b-c+c*- 1) 

as, perhaps, you may be able to see. 
The next question is what the matrix is for a general logic unit which 

consists of a sequence of these. As an example, we'll study the case of the 
full adder which we described before (see Fig. 5 ) .  Now we'll have, in the 
general case, four wires represented by a, b, c, and d ;  we don't necessarily 
have to have d as 0 in all cases, and we would like to describe how the 
object operates in general (if d is changed to 1 d' is changed to its NOT). It 
produces new numbers a', b', c', and d', and we could imagine with our 
system that there are four atoms labeled a, b, c, d in a state labeled 
la, b, c, d )  and that a matrix M operates which changes these same four 
atoms so that they appear to be in the state la', b', c', d ' )  which is 
appropriate for this logic unit. That is, if represents the incoming 
state of the four bits, M is a matrix which generates an outgoing state 
I $ , u , )  for the four bits. 

For example, if the input state were the state I i , O ,  1,0), then, as we 
know, the output state should be I l , O ,  0, 1 ); the first two a', 6' should be 
1,0 for those two first lines come streight through, and the last two c', d' 
should be 0, 1 because that represents the sum and carry of the first three, 
a, b, c, bits in the first input, as d= 0. Now the matrix M for the adder can 
easily be seen as the result of five successive primitive operations, and 
therefore becomes the matrix product of the five successive matrices 
representing these primitive objects. 

M =  A a v h A h , c A h c , d A a , b A a b , d  
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The first, which is the one written farthest to the right, is A,,,, for that 
represents the CONTROLLED CONTROLLED NOT in which a and 6 
are the CONTROL lines, and the NOT appears on line d. By looking at 
the diagram in Fig. 5 we can immediately see what the remaining factors in 
the sequence represent. The last factor, for example, A a , b ,  means that 
there’s a CONTROLLED NOT with a CONTROL on line a and NOT on 
line b. This matrix will have the unitary property M * M =  1 since all of the 
A’s out of which it is a product are unitary. That is to say, M is a reversal 
operation, and M* is its inverse. 

Our general problem, then, is this. Let A , ,  A , ,  A , , , , , ‘  A ,  be the suc- 
cession of operations wanted, in some logical unit, to operate on n lines. 
The 2 “ x 2 “  matrix M needed to accomplish the same goal is a product 
A, ’ . . A 3 A 2 A I ,  where each A is a simple matrix. How can we generate this 
M in a physical way if we know how to make the simpler elements? 

In general, in quantum mechanics, the outgoing state at time i is 
$ i n ,  where $in is the input state, for a system with Hamiltonian H. To 

try to find, for a given special time t, the Hamiltonian which will produce 
M =  eiH1 when M is such a product of noncommuting matrices, from some 
simple property of the matrices themselves, appears to be very difficult. 

We realize however, that at any particular time, if we expand the eiHr 
out (as 1 + iHi - H2t2/2 - . .  . ) we’ll find the operator H operating an 
innumerable arbitrary number of times, once, twice, three times, and so 
forth, and the total state is generated by a superposition of these 
possibilities. This suggests that we can solve this problem of the com- 
position of these A’s in the following way. 

We add to the n atoms, which are in our register, an entirely new set 
of k +  1 atoms, which we’ll call “program counter sites.” Let us call q i  and 
q,? the annihilation and creation operators for the program site i for i = O  
to k.  A good thing to think of, as an example, is an electron moving from 
one empty site to another. If the site i is occupied by the electron, its state 
is 11 ), while if the site is empty, its state is 10). 

eiHl 

We write, as our Hamiltonian 

k -  I 

H = qT+ q i A i + ,  + complex conjugate 
i = O  

= 4?40A I + 4; 41 A2 + 4: 42 A ,  + . . . + 4: 41 A: 

The first thing to notice is that if all the program sites are unoccupied, 
that is, all the program atoms are initially in the state 0, nothing happens 
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because every term in the Hamiltonian starts with an annihilation operator 
and it gives 0 therefore. 

