Physics 480: Homework \#1
Due September 15, 2010
10 points

1. (4 points) Consider a random walk in 1 dimension. Show that for each small jump, only the parameter $<\Delta x^{2}>$ is important when observations of position are made after many small steps. To do this, simulate a random walk using step sizes where the magnitude is either: (1) always a single value, (2) drawn from a uniform distribution, or (3) drawn from a normal distribution. In each case $<\Delta x^{2}>=2 D \tau$ where D is an arbitrary diffusion constant and τ is the time between jumps and D and tau are held constant through all simulations. If the particle starts at $x=0$, show the distribution of positions after 100 steps by making many simulations. Plot the histograms for each step size distribution together with that expected for a diffusing particle with diffusion coefficient $D=\frac{\left\langle\Delta x^{2}\right\rangle}{(2 \tau)}$. Submit your code by e-mail along with the rest of the assignment.
2. (3 points) Nelson problem 4.3: Limitations of passive transport.
3. (3 points) Give an example base pair sequence of single stranded DNA that could form a 'hairpin' type structure.
