

If a stationary 'Ether' existed, which path would take longer? The path lengths are equal.

a) Towards M1

b) Towards M2 But this is not easy to see intuitively

If a stationary 'Ether' existed and the interferometer was balanced in one orientation and then rotated 90 degrees:

- a) There would be no observable effect at the detector.
- b) There would be fringes moving past a point at the detector.

1818: Light is a wave (Fresnel, Poisson Spot)

1821: Light must be completely transverse to explain observed polarization effects.

Light must be propagating in an "ether"

1864: Maxwell shows light is self propagating EM fields.

1887: Testing the ether theory: Michelson and Morley

1905: Special Theory of Relativity (Einstein)

http://en.wikipedia.org/wiki/History_of_special_relativity

Name	Year	Arm length (meters)	Fringe shift expected	Fringe shift measured	Experimental Resolution	Upper Limit on V _{aether}
Michelson	1881	1.2	0.04	0.02		
Michelson and Morley	1887	11.0	0.4	< 0.01		8 km/s
Morley and Miller	190 2 _1904	32.2	1.13	0.015		
Miller	1921	32.0	1.12	0.08		
Miller	1923–1924	32.0	1.12	0.03		
Miller (Sunlight)	1924	32.0	1.12	0.014		
Tomascheck (Starlight)	1924	8.6	0.3	0.02		
Miller	1925-1926	32.0	1.12	0.088		
Kennedy (Mt Wilson)	1926	2.0	0.07	0.002		
Illingworth	1927	2.0	0.07	0.0002	0.0006	1 km/s
Piccard and Stahel (Rigi)	1927	2.8	0.13	0.006		
Michelson et al.	1929	25.9	0.9	0.01		
Joos	1930	21.0	0.75	0.002		