The second thing we notice is that if only one or another of the 
program sites is occupied (in state [ I ) ) ,  and the rest are not (state lo)), 
then this is always true. In fact the number of program sites that are in 
state 11 ) is a conserved quantity. We will suppose that in the operation of 
this computer, either no sites are occupied (in which case nothing happens) 
or just one site is occupied. Two or more program sites are never both 
occupied during normal operation. 

Let us start with an initial state where site 0 is occupied, is in the 11 ) 
state, and all the others are empty, 10) state. If later, at some time, the final 
site k is found to be in the 11) state, (and therefore all the others in 10)) 
then, we claim, the n register has been multiplied by the matrix M ,  which is 
A , . . . A 2 A ,  as desired. 

Let me explain how this works. Suppose that the register starts in any 
initial state, $ i n ,  and that the site, 0, of the program counter is occupied. 
Then the only term in the entire Hamiltonian that can first operate, as the 
Hamiltonian operates in successive times, is the first term, qFqOA, .  The qo 
will change site number 0 to an unoccupied site, while q: will change the 
site number 0 to an occupied site. Thus the term q:qo is a term which 
simply moves the occupied site from the location 0 to the location 1. But 
this is multiplied by the matrix A ,  which operates only on the n register 
atoms, and therefore multiplies the initial state of the n register atoms by 
A , .  

Now, if the Hamiltonian happens to operate a second time, this first 
term will produce nothing because qo produces 0 on the number 0 site 
because it is now unoccupied. The term which can operate now is the 
second term, q : q , A 2 ,  for that can move the occupied point, which I shall 
call a “cursor.” The cursor can move from site 1 to site 2 but the matrix A ,  
now operates on the register; therefore the register has now got the matrix 
A A , operating on it. 

So, looking at the first line of the Hamiltonian, if that is all there was 
to it, as the Hamiltonian operates in successive orders, the cursor would 
move successively from 0 to k,  and you would acquire, one after the other, 
operating on the n register atoms, the matrices, A ,  in the order that we 
would like to construct the total M. 

However, a Hamiltonian must be hermitian, and therefore the com- 
plex conjugate of all these operators must be present. Suppose that at  a 
given stage, we have gotten the cursor on site number 2, and we have the 
matrix A2,AI  operating on the register. Now the q2 which intends to move 
that occupation to a new position need not come from the first line, but 
may have come from the second line. It may have come, in fact, from 
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q:q2A,* which would move the cursor back from the position 2 to the 
position 1. 

But note that when this happens, the operator A :  operates on the 
register, and therefore the total operator on the register is A T A , A ,  in this 
case. But A :  A ,  is 1 and therefore the operator is just A , .  Thus we see that 
when the cursor is returned to the position 1, the net result is that only the 
operator A ,  has really operated on the register. Thus it is that as the 
various terms of the Hamiltonian move the cursor forwards and 
backwards, the A’s accumulate, or are reduced out again. 

A t  any stage, for example, if the cursor were up to the j site, the 
matrices from A ,  to A j  have operated in succession on the n register. It 
does not matter whether or not the cursor on t h e j  site has arrived there, 
by going directly from 0 to j ,  or going further and returning, or going back 
and forth in any pattern whatsoever, as long as it finally arrived at the 
state j .  

Therefore it is true that if the cursor is found at the site k, we have the 
net result for the n register atoms that the matrix M has operated on their 
initial state as we desired. 

How then could we operate this computer? We begin by putting the 
input bits onto the register, and by putting the cursor to occupy the site 0. 
We then check at the site k ,  say, by scattering electrons, that the site k is 
empty, or that the site k has a cursor. The moment we find the cursor at 
site k we remove the cursor so that it cannot return down the program line, 
and then we know that the register contains the output data. We can then 
measure it at our leisure. Of course, there are external things involved in 
making the measurements, and determining all of this, which are not part 
of our computer. Surely a computer has eventually to be in interaction with 
the external world, both for putting data in and for taking it out. 

