Which rays are drawn correctly?

A

\[n_a > n_b \]

B

C
Most light sources emit:

a) un-polarized light

b) polarized light
Total Internal Reflection Fluorescence (TIRF) Microscopy

\[I(z) = I(0)e^{-\beta} \]

\[\beta = \frac{\lambda}{4\pi \sqrt{n_1^2 \sin(\alpha)^2 - n_2^2}} \]

\(\lambda \): wavelength of light
\(\alpha \): incident angle
\(n_1 \): index of water (1.33)
\(n_2 \): index of cover slip (1.52)

\[NA = n \sin(\alpha) = 1.45 \]

\(\beta_{\text{min}} \approx 70 \text{ nm} \)
In what direction is the light polarized after the polarizing filter?

(a) x

(b) y

(c) z

(d) still un-polarized
What is the intensity at the detector?

a) \(I_0 \)
b) \(I_0 \cos(\phi) \)
c) \(I_0 \cos^2(\phi) \)
d) \(I_0 \cos^2(\phi)/2 \)
For right circularly polarized light the projection onto the y-axis is given by:

\[E_y(x,t) = E_{\text{max}} \cos(kx - \omega t) \]

what is the projection onto the z-axis?

a) \[E_z(x,t) = E_{\text{max}} \cos(kx - \omega t) \]

b) \[E_z(x,t) = -E_{\text{max}} \cos(kx - \omega t) \]

c) \[E_z(x,t) = E_{\text{max}} \sin(kx - \omega t) \]

d) \[E_z(x,t) = -E_{\text{max}} \sin(kx - \omega t) \]