The Finite Square Well Potential
Treatment following ”Introductory Quantum Mechanics” by Liboff.

We want to find solutions to the time independent Schrodinger equation
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Using the potential in each of the three regions gives the wave functions
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Both the wave functions and first derivatives must match at the boundary regions, leading to the following
four equations:
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kAe " = ik(Be~ kT — Cett?) (16)
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This is as far as I would expect you to go for our physics 262 class, but here is a summary of the following
analysis...
We can write the four above equations in matrix form:
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By Cramer’s Rule, there is only a non-trivial solution when the determinant of the 4x4 matrix is zero.
With some algebra, it can be shown that this is only true when:

kcot(ka) = —k (19)
or
ktan(ka) = k (20)
Each case above restricts the possible values of the coefficients A, B, C, D leading to the odd wave func-
tions
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and the even wave functions
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The constant B can be found from the normalization condition:
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The combination of
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and

kcot(ka) = —k (23)
or

ktan(ka) = & (24)

are only satisfied when k and « and therefore E take on specific values, giving quantized energy levels.