Mathematically it turns out that the propagation of the cursor up and 
down this program line is exactly the same as it would be if the operators 
A were not in the Hamiltonian. In other words, it represents just the waves 
which are familiar from the propagation of the tight binding electrons or 
spin waves in one dimension, and are very well known. There are waves 
that travel up and down the line and you can have packets of waves and so 
forth. 

We could improve the action of this computer and make it into a 
ballistic action in the following way: by making a line of sites in addition to 
the ones inside, that we are actually using for computing, a line of say, 
many sites, both before and after. It’s just as though we had values of the 
index i for qi ,  which are less than 0 and greater than k, each of which has 
no matrix A ,  just a 1 multiplying there. Then we had have a longer spin 
chain, and we could have started, instead of putting a cursor exactly at  the 
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beginning site 0, by putting the cursor with different amplitudes on dif- 
ferent sites representing an initial incoming spin wave, a wide packet of 
nearly definite momentum. 

This spin wave would then go through the entire computer in a 
ballistic fashion and out the other end into the outside tail that we have 
added to the line of program sites, and there it would be easier to deter- 
mine if it is present and to steer it  away to some other place, and to cap- 
ture the cursor. Thus, the logical unit can act in a ballistic way. 

This is the essential point and indicates, at least to a computer scien- 
tist, that we could make a universal computer, because he knows if we can 
make any logical unit we can make a universal computer. That this could 
represent a universal computer for which composition of elements and 
branching can be done is not entirely obvious unless you have some 
experience, but I will discuss that to some further extent later. 

4. IMPERFECTIONS AND IRREVERSIBLE FREE ENERGY LOSS 

There are, however, a number of questions that we would like to 
discuss in more detail such as the question of imperfections. 

There are many sources of imperfections in this machine, but the first 
one we would like to consider is the possibility that the coefficients in the 
couplings, along the program line, are not exactly equal. The line is so long 
that in a real calculation little irregularities would produce a small 
probability of scattering, and the waves would not travel exactly 
ballistically, but would go back and forth. 

If the system, for example, is built so that these sites are built on a 
substrate of ordinary physical atoms, then the thermal vibrations of these 
atoms would change the couplings a little bit and generate imperfections. 
(We should even need such noise for with small fixed imperfections there 
are shallow trapping regions where the cursor may get caught.) Suppose 
then, that there is a certain probability, say p per step of calculation (that 
is, per step of cursor motion, i -+ i+ l),  for scattering the cursor momen- 
tum until it is randomized (l/p is the transport mean free path). We will 
suppose that the p is fairly small. 

Then in a very long calculation, it might take a very long time for the 
wave to make its way out the other end, once started at the beginning 
-because it has to go back and forth so many times due to the scattering. 
What one then could do would be to pull the cursor along the program 
line with an external force. If the cursor is, for example, an electron moving 
from one vacant site to another, this would be just like an electric field 
trying to pull the electron along a wire, the resistance of which is generated 
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by the imperfection or the probability of scattering. Under these circum- 
stances we can calculate how much energy will be expended by this 
external force. 

This analysis can be made very simply: it is an almost classical 
analysis of an electron with a mean free path. Every time the cursor is scat- 
tered, I am going to suppose it is randomly scattered forward and 
backward. In order for the machine to operate, of course, i t  must be 
moving forward at a higher probability than it is moving backward. 
When a scattering occurs therefore, the loss in entropy is the logarithm of 
the probability that the cursor is moving forward, divided by the 
probability the cursor was moving backward. 

This can be approximated by (the probability forward - the 
probability backward)/(the probability forward + the probability 
backward). That was the entropy lost per scattering. More interesting is the 
entropy lost per net calculational step, which is, of course, simply p times 
that number. We can rewrite the entropy cost per calculational step as 

P V D I V R  

where v D  is the drift velocity of the cursor and v R  its random velocity. 
Or if you like, it is p times the minimum time that the calculation 

could be done in (that is, if all the steps were always in the forward direc- 
tion), divided by the actual time allowed. 

