A Helium atom has a nuclear charge of Ze, where Z=2. One of the electrons is removed leaving an atom that resembles a Hydrogen atom but with twice the nuclear charge. What are the energy levels in this atom?

The energy levels in the Hydrogen atom are:

\[E_n = - \frac{me^4}{\varepsilon_0^28n^2h^2} \]

A Helium atom has a nuclear charge of Ze, where Z=2. One of the electrons is removed leaving an atom that resembles a Hydrogen atom but with twice the nuclear charge. What are the energy levels in this atom?

a) \[E_n = - \frac{mZe^4}{\varepsilon_0^28n^2h^2} \]

b) \[E_n = - \frac{mZ^2e^4}{\varepsilon_0^28n^2h^2} \]

c) \[E_n = - \frac{mZ^4e^4}{\varepsilon_0^28n^2h^2} \]

d) \[E_n = - \frac{me^4}{\varepsilon_0^28(Zn)^2h^2} \]
An electron that has been accelerated through a voltage V undergoes a large acceleration when it hits the target.

Is there a limit to the wavelength of electromagnetic radiation produced?

a) No

b) There is an upper limit on wavelength

c) There is a lower limit on wavelength
X-rays from a molybdenum target at 35 kV

Wavelength (nm)

Relative intensity

K_α

K_β

Brehmsstrahlung continuum
An electron is in the field of an EM plane wave. The electron is accelerated by the electric field, and therefore emits EM radiation. What would classical theory* predict is the wavelength of the emitted radiation?

a) A shorter wavelength than the plane wave.

b) A longer wavelength than the plane wave.

c) The same wavelength as the plane wave.

* This is called Thomson scattering
A QUANTUM THEORY OF THE SCATTERING OF X-RAYS
BY LIGHT ELEMENTS

By Arthur H. Compton

Fig. 5. The wave-length of scattered γ-rays at different angles with the primary beam, showing an increase at large angles similar to a Doppler effect.

Fig. 7. Comparison of experimental and theoretical intensities of scattered γ-rays.