1) Consider the vibrational-rotational absorption lines for the HCl molecule:

- a) (5 pts) What type of bond is this?
- b) (10 pts) What is the vibrational frequency?
- c) (10 pts) What is the moment of inertia of the molecule?
- d) (15 pts) For H: A=1, for Cl: A=17. Use the above spectrum to calculate the bond length
- 2) When deriving the Rutherford cross section, we equated two expressions of Δp to get an equation relating the impact parameter to the scattering angle.
 - a) (5 pts) What is the resulting equation?
 - b) (15 pts) Show the derivation of one of the Δp terms. (pick your favorite)
- 3) You have a selection of 1cm x 1cm x 1µm foils that you were planning to use for some very high energy scattering experiments. Someone opened the door to your lab at a bad time, and a breeze mixed up all your foils. You figure you can use Rutherford scattering to figure out what they are. The first one you try is a shiny-silver colored foil. It weighs 2.7 x 10⁻⁴ g. Determine what your sample is. Conveniently, you keep a source of ²¹⁰Po in your lab.
 - a) (10 pts) What is the kinetic energy of the alpha particles emitted from ²¹⁰Po?
 - b) (10 pts) You setup a collimated beam that gives 10^6 alphas per second, but in doing so, you accidentally put your hand in the beam for 1 s. What is the radiation dose equivalent of your exposure? Should you be worried about your health?
 - c) (20 pts) The foil scatters 2.36 alphas per second at an angle greater than $\pi/2$. What is the foil made from? State all your assumptions, and show your reasoning.

Example Exam 3

- 1.)
- a.) ionic
- b.) the missing absorbtion line is at the Vibrational forguency, $f \cong 8.65 \times 10^{13} \text{ Hz}$
- (1) For the first absorbtion line above vibration

 frequency, $E_{Y} = \frac{1}{1} \frac{1}{1$
- $I = \frac{M_1 M_2}{M_1 + M_2} \Gamma^2 \qquad M_2 = 17 M \qquad M = 0.935 \text{ GeV/2}$ $\Gamma = \left[\frac{I(M_1 + M_2)}{M_1 M_2}\right]^{\frac{1}{2}} = \left[\frac{1.1 \times 10^{-17} \text{ GeV } s^2 (3 \times 10^{9} \text{ Mz})^{\frac{3}{2}}}{0.935 \text{ GeV}}\right]^{\frac{3}{2}}$

= 0.15 nm

$$0.) b = \frac{kq_1q_2}{mv^2} \int \frac{1 + \cos\theta}{1 - \cos\theta}$$

3,)
$$\sigma_{i} = \frac{Q(A-4)}{A}$$

$$E_{k} = 5.4 \text{ MeV} \left(\frac{210.4}{210} \right) = 5.3 \text{ MeV}$$

b.)
Energy deposited in 1s

is
$$10^6 \times 5.3 \text{ MeV}$$
, $1\overline{J} = 8.5 \times 10^{-7} \text{ J}$

$$\frac{8.5 \times 10^{-7} \text{ J}}{1 \text{ Kg}} = 8.5 \times 10^{-7} \text{ Gy}$$

radiation duse Equivalent is

$$8.5 \times 10^{-7} \text{ J/kg} \times 20 = 1.7 \times 10^{-5} \text{ SV}$$

0 for Δ publics

d Scattering for 0 7 Th gives a cross section

$$\sigma = \pi 2^2 \left(\frac{ke^2}{E\kappa}\right)^2$$

Scattering through a thin foil gives

$$T = \frac{R_s A (10^{-3} k_g)}{R_i L N_A P}$$

Assume A~ 27

$$\frac{2 R_5 Z (10^{-3} k_9)}{R_1 L N_A P} = \Pi Z^2 \left(\frac{Ke^2}{E_K}\right)^2$$

$$Z = \frac{2 R_s (10^{-3} k_s)}{\pi R_r L N_A p \left(\frac{Ke^2}{E_K}\right)^2}$$

$$= \frac{2 \times (2.36 \text{ s}^{-1})(10^{-3} \text{ kg})}{\pi (10^{6} \text{ s}^{-1})(10^{-6} \text{ m})(6.02 \times 10^{23})(\frac{2.7 \times 10^{-7} \text{ kg}}{(10^{-2} \text{ m})(10^{-6} \text{ m})})(\frac{1.44 \times 10^{-9} \text{ ev·m}}{5.3 \times 10^{6} \text{ ev}})}$$