The free energy loss per step then, is k T x  p x the minimum time that 
the calculation could be done, divided by the actual time that you allow 
yourself to do it. This is a formula that was first derived by Bennett. The 
factor p is a coasting factor, to represent situations in which not every site 
scatters the cursor randomly, but it has only a small probability to be thus 
scattered. 

It will be appreciated that the energy loss per step is not kT but is that 
divided by two factors. One, ( l / p ) ,  measures how perfectly you can build 
the machine and the other is proportional to the length of time that you 
take to do the calculation. It is very much like a Carnot engine, in which in 
order to obtain reversibility, one must operate very slowly. For the ideal 
machine where p is 0, or where you allow an infinite time, the mean energy 
loss can be 0. 

The uncertainty principle, which usually relates some energy and time 
uncertainty, is not directly a limitation. What we have in our computer is a 
device for making a computation, but the time of arrival of the cursor and 
the measurement of the output register at the other end (in other words, 
the time it takes in which to complete the calculation) is not a define time. 
It’s a question of probabilities, and so there is a considerable uncertainty in 
the time at which a calculation will be done. 
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There is no loss associated with the uncertainty of cursor energy; at  
no loss depending on the number of calculational steps. Of course, if 

want to do a ballistic calculation on a perfect machine, some energy 
would have to be put into the original wave, but that energy, of course, can 
be removed from the final wave when it comes out of the tail of the 
program line. All questions associated with the uncertainty of operators 
and the irreversibility of measurements are associated with the input and 
output functions. 

No further limitations are generated by the quantum nature of the 
computer per se, nothing that is proportional to the number of com- 
putational steps. 

In a machine such as this, there are very many other problems, due to 
imperfections. For example, in the registers for holding the data, there will 
be problems of cross-talk, interactions between one atom and another in 
that register, or interaction of the atoms in that register directly with things 
that are happening along the program line, that we did not exactly bargain 
for. In other words, there may be small terms in the Hamiltonian besides 
the ones we have written. 

Until we propose a complete implementation of this, i t  is very difficult 
to analyze. At least some of these problems can be remedied in the usual 
way by techniques such as error correcting codes, and so forth, that have 
been studied in normal computers. But until we find a specific implemen- 
tation for this computer, I do not know how to proceed to analyze these 
effects. However, it appears that they would be very important, in practice. 
This computer seems to be very delicate and these imperfections may 
produce considerable havoc. 

The time needed to make a step of calculation depends on the strength 
or the energy of the interactions in the terms of the Hamiltonian. If each of 
the terms in the Hamiltonian is supposed to be of the order of 0.1 electron 
volts, then it appears that the time for the cursor to make each step, if done 
in a ballistic fashion, is of the order 6 x sec. This does not represent 

C 

q IF c = I GO p TO q AND PUT c = 0 

IF c = 0 GO p TO r AND PUT c = I 4-k: r IF c I GO r TO D AND PUT c =  0 

H = q* cp + r*c"p IF c 0 GO q TO p AND PUT c = I 

+ p+c+q + p+cr 
Fig. 7. Switch. 
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an enormous improvement, perhaps only about four orders of magnitude 
over the present values of the time delays in transistors, and is not much 
shorter than the very short times possible to achieve in many optical 
systems. 

5. SIMPLIFYING THE IMPLEMENTATION 

We have completed the job we set out to do-to find some quantum 
mechanical Hamiltonian of a system that could compute, and that is all 
that we need say. But it is of some interest to deal with some questions 
about simplifying the implementation. The Hamiltonian that we have writ- 
ten involves terms which can involve a special kind of interaction between 
five atoms. For example, three of them in the register, for a CON- 
TROLLED CONTROLLED NOT, and two of them as the two adjacent 
sites in the program counter. 

This may be rather complicated to arrange. The question is, can we do 
i t  with simpler parts. It turns out that we can indeed. We can do  it so that 
in each interaction there are only three atoms. We are going to start with 
new primitive elements, instead of the ones we began with. We’ll have the 
NOT all right, but we have in addition to that simply a “switch” (see also 
Priese‘’)). 

Supposing that we have a term, q*cp + r*c*p + its complex conjugate 
in the Hamiltonian (in all cases we’ll use letters in the earlier part of the 
alphabet for register atoms and in the latter part of the alphabet for 
program sites). See Fig. 7. This is a switch in the sense that, if c is 
originally in the 11 ) state, a cursor at p will move to q, whereas if c is in 
the 10) state, the cursor at p will move to r. 

During this operation the controlling atom c changes its state. (It is 
possible also to write an expression in which the control atom does not 
change its state, such as q*c*cp+r*cc*p and its complex conjugate but, 
there is no particular advantage or disadvantage to this, and we will take 
the simpler form.) The complex conjugate reverses this. 

If, however, the cursor is at q and c is in the state 11 ) (or cursor at r,  c 
in lo)), the H gives 0, and the cursor gets reflected back. We shall build all 
our circuits and choose initial states so that this circumstance will not arise 
in normal operation, and the ideal ballistic mode will work. 

With this switch we can do a number of things. For example, we could 
produce a CONTROLLED NOT as in Fig. 8. The switch a controls the 
operation. Assume the cursor starts at s. If a= 1 the program cursor is 
carried along the top line, whereas if a=O i t  is carried along the bottom 
line, in either case terminating finally in the program site t .  
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a 0 

t 

;(=ly--$ 
S = b + b  

I sN +N I 

Fig. 8. CONTROLLED NOT by switches. 

In these diagrams, horizontal or vertical lines will represent program 
atoms. The switches are represented by diagonal lines and in boxes we’ll 
put the other matrices that operate on registers such as the NOT 6. To be 
specific, the Hamiltonian for this little section of a CONTROLLED NOT, 
thinking of it  as starting at s and ending at t ,  is given below: 

H,(s, f )  = $&as + [*a*[,  + r&(b + b*)  s, + s;a*s 

+ t*atN f t ; s N  -k c.c 

(The c.c means to add the complex conjugate of all the previous terms.) 
Although there seem to be two routes here which would possibly 

produce all kinds of complications characteristic of quantum mechanics, 
this is not so. If the entire computer system is started in a definite state for 
a by the time the cursor reaches s, the atom a is still in some definite state 
(although possibly different from its initial state due to previous computer 
operations on it). Thus only one of the two routes is taken. The expression 
may be simplified by omitting the s ; t t N  term and putting t ,  = s,. 

One need not be concerned in that case, that one route is longer (two 
cursor sites) than the other (one cursor site) for again there is no inter- 
ference. No scattering is produced in any case by the insertion into a chain 
of coupled sites, an extra piece of chain of any number of sites with the 
same mutual coupling between sites (analogous to matching impedances in 
transmission lines). 

To study these things further, we think of putting pieces together. A 
piece (see Fig. 9)  M might be represented as a logical unit of interacting 
parts in which we only represent the first input cursor site as s, and the 
final one at the other end as t , .  All the rest of the program sites that are 
between s, and t ,  are considered internal parts of M ,  and M contains its 
registers. Only s, and t ,  are sites that may be coupled externally. 
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I M I 

s M  =Start ing program site for piece 

t M  =Terminal program site for piece 

H, ( s M ,  t,) is the part of the Hamiltonian 
representing all the “atoms” and program sites 
within the box M, and their interactions with sM,t, 

Fig. 9. One “piece.” 

The Hamiltonian for this subsection we’ll call H ,  and we’ll identify s, 
and t,, as the name of the input and output program sites by writing 
H,(s,, l,). So therefore H ,  is that part of the Hamiltonian representing 
all the atoms in the box and their external start and terminator sites. 

An especially important and interesting case to consider is when the 
input data (in the regular atoms) comes from one logical unit, and we 
would like to transfer it  to another (see Fig. 10). Suppose that we imagine 
that the box M starts with its input register with 0 and its output (which 
may be the same register) also with 0. Then we could use it  in the following 
way. We could make a program line, let’s say starting with s’, whose first 
job is to exchange the data in an external register which contains the input, 
with M’s input register which at the present time contains 0’s. 

Then the first step in our calculation, starting, say, at sl,, would be to 
make an exchange with the register inside of M. That puts zero’s into the 
original input register and puts the input where it  belongs inside the box 
M .  The cursor is now at s,. (We have already explained how exchange can 
be made of controlled NOTs.) Then as the program goes from s, to t ,  we 
find the output now in the box M.  Then the output register of M is now 
cleared as we write the results into some new external register provided for 
that purpose, originally containing 0’s. This we do from t ,  to t)M by 
exchanging data in the empty external register with the M’s output register. 

We can now consider connecting such units in different ways. For 
example, the most obvious way is succession. If we want to do first M and 
then N we can connect the terminal side of one to the starting side of the 
other as in Fig. 11, to produce a new effective operator K, and the 
Hamiltonian then for H ,  is 

H K ( s K ,  ‘ K )  = H , ( s K ,  I )  3- H N ( f ,  t K )  
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SM' TO SM 

EXCHANGE 
"IN" WITH REG. 
INSIOE M 

t M  TO tM' 
EXCHANGE 
"OUT" WITH REG. 
INSIDE M 

Fig. 10. Piece with external input and output. 

The CONTROLLED NOT is the special case of this with M = NOT b 
for which H js 

HNOTh(3, t )  = s*(b + 6*) t + C.C. 

and N is no operation s* t .  
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Fig. 12. Conditional if  u = I then M, else N 

As another example, we can deal with a garbage clearer (previously 
described in Fig. 6) not by making two machines, a machine and its 
inverse, but by using the same machine and then sending the data back to 
the machine in the opposite direction, using our switch (see Fig. 13). 

Suppose in this system we have a special flag which is originally 
always set to 0. We also suppose we have the input data in an external 
register, an empty external register available to hold the output, and the 
machine registers all empty (containing 0’s). We come on the starting 
line s. 

The first thing we do is to copy (using CONTROLLED NOT’S) our 
external input into M.  Then M operates, and the cursor goes on the top 
line in our drawing. It copies the output out of M into the external output 
register. M now contains garbage. Next it changes f to NOTf ,  comes down 
on the other line of the switch, backs out through M clearing the garbage, 
and uncopies the input again. 

When you copy data and do it again, you reduce one of the registers 
to 0, the register into which you coied the first time. After the coying, it 
goes out (since f is now changed) on the other line where we restore f to 0 

f f 

Fig. 13. Garbage clearer. 
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and come out at t .  So between s and t we have a new piece of equipment, 
which has the following properties. 

When its starts, we have, in a register called IN, the input data. In an 
external register which we call OUT, we have 0's. There is an internal flag 
set at 0, and the box, M ,  is empty of all data. A t  the termination of this, at 
f, the input register still contains the input data, and the output register 
contains the output of the effort of the operator M .  M ,  however, is still 
empty, and the flag f is reset to 0. 

Also important in computer programs is the ability to use the same 
subroutine several times. Of course, from a logical point of view, that can 
be done by writing that bit of program over and over again, each time it is 
to be used, but in a practical computer, i t  is much better if we could build 
that section of the computer which does a particular operation, just once, 
and use that section again and again. 

To  show the possibilities, here, first just suppose we have an operation 
we simply wish to repeat twice in succession (see Fig. 14). We start at s 
with the flag a in the condition 0, and thus we come along the line, and the 
first thing that happens is we change the value of a. Next we do the 
operation M .  Now, because we changed a, instead of coming out at  the top 
line where we went in, we come out at the bottom line, which recirculates 
the program back into changing a again; i t  restores it. 

This time as we go through M ,  we come out and we have the a to 
follow on the uper line, and thus come out at the terminal, t. The 
Hamiltonian for this is 

H,,(s, t )  = (sZa*s + s&(a* + a )  sf$ + x*a*t ,  +$ ;ax  

+ t*a t ,  + C.C.) + H,(s,, 1,) 

Using this switching circuit a number of times, of course, we can 
repeat an operation several times. For example, using the same idea three 

a a 

I 1 

X 
Fig. 14. Do M twice. 



990 

Quantum Mechanical Computers 

C 
I b 

529 

C 

b I  

Fig. 15. Do M eight times. 

times in succession, a nested succession, we can do an operation eight 
times, by the apparatus indicated in Fig. 15. In order to do so, we have 
three flags, a, h, and c. It is necessary to have flags when operations are 
done again for the reason that we must keep track of how many times its 
done and where we are in the program or we’ll never be able to reverse 
things. 

A subroutine in a normal computer can be used and emptied and used 
again without any record being kept of what happened. But here we have 
to keep a record and we do that with flags, of exactly where we are in the 
cycle of the use of the subroutine. If the subroutine is called from a certain 
place and has to go back to some other place, and another time is called, 
its origin and final destination are different, we have to know and keep 
track of where it came from and where it’s supposed to go individually in 
each case, so more data have to be kept. Using a subroutine over and over 
in a reversible machine is only slightly harder than in a general machine. 
All these considerations appear in papers by Fredkin, Toffoli, and Bennett. 

It is clear by the use of this switch, and successive uses of such 
switches in trees, that we would be able to steer data to any oint in a 
memory. A memory would simply be a place where there are registers into 
which you could copy data and then return the program. The cursor will 

t 

NOT c 

S 

Fig. 16. Increment counter (3-bit). 
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have to follow the data along. I suppose there must be another set of tree 
switches set the oposite direction to carry the cursor out again, after 
copying the data so that the system remains reversible. 

In Fig. 16 we show an incremental binary counter (of three bits a, h, c 
with c the most significant bit) which keeps track of how many net times 
the cursor has passed from s to t. These few examples should be enough to 
show that indeed we can construct all computer functions with our 
SWITCH and NOT. We need not follows this in more detail. 

6. CONCLUSIONS 

It’s clear from these examples that this quentum machine has not 
really used many of the specific qualities of the differential equations of 
quantum mechanics. 

What we have done is only to try to imitate as closely as possible the 
digital machine of conventional sequential architecture. I t  is analogous to 
the use of transistors in conventional machines, where we do not properly 
use all the analog continuum of the behavior of transistors, but just try to 
run them as saturated on or off digital devices so the logical analysis of the 
system behavior is easier. Furthermore, the system is absolutely sequen- 
tial-for example, even in the comparison (exclusive or)  of two k bit num- 
bers, we must do each bit successively. What can be done, in these rever- 
sible quantum systems, to gain the speed available by concurrent operation 
has not been studied here. 

Although, for theoretical and academic reasons, I have studied com- 
plete and reversible systems, if such tiny machines could become practical 
there is no reason why irreversible and entropy creating interactions cannot 
be made frequently during the course of operations of the machine. 

For example, it might prove wise, in a long calculation, to ensure that 
the cursor has surely reached some oint and cannot be allowed to reverse 
again from there. Or, it may be found practical to connect irreversible 
memory storage (for items less frequently used) to reversible logic or short- 
term reversible storage registers, etc. Again, there is no reason we need to 
stick to chains of coupled sites for more distant communication where 
wires or light may be easier and faster. 

At any rate, it seems that the laws of physics present no barrier to 
reducing the size of computers until bits are the size of atoms, and quan- 
tum behavior holds dominant sway. 
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